JP2013162614A - Ngr automatic insertion system - Google Patents

Ngr automatic insertion system Download PDF

Info

Publication number
JP2013162614A
JP2013162614A JP2012022063A JP2012022063A JP2013162614A JP 2013162614 A JP2013162614 A JP 2013162614A JP 2012022063 A JP2012022063 A JP 2012022063A JP 2012022063 A JP2012022063 A JP 2012022063A JP 2013162614 A JP2013162614 A JP 2013162614A
Authority
JP
Japan
Prior art keywords
transmission line
ngr
power transmission
zero
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012022063A
Other languages
Japanese (ja)
Inventor
Nobuhiro Sato
伸浩 佐藤
Hideaki Takano
英明 高野
Kazuya Takenoue
和也 竹之上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2012022063A priority Critical patent/JP2013162614A/en
Publication of JP2013162614A publication Critical patent/JP2013162614A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a neutral grounding resistor (NGR) automatic insertion system that can automatically insert an NGR into a system with which the NGR is not connected.SOLUTION: An NGR automatic insertion system is configured to comprise: an A transformer 2 and a B transformer 7 installed on an A-system power transmission line 1 and a B-system power transmission line 6, respectively; an NGR 3 and an NGR 9 comprised in the A transformer 2 and the B transformer 7, respectively; a route transformer 20 for circumventing between the A-system power transmission line 1 and the B-system power transmission line 6; a zero phase current circuit breaker 8 for breaking/connecting zero-phase current flowing in the NGR 9; and an NGR control device 16 which controls braking/connecting of the zero-phase current circuit breaker 8 on the basis of an OVG relay 15 operated by overvoltage generated when the B transformer 7 looses balance and a DG relay 13 comprised in an electromagnetic induction object power transmission line 12 to which a communication line is disposed closely if blackout has occurred to an alternative route connecting between the A-system power transmission line 1 and the B-system power transmission line 6, and a ground fault accident has occurred to another power transmission line 14 connected with the B-system power transmission line 6 during the blackout.

Description

本発明は、NGR自動投入システムに関し、特に、系統停電によりNGRが接続されていない系統での地絡事故により発生する零相電流をNGRに自動的に流すNGR自動投入システムに関するものである。   The present invention relates to an NGR automatic input system, and more particularly to an NGR automatic input system that automatically causes NGR to flow a zero-phase current generated by a ground fault in a system not connected to NGR due to a system power failure.

送電線に接続されている変圧器には、送電線の地絡事故により発生する零相電流を流すために、中性点接地抵抗器(Neutral Grounding Resistor:NGR)が大地との間に設置されている。しかし、送電線の系統によっては、送電線2回線事故(ルート断事故)時、NGRが1台も接続されていない系統が存在する場合がある。その場合の対策として、地絡電流が流れなくても過電圧で動作する地絡過電圧継電器(Over Voltage Ground Relay:OVGR)を設置し、この地絡過電圧継電器により事故区間遮断を行なっている。   The transformer connected to the transmission line has a neutral grounding resistor (NGR) installed between it and the ground in order to flow the zero-phase current generated by the ground fault of the transmission line. ing. However, depending on the transmission line system, there may be a system in which no NGR is connected in the event of a two-transmission line failure (route failure). As a countermeasure in that case, a ground fault overvoltage relay (OVGR) that operates at an overvoltage even if a ground fault current does not flow is installed, and the fault section is cut off by this ground fault overvoltage relay.

図3は従来の送電線システムの構成を示すブロック図である。送電線システム50は、電力系統が異なるA系統送電線51、及びB系統送電線56と、A系統送電線51、及びB系統送電線56に夫々設置されたA変圧器52、及びB変圧器57と、A変圧器52、及びB変圧器57に夫々備えられた中性点接地抵抗装置(以下、NGRと呼ぶ)53、及びNGR59と、A系統送電線51、及びB系統送電線56間を迂回させるルート変圧器66と、NGR59に流れる零相電流を断接する零相電流遮断器58と、A系統送電線51、及びB系統送電線56間を接続する迂回ルートで停電が発生し、この停電中にB系統送電線56に接続された他の送電線64に地絡事故が発生した場合、B変圧器57のバランスが崩れることにより発生する過電圧で動作する地絡過電圧継電器(以下、OVGリレーと呼ぶ)63a、65a、及び地絡電流の方向を示す地絡方向継電器(以下、DGリレーと呼ぶ)63b、65bと、を備えて構成されている。
尚、A系統送電線51とルート変圧器66間を結ぶ電力線(AC線と呼ぶ)55に遮断器54が備えられ、B系統送電線56とルート変圧器66間を結ぶ電力線(BC線と呼ぶ)61に遮断器60が備えられている。
FIG. 3 is a block diagram showing a configuration of a conventional power transmission line system. The transmission line system 50 includes an A-system transmission line 51 and a B-system transmission line 56 having different power systems, and an A transformer 52 and a B transformer installed in the A-system transmission line 51 and the B-system transmission line 56, respectively. 57, neutral grounding resistance device (hereinafter referred to as NGR) 53 and NGR 59 provided in the A transformer 52 and the B transformer 57, and between the A system transmission line 51 and the B system transmission line 56, respectively. A power outage occurs in a route transformer 66 that bypasses the zero-phase current breaker 58 that connects and disconnects the zero-phase current flowing in the NGR 59, and a bypass route that connects the A-system transmission line 51 and the B-system transmission line 56, When a ground fault occurs in the other power transmission line 64 connected to the B system power transmission line 56 during the power failure, a ground fault overvoltage relay (hereinafter, referred to as an overvoltage relay that operates with an overvoltage generated due to the balance of the B transformer 57 being lost). With OVG relay Department) 63a, 65a, and ground directional relay (hereinafter indicating the direction of the ground fault current, referred to as DG relay) 63 b, is configured to include a 65b, a.
The power line (referred to as AC line) 55 connecting the A-system transmission line 51 and the route transformer 66 is provided with a circuit breaker 54, and the power line connecting between the B-system transmission line 56 and the route transformer 66 (referred to as BC line). 61) is provided with a circuit breaker 60.

