JP5678537B2 - Static power supply unit for aircraft - Google Patents

Static power supply unit for aircraft Download PDF

Info

Publication number
JP5678537B2
JP5678537B2 JP2010208029A JP2010208029A JP5678537B2 JP 5678537 B2 JP5678537 B2 JP 5678537B2 JP 2010208029 A JP2010208029 A JP 2010208029A JP 2010208029 A JP2010208029 A JP 2010208029A JP 5678537 B2 JP5678537 B2 JP 5678537B2
Authority
JP
Japan
Prior art keywords
power supply
aircraft
ground
phase
static power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010208029A
Other languages
Japanese (ja)
Other versions
JP2012061968A (en
Inventor
孝之 戸田
孝之 戸田
裕一 田中
裕一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinfonia Technology Co Ltd
Original Assignee
Sinfonia Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinfonia Technology Co Ltd filed Critical Sinfonia Technology Co Ltd
Priority to JP2010208029A priority Critical patent/JP5678537B2/en
Publication of JP2012061968A publication Critical patent/JP2012061968A/en
Application granted granted Critical
Publication of JP5678537B2 publication Critical patent/JP5678537B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

本発明は、複数台の静止型電源装置を備えた航空機用静止型電源装置ユニットに関するものである。   The present invention relates to an aircraft static power supply unit including a plurality of static power supply devices.

空港に駐機中の航空機に電力を供給する装置として、半導体を用いた電力変換方式の静止型電源装置が知られている(非特許文献1)。このような半導体を用いた電力変換方式の静止型電源装置で航空機に電力供給すれば、エンジンを駆動する必要がなくCO2の排出を大幅に削減することができる。   As a device for supplying electric power to an aircraft parked at an airport, a power conversion type static power supply device using a semiconductor is known (Non-Patent Document 1). If power is supplied to an aircraft with such a power conversion type static power supply device using a semiconductor, it is not necessary to drive the engine, and CO2 emissions can be greatly reduced.

このような環境に優しい静止型電源装置としては、図6に示すように、三相4線式送電回路を有し、零相変流器(ZCT:Zero-phase Current Transformer)4’及び地絡過電流継電器5を備えた定電圧定周波数装置(CVCF:Constant Voltage Constant Frequency)1’が挙げられる。   As shown in FIG. 6, such an environmentally friendly static power supply device has a three-phase four-wire power transmission circuit, a zero-phase current transformer (ZCT) 4 ′, and a ground fault excess. Examples thereof include a constant voltage constant frequency (CVCF) 1 ′ having a current relay 5.

定電圧定周波数装置1’は、固定電圧・固定周波数インバータの制御方式の一つであり、ある一定の電圧、周波数の交流を供給するものである。定電圧定周波数装置1’(以下、「CVCF1’」と称する場合がある)により航空機Pに電力を供給する場合、図6に示すように、三相の各電線2a’,2b’,2c’,及び中性点Nに接続された中性相の電線3’を機体P内の負荷に接続するとともに、中性相の電線3’を機体Pに接続してボディアース(Pg)をとる(ボディアース線31’)。また、中性相の接地線32’を機体P外の接地極Gに接続している。   The constant voltage constant frequency device 1 'is one of control methods for a fixed voltage / fixed frequency inverter and supplies alternating current with a certain voltage and frequency. When power is supplied to the aircraft P by the constant voltage constant frequency device 1 ′ (hereinafter sometimes referred to as “CVCF1 ′”), as shown in FIG. 6, the three-phase electric wires 2a ′, 2b ′, 2c ′ , And the neutral phase wire 3 ′ connected to the neutral point N is connected to the load in the fuselage P, and the neutral phase wire 3 ′ is connected to the fuselage P to obtain the body ground (Pg) ( Body ground wire 31 '). Further, the neutral phase grounding wire 32 ′ is connected to the grounding electrode G outside the machine body P.

また、三相及び中性相の各電線2a’,2b’,2c’,3’(計4本)が一括して通されるZCT4’は、地絡が発生していない正常状態では二次側に電流が流れない事実を利用して、三相の電流のバランスが崩れた際、つまり地絡が起きた際にZCT4’の二次側に流れる電流をこの二次側に接続された地絡過電流継電器5’が検出し、警報を発するものである。また、場合によっては、コンタクタ6’を開放させて送電回路を遮断(送電状態を停止)する。   In addition, ZCT 4 ′ through which the three-phase and neutral-phase electric wires 2a ′, 2b ′, 2c ′, 3 ′ (total of four wires) are collectively passed is secondary in a normal state where no ground fault has occurred. By utilizing the fact that current does not flow to the side, the current flowing to the secondary side of ZCT4 ′ when the three-phase current balance is lost, that is, when a ground fault occurs, is connected to this secondary side. The overcurrent relay 5 ′ detects and issues an alarm. In some cases, the contactor 6 'is opened to shut off the power transmission circuit (stop the power transmission state).

シンフォニアテクノロジー株式会社,「航空機用400Hz静止型電源装置」,2004年11月Sinfonia Technology Co., Ltd., “400Hz static power supply for aircraft”, November 2004

ところで、近年の航空機の大型化に伴い、大容量電源が必要な大型の航空機に対しては、それだけ大きい電力を供給できるCVCFが必要とされるが、CVCF単体の電力供給量を増強するよりは、従来通りの電力供給能力を有するCVCFを複数台利用して電源供給する方が現実的である。そこで、図6に示す例に準じて、図7に示すように、複数台(図では2台)のCVCF1A’,1B’の三相及び中性相の各電線2a’,2b’,2c’,3’を機体Pの負荷に接続するとともに、各CVCF1A’,1B’の中性相の電線3’をそれぞれ機体Pにボディアース(Pg)したボディアース線31’に分岐し、また各CVCF1A’,1B’の接地線32’を別々の接地極G,Gxに接続した場合、以下のような不具合が生じ得る。   By the way, with the recent increase in size of aircraft, a CVCF capable of supplying such a large amount of power is required for large aircraft that require a large-capacity power supply, but rather than increasing the power supply of a single CVCF. It is more realistic to supply power using a plurality of CVCFs having the conventional power supply capability. Accordingly, in accordance with the example shown in FIG. 6, as shown in FIG. 7, the three-phase and neutral-phase electric wires 2a ′, 2b ′, 2c ′ of a plurality (two in the figure) of CVCFs 1A ′, 1B ′. , 3 'are connected to the load of the airframe P, and the neutral phase wires 3' of the CVCFs 1A ', 1B' are branched to body ground wires 31 'which are respectively body-grounded (Pg) to the airframe P, and each CVCF1A When the ', 1B' ground line 32 'is connected to the separate ground poles G and Gx, the following problems may occur.

