JP5679088B2 - Method for reducing the molecular weight of organic substances - Google Patents

Method for reducing the molecular weight of organic substances Download PDF

Info

Publication number
JP5679088B2
JP5679088B2 JP2014502008A JP2014502008A JP5679088B2 JP 5679088 B2 JP5679088 B2 JP 5679088B2 JP 2014502008 A JP2014502008 A JP 2014502008A JP 2014502008 A JP2014502008 A JP 2014502008A JP 5679088 B2 JP5679088 B2 JP 5679088B2
Authority
JP
Japan
Prior art keywords
vol
organic substance
gas
concentration
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014502008A
Other languages
Japanese (ja)
Other versions
JPWO2013128843A1 (en
Inventor
高木 克彦
克彦 高木
藤井 良基
良基 藤井
勇紀 中村
勇紀 中村
浅沼 稔
稔 浅沼
藤林 晃夫
晃夫 藤林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014502008A priority Critical patent/JP5679088B2/en
Application granted granted Critical
Publication of JP5679088B2 publication Critical patent/JP5679088B2/en
Publication of JPWO2013128843A1 publication Critical patent/JPWO2013128843A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/07Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of solid raw materials consisting of synthetic polymeric materials, e.g. tyres
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/005Rotary drum or kiln gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/721Multistage gasification, e.g. plural parallel or serial gasification stages
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/04Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment reducing the carbon monoxide content, e.g. water-gas shift [WGS]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/158Screws
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0946Waste, e.g. MSW, tires, glass, tar sand, peat, paper, lignite, oil shale
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • C10J2300/0976Water as steam
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1246Heating the gasifier by external or indirect heating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1853Steam reforming, i.e. injection of steam only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Processing Of Solid Wastes (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明は、廃プラスチックなどの有機物質を気体燃料や液体燃料などに転換するために、有機物質を改質して低分子化する方法に関する。   The present invention relates to a method for modifying an organic substance to reduce its molecular weight in order to convert the organic substance such as waste plastic into gaseous fuel or liquid fuel.

廃プラスチック、含油スラッジ、廃油などの多くは焼却処理されているのが現状である。しかし、焼却処理ではCO発生などの環境負荷が高く、また、焼却炉の熱的損傷の問題もあり、ケミカルリサイクル技術の確立が求められている。
ケミカルリサイクル技術のなかでも、有機物質を気体燃料や液体燃料に転換するための技術は、廃プラスチックを中心に従来から種々検討がなされ、例えば、以下のような提案がなされている。
At present, most of waste plastic, oil-impregnated sludge, waste oil, etc. are incinerated. However, incineration treatment has a high environmental load such as CO 2 generation, and there is a problem of thermal damage of the incinerator, and establishment of chemical recycling technology is required.
Among chemical recycling technologies, technologies for converting organic substances into gaseous fuels and liquid fuels have been variously studied mainly with respect to waste plastics. For example, the following proposals have been made.

特許文献1には、水素濃度60vol%以上、好ましくは80vol%以上、温度600℃以上のコークス炉ガス(COG)を廃プラスチックなどの有機物質と反応させることにより、有機物質を高効率で水素化分解・ガス化し、COGを増熱化する方法が開示されている。
また、特許文献2には、石油の流動接触触媒(FCC)を熱媒体兼触媒として用い、温度350〜500℃で廃プラスチックを分解して液体燃料に変換する方法が開示されている。
また、特許文献3には、RDFや木材などを熱分解するにあたり、熱分解で生成したガスを水蒸気改質し、この水蒸気改質により水素濃度を高くしたガスを熱分解部に循環し、水素濃度を高くしたガス雰囲気で熱分解を行う方法が開示されている。
In Patent Document 1, a coke oven gas (COG) having a hydrogen concentration of 60 vol% or more, preferably 80 vol% or more and a temperature of 600 ° C or more is reacted with an organic material such as waste plastic, thereby hydrogenating the organic material with high efficiency. A method for increasing the heat of COG by decomposition and gasification is disclosed.
Further, Patent Document 2 discloses a method in which petroleum fluid contact catalyst (FCC) is used as a heat medium / catalyst and waste plastic is decomposed at a temperature of 350 to 500 ° C. to be converted into liquid fuel.
Further, in Patent Document 3, when pyrolyzing RDF, wood, etc., the gas generated by pyrolysis is steam reformed, and the gas having a high hydrogen concentration by this steam reforming is circulated to the pyrolysis section to generate hydrogen. A method of performing pyrolysis in a gas atmosphere with a high concentration is disclosed.

特開2007−224206号公報JP 2007-224206 A 特開2010−013657号公報JP 2010-013657 A 特開2001−131560号公報JP 2001-131560 A 特開2006−104339号公報JP 2006-104339 A 特開2006−188574号公報JP 2006-188574 A

しかしながら、上記従来技術には、以下のような問題がある。
まず、特許文献1に関しては、COG中の水素濃度が60vol%以上となるのは石炭乾留工程のうちでも乾留末期に限られるので、特許文献1の方法では、乾留末期のタイミングでガス流路を切替え、多量のダストを含む600℃以上のCOGを廃プラスッチク水素化分解反応器に供給する必要がある。しかし、このような過酷な条件で、流路切替弁を長期間安定して作動させ続けることは困難であり、この意味で実現性に乏しい技術であると言える。さらに、廃プラスチックの効率的なガス化のためには、60vol%以上の水素を含有するCOGを連続的に水素化分解反応器に供給することが必要であるが、このためには炭化室毎に水素濃度計と流路切替弁を設置する必要があり、設備コストが増大する。
However, the above prior art has the following problems.
First, regarding Patent Document 1, since the hydrogen concentration in COG is 60 vol% or more is limited to the end of the dry distillation in the coal dry distillation process, in the method of Patent Document 1, the gas flow path is opened at the end of the dry distillation. It is necessary to switch and supply COG of 600 ° C. or more containing a large amount of dust to a waste plastic hydrocracking reactor. However, it is difficult to stably operate the flow path switching valve for a long time under such a severe condition, and in this sense, it can be said that the technique is poor in feasibility. Furthermore, for efficient gasification of waste plastic, it is necessary to continuously supply COG containing 60 vol% or more of hydrogen to the hydrocracking reactor. In addition, it is necessary to install a hydrogen concentration meter and a flow path switching valve, which increases the equipment cost.

また、特許文献2の方法は、FCC触媒添加によって接触分解と芳香族化が進むものの、不活性ガスフローで反応を行っているため、重油分とコークが合計で13質量%生成しており(実施例1)、軽質燃料の製造技術として満足できる水準とは言えない。
また、特許文献3の方法で生成するガスは、H、CO、COが主体で、燃焼熱が冶金炉発生排ガスのそれよりやや低い1800kcal/Nm程度のものであり、気体燃料としての価値は限定的なものとなる。
Moreover, although the method of patent document 2 advances catalytic cracking and aromatization by FCC catalyst addition, since it reacts by an inert gas flow, 13 mass% of heavy oil components and coke are produced | generated in total ( Example 1) is not a satisfactory level as a light fuel production technology.
Further, the gas generated by the method of Patent Document 3 is mainly H 2 , CO, and CO 2 , and the combustion heat is about 1800 kcal / Nm 3 that is slightly lower than that of the exhaust gas generated from the metallurgical furnace. The value is limited.

したがって本発明の目的は、廃プラスチックなどの有機物質を低分子化して気体燃料や液体燃料などに転換する際に、安定的に供給可能なガスを用いて有機物質を効率的に改質して低分子化し、重質分や炭素質が少なく、軽質分を多量に含有する改質物を得ることができ、しかも比較的簡易な設備で実施することができる有機物質の低分子化方法を提供することにある。   Accordingly, an object of the present invention is to efficiently reform an organic substance using a gas that can be stably supplied when the organic substance such as waste plastic is reduced in molecular weight to be converted into gaseous fuel or liquid fuel. Provided is a method for reducing the molecular weight of an organic substance, which can be reduced in molecular weight, can be obtained with a modified product containing a small amount of heavy components and carbonaceous matter and a large amount of light components, and can be implemented with relatively simple equipment. There is.

本発明者らは、上記課題を解決するため検討を重ねた結果、(i)ガス化溶融炉で発生
する二酸化炭素と水素を含有する排ガスに水蒸気を混合し、この混合ガスにより、高分子量の有機物質を改質して低分子化すること、或いは、(ii)ガス化溶融炉で発生する一酸化炭素と水素を含有する排ガスに過剰の水蒸気を添加してシフト反応を行わせ、このシフト反応後のガス、すなわち、排ガスに含まれていた水素と、シフト反応で生成した二酸化炭素および水素と、シフト反応に消費されなかった水蒸気とを含む混合ガスにより、高分子量の有機物質を改質して低分子化すること、が有効であることを見出した。また、上記(i)、(ii)の方法において、有機物質改質用の混合ガスの組成には好適範囲があることが判った。
As a result of repeated studies to solve the above problems, the present inventors have mixed (i) water vapor into an exhaust gas containing carbon dioxide and hydrogen generated in a gasification melting furnace, and this mixed gas has a high molecular weight. The organic substance is modified to reduce the molecular weight, or (ii) the shift reaction is performed by adding excess steam to the exhaust gas containing carbon monoxide and hydrogen generated in the gasification melting furnace. A high-molecular-weight organic substance is reformed with a mixed gas containing hydrogen after the reaction, that is, hydrogen contained in the exhaust gas, carbon dioxide and hydrogen produced by the shift reaction, and water vapor not consumed in the shift reaction. It has been found that reducing the molecular weight is effective. Further, in the methods (i) and (ii) above, it was found that there is a suitable range for the composition of the mixed gas for organic substance modification.