ここで、BC線61が事故等で停電すると、遮断器60によりBC線を遮断して送電線ルート断事故が発生する。この結果、B系統送電線56は常時、遮断器58でNGR59が遮断されているため、B変圧器57はNGR59が接続されていない状態となる。この状態で、他の送電線64で地絡事故が発生すると、NGR59からの地絡電流が地絡点に供給されないため、地絡過電圧が発生して、OVGリレー65による事故点遮断となる。
また、事故点アークの自然消弧を行なう従来技術として特許文献1には、一線地絡事故時に消弧リアクトル・中性点接地抵抗制御装置と協調して、無駄な待ち時間のない高速の事故区間遮断を行なう保護継電装置について開示されている。
Here, when the BC line 61 is blacked out due to an accident or the like, the breaker 60 cuts off the BC line and a transmission line route breakage accident occurs. As a result, the B system power transmission line 56 is always disconnected from the NGR 59 by the circuit breaker 58, and therefore the B transformer 57 is not connected to the NGR 59. In this state, when a ground fault occurs in the other power transmission line 64, the ground fault current from the NGR 59 is not supplied to the ground fault point, so that a ground fault overvoltage is generated and the fault point is interrupted by the OVG relay 65.
In addition, as a conventional technique for performing natural arc extinction of an accident point arc, Patent Document 1 describes a high-speed accident without wasteful waiting time in cooperation with an arc extinguishing reactor / neutral point grounding resistance control device at the time of a one-line ground fault. A protective relay device that performs section interruption is disclosed.

特開平10−271663号公報JP-A-10-271663

しかしながら、OVGリレー63a、65aは、零相電流を感知して動作するDGリレー63b、65bのバックアップの役割を持った継電器のため、DGリレー63b、65bより速く動作させることができない。そのため、事故区間遮断が遅れて事故の範囲を拡大する虞がある。
また、特許文献1に開示されている従来技術は、仮に消弧(事故点のアークを消滅すること)が失敗した場合には、電気設備技術基準に定める遮断時間を超過する虞がある。
本発明は、かかる課題に鑑みてなされたものであり、送電線ルート断事故が発生した場合、NGRが接続されていない系統のNGRを自動的に投入することができるNGR自動投入システムを提供することを目的とする。
However, the OVG relays 63a and 65a cannot be operated faster than the DG relays 63b and 65b because they are relays having a backup role for the DG relays 63b and 65b that operate by sensing zero-phase current. For this reason, there is a possibility that the accident section interruption is delayed and the range of the accident is expanded.
In addition, the conventional technique disclosed in Patent Document 1 may exceed the interruption time defined in the electrical equipment technical standards if the arc extinction (eliminating the arc at the accident point) fails.
The present invention has been made in view of such a problem, and provides an NGR automatic charging system capable of automatically charging NGR of a system not connected to NGR when a transmission line route disconnection accident occurs. For the purpose.