つまり、各CVCF1A’1B’に対する負荷の違いにより中性相にアンバランスが生じた際、図7中の矢印で示すように、一方のCVCF1A’の接地線32’(接地極G)→他方のCVCF1B’の接地線32’(接地極Gx)→他方のCVCF1B’の中性相のボディアース点Pg→一方のCVCF1A’の中性相のボディアース点Pg→一方のCVCF1A’の接地線32’(接地極G)を通る回り回路が形成され、中性相の電流が増加することで各ZCT4’の二次側に電流が流れてしまい、その電流を地絡過電流継電器5’が検出することにより、地絡過電流継電器5’は地絡が生じたものと誤判断することとなり警報を発する。また場合によってはコンタクタ6’を開放させて送電回路を遮断(送電状態を停止)する。   That is, when an unbalance occurs in the neutral phase due to a difference in load on each CVCF 1A′1B ′, as shown by an arrow in FIG. 7, the ground line 32 ′ (ground pole G) of one CVCF 1A ′ → the other CVCF1B ′ ground line 32 ′ (ground pole Gx) → neutral phase body ground point Pg of the other CVCF1B ′ → neutral phase body ground point Pg of one CVCF1A ′ → ground line 32 ′ of one CVCF1A ′ A circuit that passes through (the ground electrode G) is formed, and the current of the neutral phase increases, so that the current flows to the secondary side of each ZCT 4 ′, and the current is detected by the ground fault overcurrent relay 5 ′. Thus, the ground fault overcurrent relay 5 ′ erroneously determines that a ground fault has occurred, and issues an alarm. In some cases, the contactor 6 'is opened to shut off the power transmission circuit (stop the power transmission state).

本発明者らは、このように複数系のCVCFを同一の航空機に単純に接続した場合の問題、すなわち、1機の航空機に対して複数台のCVCFを接続した状態で各CVCFに対する負荷にアンバランスが生じた時、それぞれのZCTを通って回り込む回路が形成され、ZCTの二次側に電流が流れてしまい、地絡を検出した場合と同様の処理を行ってしまう(誤作動)という問題を見出し、このような問題を解決すべく、本発明の航空機用静止型電源装置ユニットを想到するに至った。   The inventors of the present invention have a problem when a plurality of CVCFs are simply connected to the same aircraft, that is, the load on each CVCF is unloaded with a plurality of CVCFs connected to one aircraft. When a balance occurs, a circuit that wraps around each ZCT is formed, current flows to the secondary side of the ZCT, and the same processing as when a ground fault is detected (malfunction) In order to solve such problems, the inventors have come up with the stationary power supply unit for aircraft of the present invention.

本発明の主たる目的は、1機の航空機に対して複数台のCVCFで電源供給するに際して、地絡が発生した場合にはその地絡を確実に検出して保護動作を行うことができるとともに、回り回路が発生した場合に地絡したと誤検出せずに電源供給状態を維持することが可能であり、状況に応じて複数の航空機への同時給電も可能な航空機用静止型電源装置ユニットを提供することにある。   The main object of the present invention is that when a ground fault occurs when power is supplied to a single aircraft with a plurality of CVCFs, the ground fault can be reliably detected and a protection operation can be performed. A stationary power supply unit for aircraft that can maintain the power supply state without erroneously detecting that a ground fault has occurred when a turning circuit occurs, and that can simultaneously supply power to multiple aircraft depending on the situation. It is to provide.

すなわち本発明は、駐機中の航空機に電力を供給する三相4線の静止型電源装置を複数台備えた航空機用静止型電源装置ユニットに関するものである。そして、本発明の航空機用静止型電源装置ユニットは、複数台の静止型電源装置が何れも零相変流器と、零相変流器に接続された地絡過電流継電器との組を少なくとも1組備えたものであり、1機の航空機に対して電源供給する場合、各静止型電源装置の三相及び中性相の電線を全て機体の負荷に接続するとともに、中性相の電線を機体にボディアースし、且つ各静止型電源装置の三相及び中性相の電線を全て機体の負荷に接続するとともに、中性相の電線を機体にボディアースし、且つ各静止型電源装置の接地線を、何れか一つの静止型電源装置が備える零相変流器に共通通して同一の接地極に接続し、複数機の航空機に対して各静止型電源装置により電源供給する場合、各静止型電源装置の接地線を各静止型電源装置の零相変流器に個別に通して相互に異なる接地極に接続するように構成していることを特徴としている。ここで、接地線が中性相の線であることは明白であり、「各静止型電源装置の接地線」とは、「各静止型電源装置の中性相の接地線」を意味する。 That is, the present invention relates to an aircraft static power supply unit including a plurality of three-phase four-wire static power supply devices that supply power to a parked aircraft. In the static power supply unit for aircraft according to the present invention, each of the plurality of static power supply units includes at least one set of a zero-phase current transformer and a ground fault overcurrent relay connected to the zero-phase current transformer. are those were Kumisonae, when power supply to one aircraft, as well as connected to the load of all aircraft wires of three phases and the neutral phase of the static power supply wires of the neutral phase airframe And connect all the three-phase and neutral-phase wires of each static power supply to the fuselage load, and ground the neutral-phase wires to the fuselage and ground each static power supply. If the line and through a common zero-phase current transformer included in any one of the static power supply connected to the same ground pole, the power is supplied by the static power supply for multiple machines aircraft, each Connect the ground wire of the static power supply to the zero-phase current transformer of each static power supply The through is characterized in that it is configured to connect to different ground electrode to one another. Here, it is obvious that the grounding wire is a neutral phase wire, and “the grounding wire of each static power supply device” means “the neutral phase grounding wire of each static power supply device”.

このような本発明に係る航空機用静止型電源装置ユニットであれば、1機の航空機に電源供給する場合に、各静止型電源装置(以下「CVCF」と称する場合がある)の接地線を共通の零相変流器(以下「ZCT」と称する場合がある)に通すことで、各CVCFの中性相にアンバランスが生じ、このアンバランスに起因して回り回路が形成された場合であっても、回り回路を流れる電流を、この電流とは逆方向に共通のZCTを通る電流で打ち消すことができ、ZCTの二次側には電流が流れない。これにより地絡過電流継電器が零相電流(地絡電流)を誤って検出することを防ぐことができる。   With such an aircraft static power supply unit according to the present invention, when power is supplied to one aircraft, a common ground line is used for each static power supply (hereinafter sometimes referred to as “CVCF”). This is a case where an unbalance occurs in the neutral phase of each CVCF by passing through a zero-phase current transformer (hereinafter sometimes referred to as “ZCT”), and a rotating circuit is formed due to this unbalance. However, the current flowing through the rotating circuit can be canceled by the current passing through the common ZCT in the opposite direction to this current, and no current flows on the secondary side of the ZCT. Thereby, it can prevent that a ground fault overcurrent relay detects a zero phase current (ground fault current) accidentally.