本発明はこのような知見に基づきなされたもので、以下を要旨とするものである。
[1]ガス化溶融炉で発生した二酸化炭素と水素を含有する排ガス(g)に水蒸気を混合し、この混合ガス(g)を有機物質に接触させ、有機物質を改質して低分子化することを
特徴とする有機物質の低分子化方法。
[2]ガス化溶融炉で発生した一酸化炭素と水素を含有する排ガス(g)に過剰の水蒸気を添加してシフト反応を行わせることで、排ガス(g)に含まれていた水素と、シフト
反応で生成した二酸化炭素および水素と、シフト反応に消費されなかった水蒸気とを含む混合ガス(g)とし、この混合ガス(g)を有機物質に接触させ、有機物質を改質して低分子化することを特徴とする有機物質の低分子化方法。
The present invention has been made on the basis of such findings and has the following gist.
[1] Mixing water vapor with the exhaust gas (g 0 ) containing carbon dioxide and hydrogen generated in the gasification melting furnace, bringing the mixed gas (g) into contact with an organic substance, reforming the organic substance, and reducing the molecular weight A method for reducing the molecular weight of an organic substance characterized by comprising:
[2] in the exhaust gas (g 1) containing carbon monoxide and hydrogen generated in the gasification and melting furnace with the addition of excess water vapor is possible to perform a shift reaction, hydrogen contained in the exhaust gas (g 1) And a mixed gas (g) containing carbon dioxide and hydrogen produced by the shift reaction and water vapor not consumed in the shift reaction. The mixed gas (g) is brought into contact with the organic substance to reform the organic substance. And reducing the molecular weight of the organic substance.

[3]シフト反応後の混合ガス(g)のCO濃度を10vol%未満とすることを特徴とする上記[2]に記載の有機物質の低分子化方法。
[4]上記[1]〜[3]のいずれかの方法において、混合ガス(g)の水蒸気濃度が5〜70vol%であることを特徴とする有機物質の低分子化方法。
[5]上記[4]の方法において、混合ガス(g)は、水蒸気濃度が20〜70vol%、水素濃度が10〜40vol%、二酸化炭素濃度が10〜40vol%であることを特徴とする有機物質の低分子化方法。
[6]上記[1]〜[5]のいずれかの方法において、改質される有機物質が、廃プラスチック、含油スラッジ、廃油、バイオマスの中から選ばれる1種以上であることを特徴とする有機物質の低分子化方法。
[7]上記[1]〜[6]のいずれかの有機物質の低分子化方法により得られた有機物質の改質物を回収し、該改質物を製鉄所の燃料および/または還元剤として利用することを特徴とする製鉄所の操業方法。
[3] The method for reducing the molecular weight of an organic substance according to the above [2], wherein the CO concentration in the mixed gas (g) after the shift reaction is less than 10 vol%.
[4] A method for reducing the molecular weight of an organic substance, wherein the water vapor concentration of the mixed gas (g) is 5 to 70 vol% in any one of the above [1] to [3].
[5] In the method of [4] above, the mixed gas (g) is characterized in that the water vapor concentration is 20 to 70 vol%, the hydrogen concentration is 10 to 40 vol%, and the carbon dioxide concentration is 10 to 40 vol%. A method for reducing the molecular weight of a substance.
[6] The method according to any one of [1] to [5] above, wherein the organic substance to be modified is at least one selected from waste plastic, oil-containing sludge, waste oil, and biomass. A method for reducing the molecular weight of organic substances.
[7] The organic material reformate obtained by the method for reducing the molecular weight of the organic material according to any one of [1] to [6] is recovered, and the reformed material is used as a fuel and / or a reducing agent for a steel mill. A method of operating a steelworks characterized by:

本発明によれば、廃プラスチックなどの高分子量の有機物質を低分子化して気体燃料や液体燃料などに転換する際に、安定的に供給可能なガスを用いて有機物質を効率的に改質して低分子化し、重質分や炭素質が少なく、軽質分を多量に含有する高カロリーの改質物を得ることができる。また、実施設備に関しても、特別な計測器や流路切替弁などが必要なく、しかも比較的低い反応温度でも有機物質の改質を行うことができるので、比較的簡易な設備で実施することができる。
また、シフト反応によって生成するCOは、有機物質の改質中に炭酸ガス改質反応でCOに変化するため、有機物質のケミカルリサイクルを、CO発生量を増加させることなく実施することが可能となる。
According to the present invention, when a high molecular weight organic substance such as waste plastic is reduced in molecular weight to be converted into gaseous fuel or liquid fuel, the organic substance is efficiently reformed using a gas that can be stably supplied. Thus, it is possible to obtain a high-calorie modified product having a low molecular weight, a small amount of heavy components and carbonaceous components, and a large amount of light components. Also, with regard to the implementation equipment, there is no need for special measuring instruments or flow path switching valves, and the organic substance can be reformed even at a relatively low reaction temperature. it can.
In addition, since CO 2 produced by the shift reaction changes to CO by the carbon dioxide reforming reaction during the reforming of the organic substance, chemical recycling of the organic substance can be performed without increasing the amount of CO 2 generated. It becomes possible.

本願の第一の発明に係る有機物質の低分子化方法では、ガス化溶融炉で発生した二酸化炭素と水素を含有する排ガス(g)(以下、「ガス化溶融炉発生排ガス」という場合がある)に水蒸気を混合し、この混合ガス(g)を有機物質に接触させ、有機物質を改質して低分子化する。
また、本願の第二の発明に係る有機物質の低分子化方法では、ガス化溶融炉で発生した一酸化炭素と水素を含有する排ガス(g)(以下、「ガス化溶融炉発生排ガス」という場合がある)に過剰の水蒸気を添加してシフト反応を行わせることで、排ガス(g)に含まれていた水素と、シフト反応で生成した二酸化炭素および水素と、シフト反応に消費されなかった水蒸気とを含む混合ガス(g)とし、この混合ガス(g)を有機物質に接触させ、有機物質を改質して低分子化する。なお、排ガス(g)に過剰の水蒸気を添加するとは、シフト反応で消費されない余剰の水蒸気が混合ガス(g)中に残存するように水蒸気を添加するという意味である。
In the method for reducing the molecular weight of an organic substance according to the first invention of the present application, an exhaust gas (g 0 ) containing carbon dioxide and hydrogen generated in a gasification melting furnace (hereinafter referred to as “gasification melting furnace generated exhaust gas”). Water vapor is mixed with the gas (g), and this mixed gas (g) is brought into contact with the organic substance to modify the organic substance to reduce the molecular weight.
Further, in the method for reducing the molecular weight of an organic substance according to the second invention of the present application, an exhaust gas (g 1 ) containing carbon monoxide and hydrogen generated in a gasification melting furnace (hereinafter referred to as “gasification melting furnace generated exhaust gas”). In some cases, excess water vapor is added to cause the shift reaction to occur, so that hydrogen contained in the exhaust gas (g 1 ), carbon dioxide and hydrogen generated by the shift reaction, and the shift reaction are consumed. The mixed gas (g) containing the water vapor that has not existed is brought into contact with the organic substance, and the organic substance is modified to reduce the molecular weight. Note that adding excess water vapor to the exhaust gas (g 1 ) means adding water vapor so that excess water vapor that is not consumed in the shift reaction remains in the mixed gas (g).

ここで、ガス化溶融炉とは、ごみを低酸素状態で加熱することで熱分解させ、この熱分解で発生したガスを燃焼または回収するとともに、灰分および不燃物を高温で溶融する炉設備であり、熱分解と溶融を一体で行う方式と、分離して行う方式とがある。具体的には、ガス化改質方式(例えば、サーモセレクト方式(特許文献4および特許文献5を参照)など)、シャフト炉方式(例えば、コークスベッド式、酸素式、プラズマ式など)、キルン炉方式、流動床方式、半乾留・負圧燃焼方式などがある。本発明では、いずれの方式のガス化溶融炉発生排ガスを用いてもよく、また、2種以上の排ガスが混合されたものを用いてもよい。なお、ガス化溶融炉で発生した排ガスとしては、二酸化炭素と水素、あるいは、一酸化炭素と水素を含有する排ガスであれば良い。このような排ガスとしては、二酸化炭素濃度が20から60vol%、水素濃度が60から20vol%である二酸化炭素と水素を含有する排ガス、あるいは、一酸化炭素濃度が10から50vol%、水素濃度が50から10vol%である一酸化炭素と水素を含有する排ガスを本発明法に適用できる排ガスとして例示することができる。なお、一酸化炭素濃度と水素を含有する排ガスの場合、シフト反応によって水素が生成するため、水素濃度が10vol%であっても本発明の混合ガス(g)として好適な組成となる。
熱分解ガスが炉内で部分燃焼して発生したガスであっても、熱分解ガスが炉外で部分燃焼して発生したガスであっても、燃焼せずに熱分解ガスとして回収されたガスであっても良い。
Here, the gasification and melting furnace is a furnace facility that heats garbage in a low-oxygen state and pyrolyzes it, and burns or recovers the gas generated by this pyrolysis and melts ash and incombustibles at high temperatures. There are a method in which thermal decomposition and melting are performed integrally and a method in which they are performed separately. Specifically, a gasification reforming system (for example, a thermoselect system (see Patent Document 4 and Patent Document 5)), a shaft furnace system (for example, a coke bed system, an oxygen system, a plasma system, etc.), a kiln furnace System, fluidized bed system, semi-distillation and negative pressure combustion system. In the present invention, any type of gasification melting furnace generated exhaust gas may be used, or a mixture of two or more types of exhaust gas may be used. The exhaust gas generated in the gasification melting furnace may be an exhaust gas containing carbon dioxide and hydrogen, or carbon monoxide and hydrogen. As such an exhaust gas, an exhaust gas containing carbon dioxide and hydrogen having a carbon dioxide concentration of 20 to 60 vol% and a hydrogen concentration of 60 to 20 vol%, or a carbon monoxide concentration of 10 to 50 vol% and a hydrogen concentration of 50 Exhaust gas containing 10% by volume of carbon monoxide and hydrogen can be exemplified as exhaust gas applicable to the method of the present invention. In the case of an exhaust gas containing a carbon monoxide concentration and hydrogen, hydrogen is generated by a shift reaction. Therefore, even if the hydrogen concentration is 10 vol%, the composition is suitable as the mixed gas (g) of the present invention.
Even if the pyrolysis gas is a gas generated by partial combustion in the furnace or a gas generated by partial combustion outside the furnace, the gas recovered as pyrolysis gas without burning It may be.