本発明はかかる課題を解決するために、請求項1は、電力系統が異なる第1の送電線、及び第2の送電線と、該第1の送電線、及び第2の送電線に夫々設置された第1の変圧器、及び第2の変圧器と、該第1の変圧器、及び第2の変圧器に夫々備えられた第1の中性点接地抵抗装置、及び第2の中性点接地抵抗装置と、前記第1の送電線、及び第2の送電線間を迂回させるルート変圧器と、前記第2の中性点接地抵抗装置に流れる零相電流を断接する零相電流遮断器と、前記第1の送電線、及び第2の送電線間を接続する迂回ルートで停電が発生し、該停電中に前記第2の送電線に接続された他の送電線に地絡事故が発生した場合、前記第2の変圧器のバランスが崩れることにより発生する過電圧で動作する地絡過電圧継電器、及び通信線が近接配置された電磁誘導対象送電線に備えられた地絡方向継電器の状態に基づいて、前記零相電流遮断器の断接を制御するNGR制御手段と、を備えたことを特徴とする。
第1の送電線、及び第2の送電線間を接続する迂回ルートで停電が発生し、この停電中に第2の送電線に接続された他の送電線に地絡事故が発生した場合、第2の変圧器のバランスが崩れて事故点に対して零相電流が発生する。そのとき、中性点接地抵抗装置を介して地絡事故点に対して零相電流が流れることにより、地絡方向継電器を動作させて速やかに当該送電線を遮断する。しかし、系統全体に流す零相電流に制限を設けて電磁誘導を低減するために、第2の変圧器には零相電流が流れないように常時、中性点接地抵抗装置が遮断器により切り離されている。そのため、即座に送電線を遮断することはできないが、その系統で過電圧が発生する。本発明では、この過電圧を検出する地絡過電圧継電器と、電磁誘導対象送電線に備えられた地絡方向継電器の状態により、零相電流遮断器を制御する制御手段を備える。これにより、常時、中性点接地抵抗装置が接続されていない第2の変圧器に零相電流を流すことができるので、即座に事故区間遮断を行なうことができる。
In order to solve such a problem, the present invention provides a first power transmission line and a second power transmission line having different power systems, and the first power transmission line and the second power transmission line, respectively. First and second transformers, a first neutral grounding resistance device provided in each of the first and second transformers, and a second neutral A grounding resistance device, a route transformer that bypasses between the first transmission line and the second transmission line, and a zero-phase current interruption that connects and disconnects the zero-phase current flowing through the second neutral grounding resistance device A power failure occurs in a detour route connecting the first power transmission line and the second power transmission line, and a ground fault occurs in another power transmission line connected to the second power transmission line during the power failure If a fault occurs, a ground fault overvoltage relay that operates with an overvoltage generated due to an imbalance of the second transformer, and a communication line Based on the state of the earth fault directional relay provided in contact disposed electromagnetic induction target transmission line, characterized in that and a NGR control means for controlling connection and disconnection of the zero-phase current interrupter.
When a power failure occurs on the detour route connecting the first power transmission line and the second power transmission line, and a ground fault occurs on another power transmission line connected to the second power transmission line during this power outage, The balance of the second transformer is lost and a zero-phase current is generated at the accident point. At that time, when a zero-phase current flows to the ground fault point through the neutral grounding resistance device, the ground fault direction relay is operated to promptly cut off the transmission line. However, in order to reduce the electromagnetic induction by limiting the zero-phase current that flows through the entire system, the neutral grounding resistance device is always disconnected by the circuit breaker so that the zero-phase current does not flow through the second transformer. It is. For this reason, the transmission line cannot be interrupted immediately, but overvoltage occurs in the system. In the present invention, a ground fault overvoltage relay for detecting this overvoltage and a control means for controlling the zero-phase current breaker according to the state of the ground fault direction relay provided in the electromagnetic induction target transmission line are provided. Thereby, since a zero-phase current can be always sent to the 2nd transformer to which a neutral point grounding resistance apparatus is not connected, accident section interruption can be performed immediately.

請求項2は、前記NGR制御手段は、前記第1の送電線、及び第2の送電線間を接続する迂回ルートで停電が発生し、該停電中に前記他の送電線に地絡事故が発生した場合、前記地絡過電圧継電器が所定の時間継続して動作し、且つ前記地絡方向継電器が動作していないことを条件に、前記零相電流遮断器を接状態とすることを特徴とする。
過電圧継電器が所定の時間継続して動作する時は、地絡事故が発生して、変圧器のバランスが崩れたことを現している。このような場合は、零相電流を中性点接地抵抗装置を介して即座に事故点に流してやる必要がある。但し、電磁誘導対象送電線には零相電流を流せないので、電磁誘導対象送電線に備えた地絡方向継電器が動作してないことを条件にして、零相電流遮断器を接状態として零相電流を中性点接地抵抗装置を介して流すようにする。これにより、通信線に電磁誘導を発生するのを防止すると共に、事故区間遮断を即座に行なうことができる。
According to a second aspect of the present invention, the NGR control means causes a power failure in a detour route connecting the first power transmission line and the second power transmission line, and a ground fault occurs in the other power transmission line during the power failure. When it occurs, the zero-phase current breaker is brought into a contact state on condition that the ground fault overvoltage relay is continuously operated for a predetermined time and the ground fault direction relay is not operated. To do.
When the overvoltage relay operates continuously for a predetermined time, it indicates that a ground fault has occurred and the balance of the transformer has been lost. In such a case, it is necessary to immediately flow the zero-phase current to the accident point through the neutral point grounding resistance device. However, since the zero-phase current cannot flow through the electromagnetic induction target transmission line, the zero-phase current breaker is set to the zero state with the zero-phase current breaker in the contact state on condition that the ground fault direction relay provided for the electromagnetic induction target transmission line is not operating. A phase current is allowed to flow through a neutral point grounding resistance device. As a result, it is possible to prevent electromagnetic induction from being generated in the communication line and to immediately shut off the accident section.