このように地絡の誤検出を防止可能な本発明に係る航空機用静止型電源装置ユニットは、地絡が発生した場合に、ZCTを通る中性相の接地線のうち、地絡したCVCFの中性相にのみ電流が流れるため、ZCTの二次側に流れる電流を零相電流(地絡電流)として地絡過電流継電器が検出し、保護動作を行うことができる。ここで、保護動作としては、警報を発報する動作や、適宜の開閉器や遮断器等を設けている場合にはそれによる給電状態を停止する動作を挙げることができる。このように、地絡が生じた場合には、適切に地絡を検出し、保護動作を行うことができる。   In this way, the static power supply unit for an aircraft according to the present invention that can prevent erroneous detection of a ground fault, in the case of a ground fault, of the ground phase CVCF out of the neutral phase ground line passing through the ZCT, Since the current flows only in the neutral phase, the ground fault overcurrent relay detects the current flowing on the secondary side of the ZCT as a zero-phase current (ground fault current) and can perform a protection operation. Here, examples of the protective operation include an operation for issuing an alarm, and an operation for stopping the power supply state when an appropriate switch or circuit breaker is provided. Thus, when a ground fault occurs, a ground fault can be detected appropriately and a protection operation can be performed.

また、本発明では、各静止型電源装置がそれぞれ零相変流器及び地絡過電流継電器を備えた航空機用静止型電源装置ユニットを構成することもできる。そして、1機の航空機に対して電源供給する場合、各静止型電源装置の接地線を共通の零相変流器に通して同一の接地極に接続し、複数機の航空機に対して各静止型電源装置により電源供給する場合、各静止型電源装置の接地線を各静止型電源装置の零相変流器に個別に通して相互に異なる接地極に接続するように構成することが好ましい。   In addition, in the present invention, each stationary power supply unit can be configured as an aircraft stationary power supply unit that includes a zero-phase current transformer and a ground fault overcurrent relay. When supplying power to one aircraft, connect the ground wire of each stationary power supply to the same grounding electrode through a common zero-phase current transformer, When power is supplied by the type power supply device, it is preferable that the ground line of each static power supply device is individually passed through the zero-phase current transformer of each static power supply device and connected to different grounding electrodes.

これにより、1機の航空機に対して電源供給する場合には、各静止型電源装置の接地線を共通の零相変流器に通して同一の接地極に接続することによって、上述した作用効果を得ることができる。また、本発明の航空機用静止型電源装置ユニットを用いて、各静止型電源装置の接地線を各静止型電源装置の零相変流器に個別に通して相互に異なる接地極に接続することによって、各静止型電源装置と各航空機との関係を従来の関係に準じたものになり、各航空機に対して送電することができ、地絡が発生した場合にはその地絡を適切に検出して、保護動作を行う。このように、本発明の航空機用静止型電源装置ユニットであれば、大容量電源が必要な大型の航空機については1機の航空機に対して電源供給するシングルモードを選択し、大容量電源が必要ではない中型や小型の航空機については複数航空機に対して電源供給するマルチモードを選択することによって、静止型電源装置により個別に電源供給することができ、好適である。   As a result, when supplying power to one aircraft, the grounding wire of each stationary power supply device is connected to the same grounding electrode through a common zero-phase current transformer, thereby providing the above-described effects. Can be obtained. In addition, using the aircraft static power supply unit of the present invention, the ground wire of each static power supply device is individually passed through the zero-phase current transformer of each static power supply device and connected to different ground electrodes. Makes the relationship between each stationary power supply and each aircraft conform to the conventional relationship, and can transmit power to each aircraft, and if a ground fault occurs, the ground fault is detected appropriately Then, the protection operation is performed. As described above, with the aircraft static power supply unit of the present invention, for a large aircraft that requires a large capacity power supply, the single mode for supplying power to one aircraft is selected, and a large capacity power supply is required. For medium-sized and small aircraft that are not, it is preferable that a multi-mode that supplies power to a plurality of aircrafts can be selected so that power can be supplied individually by a stationary power supply device.

1機の航空機に対して給電する場合と、複数の航空機に対して給電する場合とで接地線を通す零相変流器や接地線を接続する接地極の選択を効率良くスムーズに行えるようにするには、各静止型電源装置の接地線を共通の零相変流器に通して同一の接地極に接続する状態と、各静止型電源装置の接地線を各静止型電源装置の零相変流器に個別に通して相互に異なる接地極に接続する状態とを選択的に切り替える切替機構を備えた航空用静止型電源装置ユニットとすることが好ましい。切替機構の一例としては、各静止型電源装置の接地線を共通の零相変流器に通して同一の接地極に接続可能なシングルモード用電磁接触器と、各静止型電源装置の接地線を各静止型電源装置の零相変流器に個別に通して相互に異なる接地極に接続可能なマルチモード用電磁接触器とを備え、1機の航空機に対して電源供給する場合と、複数機の航空機に対して各静止型電源装置により電源供給する場合とで使用する(ON状態にする)電磁接触器を切り替えるように構成したものが挙げられる。   To efficiently and smoothly select a zero-phase current transformer that passes the ground wire and a grounding electrode that connects the ground wire when power is supplied to one aircraft and when power is supplied to multiple aircraft To connect the ground wire of each static power supply unit to the same grounding electrode through a common zero-phase current transformer, and connect the ground wire of each static power supply device to the zero phase of each static power supply device It is preferable to provide a static power supply unit for aviation provided with a switching mechanism that selectively switches between a state in which the current is individually passed through a current transformer and connected to a different ground electrode. As an example of the switching mechanism, a single-mode electromagnetic contactor that can connect the ground wire of each static power supply device to the same ground electrode through a common zero-phase current transformer, and the ground wire of each static power supply device A multimode electromagnetic contactor that can be individually connected to a zero-phase current transformer of each stationary power supply unit and can be connected to different grounding poles, and supplying power to one aircraft, A configuration in which the electromagnetic contactor used (turned on) is switched between when power is supplied to each aircraft by each stationary power supply device.