一般に廃プラスチックなどの高分子量有機物質は、300〜400℃以上で加熱すると熱分解が始まることが知られているが、この時、軽質化とともに重質化も進行してしまう。熱分解時に水素を共存させると、炭化水素種への水素付加反応と水素化分解反応が進行するため、重質化抑制と低分子化に有効である。しかしながら、水素化分解に高温が必要であり、且つ水素消費量が多くなることが問題である。   Generally, high molecular weight organic substances such as waste plastic are known to start thermal decomposition when heated at a temperature of 300 to 400 ° C. or higher, but at this time, they become lighter and heavier. Coexistence of hydrogen during thermal decomposition is effective in suppressing heavy formation and reducing the molecular weight because hydrogen addition reaction and hydrocracking reaction to hydrocarbon species proceed. However, the high temperature is required for hydrocracking, and the hydrogen consumption is a problem.

一方、水蒸気改質や炭酸ガス改質は、HOやCO分子中の酸素による炭化水素の酸化と看做すことができ、少ない水素添加量で低分子化と炭素質生成抑制が達成できる。さらに、水蒸気改質や炭酸ガス改質は、改質される有機分子の炭素鎖が長くなるにつれて反応温度が低下するという特徴を有する。本発明法において、比較的低い反応温度でも効率的に有機物質の低分子化が促進され、水素消費量も少なく、且つ重質分や炭素質の生成もほとんど認められないのは、上記混合ガス(g)を用いて有機物質の改質(低分子化)を行うことにより、水素化、水素化分解、水蒸気改質、炭酸ガス改質の4反応が同時に進行するためであると考えられる。
なお、前記水素化反応としては、炭化水素種への水素付加反応だけではなく、メタンなどの軽質炭化水素を生成するCOやCOへの水素付加反応も進行していることが気体生成物の分析結果から示唆される。本発明の説明では簡単のため、COやCOへの水素付加反応を炭化水素種への水素化反応と区別することなく、単に水素化(または水素化反応)として記述した。
本発明で用いられる有機物質を炭化水素(CmHn)で示すと、上述の反応は、以下に示す反応式では表すことができる。
水素化:CmHn+H2→ CmHn+2
水素化分解:CmHn+H2 → CpHq+CrHs(m=p+r、n+2=q+s)
水蒸気改質:CmHn+H2O → Cm-1Hn-2+CO+2H2
炭酸ガス改質:CmHn+CO2 → Cm-1Hn-2+2CO+H2
ただし、水素化には下記のCO、CO2のメタネーション反応も含まれる。
CO+3H2 → CH4+H2O、CO2+4H2 → CH4+2H2O
なお、水蒸気改質や炭酸ガス改質で生成したH2によっても、上記の水素化や水素化分解が進行する。
On the other hand, steam reforming and carbon dioxide reforming can be regarded as oxidation of hydrocarbons by oxygen in H 2 O and CO 2 molecules, achieving low molecular weight and suppressing carbonaceous production with a small amount of hydrogen addition. it can. Furthermore, steam reforming and carbon dioxide reforming are characterized in that the reaction temperature decreases as the carbon chain of the organic molecule to be modified becomes longer. In the method of the present invention, the low molecular weight of an organic substance is efficiently promoted even at a relatively low reaction temperature, the amount of hydrogen consumption is small, and the generation of heavy components and carbonaceous matter is hardly recognized. It is considered that the four reactions of hydrogenation, hydrocracking, steam reforming, and carbon dioxide reforming proceed simultaneously by reforming (reducing molecular weight) the organic substance using (g).
Incidentally, as the hydrogenation reaction, not only hydrogenation reaction to hydrocarbon species, that is gaseous products that also proceed hydrogenation reaction to CO and CO 2 to produce a light hydrocarbon such as methane It is suggested from the analysis results. In the description of the present invention, for the sake of simplicity, the hydrogenation reaction to CO or CO 2 is simply described as hydrogenation (or hydrogenation reaction) without being distinguished from the hydrogenation reaction to hydrocarbon species.
When the organic substance used in the present invention is represented by hydrocarbon (CmHn), the above reaction can be represented by the following reaction formula.
Hydrogenation: CmHn + H 2 → CmH n + 2
Hydrogenolysis: CmHn + H 2 → CpHq + CrHs (m = p + r, n + 2 = q + s)
Steam reforming: CmHn + H 2 O → Cm-1H n-2 + CO + 2H 2
Carbon dioxide reforming: CmHn + CO 2 → Cm-1H n-2 + 2CO + H 2
However, the hydrogenation includes the following CO and CO 2 methanation reactions.
CO + 3H 2 → CH 4 + H 2 O, CO 2 + 4H 2 → CH 4 + 2H 2 O
The above hydrogenation and hydrocracking also proceed with H 2 produced by steam reforming or carbon dioxide reforming.

また、ガス化溶融炉から発生する排ガスは、上記のように一酸化炭素と水素を含有しており、このような一酸化炭素と水素を含有する排ガス(g)に過剰の水蒸気を添加して、下記のシフト反応(1)を行えば、COをHとCOに変換できるので、有機物質改質用の混合ガス(g)として好適なものとなる。
CO+HO→H+CO …(1)
ガス化溶融炉発生排ガスには種々の組成のものがあるが、この方法によれば、排ガス組成に対応してシフト反応を制御することで、好適な混合ガス(g)を得ることができる。
すなわち、排ガス(g)に対して過剰に添加する水蒸気の過剰割合やシフト反応の反応率を適宜制御することによって、ガス中の水蒸気、水素、炭酸ガスの各濃度を制御し、有機物質改質用の混合ガス(g)とすることができる。
シフト反応の反応率は、シフト反応器内での滞留時間を調整することで制御することができる。例えば、滞留時間を短くするには、シフト反応器長さを小さくしたり、或いは触媒充填量を少なくする方法が一般的であり、その場合、シフト反応器長さや触媒充填量は、ほぼ平衡まで反応を進行させる場合の1/2〜1/4程度とすればよい。
Moreover, the exhaust gas generated from the gasification melting furnace contains carbon monoxide and hydrogen as described above, and excess water vapor is added to the exhaust gas (g 1 ) containing carbon monoxide and hydrogen. If the following shift reaction (1) is performed, CO can be converted into H 2 and CO 2, which is suitable as a mixed gas (g) for organic substance modification.
CO + H 2 O → H 2 + CO 2 (1)
Gasification melting furnace-generated exhaust gas has various compositions. According to this method, a suitable mixed gas (g) can be obtained by controlling the shift reaction corresponding to the exhaust gas composition.
That is, by appropriately controlling the excess ratio of water vapor added excessively to the exhaust gas (g 1 ) and the reaction rate of the shift reaction, each concentration of water vapor, hydrogen, and carbon dioxide gas in the gas is controlled, and the organic substance is modified. It can be a quality mixed gas (g).
The reaction rate of the shift reaction can be controlled by adjusting the residence time in the shift reactor. For example, in order to shorten the residence time, a method in which the shift reactor length is reduced or the catalyst charge amount is reduced is generally used. In this case, the shift reactor length and the catalyst charge amount are almost until equilibrium. What is necessary is just to set it as about 1 / 2-1 / 4 in the case of advancing reaction.

サーモセレクトガス化溶融炉から発生する排ガスには、通常、COが20〜40vol%、COが40〜20vol%、Hが20〜40vol%程度含有されている。したがって、このような二酸化炭素と水素を含有する排ガス(g)に適量の水蒸気を混合するだけで、CO:15〜20vol%、CO:35〜10vol%、H:15〜20vol%、HO:20〜50vol%程度の組成となり、有機物質改質用の混合ガス(g)として好適なものとなる。The exhaust gas generated from the thermoselect gasification melting furnace usually contains about 20 to 40 vol% of CO, 40 to 20 vol% of CO2, and about 20 to 40 vol% of H2. Thus, by simply mixing an appropriate amount of water vapor in the exhaust gas (g 0) containing such carbon dioxide and hydrogen, CO: 15~20vol%, CO 2 : 35~10vol%, H 2: 15~20vol%, H 2 O: The composition is about 20 to 50 vol%, and is suitable as a mixed gas (g) for organic substance modification.

以下、本発明法の詳細と好ましい条件について説明する。
本願の第一の発明において、二酸化炭素と水素を含有する排ガスとして、ガス化溶融炉から発生する排ガス(g)を用いる理由は、比較的高濃度に二酸化炭素と水素を含有するとともに、通常、窒素濃度が低いためである。さらに、ガス化溶融炉から発生する排ガスは、二次燃焼率(CO2/(CO+CO2)×100)が50%超えの条件であっても、比較的水素濃度が高いことも本発明の排ガス(g)として用いられる理由である。
ガス化溶融炉発生排ガス(g)としては、先に述べたような各種のガス化溶融炉で発生する排ガスのいずれを用いてもよく、2種以上の排ガスの混合ガスを用いてもよい。
本発明法では、ガス化溶融炉発生排ガス(g)に水蒸気を混合するだけで、有機物質改質用の混合ガス(g)を得ることができる。混合方法については特別な制限はなく、有機物質の改質反応器の上流側で混合してもよいし、改質反応器内で混合してもよい。
Hereinafter, details and preferred conditions of the method of the present invention will be described.
In the first invention of the present application, the reason why the exhaust gas (g 0 ) generated from the gasification melting furnace is used as the exhaust gas containing carbon dioxide and hydrogen is that it contains carbon dioxide and hydrogen at a relatively high concentration, This is because the nitrogen concentration is low. Furthermore, the exhaust gas generated from the gasification melting furnace has a relatively high hydrogen concentration even when the secondary combustion rate (CO2 / (CO + CO2) × 100) exceeds 50%. 0 ).
As the gasification melting furnace generated exhaust gas (g 0 ), any of the exhaust gases generated in various gasification melting furnaces as described above may be used, or a mixed gas of two or more kinds of exhaust gases may be used. .
In the method of the present invention, a mixed gas (g) for organic substance reforming can be obtained simply by mixing water vapor into the gasification melting furnace-generated exhaust gas (g 0 ). The mixing method is not particularly limited, and may be mixed on the upstream side of the organic material reforming reactor, or may be mixed in the reforming reactor.