請求項3は、前記NGR制御手段は、前記地絡過電圧継電器が復帰したことを検知すると前記零相電流遮断器を断状態とすることを特徴とする。
零相電流遮断器を接状態とすると、零相電流が中性点接地抵抗装置を介して流れるため、系統に発生した過電圧は低下して過電圧継電器が復帰する。NGR制御手段は、その状態を検知すると零相電流がゼロとなったと判断して、零相電流遮断器を断状態とする。これにより、自動的に第2の変圧器の零相電流遮断器を元の状態に復帰することができる。
According to a third aspect of the present invention, when the NGR control means detects that the ground fault overvoltage relay is restored, the zero phase current breaker is turned off.
When the zero-phase current breaker is brought into a contact state, the zero-phase current flows through the neutral grounding resistance device, so that the overvoltage generated in the system is reduced and the overvoltage relay is restored. When detecting the state, the NGR control means determines that the zero-phase current has become zero, and turns off the zero-phase current breaker. Thereby, the zero phase current circuit breaker of the second transformer can be automatically returned to the original state.

本発明によれば、電力系統の過電圧を検出する過電圧継電器と、電磁誘導対象送電線に備えられた地絡方向継電器の状態により、零相電流遮断器を制御する制御手段を備えるので、常時、中性点接地抵抗装置が接続されていない第2の変圧器に零相電流を流すことにより、事故区間遮断を即座に行なうことができる。
また、電磁誘導対象送電線には零相電流を流せないので、電磁誘導対象送電線に備えた地絡方向継電器が動作してないことを条件にして、零相電流遮断器を接状態として零相電流を中性点接地抵抗装置を介して流すようにするので、通信線に電磁誘導を発生するのを防止すると共に、事故区間遮断を即座に行なうことができる。
また、過電圧継電器が復帰の状態を検知すると、零相電流がゼロとなったと判断して、零相電流遮断器を断状態とするので、自動的に第2の変圧器の零相電流遮断器を元の状態に復帰することができる。
According to the present invention, since the overvoltage relay for detecting the overvoltage of the power system and the control means for controlling the zero-phase current breaker according to the state of the ground fault direction relay provided in the electromagnetic induction target transmission line, always, By supplying a zero-phase current to the second transformer that is not connected to the neutral grounding resistance device, it is possible to immediately shut off the accident section.
In addition, since the zero-phase current cannot flow in the electromagnetic induction target transmission line, the zero-phase current breaker is set to the contact state and the zero-phase current breaker is in the contact state on condition that the ground fault direction relay provided for the electromagnetic induction target transmission line is not operating. Since the phase current is caused to flow through the neutral grounding resistance device, it is possible to prevent the electromagnetic induction from being generated in the communication line and to immediately shut off the accident section.
Further, when the overvoltage relay detects the return state, it is determined that the zero-phase current has become zero, and the zero-phase current breaker is turned off, so the zero-phase current breaker of the second transformer is automatically turned off. Can be restored to its original state.

本発明の実施形態に係るNGR自動投入システムの構成を示すブロック図である。It is a block diagram which shows the structure of the NGR automatic injection | throwing-in system which concerns on embodiment of this invention. 本発明に係るNGR自動投入システム40の動作を説明するフローチャートである。It is a flowchart explaining operation | movement of the NGR automatic injection | throwing-in system 40 which concerns on this invention. 従来の送電線システムの構成を示すブロック図である。It is a block diagram which shows the structure of the conventional power transmission line system.

以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載される構成要素、種類、組み合わせ、形状、その相対配置などは特定的な記載がない限り、この発明の範囲をそれのみに限定する主旨ではなく単なる説明例に過ぎない。   Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. However, the components, types, combinations, shapes, relative arrangements, and the like described in this embodiment are merely illustrative examples and not intended to limit the scope of the present invention only unless otherwise specified. .