本発明によれば、1機の航空機に複数の静止型電源装置(CVCF)を同時接続した場合、地絡検出用の零相変流器(ZCT)を共用する回路構成としたことにより、各CVCFに対する負荷の相違によって中性相にアンバランスが生じ、回り回路が形成される場合であっても、回り回路を流れる電流を打ち消すことによって、地絡の誤検出を防止しつつ、地絡が発生した場合にはZCTで地絡電流(零相電流)を検出することにより、地絡過電流継電器させて保護動作を行うことができる。また、各静止型電源装置にそれぞれ零相変流器及び地絡過電流継電器を設け、各静止型電源装置の接地線を各静止型電源装置の零相変流器に個別に通して相互に異なる接地極に接続することにより、複数機の航空機に対して各静止型電源装置により同時に給電することができる。   According to the present invention, when a plurality of static power supply units (CVCF) are connected to one aircraft at the same time, each circuit configuration sharing a zero-phase current transformer (ZCT) for ground fault detection Even when the neutral phase is unbalanced due to the difference in load with respect to the CVCF and a rotating circuit is formed, by canceling the current flowing through the rotating circuit, ground faults are prevented while preventing erroneous detection of ground faults. When it occurs, the ground fault current (zero phase current) is detected by ZCT, and a ground fault overcurrent relay can be used to perform a protection operation. In addition, each static power supply device is provided with a zero-phase current transformer and a ground fault overcurrent relay, and the ground wire of each static power supply device is individually passed through the zero-phase current transformer of each static power supply device to be different from each other. By connecting to the ground electrode, it is possible to simultaneously supply power to a plurality of aircraft by each stationary power supply.

本発明の一参考例の航空用静止型電源装置ユニットの全体構成模式図。1 is a schematic diagram of the overall configuration of an aeronautical static power supply unit according to a reference example of the present invention. 本発明の一実施形態に係る航空用静止型電源装置ユニットの図1対応図。1 is a diagram corresponding to FIG. 1 of an aeronautical static power supply unit according to an embodiment of the present invention . 同航空用静止型電源装置ユニットにおいてマルチモード時の図2対応図。FIG. 3 is a diagram corresponding to FIG. 2 in the multi-mode in the static power supply unit for aviation. 同実施形態に係る航空用静止型電源装置ユニットの一変形例の図1対応図。FIG. 1 is a diagram corresponding to FIG. 1 of a variation of an aeronautical static power supply unit according to the embodiment. 同航空用静止型電源装置ユニットにおいてマルチモード時の図4対応図。FIG. 5 is a diagram corresponding to FIG. 4 in the multi-mode in the static power supply unit for aviation. 従来の航空用静止型電源装置の全体構成模式図。FIG. 6 is a schematic diagram of the overall configuration of a conventional static power supply device for aircraft. 従来の航空用静止型電源装置を複数用いて共通の機体に電力供給した場合の図6対応図。FIG. 6 is a diagram corresponding to FIG. 6 when power is supplied to a common aircraft by using a plurality of conventional aeronautical static power supply devices.

以下、本発明の一実施形態を、図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1に、本発明の一参考例の航空機用静止型電源装置ユニットXを示す。航空機用静止型電源装置ユニットXは、図1に示すように複数の静止型電源装置1A,1B(以下、「CVCF1A,1B」と称する)を備え、これら複数のCVCF1A,1Bによって駐機中の航空機Pに対して電力を供給するものである。 FIG. 1 shows a stationary power supply unit X for an aircraft according to a reference example of the present invention . As shown in FIG. 1, the aircraft static power supply unit X includes a plurality of static power supply devices 1A, 1B (hereinafter referred to as “CVCF1A, 1B”), and is parked by the plurality of CVCF1A, 1B. Electric power is supplied to the aircraft P.

各CVCF1A,1Bに共通する構造を説明する。各CVCF1A,1Bは、三相(第一相R、第二相S、第三相T)交流を用いた三相交流電源であり、本参考例では三相各相R,S,Tの一端を共通の中性点Nに接続している(Y結線)。すなわち、これらCVCF1A,1Bは、三相各相R,S,Tの電線2a,2b,2c及び中性点Nに接続した電線3(中性線3)の計4本の電線を用いて三相交流電力を航空機Pに供給可能なものである。また、中性線3は、機体Pのボディアース点Pgに接続したボディアース線31と、航空機P外の接地極Gに接続した接地線32とに分岐している。 A structure common to the CVCFs 1A and 1B will be described. Each CVCF 1A, 1B is a three-phase AC power source using a three-phase (first phase R, second phase S, third phase T) AC. In this reference example , one end of each of the three-phase R, S, T Are connected to a common neutral point N (Y connection). That is, these CVCFs 1A and 1B are composed of three electric wires 2a, 2b and 2c of each of the three phases R, S and T and three electric wires 3 (neutral wires 3) connected to the neutral point N. The phase AC power can be supplied to the aircraft P. Further, the neutral wire 3 is branched into a body ground wire 31 connected to the body ground point Pg of the airframe P and a ground wire 32 connected to the ground electrode G outside the aircraft P.

また、本参考例の航空機用静止型電源装置ユニットXは、三相4線式送電回路10に、零相変流器4(以下「ZCT4」と称する)と、ZCT4の二次側に接続した地絡過電流継電器5とを関連付けて設けている。ZCT4及び地絡過電流継電器5は周知のものを適用することができるため、詳細な説明は省略する。なお、地絡過電流継電器5には電流を遮断し得る遮断器を接続している(図示省略)。 In addition, the static power supply unit X for an aircraft of this reference example is connected to a three-phase four-wire power transmission circuit 10 with a zero-phase current transformer 4 (hereinafter referred to as “ZCT4”) and a secondary side of the ZCT4. A ground fault overcurrent relay 5 is provided in association with it. Since ZCT4 and the ground fault overcurrent relay 5 can apply a well-known thing, detailed description is abbreviate | omitted. In addition, the circuit breaker which can interrupt | block an electric current is connected to the ground fault overcurrent relay 5 (illustration omitted).