本願の第二の発明において、シフト反応させる排ガスとして、ガス化溶融炉から発生する排ガス(g)を用いる理由は、比較的高濃度に一酸化炭素を含有するとともに、通常、窒素濃度が低いためである。
ガス化溶融炉発生排ガス(g)としては、さきに述べたような各種のガス化溶融炉で発生する排ガスのいずれを用いてもよく、2種以上の排ガスの混合ガスを用いてもよい。なお、サーモセレクト方式のようなガス化改質方式のガス化溶融炉から発生する排ガスは、比較的一酸化炭素濃度が高いので、より好ましい。さらに、ガス化溶融炉から発生する排ガスは、通常、排ガス組成が比較的安定しており、有機物質の改質反応を安定して行うことができることも本発明の排ガス(g)として用いられる理由である。
In the second invention of the present application, the reason why the exhaust gas (g 1 ) generated from the gasification melting furnace is used as the exhaust gas for the shift reaction is that it contains carbon monoxide at a relatively high concentration and usually has a low nitrogen concentration. Because.
As the gasification melting furnace generated exhaust gas (g 1 ), any of the exhaust gases generated in various gasification melting furnaces as described above may be used, or a mixed gas of two or more kinds of exhaust gases may be used. . An exhaust gas generated from a gasification reforming gasification melting furnace such as a thermoselect method is more preferable because it has a relatively high carbon monoxide concentration. Furthermore, the exhaust gas generated from the gasification melting furnace usually has a relatively stable exhaust gas composition, and the fact that the reforming reaction of the organic substance can be performed stably is also used as the exhaust gas (g 1 ) of the present invention. That is why.

シフト反応させる排ガス(g)としては、概ね以下のような組成であれば、有機物質改質用の混合ガス(g)を得る上で問題はない。
CO:80〜10vol%
CO:10〜50vol%
:0超〜30vol%
:0〜30vol%
CO濃度が80vol%超えだとシフト反応後の混合ガス(g)を好適な組成とするために必要となる水蒸気添加量が非常に多くなり、経済的ではない。また、10vol%未満だとCO濃度が低いため、シフト反応速度が遅く、反応器が大きくなり経済的ではない。より好ましいCO濃度は10から60vol%であり、10から50vol%であれば特に好ましい。
CO濃度が50vol%超えだとシフト反応後の混合ガス(g)中のCO濃度が高くなり過ぎるため、好ましくない。また、10vol%未満だと混合ガス(g)中のCO濃度が低くなり過ぎるため、好ましくない。より好ましいCO濃度は10から40vol%である。
濃度が30vol%超えだとシフト反応後の混合ガス(g)を好適な組成とするために必要となる水蒸気添加量が非常に多くなり、経済的ではない。より好ましいH濃度は20vol%以下である。
シフト反応後のCO濃度を10vol%未満に制御することが好ましい。シフト反応後のCO濃度が10vol%超えでは後工程の有機物質改質の効率が低下するため好ましくない。より好ましくは、5vol%未満に制御することである。
The exhaust gas (g 1 ) to be shift-reacted has no problem in obtaining a mixed gas (g) for organic substance reforming if it has a composition as follows.
CO: 80-10 vol%
CO 2: 10~50vol%
H 2: 0 super ~30vol%
N 2: 0~30vol%
If the CO concentration exceeds 80 vol%, the amount of water vapor added to make the mixed gas (g) after the shift reaction have a suitable composition becomes very large, which is not economical. If it is less than 10 vol%, the CO concentration is low, so the shift reaction rate is slow, the reactor becomes large, and it is not economical. A more preferable CO concentration is 10 to 60 vol%, and 10 to 50 vol% is particularly preferable.
A CO 2 concentration exceeding 50 vol% is not preferable because the CO 2 concentration in the mixed gas (g) after the shift reaction becomes too high. Further, if it is less than 10 vol%, the CO 2 concentration in the mixed gas (g) becomes too low, which is not preferable. A more preferable CO 2 concentration is 10 to 40 vol%.
If the H 2 concentration exceeds 30 vol%, the amount of steam added to make the mixed gas (g) after the shift reaction have a suitable composition becomes very large, which is not economical. A more preferable H 2 concentration is 20 vol% or less.
It is preferable to control the CO concentration after the shift reaction to less than 10 vol%. If the CO concentration after the shift reaction exceeds 10 vol%, the efficiency of the organic substance modification in the subsequent process is lowered, which is not preferable. More preferably, it is controlled to be less than 5 vol%.

ここで、窒素は本発明で生じる化学反応(シフト反応、水素化、水素化分解、水蒸気改質、炭酸ガス改質)には何ら寄与せず、一方において、製造される気体燃料を希釈し、低位燃焼熱(以下、「LHV」という)を低下させる。特に、窒素濃度が50vol%を超えると、気体燃料のLHVの低下が顕著になるとともに、シフト反応速度も低下する傾向になる。このため窒素濃度は上記組成範囲内であることが好ましい。
本発明法でのシフト反応は公知の手法で行えばよく、特別な制限はない。一般的には、排ガス(g)に事前に水蒸気を添加しておき、これを触媒が充填された固定床反応器に導入してシフト反応を行う。また、事前に添加する水蒸気を一部とし、反応器内に触媒を多段で充填し、触媒層と触媒層との間から残りの水蒸気を添加するようにしてもよい。
Here, nitrogen does not contribute at all to the chemical reaction (shift reaction, hydrogenation, hydrocracking, steam reforming, carbon dioxide reforming) occurring in the present invention, while diluting the gaseous fuel produced, Low combustion heat (hereinafter referred to as “LHV”) is reduced. In particular, when the nitrogen concentration exceeds 50 vol%, the LHV of the gaseous fuel is significantly reduced and the shift reaction rate tends to be reduced. Therefore, the nitrogen concentration is preferably within the above composition range.
The shift reaction in the method of the present invention may be carried out by a known method and is not particularly limited. In general, steam is added to the exhaust gas (g 1 ) in advance, and this is introduced into a fixed bed reactor filled with a catalyst to perform a shift reaction. Alternatively, the water vapor to be added in advance may be partially used, the catalyst may be packed in multiple stages in the reactor, and the remaining water vapor may be added between the catalyst layer and the catalyst layer.

本発明(本願の第一および第二の発明)において、排ガス(g)に水蒸気を混合することにより得られ、若しくは排ガス(g)に水蒸気を添加してシフト反応を行わせることで得られる有機物質改質用の混合ガス(g)は、水蒸気、水素および二酸化炭素を含む。それらの濃度に特別な制限はないが、以下のような理由から、水蒸気濃度は5〜70vol%であることが好ましい。
すなわち、水蒸気濃度が低いと廃プラスチックなどの有機物質の分解率が低くなるが、水蒸気濃度を5vol%以上とすることにより、一定水準の有機物質の分解率を確保できる。この結果、気体燃料の生成率(ガス化率)・液体燃料の生成率(液化率)を一定の水準にできるとともに、重質分の生成量を少なくできる。一方、水蒸気濃度が高いと有機物質の改質反応生成ガス(有機物資の改質による低分子化で生成したガス。以下同様)中にCOが残留しやすくなるとともに、気体燃料・液体燃料のLHVが低下しやすくなる。しかし水蒸気濃度が70vol%以下であれば、改質反応生成ガス中でのCOの残留を抑えることができ、また、気体燃料・液体燃料のLHVの低下も抑えることができる。
また、有機物質の分解率を確保する観点から、混合ガス(g)の水素濃度および二酸化炭素濃度はともに5vol%以上が好ましい。
In the present invention (the first and second inventions of the present application), it is obtained by mixing water vapor with exhaust gas (g 0 ), or obtained by adding water vapor to exhaust gas (g 1 ) to cause shift reaction. The organic gas reforming mixed gas (g) contains water vapor, hydrogen and carbon dioxide. Although there is no special restriction | limiting in those density | concentrations, For the following reasons, it is preferable that water vapor | steam density | concentration is 5-70 vol%.
That is, when the water vapor concentration is low, the decomposition rate of organic substances such as waste plastics is low. However, by setting the water vapor concentration to 5 vol% or more, a certain level of organic material decomposition rate can be secured. As a result, the production rate of gas fuel (gasification rate) and the production rate of liquid fuel (liquefaction rate) can be kept at a constant level, and the production amount of heavy components can be reduced. On the other hand, when the water vapor concentration is high, CO 2 tends to remain in the reforming reaction product gas of organic substances (gas generated by low molecular weight reforming of organic substances, the same shall apply hereinafter), and gas fuel / liquid fuel LHV tends to decrease. However, if the water vapor concentration is 70 vol% or less, it is possible to suppress the CO 2 residue in the reforming reaction product gas, and it is also possible to suppress the decrease in the LHV of the gaseous fuel / liquid fuel.
Further, from the viewpoint of ensuring the decomposition rate of the organic substance, both the hydrogen concentration and the carbon dioxide concentration of the mixed gas (g) are preferably 5 vol% or more.