図1は本発明の実施形態に係るNGR自動投入システムの構成を示すブロック図である。本発明に係るNGR自動投入システム40は、電力系統が異なるA系統送電線(第1の送電線)1、及びB系統送電線(第2の送電線)6と、A系統送電線1、及びB系統送電線6に夫々設置されたA変圧器(第1の変圧器)2、及びB変圧器(第2の変圧器)7と、A変圧器2、及びB変圧器7に夫々備えられた中性点接地抵抗装置(以下、NGRと呼ぶ)(第1の中性点接地抵抗装置)3、及びNGR(第2の中性点接地抵抗装置)9と、A系統送電線1、及びB系統送電線6間を迂回させるルート変圧器20と、NGR9に流れる零相電流を断接する零相電流遮断器8と、A系統送電線1、及びB系統送電線6間を接続する迂回ルートで停電が発生し、この停電中にB系統送電線6に接続された他の送電線14に地絡事故が発生した場合、B変圧器7のバランスが崩れることにより発生する過電圧で動作する地絡過電圧継電器(以下、OVGリレーと呼ぶ)15、及び通信線が近接配置された電磁誘導対象送電線12に備えられた地絡方向継電器(以下、DGリレーと呼ぶ)13の状態に基づいて、零相電流遮断器8の断接を制御するNGR制御装置(NGR制御手段)16と、を備えて構成されている。
尚、A系統送電線1とルート変圧器20間を結ぶ電力線(以下、AC線と呼ぶ)5に遮断器4が備えられ、B系統送電線6とルート変圧器20間を結ぶ電力線(以下、BC線と呼ぶ)11に遮断器10が備えられている。
FIG. 1 is a block diagram showing a configuration of an NGR automatic input system according to an embodiment of the present invention. The NGR automatic input system 40 according to the present invention includes an A system transmission line (first transmission line) 1 and a B system transmission line (second transmission line) 6 having different power systems, an A system transmission line 1, and A transformer (first transformer) 2, B transformer (second transformer) 7, A transformer 2, and B transformer 7 installed in B system transmission line 6, respectively. Neutral point grounding resistance device (hereinafter referred to as NGR) (first neutral point grounding resistance device) 3, NGR (second neutral point grounding resistance device) 9, A-system transmission line 1, and A route transformer 20 that bypasses the B-system transmission line 6, a zero-phase current breaker 8 that connects and disconnects the zero-phase current flowing through the NGR 9, and a bypass route that connects the A-system transmission line 1 and the B-system transmission line 6 If a power outage occurs at this point and a ground fault occurs in another power transmission line 14 connected to the B system power transmission line 6 during this power outage , A ground fault overvoltage relay (hereinafter referred to as an OVG relay) 15 that operates at an overvoltage generated when the balance of the B transformer 7 is lost, and a ground provided in the electromagnetic induction target transmission line 12 in which the communication line is disposed in proximity. An NGR control device (NGR control means) 16 that controls connection / disconnection of the zero-phase current breaker 8 based on the state of the tangential relay (hereinafter referred to as DG relay) 13 is configured.
In addition, the circuit breaker 4 is provided in the electric power line (henceforth AC line) 5 which connects between A system power transmission line 1 and the route transformer 20, and the power line (henceforth, hereinafter) which connects between B system power transmission line 6 and the route transformer 20 (Referred to as BC line) 11 is provided with a circuit breaker 10.

次に、本発明のNGR自動投入システム40の概略動作にについて説明する。例えば、BC線11に落雷等で停電が発生した場合、遮断器10を遮断してA系統送電線1とB系統送電線6を切り離す(送電線ルート断)。この状態で他の送電線14で地絡事故が発生したと仮定すると、その系統で発生する過電圧によりOVGリレー15が動作し、その信号が信号線18を介してNGR制御装置16に伝達される。また、電磁誘導対象送電線12には、通信線が近接配置されているため、その送電線に備えられたDGリレー13が働いていないことを確認するために、信号線19を介してNGR制御装置16に伝達される。NGR制御装置16はOVGリレー15が働き、DGリレー13が働いていないことを確認すると、信号線17により、零相電流遮断器8を接状態として、零相電流をNGR9を介して地絡点に流して、他の送電線14のDGリレーを動作させ、事故点の遮断を行なう。そして、その結果としてOVGリレー15が復帰したことを確認すると、零相電流遮断器8を断状態として元の状態に復帰する。   Next, the schematic operation of the NGR automatic charging system 40 of the present invention will be described. For example, when a power failure occurs on the BC line 11 due to a lightning strike or the like, the circuit breaker 10 is cut off and the A system transmission line 1 and the B system transmission line 6 are disconnected (transmission line route disconnection). Assuming that a ground fault has occurred in another power transmission line 14 in this state, the OVG relay 15 is operated by an overvoltage generated in that system, and the signal is transmitted to the NGR control device 16 via the signal line 18. . In addition, since the communication line is disposed close to the electromagnetic induction target transmission line 12, the NGR control is performed via the signal line 19 in order to confirm that the DG relay 13 provided in the transmission line is not working. Is transmitted to the device 16. When the NGR control device 16 confirms that the OVG relay 15 is working and the DG relay 13 is not working, the zero-phase current breaker 8 is brought into contact with the signal line 17 and the zero-phase current is grounded through the NGR 9. The DG relay of the other power transmission line 14 is operated to block the accident point. As a result, when it is confirmed that the OVG relay 15 has returned, the zero-phase current breaker 8 is turned off to return to the original state.