そして、本参考例に係る航空機用静止型電源装置ユニットXは、複数系統(図示例では2系)のCVCF1A,1Bによって1機の航空機Pに電力を供給する場合、各CVCF1A,1Bの4本の電線(三相各相R,S,Tの電線2a,2b,2c及び中性相の電線3)を機体Pの負荷に接続するとともに、各CVCF1A,1Bの接地線32を共通のZCT4に通して同一の接地極Gに接続している。また、各CVCF1A,1Bの中性相のボディアース線31を機体Pにそれぞれ接続(ボディアース)している。本参考例では、電磁接触器6(コンタクタ6)によって、三相各相R,S,Tの電線2a,2b,2c及び中性相の電線3を航空機Pの負荷に接続可能なON状態と接続不能なOFF状態との間で切替可能に構成している。 The static power supply unit X for an aircraft according to this reference example has four CVCFs 1A and 1B when supplying power to one aircraft P by a plurality of systems (two systems in the illustrated example) CVCFs 1A and 1B. Are connected to the load of the fuselage P, and the grounding wires 32 of the CVCFs 1A and 1B are connected to a common ZCT 4 as well as the three-phase electric wires 2a, 2b and 2c and the neutral phase electric wires 3 respectively. And are connected to the same ground electrode G. Further, neutral phase body ground wires 31 of the CVCFs 1A and 1B are connected to the body P (body ground). In this reference example , the electromagnetic contactor 6 (contactor 6) is connected to the three-phase R, S, T wires 2a, 2b, 2c and the neutral phase wire 3 to the load of the aircraft P. It is configured to be switchable between an OFF state incapable of connection.

各CVCF1A,1Bの4本の電線2a,2b,2c,3を機体Pの負荷に接続し、コンタクタ6をON状態に設定した状態で、航空機用静止型電源装置ユニットXによって1機の航空機Pに電力に供給する場合、各CVCF1A,1Bに対する負荷の違いによって各CVCF1A,1Bの中性相にアンバランスが生じることがある。その際、中各CVCF1A,1Bの中性相3は、図1に矢印で示すように、機体Pの各ボディアース点Pgを通じて周り回路を形成する。そして、各CVCF1A,1Bに対する負荷の違いによって、この回り回路を流れる中性相の電流が地絡する際の電流と同程度となる事があると考えられる。   In the state where the four electric wires 2a, 2b, 2c, 3 of each CVCF 1A, 1B are connected to the load of the airframe P and the contactor 6 is set to the ON state, one aircraft P When power is supplied to the CVCF 1A and 1B, the neutral phase may be unbalanced in the neutral phase of the CVCF 1A and 1B. At that time, the neutral phase 3 of each of the middle CVCFs 1A and 1B forms a circuit around each body ground point Pg of the airframe P as indicated by an arrow in FIG. And, it is considered that the neutral phase current flowing through the circuit around the CVCFs 1A and 1B may be almost the same as the current at the time of grounding due to the difference in the load on the CVCFs 1A and 1B.

しかしながら、本参考例の静止型電源装置ユニットXは、各CVCF1A,1Bの接地線32を共通のZCT4に通しているため、中性相3のアンバランスに起因する回り回路が形成された場合であっても、中性相3を流れる回り回路の電流がZCT4を双方向に通るため、回り回路を通じて流れる電流のベクトル和を0にすることができる。その結果、ZCT4の二次側に電流が流れることがなく、ZCT4の二次側に接続した地絡過電流継電器5に電流が流れて保護動作が誤って行われることを防止することができ、航空機Pへの電力供給を継続して安定した状態で行うことができる。 However, since the static power supply unit X of this reference example passes the ground line 32 of each CVCF 1A, 1B through the common ZCT 4, it is a case where a rotating circuit due to the unbalance of the neutral phase 3 is formed. Even if it exists, since the current of the circuit flowing through the neutral phase 3 passes through the ZCT 4 in both directions, the vector sum of the current flowing through the circuit can be made zero. As a result, no current flows on the secondary side of the ZCT 4, and it is possible to prevent the current from flowing to the ground fault overcurrent relay 5 connected to the secondary side of the ZCT 4 to prevent the protection operation from being erroneously performed. The power supply to P can be continued in a stable state.

一方、何れかの電線2a,2b,2cで地絡が発生した場合には、共通のZCT4を通る各接地線32のうち、地絡したCVCF1A,1Bの接地線32にのみ電流が流れるために、ZCT4の二次側に電流が流れ、その電流(零相電流)を地絡過電流継電器5によって検出することにより、地絡過電流継電器5が保護動作を行うことができる。ここで、保護動作としては、警報を発報する動作(この場合、警報を受けて手動で出力を遮断(例えば出力オフボタン或いは緊急停止ボタンを押す)すればよい)や、警報の発報に代えて、または加えて、コンタクタ6を開放して給電状態を自動で停止する動作を挙げることができる。   On the other hand, when a ground fault occurs in any of the electric wires 2a, 2b, 2c, current flows only through the grounded ground wires 32 of the grounded CVCFs 1A and 1B among the ground wires 32 passing through the common ZCT 4. A current flows through the secondary side of ZCT 4 and the ground fault overcurrent relay 5 detects the current (zero-phase current) by the ground fault overcurrent relay 5, so that the ground fault overcurrent relay 5 can perform a protection operation. Here, as a protection operation, an operation for issuing an alarm (in this case, the output may be manually interrupted by receiving the alarm (for example, pressing an output off button or an emergency stop button)), or an alarm is issued. Instead or in addition, an operation of opening the contactor 6 and automatically stopping the power supply state can be given.

このように、本参考例の航空機用静止型電源装置ユニットXは、各CVCF1A,1Bの接地線32を共通のZCT4に通して1つの接地極Gに接続しているため、各CVCF1A,1Bに対する負荷のアンバランスによって回り回路が形成された場合に地絡過電流継電器5で零相電流(地絡電流)を誤って検出することを防止することができるとともに、実際に地絡が生じた場合には地絡過電流継電器5で地絡電流(零相電流)を検出することができ、保護動作を適切に行うことできる。 As described above, the static power supply unit X for aircraft of the present reference example connects the ground line 32 of each CVCF 1A, 1B to the single ground pole G through the common ZCT 4, and therefore, for each CVCF 1A, 1B When a rotating circuit is formed due to load imbalance, it is possible to prevent the ground fault overcurrent relay 5 from erroneously detecting a zero-phase current (ground fault current), and when a ground fault actually occurs. Can detect the ground fault current (zero phase current) by the ground fault overcurrent relay 5 and can appropriately perform the protection operation.