また、以下のような理由から、有機物質改質用の混合ガス(g)のより好ましい組成は、水蒸気濃度:20〜70vol%、水素濃度:10〜40vol%、二酸化炭素濃度:10〜40vol%である。なお、この混合ガス(g)に、他のガス成分(例えば、窒素など)が含まれることは妨げない。水蒸気濃度を20vol%以上とすることにより、有機物質の分解率を十分に高めることができるとともに、気体燃料のLHVを高くすることができる。水蒸気濃度を70vol%以下とする理由は、先に述べたとおりである。水素濃度を10vol%以上(より好ましくは12vol%以上)とすることにより、特に、比較的低温で有機物質の改質反応を行った場合でも、気体燃料中にCOが残留することを抑えることができる。二酸化炭素濃度を10vol%以上(より好ましくは13vol%以上)とすることにより、気体燃料中に炭化水素やCOに比べて低カロリーのガス成分であるHが残留しにくくなる。また、水素濃度や二酸化炭素濃度を40vol%以下とすることにより、廃プラスチックなどの有機物質の分解率を好ましいレベルにすることができる。また、以上のような観点から、混合ガス(g)のより好ましいガス組成は、水蒸気濃度:25〜65vol%、水素濃度:15〜35vol%、炭酸ガス濃度:15〜35vol%である。なお、この混合ガス(g)に、他のガス成分(例えば、窒素など)が含まれることは妨げない。Moreover, for the following reasons, the more preferable composition of the mixed gas (g) for organic substance reforming is: water vapor concentration: 20 to 70 vol%, hydrogen concentration: 10 to 40 vol%, carbon dioxide concentration: 10 to 40 vol%. It is. In addition, it does not prevent that other gas components (for example, nitrogen etc.) are contained in this mixed gas (g). By setting the water vapor concentration to 20 vol% or more, the decomposition rate of the organic substance can be sufficiently increased, and the LHV of the gaseous fuel can be increased. The reason why the water vapor concentration is 70 vol% or less is as described above. By setting the hydrogen concentration to 10 vol% or more (more preferably 12 vol% or more), it is possible to suppress the CO 2 from remaining in the gaseous fuel even when the organic substance is reformed at a relatively low temperature. Can do. By setting the carbon dioxide concentration to 10 vol% or more (more preferably 13 vol% or more), H 2 that is a low-calorie gas component is less likely to remain in the gaseous fuel as compared to hydrocarbons and CO. Moreover, the decomposition rate of organic substances, such as a waste plastic, can be made into a preferable level by making hydrogen concentration and carbon dioxide concentration into 40 vol% or less. Moreover, from the above viewpoints, a more preferable gas composition of the mixed gas (g) is a water vapor concentration: 25 to 65 vol%, a hydrogen concentration: 15 to 35 vol%, and a carbon dioxide concentration: 15 to 35 vol%. In addition, it does not prevent that other gas components (for example, nitrogen etc.) are contained in this mixed gas (g).

また、本発明の特徴の一つとして、有機物質改質用の混合ガス(g)の水蒸気濃度によって、有機物質の改質における気体燃料生成量と液体燃料生成量との比を制御できることが挙げられる。すなわち、混合ガス(g)の水蒸気濃度を50vol%以上にすると気体燃料が主に生成し(すなわち、気体燃料生成量>液体燃料生成量)、水蒸気濃度を40vol%以下にすると液体燃料が主に生成する(すなわち、気体燃料生成量<液体燃料生成量)。なお、水素濃度、二酸化炭素濃度の影響は水蒸気濃度の影響ほど顕著ではないので、本発明の好適範囲内であればよい。   In addition, as one of the characteristics of the present invention, the ratio of the amount of gaseous fuel produced and the amount of liquid fuel produced in reforming the organic substance can be controlled by the water vapor concentration of the mixed gas (g) for reforming the organic substance. It is done. That is, when the water vapor concentration of the mixed gas (g) is 50 vol% or more, gaseous fuel is mainly produced (that is, gaseous fuel production amount> liquid fuel production amount), and when the water vapor concentration is 40 vol% or less, liquid fuel is mainly produced. (Ie, gaseous fuel production amount <liquid fuel production amount). In addition, since the influence of hydrogen concentration and carbon dioxide concentration is not as remarkable as the influence of water vapor concentration, it may be within the preferable range of the present invention.

次に、混合ガス(g)による有機物質の改質(低分子化)条件について説明する。
本発明において、改質による低分子化の対象となる有機物質に特別な制限はないが、高分子量の有機物質が好適であり、例えば、廃プラスチック、含油スラッジ、廃油、バイオマスなどが挙げられ、これらの1種以上を対象とすることができる。
Next, conditions for modifying (lowering the molecular weight) of the organic substance with the mixed gas (g) will be described.
In the present invention, there is no particular limitation on the organic material to be reduced in molecular weight by modification, but high molecular weight organic material is suitable, for example, waste plastic, oil-containing sludge, waste oil, biomass, etc. One or more of these can be targeted.

対象とする廃プラスチックの種類に特別な制限はないが、例えば、産業廃棄物系、容器包装リサイクル法の対象プラスチックなどを挙げることができる。より具体的には、PEやPPなどのポリオレフィン類、PAやPETなどの熱可塑性ポリエステル類、PSなどのエラストマー類、熱硬化性樹脂類、合成ゴム類や発砲スチロールなどを挙げることができる。なお、多くのプラスチック類にはフィラーなどの無機物が添加されているが、本発明では、このような無機物は反応に関与しないので、固体状残渣として改質(低分子化)反応器から排出される。また、廃プラスチックは、必要に応じて適当なサイズに事前裁断された後、改質反応器に投入される。
また、廃プラスチックがポリ塩化ビニルなどの塩素含有樹脂を含んでいると、改質反応器内で塩素が発生し、この塩素が気体燃料や液体燃料中に含有されてしまう恐れがある。したがって、廃プラスチックが塩素含有樹脂を含む恐れがある場合には、改質反応器内にCaOなどのような塩素吸収剤を投入し、塩素分が生成する気体燃料や液体燃料中に含有されないようにすることが好ましい。
Although there is no special restriction | limiting in the kind of waste plastics made into object, For example, the object plastics etc. which are an industrial waste type | system | group and a container packaging recycling law can be mentioned. More specifically, polyolefins such as PE and PP, thermoplastic polyesters such as PA and PET, elastomers such as PS, thermosetting resins, synthetic rubbers, foamed polystyrene and the like can be mentioned. In addition, inorganic substances such as fillers are added to many plastics, but in the present invention, such inorganic substances are not involved in the reaction, and thus are discharged from the reforming (low molecular weight) reactor as solid residues. The In addition, the waste plastic is preliminarily cut to an appropriate size as required, and then charged into the reforming reactor.
Further, if the waste plastic contains a chlorine-containing resin such as polyvinyl chloride, chlorine is generated in the reforming reactor, and this chlorine may be contained in the gaseous fuel or liquid fuel. Therefore, when there is a possibility that the waste plastic contains a chlorine-containing resin, a chlorine absorbent such as CaO is introduced into the reforming reactor so that chlorine is not contained in the generated gaseous fuel or liquid fuel. It is preferable to make it.

含油スラッジとは、含油廃液処理工程で発生する汚泥状の混合物のことであり、一般に30〜70質量%程度の水分を含んでいる。スラッジ中の油分としては、例えば、各種鉱物油、天然および/または合成油脂類、各種脂肪酸エステル類などが挙げられるが、これらに限定されるものではない。なお、改質反応器(有機物質を改質して低分子化するための反応器。以下同様)に含油スラッジを供給する際などのハンドリング性を向上させるために、遠心分離などの手法により、スラッジ中の水分を30〜50質量%程度まで低減させてもよい。   Oil-containing sludge is a sludge-like mixture generated in an oil-containing waste liquid treatment step, and generally contains about 30 to 70% by mass of water. Examples of the oil in the sludge include, but are not limited to, various mineral oils, natural and / or synthetic oils and fats, and various fatty acid esters. In addition, in order to improve handling properties such as when supplying oil-containing sludge to a reforming reactor (reactor for reforming organic substances to reduce the molecular weight, the same applies hereinafter), a method such as centrifugation is used. You may reduce the water | moisture content in sludge to about 30-50 mass%.

廃油としては、例えば、使用済みの各種鉱物油、天然および/または合成油脂類、各種脂肪酸エステル類などが挙げられるが、これらに限定されるものではない。また、これら2種以上の廃油の混合物であってもよい。また、製鉄所の圧延工程で発生する廃油の場合、一般に多量(通常、80質量%超程度)の水分を含有しているが、この水分についても、比重分離などの手法によって事前に低減させておくことが、ハンドリング性の面で有利である。
有機物質が水を含んでいる場合には、改質反応器内で水蒸気が発生するので、その分を考慮してシフト反応で添加する水蒸気の過剰割合を決定する。
Examples of the waste oil include, but are not limited to, various used mineral oils, natural and / or synthetic fats and oils, and various fatty acid esters. Moreover, the mixture of these 2 or more types of waste oil may be sufficient. In addition, in the case of waste oil generated in the steel mill rolling process, it generally contains a large amount of water (usually more than about 80% by mass), but this water is also reduced in advance by a method such as specific gravity separation. It is advantageous in terms of handleability.
When the organic substance contains water, water vapor is generated in the reforming reactor. Therefore, the excess ratio of water vapor added in the shift reaction is determined in consideration of the amount.

バイオマスとしては、例えば、下水汚泥、紙、建設廃材、間伐材などの他、ゴミ固形燃料(RDF)などの加工されたバイオマスなどが挙げられるが、これらに限定されるものではない。バイオマスには、通常、多量の水分が含有されているので、事前に乾燥させておくことがエネルギー効率の点から好ましい。また、ナトリウムやカリウムなどのアルカリ金属を比較的高濃度に含むバイオマスの場合、改質反応器内でアルカリ金属が析出する可能性があるので、水洗などの方法によって事前にアルカリ金属を溶出させておくことが好ましい。なお、建設廃材などの大型のバイオマスは、事前に裁断して改質反応器に投入される。   Examples of biomass include, but are not limited to, sewage sludge, paper, construction waste, thinned wood, and other processed biomass such as waste solid fuel (RDF). Since biomass usually contains a large amount of water, it is preferable to dry it beforehand in view of energy efficiency. In addition, in the case of biomass containing relatively high concentrations of alkali metals such as sodium and potassium, alkali metals may be deposited in the reforming reactor. It is preferable to keep it. In addition, large biomass such as construction waste is cut in advance and charged into the reforming reactor.