図2は本発明に係るNGR自動投入システム40の動作を説明するフローチャートである。図1を参照して説明する。例えば、BC線11に落雷等で停電が発生した場合(ステップS1でYes)、遮断器10を遮断してA系統送電線1とB系統送電線6を切り離す(送電線ルート断状態)。この状態で他の送電線14で地絡事故が発生したかをチェックして(S2)、地絡事故が発生すると(S2でYes)、その系統で発生する過電圧によりOVGリレー15が動作し、その信号が信号線18を介してNGR制御装置16に伝達される。NGR制御装置16はその信号を検出すると(S3でYes)、電磁誘導対象送電線12には、通信線が近接配置されているため、その送電線に備えられたDGリレー13が働いていないことを確認する(S4)。DGリレー13が働いている場合(S4でNo)はそこで終了し、DGリレー13が働いていない場合は(S4でYes)、NGR制御装置16はOVGリレー15が働き、DGリレー13が働いていないことを確認すると、信号線17により、零相電流遮断器8を接状態として(S5)、零相電流をNGR9を介して地絡点に流して事故点を遮断するために他の送電線14のDGリレーを動作させる(S6)。そして、その結果としてOVGリレー15が復帰したことを確認すると(S7でYes)、零相電流遮断器8を断状態として元の状態に復帰する(S8)。   FIG. 2 is a flowchart for explaining the operation of the NGR automatic loading system 40 according to the present invention. A description will be given with reference to FIG. For example, when a power failure occurs on the BC line 11 due to a lightning strike or the like (Yes in step S1), the circuit breaker 10 is cut off and the A system transmission line 1 and the B system transmission line 6 are disconnected (transmission line route disconnected state). In this state, it is checked whether or not a ground fault has occurred in another power transmission line 14 (S2). If a ground fault occurs (Yes in S2), the OVG relay 15 is activated by an overvoltage generated in the system, The signal is transmitted to the NGR control device 16 via the signal line 18. When the NGR control device 16 detects the signal (Yes in S3), the electromagnetic induction target power transmission line 12 is close to the communication line, and therefore the DG relay 13 provided in the power transmission line is not working. Is confirmed (S4). If the DG relay 13 is working (No in S4), the process ends there. If the DG relay 13 is not working (Yes in S4), the NGR control device 16 has the OVG relay 15 working and the DG relay 13 working. If it is confirmed that the zero-phase current breaker 8 is in contact with the signal line 17 (S5), another transmission line is used to cut off the accident point by flowing the zero-phase current to the ground fault point via the NGR 9. The 14 DG relay is operated (S6). As a result, when it is confirmed that the OVG relay 15 has returned (Yes in S7), the zero-phase current breaker 8 is turned off to return to the original state (S8).

即ち、A系統送電線1、及びB系統送電線6間を接続する迂回ルート(AC線5及びBC線11)で停電が発生し、この停電中にB系統送電線6に接続された他の送電線14に地絡事故が発生した場合、B変圧器7のバランスが崩れて事故点に対して零相電流が発生する。そのとき、NGR9を介して地絡事故点に対して零相電流が流れることにより、DGリレーを動作させて速やかに当該送電線を遮断する。しかし、系統全体に流す零相電流に制限を設けて電磁誘導を低減するために、B変圧器7には零相電流が流れないように常時、NGR9が零相電流遮断器8により切り離されている。そのため、即座に送電線を遮断することはできないが、その系統で過電圧が発生する。本実施形態では、この過電圧を検出するOVGリレー15と、電磁誘導対象送電線12に備えられたDGリレー13の状態により、零相電流遮断器8を制御するNGR制御装置16を備える。これにより、常時、NGR9が接続されていないB変圧器7に零相電流を流すことができるので、即座に事故区間遮断を行なうことができる。   That is, a power failure occurs in the detour route (AC line 5 and BC line 11) connecting between the A system power transmission line 1 and the B system power transmission line 6, and the other power lines connected to the B system power transmission line 6 during this power failure. When a ground fault occurs in the transmission line 14, the balance of the B transformer 7 is lost and a zero-phase current is generated at the point of the fault. At that time, when a zero-phase current flows to the ground fault point via NGR9, the DG relay is operated to promptly cut off the transmission line. However, in order to limit the zero-phase current flowing through the entire system and reduce electromagnetic induction, the NGR 9 is always disconnected by the zero-phase current breaker 8 so that no zero-phase current flows through the B transformer 7. Yes. For this reason, the transmission line cannot be interrupted immediately, but overvoltage occurs in the system. In the present embodiment, an NGR control device 16 that controls the zero-phase current breaker 8 is provided according to the state of the OVG relay 15 that detects this overvoltage and the state of the DG relay 13 provided in the electromagnetic induction target transmission line 12. As a result, a zero-phase current can always flow through the B transformer 7 to which the NGR 9 is not connected, so that the accident section can be immediately interrupted.

また、OVGリレー15が所定の時間継続して動作する時は、地絡事故が発生して、B変圧器7のバランスが崩れたことを現している。このような場合は、零相電流をNGR9を介して即座に事故点に流してやる必要がある。但し、電磁誘導対象送電線12には零相電流を流せないので、電磁誘導対象送電線12に備えたDGリレー13が動作してないことを条件にして、零相電流遮断器8を接状態として零相電流をNGR9を介して流すようにする。これにより、通信線に電磁誘導を発生するのを防止すると共に、事故区間遮断を即座に行なうことができる。
また、零相電流遮断器8を接状態とすると、零相電流がNGR9を介して流れるため、系統に発生した過電圧は低下してOVGリレー15が復帰する。NGR制御装置16は、その状態を検知すると零相電流がゼロとなったと判断して、零相電流遮断器8を断状態とする。これにより、自動的にB変圧器7の零相電流遮断器8を元の状態に復帰することができる。
Further, when the OVG relay 15 is continuously operated for a predetermined time, it indicates that a ground fault has occurred and the balance of the B transformer 7 has been lost. In such a case, it is necessary to immediately flow the zero-phase current to the accident point via the NGR 9. However, since the zero-phase current cannot flow through the electromagnetic induction target transmission line 12, the zero-phase current breaker 8 is in a connected state on condition that the DG relay 13 provided for the electromagnetic induction target transmission line 12 is not operating. A zero-phase current is caused to flow through NGR9. As a result, it is possible to prevent electromagnetic induction from being generated in the communication line and to immediately shut off the accident section.
Further, when the zero-phase current breaker 8 is brought into a contact state, since the zero-phase current flows through the NGR 9, the overvoltage generated in the system is reduced and the OVG relay 15 is restored. When detecting the state, the NGR control device 16 determines that the zero-phase current has become zero, and sets the zero-phase current breaker 8 to the disconnected state. Thereby, the zero phase current breaker 8 of the B transformer 7 can be automatically returned to the original state.