そして、本実施形態に係る航空機用静止型電源装置ユニットXは、例えば、図2及び図3に示すように、各CVCF1A,1Bにそれぞれ別々のZCT4,4x及び地絡過電流継電器5,5xを設け、1機の航空機Pに対して電力を供給するシングルモード(図2参照)と、複数の航空機Pに対して電力を供給するマルチモード(図3参照)とに応じて、各CVCF1A,1Bの接地線32を通すZCTを変更可能に構成している。また、本実施形態に係る航空機用静止型電源装置ユニットXは、各CVCF1A,1Bの接地線32を接続する接地極を変更可能(切替可能)に構成している。このような航空機用静止型電源装置ユニットXの一例としては、各CVCF1A,1Bの接地線32を共通のZCT4に通して同一の接地極Gに接続する状態と、各CVCF1A,1Bの接地線32を各CVCF1A,1BのZCT4,ZCT4xに個別に通して相互に異なる接地極G,Gxに接続する状態とを選択的に切り替える切替機構を備えたものであることが好ましい。 The aircraft static power supply unit X according to the present embodiment is provided with separate ZCTs 4 and 4x and ground fault overcurrent relays 5 and 5x in the CVCFs 1A and 1B, respectively , for example, as shown in FIGS. Depending on the single mode (see FIG. 2) for supplying power to one aircraft P and the multi-mode (see FIG. 3) for supplying power to a plurality of aircraft P, each CVCF 1A, 1B The ZCT through which the ground line 32 passes is configured to be changeable . Moreover, aircraft static power supply unit X according to this embodiment, Ru each CVCF1A, configured to changeable ground electrode connecting 1B the ground line 32 (switchable) Tei. As an example of such an aircraft static power supply unit X, the ground line 32 of each CVCF 1A, 1B is connected to the same ground electrode G through a common ZCT 4, and the ground line 32 of each CVCF 1A, 1B. Is preferably provided with a switching mechanism for selectively switching between a state where each of the CVCFs 1A and 1B is individually connected to ZCT4 and ZCT4x and connected to different grounding electrodes G and Gx.

具体的には、1系のCVCF1A及び2系のCVCF1Bを有する航空機用静止型電源装置ユニットXであれば、切替機構を、2系のCVCF1Bに設けられ、当該2系のCVCF1Bの接地線32を1系のCVCF1Aの接地線32と共通のZCT4に通してCVCF1Aの接地線32の接地極Gと同一の接地極Gに接続するための第1コンタクタ61(「シングルモード用電磁接触器」)、及び当該2系のCVCF1Bの接地線32を1系のCVCF1Aの接地線32を通すZCT4とは異なるZCT4x、つまり2系のCVCF1Bに設けたZCT4xに通して、CVCF1Aの接地線32の接地極Gとは異なる接地極Gxに接続するための第2コンタクタ62(「マルチモード用電磁接触器」)とを用いて構成する態様を挙げることができる。また、図2及び図3に示す静止型電源装置ユニットXは、第1コンタクタ61を使用した場合、2系のCVCF1Bの各電線2a,2b,2c,3を1系のCVCF1Aの電線2a,2b,2c,3と共通の機体Pに接続し、第2コンタクタ62を使用した場合、2系のCVCF1Bの各電線2a,2b,2c,3を1系のCVCF1Aの電線2a,2b,2c,3とは異なる機体Pxに接続するように構成している。   Specifically, in the case of an aircraft static power supply unit X having a 1-system CVCF 1A and a 2-system CVCF 1B, the switching mechanism is provided in the 2-system CVCF 1B, and the ground line 32 of the 2-system CVCF 1B is connected. A first contactor 61 (“single-mode electromagnetic contactor”) for connecting to the same grounding pole G as the grounding pole G of the grounding line 32 of the CVCF1A through the ZCT4 common to the grounding line 32 of the 1-system CVCF1A; In addition, the ground line 32 of the second system CVCF 1B is passed through ZCT 4x different from ZCT 4 passing the ground line 32 of the first system CVCF 1A, that is, ZCT 4x provided in the second system CVCF 1B, and the ground pole G of the ground line 32 of the CVCF 1A Is a configuration in which the second contactor 62 (“multi-mode electromagnetic contactor”) for connection to a different ground electrode Gx is used. It can be. 2 and 3, when the first contactor 61 is used, the electric wires 2a, 2b, 2c, 3 of the second system CVCF 1B are connected to the electric wires 2a, 2b of the first system CVCF 1A. , 2c, 3 when connected to the same body P and the second contactor 62 is used, the wires 2a, 2b, 2c, 3 of the 2 system CVCF 1B are connected to the wires 2a, 2b, 2c, 3 of the 1 system CVCF 1A. It is configured to connect to a different body Px.

そして、このような静止型電源装置ユニットXは、同一の機体Pに電力を供給する場合(シングルモード)、図に示すように、第1コンタクタ61を使用する(第1コンタクタ61をON状態(接続状態)にして第2コンタクタ62をOFF状態(開放状態)にする)ことによって、上述した参考例で述べた航空機用静止型電源装置ユニットXと同様の作用効果を得ることができる。 When such a static power supply unit X supplies power to the same airframe P (single mode), as shown in FIG. 2 , the first contactor 61 is used (the first contactor 61 is in the ON state). By setting the second contactor 62 to the OFF state (open state) in the (connected state), it is possible to obtain the same operational effects as those of the stationary power supply unit X for an aircraft described in the reference example described above.

また、この航空機用静止型電源装置ユニットXによって、複数の機体P,Pxに電力を供給する場合(マルチモード)には、図3に示すように、第2コンタクタ62を使用する(第1コンタクタ61をOFF状態(開放状態)にして第2コンタクタ62をON状態(接続状態)にする)。これにより、1系のCVCF1Aの三相4線式送電回路10と2系のCVCF1Bの三相4線式送電回路10xとを電気的に切り離した状態で、それぞれ対応する機体Pに電力を供給することができ、各CVCF1A,1Bと機体P,Pxとの関係において従来の態様に準じて電力供給を行うことができ、地絡が生じた場合には、地絡過電流継電器5,5xによって地絡電流(零相電流)を検出し、地絡過電流継電器5,5xが保護動作を行う。   Further, when power is supplied to a plurality of airframes P and Px by the aircraft static power supply unit X (multi-mode), the second contactor 62 is used as shown in FIG. 3 (first contactor). 61 is turned off (open state), and the second contactor 62 is turned on (connected state). As a result, power is supplied to the corresponding airframes P in a state where the three-phase four-wire power transmission circuit 10 of the first system CVCF 1A and the three-phase four-wire power transmission circuit 10x of the second system CVCF 1B are electrically disconnected. In the relationship between each CVCF 1A, 1B and the airframes P, Px, power can be supplied in accordance with the conventional mode. When a ground fault occurs, the ground fault is caused by the ground fault overcurrent relays 5, 5x. The current (zero phase current) is detected, and the ground fault overcurrent relays 5 and 5x perform the protective operation.