有機物質改質時の反応温度は、有機物質の種類に応じて、以下のようにすることが好ましい。廃プラスチックやバイオマスの場合には、反応温度は400〜900℃程度が適当である。反応温度が400℃未満では廃プラスチックやバイオマスの分解率が低く、一方、900℃を超えると炭素質の生成が多くなる。また、含油スラッジや廃油の場合には、反応温度は300〜800℃程度が適当である。反応温度が300℃未満では含油スラッジや廃油の分解率が低くなる。一方、反応温度が800℃を超えても含油スラッジや廃油の改質(低分子化)特性に影響はないが、必要以上の高温であるため、経済的でない。
また、廃プラスチックおよび/またはバイオマスと含油スラッジおよび/または廃油からなる混合物を対象とする場合には、上述した点から、反応温度は400〜800℃程度が適当である。なお、気体燃料生成量と液体燃料生成量との比に対する反応温度の影響はほとんど見られない。また、圧力の影響もほとんど認められないので、常圧または数kg/cm程度の微加圧で改質反応器を運転することが経済的である。
The reaction temperature during organic substance modification is preferably as follows according to the type of organic substance. In the case of waste plastic or biomass, a reaction temperature of about 400 to 900 ° C. is appropriate. When the reaction temperature is less than 400 ° C, the decomposition rate of waste plastics and biomass is low. In the case of oil-containing sludge or waste oil, the reaction temperature is suitably about 300 to 800 ° C. When the reaction temperature is less than 300 ° C., the decomposition rate of oil-containing sludge and waste oil becomes low. On the other hand, even if the reaction temperature exceeds 800 ° C., there is no effect on the reforming (lower molecular weight) characteristics of the oil-containing sludge or waste oil, but it is not economical because the temperature is higher than necessary.
Moreover, when the mixture which consists of waste plastics and / or biomass and oil-containing sludge and / or waste oil is made into object, about 400-800 degreeC is suitable for reaction temperature from the point mentioned above. In addition, the influence of reaction temperature with respect to the ratio of gaseous fuel production amount and liquid fuel production amount is hardly seen. In addition, since the influence of pressure is hardly observed, it is economical to operate the reforming reactor at normal pressure or at a slight pressure of about several kg / cm 2 .

改質反応器の種類は特に限定されないが、反応器内で廃プラスチックなどの有機物質が円滑に移動し、且つ有機物質改質用の混合ガス(g)と効率的に接触できるという点から、ロータリーキルンのような横型の移動床方式反応器が好ましい。
また、本発明では有機物質の改質に特に触媒を必要としないが、触媒を充填して反応を行ってもよい。触媒としては、水蒸気改質活性、炭酸ガス改質活性、水素化活性、水素化分解活性をそれぞれ有する1種または2種以上の触媒を用いることができる。具体例としては、Ni系改質触媒、Ni系水素化触媒、Pt/ゼオライト系石油精製触媒などを挙げることができる。また、微細なFe粒子からなることが知られている転炉発生ダストも、改質触媒や水素化分解触媒として用いることができる。
The type of the reforming reactor is not particularly limited, but organic substances such as waste plastic move smoothly in the reactor and can be efficiently contacted with the mixed gas (g) for organic substance reforming. A horizontal moving bed reactor such as a rotary kiln is preferred.
In the present invention, a catalyst is not particularly required for reforming the organic substance, but the reaction may be carried out by filling the catalyst. As the catalyst, one or more kinds of catalysts each having steam reforming activity, carbon dioxide reforming activity, hydrogenation activity, and hydrocracking activity can be used. Specific examples include Ni-based reforming catalysts, Ni-based hydrogenation catalysts, Pt / zeolite-based petroleum refining catalysts, and the like. Also, converter-generated dust, which is known to be composed of fine Fe particles, can be used as a reforming catalyst or a hydrocracking catalyst.

触媒を充填する場合には、廃プラスチックなどの有機物質と触媒との接触が良好となることから、ロータリーキルンなどのような横型の移動床式改質反応器ではなく、縦型の改質反応器を採用してもよい。この場合、混合ガス(g)は、改質反応器の上部よりも、下部および/または側部から供給する方が、混合ガス(g)と有機物質や触媒との接触が良好となり好ましい。
縦型の改質反応器としては、化学工業で用いられる一般的な固定床反応器や流動床反応器を用いることができるが、特に、混合ガス(g)を改質反応器下部から供給する方式を採用する場合には、製鉄設備である高炉やシャフト炉、或いは転炉を改質反応器として利用することもできる。高炉やシャフト炉を改質反応器として利用する場合は、炉上部から有機物質と触媒を、炉下部から混合ガス(g)を、それぞれ連続的に供給して向流接触させ、炉上部から気体生成物を、炉下部から液体生成物と触媒を連続的に抜き出す移動床式とすると、反応効率が高くなり好ましい。また、転炉を改質反応器として利用する場合は、有機物質と触媒を炉に投入した後、炉下部から混合ガス(g)を連続的に供給し、気体生成物は炉上部から連続的に抜き出し、液体生成物と触媒は一定時間の反応後に炉を傾けて抜き出すという、製鋼吹錬と同様の回分式反応形式とすることができる。
なお、一般に流動床式反応器は熱伝導に優れていることが知られているが、本発明で流動床式反応器を採用した場合、熱伝導に優れるために有機物質の低分子化速度が高くなるなどの利点があり、好ましい。
When the catalyst is packed, the contact between the organic material such as waste plastic and the catalyst is good, so a vertical reforming reactor is used instead of a horizontal moving bed reforming reactor such as a rotary kiln. May be adopted. In this case, it is preferable that the mixed gas (g) is supplied from the lower part and / or the side part rather than the upper part of the reforming reactor because the contact between the mixed gas (g) and the organic substance or catalyst is good.
As the vertical reforming reactor, a general fixed bed reactor or fluidized bed reactor used in the chemical industry can be used. In particular, a mixed gas (g) is supplied from the lower part of the reforming reactor. When the method is adopted, a blast furnace, a shaft furnace, or a converter, which is an iron manufacturing facility, can be used as a reforming reactor. When a blast furnace or shaft furnace is used as a reforming reactor, an organic substance and a catalyst are supplied continuously from the top of the furnace, and a mixed gas (g) is continuously supplied from the bottom of the furnace to counter-current contact, and gas is supplied from the top of the furnace. It is preferable that the product is a moving bed type in which the liquid product and the catalyst are continuously extracted from the lower part of the furnace because the reaction efficiency becomes high. When a converter is used as a reforming reactor, an organic substance and a catalyst are introduced into the furnace, then a mixed gas (g) is continuously supplied from the lower part of the furnace, and a gas product is continuously supplied from the upper part of the furnace. The liquid product and the catalyst can be extracted in a batch reaction system similar to steelmaking blowing, in which the furnace is tilted and extracted after a certain time of reaction.
In general, fluidized bed reactors are known to be excellent in heat conduction, but when fluidized bed reactors are employed in the present invention, the rate of molecular weight reduction of organic substances is low because of excellent heat conduction. There are advantages such as high, which is preferable.

本発明法で得られる有機物質の改質物は、通常、気体と液体であり、これらは気体燃料および液体燃料として好適であり、また、鉄鉱石の還元剤などのような製鉄所で用いられる還元剤などとしても用いることができる。
気体燃料中の可燃成分は一酸化炭素とC1〜C4の炭化水素から成り、そのLHVは約6〜10Mcal/Nmである。このように、天然ガス並みのLHVであるにも拘わらず、一酸化炭素濃度が高いので、天然ガスよりも燃焼性が高いことが特徴である。一酸化炭素濃度が高く且つ燃焼性が高いことから、家庭用都市ガスとして供給するよりも、製鉄所などのような冶金炉を有する工場の都市ガス代替燃料として利用する方が安全性の点から好ましい。
また、一酸化炭素とC1〜C4の炭化水素含有率が高いことから、天然ガス代替として高炉の還元剤や焼結鉱製造プロセスの凝結剤としても使用できる。
The reformed organic substance obtained by the method of the present invention is usually a gas and a liquid, which are suitable as a gaseous fuel and a liquid fuel, and are used in ironworks such as a reducing agent for iron ore. It can also be used as an agent.
Combustible components of the gaseous fuel comprises a hydrocarbon of carbon monoxide and C1 -C4, the LHV of about 6~10Mcal / Nm 3. Thus, although it is LHV comparable to natural gas, since carbon monoxide concentration is high, it is characterized by higher combustibility than natural gas. Because of its high carbon monoxide concentration and high combustibility, it is safer to use it as a city gas alternative fuel in factories with metallurgical furnaces such as steelworks than to supply it as household city gas. preferable.
Moreover, since the hydrocarbon content of carbon monoxide and C1 to C4 is high, it can be used as a reducing agent for blast furnaces and a coagulant for the sinter production process as an alternative to natural gas.

液体燃料はC5〜C24の炭化水素から成っていることから、ナフサ(C5〜C8)、灯油(C9〜C12)、軽油(C13〜C24)の混合物であり、重油相当(C25以上)をほとんど含まない良質の軽質油である。この液体燃料は、蒸留分離によって、ナフサ、灯油、軽油として別々に利用してもよいが、混合物のまま、製鉄所などのような冶金炉を有する工場の燃料や溶鉱炉の重油代替還元剤として利用してもよい。   Since liquid fuel is composed of C5 to C24 hydrocarbons, it is a mixture of naphtha (C5 to C8), kerosene (C9 to C12), and light oil (C13 to C24) and contains almost equivalent to heavy oil (C25 and above). There is no good quality light oil. This liquid fuel may be used separately as naphtha, kerosene, or light oil by distillation separation, but as a mixture, it is used as a fuel for factories with metallurgical furnaces such as ironworks, or as a heavy oil substitute reductant for blast furnaces. May be.