以上の説明のとおり、本発明に係るNGR自動投入システム40は、電力系統の過電圧を検出するOVGリレー15と、電磁誘導対象送電線12に備えられたDGリレー13の状態により、零相電流遮断器8を制御するNGR制御装置16を備えるので、常時、NGR9が接続されていないB変圧器7に零相電流を流すことにより、事故区間遮断を即座に行なうことができる。
また、電磁誘導対象送電線12には零相電流を流せないので、電磁誘導対象送電線12に備えたDGリレー13が動作してないことを条件にして、零相電流遮断器8を接状態として零相電流をNGR9を介して流すようにするので、通信線に電磁誘導を発生するのを防止すると共に、事故区間遮断を即座に行なうことができる。
また、OVGリレー15が復帰の状態を検知すると、零相電流がゼロとなったと判断して、零相電流遮断器8を断状態とするので、自動的にB変圧器7の零相電流遮断器8を元の状態に復帰することができる。
As described above, the NGR automatic input system 40 according to the present invention has a zero-phase current interruption depending on the state of the OVG relay 15 that detects an overvoltage of the power system and the DG relay 13 provided in the electromagnetic induction target transmission line 12. Since the NGR control device 16 that controls the generator 8 is provided, the accident section can be immediately cut off by always flowing a zero-phase current to the B transformer 7 to which the NGR 9 is not connected.
In addition, since the zero-phase current cannot flow in the electromagnetic induction target transmission line 12, the zero-phase current breaker 8 is in the contact state on condition that the DG relay 13 provided in the electromagnetic induction target transmission line 12 is not operating. Since the zero-phase current is caused to flow through the NGR 9, it is possible to prevent occurrence of electromagnetic induction in the communication line and to immediately shut off the accident section.
Further, when the OVG relay 15 detects the return state, it is determined that the zero-phase current has become zero, and the zero-phase current breaker 8 is turned off, so that the zero-phase current cutoff of the B transformer 7 is automatically performed. The device 8 can be returned to its original state.

1 A系統送電線、2 A変圧器、3 NGR、4 遮断器、5 AC線、6 B系統送電線、7 B変圧器、8 零相電流遮断器、9 NGR、10 遮断器、11 BC線、12 電磁誘導対象送電線、13 DGリレー、14 他の送電線、15 OVGリレー、16 NGR制御装置、18、19 信号線、20 ルート変圧器、40 NGR自動投入システム 1 A system transmission line, 2 A transformer, 3 NGR, 4 circuit breaker, 5 AC line, 6 B system transmission line, 7 B transformer, 8 zero phase current circuit breaker, 9 NGR, 10 circuit breaker, 11 BC line , 12 Electromagnetic induction target transmission line, 13 DG relay, 14 Other transmission line, 15 OVG relay, 16 NGR control device, 18, 19 Signal line, 20 Route transformer, 40 NGR automatic injection system

Claims (3)