また、図4及び図5に示すように、3系統のCVCF1A,1B,1Cを備えた静止型電源装置ユニットXを構成する場合には、図2及び図3に示す構成に加えて、3系のCVCF1Cに、当該3系のCVCF1Cの接地線32を1系及び2系のCVCF1A,1Bの接地線32と共通のZCT4に通して1系及び2系のCVCF1A,1Bの接地線32の接地極Gと同一の接地極Gに接続するための第3コンタクタ63(シングルモード用電磁接触器)と、当該3系のCVCF1Cの接地線32を1系のCVCF1Aの接地線32や2系のCVCF1Bの接地線32とは異なるZCT4yに通して、1系及び2系のCVCF1A,1Bの接地線32の接地極G,Gxとは異なる接地極Gyに接続するための第4コンタクタ64(マルチモード用電磁接触器)とを設ければよい。また、この静止型電源装置ユニットXは、第3コンタクタ63を使用した場合、3系のCVCF1Cの各電線2a,2b,2c,3を1系及び2系のCVCF1A,1Bの電線2a,2b,2c,3と共通の機体Pに接続し、第4コンタクタ64を使用した場合、3系のCVCF1Cの各電線2a,2b,2c,3を1系のCVCF1Aの電線2a,2b,2c,3や2系のCVCF1Bの電線2a,2b,2c,3とは異なる機体Pyに接続するように構成している。 Further, as shown in FIGS. 4 and 5, in the case of configuring a static power supply unit X having three systems of CVCFs 1A, 1B, 1C, in addition to the configurations shown in FIGS. The ground wire 32 of the 3 system CVCF 1C is passed through the ZCT 4 common to the ground wires 32 of the 1 system and 2 systems CVCF 1A, 1B through the CVCF 1C of the 1 system and 2 systems CVCF 1A, 1B. A third contactor 63 (single-mode electromagnetic contactor) for connection to the same grounding electrode G as G, and a grounding wire 32 of the third system CVCF1C to a grounding wire 32 of the first system CVCF1A or a second system CVCF1B. A fourth contactor 64 (multi-mode) is connected to a ground electrode Gy different from the ground electrodes G and Gx of the ground wires 32 of the first and second systems CVCFs 1A and 1B through a ZCT 4y different from the ground wire 32. Use electromagnetic contactor) and may be provided. In addition, when the third contactor 63 is used, the stationary power supply unit X is configured so that the electric wires 2a, 2b, 2c, 3 of the 3 system CVCF 1C are connected to the electric wires 2a, 2b of the 1 system and 2 systems CVCF 1A, 1B, When the fourth contactor 64 is connected to the same body P as 2c, 3 and the fourth contactor 64 is used, the wires 2a, 2b, 2c, 3 of the 3 system CVCF 1C are connected to the wires 2a, 2b, 2c, 3 of the 1 system CVCF 1A. The electric wires 2a, 2b, 2c, 3 of the two-system CVCF 1B are configured to be connected to a different body Py.

そして、このような静止型電源装置ユニットXは、図4に示すように、同一の機体Pに電力を供給する場合(シングルモード)、第1コンタクタ61及び第3コンタクタ63を使用する(第1コンタクタ61及び第3コンタクタ63をON状態にして第2コンタクタ62及び第4コンタクタ64をOFF状態にする)ことによって、上述した参考例で述べた航空機用静止型電源装置ユニットXと同様の作用効果を得ることができる。 Then, as shown in FIG. 4, such a stationary power supply unit X uses the first contactor 61 and the third contactor 63 when supplying power to the same airframe P (single mode) (the first contactor 63). The contactor 61 and the third contactor 63 are turned on and the second contactor 62 and the fourth contactor 64 are turned off), so that the same effect as the stationary power supply unit X for an aircraft described in the above reference example is obtained. Can be obtained.

また、3機の航空機P,Px,Pyにそれぞれ電力を供給する場合(マルチモード)には、図5に示すように、第2コンタクタ62及び第4コンタクタ64を使用する(第1コンタクタ61及び第3コンタクタ63をOFF状態にして第2コンタクタ62及び第4コンタクタ64をON状態(接続状態)にする)。これにより、1系のCVCF1A、2系のCVCF1B、3系のCVCF1Cの三相4線式送電回路10,10x,10yをそれぞれ電気的に切り離した状態で対応する機体P,Px,Pyに個別に電力を供給することができる。そして、各CVCF1A,1B,1Cと各機体P,Px,Pyとの関係において従来の態様に準じて電力供給を行うことができることから、地絡が生じた場合には、地絡過電流継電器5,5x,5yによって地絡電流(零相電流)を検出し、地絡過電流継電器5,5x,5yが保護動作を行う。   Further, when power is supplied to each of the three aircrafts P, Px, and Py (multimode), the second contactor 62 and the fourth contactor 64 are used as shown in FIG. 5 (the first contactor 61 and the first contactor 61). The third contactor 63 is turned off, and the second contactor 62 and the fourth contactor 64 are turned on (connected state). As a result, the 1-system CVCF1A, 2-system CVCF1B, and 3-system CVCF1C three-phase four-wire power transmission circuits 10, 10x, and 10y are individually connected to the corresponding airframes P, Px, and Py while being electrically disconnected from each other. Electric power can be supplied. And since it can supply electric power according to the conventional aspect in the relationship between each CVCF1A, 1B, 1C and each body P, Px, Py, when a ground fault arises, a ground fault overcurrent relay 5, The ground fault current (zero phase current) is detected by 5x, 5y, and the ground fault overcurrent relays 5, 5x, 5y perform the protective operation.

また、上述の構成に準じてZCT、地絡過電流継電器、コンタクタの数を適宜調節することによって、3系統以上のCVCFを用いた静止型電源装置ユニットを構成することも可能である。   In addition, a static power supply unit using three or more CVCFs can be configured by appropriately adjusting the number of ZCTs, ground fault overcurrent relays, and contactors according to the above-described configuration.

また、上述した実施形態では、切替機構として、複数の電磁接触器を備え、給電対象の航空機が1機か複数機かによって使用する電磁接触器を切り替えるように構成した態様を例示したが、前述の電磁接触器に代えて、または加えて他の機器(開閉器、配線用遮断器等)を用いて切替機構を構成することもできる。   In the above-described embodiment, the switching mechanism includes a plurality of electromagnetic contactors, and an example in which the electromagnetic contactor to be used is switched depending on whether the aircraft to be fed is one or a plurality of aircrafts is exemplified. Instead of, or in addition to, the electromagnetic contactor, the switching mechanism can be configured using other devices (such as a switch or a circuit breaker for wiring).