また、液体燃料からナフサ分などの比較的蒸気圧の高い炭化水素を除去した油は、重油代替として高炉の還元剤としても使用できる。
なお、ナフサ(C5〜C8)の含有率が多いことから、軽質液体燃料としての利用の他に、ナフサ分を蒸留分離した後、化学工業原料としても利用できる。これには、蒸留分離したナフサ分を接触改質してベンゼン、トルエン、キシレンなどに転換するなどの利用方法を例示することができる。
本発明法で得られる有機物質の改質物は、改質反応生成ガスを冷却した後、気液分離することによって、それぞれ気体燃料と液体燃料に分離することができる。また、必要に応じて蒸留分離することによって、液体燃料からナフサ、灯油、軽油を分離することができる。改質反応生成ガスの冷却方法、気液分離方法、並びに蒸留分離方法は公知の方法で行うことができ、特別な制限はない。
Oil obtained by removing hydrocarbons having a relatively high vapor pressure such as naphtha from liquid fuel can also be used as a reducing agent for a blast furnace as an alternative to heavy oil.
In addition, since the content of naphtha (C5 to C8) is large, in addition to use as a light liquid fuel, it can also be used as a chemical industry raw material after distilling and separating naphtha. For example, the naphtha fraction separated by distillation can be contact-modified and converted to benzene, toluene, xylene, or the like.
The reformed product of the organic substance obtained by the method of the present invention can be separated into gaseous fuel and liquid fuel by cooling the reforming reaction product gas and then performing gas-liquid separation. Further, naphtha, kerosene, and light oil can be separated from the liquid fuel by performing distillation separation as necessary. The cooling method, the gas-liquid separation method, and the distillation separation method of the reforming reaction product gas can be performed by known methods, and there is no particular limitation.

・発明例1
塩化水素などの不純物を除去した後の、精製サーモセレクト方式ガス化溶融炉(Thermoselect Waste Gasification and Reforming Process)から発生した排ガス(以下サーモガス(Purified synthesis gas)という。)の払出し配管に分岐管を設け、この分岐管を通じてサーモガスの一部を抜き出すことができるようにした。この分岐管の下流側には流量調節弁、スチーム混合器、ガス予熱器、改質反応器(外熱式ロータリーキルン)、液体燃料捕集器を備えた改質反応生成ガス冷却用のガス冷却器を、この順に配置した。前記改質反応器の入側には、スクリューコンベア方式の廃プラスチック定量投入装置を設置した。また、ガス冷却器の冷却後ガスの出側配管には、サンプリングポートと流量計を設置した。
・ Invention Example 1
A branch pipe is provided in the discharge pipe for the exhaust gas (hereinafter referred to as "Purified synthesis gas") generated from the refined Thermoselect Waste Gasification and Reforming Process after removing impurities such as hydrogen chloride. A part of the thermogas can be extracted through this branch pipe. A gas cooler for cooling the reforming reaction product gas equipped with a flow control valve, a steam mixer, a gas preheater, a reforming reactor (externally heated rotary kiln), and a liquid fuel collector on the downstream side of the branch pipe Were arranged in this order. On the inlet side of the reforming reactor, a screw conveyor type waste plastic quantitative charging device was installed. In addition, a sampling port and a flow meter were installed in the gas outlet piping after cooling of the gas cooler.

サーモガスの平均組成は、H:31vol%、CO:33vol%、CO:30vol%、HO:<1vol%、N:6vol%であった。スチーム混合器に対してサーモガスを108Nm/h、水蒸気として圧力10kg/cmGのスチームを64Nm/h供給し、予熱器で430℃まで昇温した。水蒸気混合後のガス組成はH:20vol%、CO:21vol%、CO:19vol%、HO:37vol%、N:4vol%であった。この有機物質分解用の混合ガスは、流量が172Nm/h(質量流量では171kg/h)であった。The average composition of Samogasu is, H 2: 31vol%, CO : 33vol%, CO 2: 30vol%, H 2 O: <1vol%, N 2: was 6 vol%. A steam gas of 108 Nm 3 / h and steam at a pressure of 10 kg / cm 2 G as steam were supplied to the steam mixer at 64 Nm 3 / h, and the temperature was raised to 430 ° C. with a preheater. The gas composition after steam mixing was H 2 : 20 vol%, CO: 21 vol%, CO 2 : 19 vol%, H 2 O: 37 vol%, and N 2 : 4 vol%. This mixed gas for organic substance decomposition had a flow rate of 172 Nm 3 / h (mass flow rate of 171 kg / h).

改質反応器である外熱式ロータリーキルンは予め500℃に予熱されており、この改質反応器に、上記混合ガスを導入するとともに、廃プラスチックのモデル物質として粒状に破砕処理したポリエチレンを880kg/hで供給し、計画反応温度である800℃まで昇温させた。800℃に到達後、液体燃料捕集器に捕集されていた液体生成物を払い出し、その後1時間、廃プラスチックの改質反応を継続した。
気体燃料分はガス冷却器による冷却後のガス分析結果から、また、液体燃料分は液体燃料捕集器に捕集された液体生成物の分析結果から、それぞれ生成量と組成を求め、また、気体燃料についてはLHVを求めた。それらの結果を表1に示す。
The externally heated rotary kiln, which is a reforming reactor, is preheated to 500 ° C. in advance. The mixed gas is introduced into the reforming reactor, and 880 kg / kg of polyethylene that has been crushed into granules as a model material for waste plastics. Then, the temperature was raised to 800 ° C., which is the planned reaction temperature. After reaching 800 ° C., the liquid product collected in the liquid fuel collector was discharged, and then the reforming reaction of the waste plastic was continued for 1 hour.
The amount of gas fuel is determined from the gas analysis results after cooling by the gas cooler, and the amount of liquid fuel is determined from the analysis results of the liquid product collected in the liquid fuel collector. LHV was calculated | required about gaseous fuel. The results are shown in Table 1.

Figure 0005679088
Figure 0005679088

原料として供給したサーモガス、水蒸気、ポリエチレンの合計量は1050kg/hであるので、供給原料総量に対する生成率は、気体燃料が32%、液体燃料が60%であった。未反応ポリエチレン量を直接計量することは困難なので、供給したサーモガス、水蒸気、ポリエチレンの合計量(1050kg/h)に対する、気体燃料(340kg/h)と液体燃料(630kg/h)の合計収率をポリエチレン分解率と定義すると、この発明例1では、ポリエチレン分解率が92%と十分に高い値であること、C25以上の炭化水素の生成がほとんど認められないことから、ポリエチレンは効率的に低分子化されたことは明らかである。有機物質の改質反応によりHO、CO、Hは完全に消費されており、水蒸気改質、炭酸ガス改質、水素化、水素化分解の4反応が同時に進行したものと考えられる。生成した気体燃料のLHVは8.1Mcal/Nmと、サーモガス(1.8Mcal/Nm)の4.5倍に増熱していた。Since the total amount of thermogas, water vapor, and polyethylene supplied as raw materials was 1050 kg / h, the production rate relative to the total amount of the raw materials supplied was 32% for gas fuel and 60% for liquid fuel. Since it is difficult to directly measure the amount of unreacted polyethylene, the total yield of gaseous fuel (340 kg / h) and liquid fuel (630 kg / h) with respect to the total amount (1050 kg / h) of the supplied thermogas, water vapor, and polyethylene is When defined as the polyethylene decomposition rate, in this invention example 1, since the polyethylene decomposition rate is a sufficiently high value of 92% and the generation of hydrocarbons of C25 or higher is hardly observed, polyethylene is effectively a low molecular weight It is clear that H 2 O, CO 2 and H 2 are completely consumed by the reforming reaction of the organic substance, and it is considered that four reactions of steam reforming, carbon dioxide reforming, hydrogenation, and hydrocracking proceeded simultaneously. . The LHV of the produced gaseous fuel was 8.1 Mcal / Nm 3, which was increased to 4.5 times that of thermogas (1.8 Mcal / Nm 3 ).

・発明例2
発明例1と同じ組成のサーモガスに水蒸気を添加してシフト反応を行わせ、これにより得られた混合ガスによる有機物質の低分子化試験を行った。そのため、スチーム混合器の下流側にFe−Cr系高温シフト触媒を充填したシフト反応器(円筒竪型)を設置し、予熱温度を320℃に変更した。シフト反応後のガス組成はH:28vol%、CO:4vol%、CO:28vol%、HO:37vol%、N:3vol%であった。この有機物質分解用の混合ガスは、流量が172Nm/h(質量流量では164kg/h)であった。
-Invention Example 2
Water vapor was added to a thermogas having the same composition as that of Invention Example 1 to cause a shift reaction, and a test for reducing the molecular weight of an organic substance using a mixed gas obtained thereby was performed. Therefore, a shift reactor (cylindrical vertical type) filled with an Fe—Cr high temperature shift catalyst was installed downstream of the steam mixer, and the preheating temperature was changed to 320 ° C. Gas composition after shift reaction H 2: 28vol%, CO: 4vol%, CO 2: 28vol%, H 2 O: 37vol%, N 2: was 3 vol%. This mixed gas for organic substance decomposition had a flow rate of 172 Nm 3 / h (164 kg / h in mass flow rate).