電力系統が異なる第1の送電線、及び第2の送電線と、
該第1の送電線、及び第2の送電線に夫々設置された第1の変圧器、及び第2の変圧器と、
該第1の変圧器、及び第2の変圧器に夫々備えられた第1の中性点接地抵抗装置、及び第2の中性点接地抵抗装置と、
前記第1の送電線、及び第2の送電線間を迂回させるルート変圧器と、
前記第2の中性点接地抵抗装置に流れる零相電流を断接する零相電流遮断器と、
前記第1の送電線、及び第2の送電線間を接続する迂回ルートで停電が発生し、該停電中に前記第2の送電線に接続された他の送電線に地絡事故が発生した場合、前記第2の変圧器のバランスが崩れることにより発生する過電圧で動作する地絡過電圧継電器、及び通信線が近接配置された電磁誘導対象送電線に備えられた地絡方向継電器の状態に基づいて、前記零相電流遮断器の断接を制御するNGR制御手段と、
を備えたことを特徴とするNGR自動投入システム。
A first power transmission line and a second power transmission line with different power systems;
A first transformer and a second transformer respectively installed in the first transmission line and the second transmission line;
A first neutral grounding resistance device and a second neutral grounding resistance device respectively provided in the first transformer and the second transformer;
A route transformer for detouring between the first transmission line and the second transmission line;
A zero-phase current breaker for connecting and disconnecting a zero-phase current flowing through the second neutral-point grounding resistance device;
A power failure occurred in a detour route connecting the first power transmission line and the second power transmission line, and a ground fault occurred in another power transmission line connected to the second power transmission line during the power failure. The ground fault overvoltage relay operating at the overvoltage generated by the balance of the second transformer being lost, and the ground fault direction relay provided in the electromagnetic induction target transmission line in which the communication line is arranged in proximity. NGR control means for controlling connection and disconnection of the zero-phase current breaker;
An NGR automatic injection system characterized by comprising:
前記NGR制御手段は、前記第1の送電線、及び第2の送電線間を接続する迂回ルートで停電が発生し、該停電中に前記他の送電線に地絡事故が発生した場合、前記地絡過電圧継電器が所定の時間継続して動作し、且つ前記地絡方向継電器が動作していないことを条件に、前記零相電流遮断器を接状態とすることを特徴とする請求項1に記載のNGR自動投入システム。   The NGR control means, when a power failure occurs in a detour route connecting the first power transmission line and the second power transmission line, and a ground fault occurs in the other power transmission line during the power failure, 2. The zero-phase current breaker is brought into a contact state on condition that a ground fault overvoltage relay is continuously operated for a predetermined time and the ground fault direction relay is not operated. NGR automatic charging system described. 前記NGR制御手段は、前記地絡過電圧継電器が復帰したことを検知すると前記零相電流遮断器を断状態とすることを特徴とする請求項1に記載のNGR自動投入システム。   The NGR automatic charging system according to claim 1, wherein the NGR control means turns off the zero-phase current breaker when detecting that the ground fault overvoltage relay has been restored.
JP2012022063A 2012-02-03 2012-02-03 Ngr automatic insertion system Pending JP2013162614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012022063A JP2013162614A (en) 2012-02-03 2012-02-03 Ngr automatic insertion system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012022063A JP2013162614A (en) 2012-02-03 2012-02-03 Ngr automatic insertion system

Publications (1)

Publication Number Publication Date
JP2013162614A true JP2013162614A (en) 2013-08-19

Family

ID=49174458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012022063A Pending JP2013162614A (en) 2012-02-03 2012-02-03 Ngr automatic insertion system

Country Status (1)

Country Link
JP (1) JP2013162614A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015162095A (en) * 2014-02-27 2015-09-07 中国電力株式会社 Landslide maintenance management system and landslide maintenance management method
CN110460026A (en) * 2018-05-08 2019-11-15 Ls产电株式会社 Use the method for the orientation overcurrent grounding relay (DOCGR) and operation DOCGR of sampled value

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015162095A (en) * 2014-02-27 2015-09-07 中国電力株式会社 Landslide maintenance management system and landslide maintenance management method
CN110460026A (en) * 2018-05-08 2019-11-15 Ls产电株式会社 Use the method for the orientation overcurrent grounding relay (DOCGR) and operation DOCGR of sampled value
CN110460026B (en) * 2018-05-08 2021-09-07 Ls产电株式会社 Directional overcurrent ground relay (DOCGR) using sampled values and method of operating DOCGR
US11128128B2 (en) 2018-05-08 2021-09-21 Lsis Co., Ltd. Directional over-current ground relay (DOCGR) using sampled value and method for operating the DOCGR

Similar Documents

Publication Publication Date Title
US10148080B2 (en) Single-phase-to-earth fault processing device and method for neutral non-effectively grounded distribution network
US11588324B2 (en) Electrical fault detection and recovery power distribution system and its construction method
KR101803431B1 (en) Real-time recovery transformer system and its method of construction in case of single-phase power line failure
US8503137B2 (en) Arc fault protection circuit and method
KR101052471B1 (en) Neutral wire replacement device in power system and method
CN102906847A (en) Electrical leakage detection apparatus with unexpected motion blocking function
US11402437B2 (en) Real-time detection/recovery system of power line failure in power distribution system and construction method therefor
EP2862252A1 (en) A power bay protection device and a method for protecting power bays
JP5094062B2 (en) Short-circuit current reduction system and short-circuit current reduction method for power transmission and distribution system
JP2017208999A (en) Method and device for fault clearing in power network with ring-feed-loop
JP2000188825A (en) Grounding system and protective system for incoming and distributing facility
KR20130047703A (en) Recovery device and method off recovery for open-phase in the power transmission line
KR101049862B1 (en) Distrtibuting board cabinet panel with neutral line replacement
JP2013162614A (en) Ngr automatic insertion system
JP2012075250A (en) Insulation ground fault monitoring device with adoption lock
JP2011097797A (en) Protection system of loop system
JP5220561B2 (en) Surge protection device
JP2012253907A (en) Monitoring control system of power system
JP7347952B2 (en) protection device
KR101549583B1 (en) Ring reactor device for load power duplexing
JP4808204B2 (en) Power external input / output device
JP5335032B2 (en) DC ground fault detection apparatus, DC circuit ground fault detection method, and DC power supply switching method
KR20170042070A (en) Apparatus and method for preventing disaster caused by short-circuit in electric power systems
JP2009219247A (en) Standalone operation preventing system and control apparatus
JP2015119541A (en) Spot network power incoming facility