その他、各部の具体的構成についても上記実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   In addition, the specific configuration of each part is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

1,1A,1B,1C…静止型電源装置(CVCF、1系のCVCF,2系のCVCF,3系のCVCF)
2a,2b,2c…三相の電線
3…中性相の電線
32…接地線
4,4x,4y…零相変流器
5,5x,5y…地絡過電流継電器
P,Px,Py…航空機
G,Gx,Gy…接地極
X…航空機用静止型電源装置ユニット
1, 1A, 1B, 1C ... Static power supply (CVCF, 1 system CVCF, 2 systems CVCF, 3 systems CVCF)
2a, 2b, 2c ... three-phase wire 3 ... neutral phase wire 32 ... ground wire 4, 4x, 4y ... zero phase current transformer 5, 5x, 5y ... ground fault overcurrent relay P, Px, Py ... aircraft G , Gx, Gy ... Grounding electrode X ... Static power supply unit for aircraft

Claims (2)

駐機中の航空機に電力を供給する三相4線の静止型電源装置を複数台備えた航空機用静止型電源装置ユニットであり、
前記複数台の静止型電源装置が何れも零相変流器及び当該零相変流器に接続された地絡過電流継電器の組を少なくとも1組備えたものであり、
1機の航空機に対して電源供給する場合、各静止型電源装置の三相及び中性相の電線を全て機体の負荷に接続するとともに、中性相の電線を機体にボディアースし、且つ前記各静止型電源装置の接地線を、何れか一つの前記静止型電源装置が備える前記零相変流器に共通通して同一の接地極に接続し
複数機の航空機に対して前記各静止型電源装置により電源供給する場合、前記各静止型電源装置の接地線を前記各静止型電源装置の前記零相変流器に個別に通して相互に異なる接地極に接続するように構成していることを特徴とする航空機用静止型電源装置ユニット。
This is a static power supply unit for aircraft equipped with multiple three-phase, four-wire static power supply units that supply power to a parked aircraft.
Each of the plurality of static power supply devices includes at least one set of a zero-phase current transformer and a ground fault overcurrent relay connected to the zero-phase current transformer ,
When supplying power to one aircraft, connect all three-phase and neutral-phase wires of each static power supply to the load of the aircraft, ground the neutral-phase wires to the aircraft, and the ground line of each stationary power supply, connected to the same ground electrode through common to the zero-phase current transformer included in any one of the static power supply device,
When power is supplied to each of a plurality of aircraft by each of the static power supply devices, the ground wires of the static power supply devices are individually passed through the zero-phase current transformers of the static power supply devices to be different from each other. A stationary power supply unit for aircraft, which is configured to be connected to a ground electrode .
前記各静止型電源装置の接地線を共通の前記零相変流器に通して同一の接地極に接続する状態と、前記各静止型電源装置の接地線を各静止型電源装置の前記零相変流器に個別に通して相互に異なる接地極に接続する状態とを選択的に切り替える切替機構を備えている請求項1に記載の航空機用静止型電源装置ユニット。 A state in which the ground wire of each stationary power supply device is connected to the same grounding electrode through the common zero-phase current transformer, and the ground wire of each stationary power device is connected to the zero phase of each stationary power device. The stationary power supply unit for an aircraft according to claim 1, further comprising a switching mechanism that selectively switches between a state in which the current transformer is individually connected to a different ground electrode .
JP2010208029A 2010-09-16 2010-09-16 Static power supply unit for aircraft Active JP5678537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010208029A JP5678537B2 (en) 2010-09-16 2010-09-16 Static power supply unit for aircraft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010208029A JP5678537B2 (en) 2010-09-16 2010-09-16 Static power supply unit for aircraft

Publications (2)

Publication Number Publication Date
JP2012061968A JP2012061968A (en) 2012-03-29
JP5678537B2 true JP5678537B2 (en) 2015-03-04

Family

ID=46058136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010208029A Active JP5678537B2 (en) 2010-09-16 2010-09-16 Static power supply unit for aircraft

Country Status (1)

Country Link
JP (1) JP5678537B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104691761B (en) * 2014-12-04 2017-01-04 中国航空工业集团公司第六三一研究所 Comprehensive core processor multi-mode mixed power supply system and method
CN105217053B (en) * 2015-09-18 2020-12-18 海宁伊满阁太阳能科技有限公司 Parallel speed regulation method for asynchronous motor multi-shaft aircraft with transformer and product
CN115792694B (en) * 2023-02-07 2023-04-25 山东艾诺智能仪器有限公司 Remote fault prediction method and device for plane ground static change power supply

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602005022048D1 (en) * 2005-03-31 2010-08-12 Axa Power Aps Current transformer with adjustable output cable
JP2006320058A (en) * 2005-05-11 2006-11-24 Toyo Electric Mfg Co Ltd Earth protecting circuit for secondary side of transformer
FR2897340B1 (en) * 2006-02-10 2008-05-09 Airbus France Sas DEVICE FOR SUPPLYING ELECTRICITY AND AIR FROM AN AIRCRAFT ON THE GROUND

Also Published As

Publication number Publication date
JP2012061968A (en) 2012-03-29

Similar Documents

Publication Publication Date Title
US7626798B2 (en) Electronic load control unit (ELCU) used as bus tie breaker in electrical power distribution systems
CN102576999B (en) System and method for polyphase ground-fault circuit-interrupters
JP5726047B2 (en) Operation test apparatus and operation test method for high-voltage system protection equipment
KR101052471B1 (en) Neutral wire replacement device in power system and method
US8861147B2 (en) Fault protection for aircraft power systems
KR101320373B1 (en) Open-phase recovery device equipped with a transformer and its installation method
CN105765393A (en) Electronic circuit breaker
JP5678537B2 (en) Static power supply unit for aircraft
CN103378590B (en) Sub-transient current suppression
US20150076900A1 (en) Power distribution architecture and aircraft comprising power distribution architecture
KR101417940B1 (en) Cabinet panel for prevention disaster of abnormal voltage protection and method thereof
CN108886268A (en) For the system to data center's supply redundant power
Bapat et al. Advanced concepts in high resistance grounding
US20140300303A1 (en) Systems and methods for arc detecting and extinguishing in motors
EP1926190A1 (en) Control panel system with redundancy
JP2001258145A (en) Protective relay system
KR101993558B1 (en) Bidirectional selective ground fault protection relay and test device capable of detecting faulty wiring
US8755159B2 (en) System of current protection of a primary electrical distribution box
JP2017112741A (en) Ground fault protection system
US8829737B2 (en) Electric network architecture for confined environments including electric power sources
JP6265264B2 (en) Earth leakage protection device and earth leakage protection system
RU2611059C2 (en) Method of measurement for detecting fault of three-phase network
KR101395551B1 (en) Cabinet panel for prevention disaster of abnormal voltage protection and method thereof
Panetta Shipboard electrical system grounding
JP2013162614A (en) Ngr automatic insertion system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141222

R150 Certificate of patent or registration of utility model

Ref document number: 5678537

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250