発明例1と同様にして、廃プラスチックのモデル物質である粒状ポリエチレンの改質反応を行い、得られた気体燃料と液体燃料の生成量と組成を求め、また、気体燃料についてはLHVを求めた。それらの結果を表2に示す。
これによれば、本発明例における供給原料総量に対する生成率は、気体燃料が37%、液体燃料が62%であり、ポリエチレン分解率は99%とほぼ完全に低分子化していた。生成した気体燃料のLHVは9.3Mcal/Nmと、サーモガスの5.2倍に増熱していた。
発明例2では、事前にシフト反応によりCO濃度を10%未満にしたので、発明例1に比べて気体燃料のLHVが高く、ポリエチレン分解率も高くなった。これは、本発明例ではシフト反応によって混合ガス(g)に含有される水素、二酸化炭素濃度が高くなり、有機物質の低分子化が非常に効率的に行われたためと考えられる。
In the same manner as in Invention Example 1, a reforming reaction of granular polyethylene, which is a model material of waste plastic, was performed, and the amount and composition of the obtained gaseous fuel and liquid fuel were determined, and LHV was determined for the gaseous fuel. . The results are shown in Table 2.
According to this, the production rate with respect to the total amount of feedstock in the present invention example was 37% for gaseous fuel and 62% for liquid fuel, and the polyethylene degradation rate was 99%, which was almost completely reduced in molecular weight. The LHV of the produced gaseous fuel was 9.3 Mcal / Nm 3 , which was 5.2 times higher than that of the thermogas.
In Invention Example 2, since the CO concentration was previously reduced to less than 10% by shift reaction, the LHV of the gaseous fuel was higher and the polyethylene decomposition rate was higher than in Invention Example 1. This is presumably because the hydrogen and carbon dioxide concentrations contained in the mixed gas (g) were increased by the shift reaction in the example of the present invention, and the molecular weight of the organic substance was reduced very efficiently.

Figure 0005679088
Figure 0005679088


Claims (5)

ガス化溶融炉で発生した一酸化炭素と水素を含有する排ガス(g)に過剰の水蒸気を添加してシフト反応を行わせることで、前記排ガス(g)に含まれていた水素と、前記シフト反応で生成した二酸化炭素および水素と、前記シフト反応に消費されなかった水蒸気とを含む混合ガス(g)とし、この混合ガス(g)を有機物質に接触させ、該有機物質を改質して低分子化するにあたり、前記有機物質が、廃プラスチック、含油スラッジ、廃油、バイオマスの中から選ばれる1種以上であることを特徴とする有機物質の低分子化方法。 By causing the exhaust gas (g 1) in the addition of excess steam shift reaction containing carbon monoxide and hydrogen generated in the gasification and melting furnace, and hydrogen wherein contained in the exhaust gas (g 1), A mixed gas (g) containing carbon dioxide and hydrogen produced by the shift reaction and water vapor not consumed in the shift reaction is brought into contact with the organic substance, and the organic substance is reformed. Thus, when the molecular weight is reduced, the organic material is at least one selected from waste plastic, oil-containing sludge, waste oil, and biomass. シフト反応後の混合ガス(g)のCO濃度を10vol%未満とすることを特徴とする請求項1に記載の有機物質の低分子化方法。 The method for reducing the molecular weight of an organic substance according to claim 1, wherein the CO concentration of the mixed gas (g) after the shift reaction is less than 10 vol%. 混合ガス(g)の水蒸気濃度が5〜70vol%であることを特徴とする請求項1または2に記載の有機物質の低分子化方法。   The method for reducing the molecular weight of an organic substance according to claim 1 or 2, wherein the mixed gas (g) has a water vapor concentration of 5 to 70 vol%. 混合ガス(g)は、水蒸気濃度が20〜70vol%、水素濃度が10〜40vol%、二酸化炭素濃度が10〜40vol%であることを特徴とする請求項3に記載の有機物質の低分子化方法。   The mixed gas (g) has a water vapor concentration of 20 to 70 vol%, a hydrogen concentration of 10 to 40 vol%, and a carbon dioxide concentration of 10 to 40 vol%. Method. 請求項1〜4のいずれかに記載の有機物質の低分子化方法により得られた有機物質の改質物を回収し、該改質物を製鉄所の燃料および/または還元剤として利用することを特徴とする製鉄所の操業方法。   The organic substance reformed product obtained by the method for reducing the molecular weight of an organic substance according to any one of claims 1 to 4 is recovered, and the reformed product is used as a fuel and / or a reducing agent for a steel mill. How to operate the steelworks.
JP2014502008A 2012-02-27 2013-02-19 Method for reducing the molecular weight of organic substances Active JP5679088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014502008A JP5679088B2 (en) 2012-02-27 2013-02-19 Method for reducing the molecular weight of organic substances

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012040470 2012-02-27
JP2012040470 2012-02-27
JP2014502008A JP5679088B2 (en) 2012-02-27 2013-02-19 Method for reducing the molecular weight of organic substances
PCT/JP2013/000914 WO2013128843A1 (en) 2012-02-27 2013-02-19 Method for lowering molecular weight of organic substance

Publications (2)

Publication Number Publication Date
JP5679088B2 true JP5679088B2 (en) 2015-03-04
JPWO2013128843A1 JPWO2013128843A1 (en) 2015-07-30

Family

ID=49082059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014502008A Active JP5679088B2 (en) 2012-02-27 2013-02-19 Method for reducing the molecular weight of organic substances

Country Status (3)

Country Link
JP (1) JP5679088B2 (en)
CN (1) CN104136580B (en)
WO (1) WO2013128843A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5999114B2 (en) * 2014-01-14 2016-09-28 Jfeスチール株式会社 Method and system for reducing the molecular weight of organic substances
CN106318433B (en) * 2015-06-18 2018-09-28 中国石油化工股份有限公司 A kind of hydrotreating method of animal and plant fat
JP2017071692A (en) * 2015-10-07 2017-04-13 Jfeスチール株式会社 Gasification method of carbonaceous fuel, operation method of iron mill and manufacturing method of gasified gas

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001131560A (en) * 1999-11-09 2001-05-15 Hitachi Ltd Method and apparatus for thermally decomposing hydrocarbon raw material
JP2001262160A (en) * 2000-03-17 2001-09-26 Toshiba Corp Apparatus for thermal decomposition
JP2004225117A (en) * 2003-01-23 2004-08-12 Jfe Steel Kk Method for utilizing by-produced gas in iron works
JP2006104339A (en) * 2004-10-06 2006-04-20 Jfe Engineering Kk Method for gasification-reforming wastes
JP2006188574A (en) * 2005-01-05 2006-07-20 Jfe Engineering Kk Method for gasifying and reforming waste
WO2010134326A1 (en) * 2009-05-19 2010-11-25 新日本製鐵株式会社 Catalyst for reforming tar-containing gas, method for producing catalyst for reforming tar-containing gas, method for reforming tar-containing gas using catalyst for reforming tar-containing gas, and method for regenerating catalyst for reforming tar-containing gas

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3602041C2 (en) * 1986-01-24 1996-02-29 Rwe Entsorgung Ag Improved process for processing carbon-containing waste

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001131560A (en) * 1999-11-09 2001-05-15 Hitachi Ltd Method and apparatus for thermally decomposing hydrocarbon raw material
JP2001262160A (en) * 2000-03-17 2001-09-26 Toshiba Corp Apparatus for thermal decomposition
JP2004225117A (en) * 2003-01-23 2004-08-12 Jfe Steel Kk Method for utilizing by-produced gas in iron works
JP2006104339A (en) * 2004-10-06 2006-04-20 Jfe Engineering Kk Method for gasification-reforming wastes
JP2006188574A (en) * 2005-01-05 2006-07-20 Jfe Engineering Kk Method for gasifying and reforming waste
WO2010134326A1 (en) * 2009-05-19 2010-11-25 新日本製鐵株式会社 Catalyst for reforming tar-containing gas, method for producing catalyst for reforming tar-containing gas, method for reforming tar-containing gas using catalyst for reforming tar-containing gas, and method for regenerating catalyst for reforming tar-containing gas

Also Published As

Publication number Publication date
JPWO2013128843A1 (en) 2015-07-30
CN104136580A (en) 2014-11-05
WO2013128843A1 (en) 2013-09-06
CN104136580B (en) 2016-08-24

Similar Documents

Publication Publication Date Title
JP5333646B2 (en) Method for producing hydrogen
Policella et al. Characteristics of syngas from pyrolysis and CO2-assisted gasification of waste tires
JP5835006B2 (en) Organic substance gasification method and organic substance gasification apparatus
JP6227293B2 (en) Method for reducing the molecular weight of organic substances
US20100156104A1 (en) Thermal Reduction Gasification Process for Generating Hydrogen and Electricity
JP4968402B1 (en) Method of reducing molecular weight of organic substance and method of using exhaust gas generated from metallurgical furnace
JP6070580B2 (en) Method and system for reducing the molecular weight of organic substances
Speight Production of syngas, synfuel, bio-oils, and biogas from coal, biomass, and opportunity fuels
Giannakeas et al. Hydrogen from scrap tyre oil via steam reforming and chemical looping in a packed bed reactor
JP5999114B2 (en) Method and system for reducing the molecular weight of organic substances
JP5679088B2 (en) Method for reducing the molecular weight of organic substances
JP5906805B2 (en) How to operate a blast furnace or steelworks
JP5835003B2 (en) How to make organic materials
JP6369694B2 (en) Method for reducing molecular weight of organic substance and facility for reducing molecular weight
JP5999115B2 (en) Method and system for reducing the molecular weight of organic substances
US20160009554A1 (en) Molten metal gasifier
JP6638661B2 (en) Organic substance pyrolysis method and pyrolysis equipment
WO2014163586A1 (en) Molten metal gasifier
JP6777110B2 (en) Pyrolysis method and equipment for organic substances
JP6540645B2 (en) Method and apparatus for thermal decomposition of organic substance
JP6248987B2 (en) Method for reducing the molecular weight of organic substances
WO2014132230A1 (en) Molten metal gasifier
JP6369693B2 (en) Method for reducing molecular weight of organic substance and facility for reducing molecular weight
JP6904388B2 (en) Pyrolysis method of organic substances
JP2007224206A (en) Method for forming high-calorie gas

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141222

R150 Certificate of patent or registration of utility model

Ref document number: 5679088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250