JP5677922B2 - Curing agent and / or curing accelerator encapsulating capsule, and thermosetting resin composition - Google Patents

Curing agent and / or curing accelerator encapsulating capsule, and thermosetting resin composition Download PDF

Info

Publication number
JP5677922B2
JP5677922B2 JP2011211404A JP2011211404A JP5677922B2 JP 5677922 B2 JP5677922 B2 JP 5677922B2 JP 2011211404 A JP2011211404 A JP 2011211404A JP 2011211404 A JP2011211404 A JP 2011211404A JP 5677922 B2 JP5677922 B2 JP 5677922B2
Authority
JP
Japan
Prior art keywords
curing
curing agent
shell
curing accelerator
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011211404A
Other languages
Japanese (ja)
Other versions
JP2013071988A (en
Inventor
恭幸 山田
恭幸 山田
匡志 岩本
匡志 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2011211404A priority Critical patent/JP5677922B2/en
Publication of JP2013071988A publication Critical patent/JP2013071988A/en
Application granted granted Critical
Publication of JP5677922B2 publication Critical patent/JP5677922B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、硬化性樹脂組成物に配合された場合に優れた熱保存安定性及び速硬化性を発揮することができる硬化剤及び/又は硬化促進剤内包カプセルに関する。また、本発明は、該硬化剤及び/又は硬化促進剤内包カプセルを含有する熱硬化性樹脂組成物に関する。 The present invention relates to a curing agent and / or curing accelerator-encapsulating capsule capable of exhibiting excellent thermal storage stability and rapid curability when blended in a curable resin composition. Moreover, this invention relates to the thermosetting resin composition containing this hardening | curing agent and / or hardening accelerator inclusion capsule.

エポキシ樹脂は、接着剤、シール剤、コーティング剤等の様々な用途に用いられている。一般に、エポキシ樹脂には、硬化反応を進行させるための成分として硬化剤が、また、硬化性を向上させるための成分として硬化促進剤が添加される。特に、硬化剤又は硬化促進剤とエポキシ樹脂とを安定な一液にするために、潜在性をもたせた硬化剤又は硬化促進剤が多用されている。このような潜在性硬化剤又は硬化促進剤には、配合されたエポキシ樹脂組成物の安定性を低下させることなく、硬化時には速やかに硬化を進行させることが求められている。 Epoxy resins are used in various applications such as adhesives, sealants, and coating agents. Generally, a curing agent is added to the epoxy resin as a component for causing the curing reaction to proceed, and a curing accelerator is added as a component for improving the curability. In particular, in order to make a curing agent or a curing accelerator and an epoxy resin into a stable liquid, a latent curing agent or a curing accelerator is frequently used. Such latent curing agents or curing accelerators are required to rapidly cure during curing without reducing the stability of the blended epoxy resin composition.

潜在性硬化剤又は硬化促進剤としては、硬化剤又は硬化促進剤をシェルで被覆したマイクロカプセル型硬化剤が知られている。
例えば、特許文献1及び2には、アミンアダクト等のエポキシ樹脂用硬化剤をエポキシ樹脂により被覆した硬化剤が記載されている。しかしながら、シェルが熱硬化性樹脂であることから、これらの硬化剤は、コア剤が膨張しても熱硬化性樹脂からなるシェルが破壊されにくく、硬化反応が遅いという問題があった。また、熱硬化性樹脂の代わりに熱可塑性樹脂からなるシェルを用いた硬化剤も検討されているが、依然としてエポキシ樹脂組成物の安定性及び速硬化性を充分に両立するには至っていない。
As a latent curing agent or curing accelerator, a microcapsule type curing agent in which a curing agent or a curing accelerator is coated with a shell is known.
For example, Patent Documents 1 and 2 describe a curing agent obtained by coating a curing agent for an epoxy resin such as an amine adduct with an epoxy resin. However, since the shell is a thermosetting resin, these curing agents have a problem that even if the core agent expands, the shell made of the thermosetting resin is not easily broken and the curing reaction is slow. Moreover, although the hardening | curing agent using the shell which consists of thermoplastic resins instead of a thermosetting resin is also examined, it has not yet reached the balance of stability and quick-curing property of an epoxy resin composition enough.

一方、特許文献3には、アミン化合物を多孔質微粒子内に内包し、さらにその表面を高分子化合物で被覆することによりアミン化合物を保持し、特定の外部要因によりアミン化合物を放出する多孔質微粒子状潜在性硬化剤も記載されている。しかしながら、このような硬化剤であっても、エポキシ樹脂組成物の安定性及び速硬化性を充分に両立することは難しかった。 On the other hand, Patent Document 3 discloses a porous fine particle in which an amine compound is encapsulated in a porous fine particle, and the amine compound is retained by coating the surface with a polymer compound, and the amine compound is released due to a specific external factor. A latent latent curing agent is also described. However, even with such a curing agent, it has been difficult to sufficiently achieve both stability and rapid curability of the epoxy resin composition.

特開2007−204669号公報JP 2007-204669 A 特開2006−225521号公報JP 2006-225521 A 特開2011−12168号公報JP2011-12168A

本発明は、硬化性樹脂組成物に配合された場合に優れた熱保存安定性及び速硬化性を発揮することができる硬化剤及び/又は硬化促進剤内包カプセルを提供することを目的とする。また、本発明は、該硬化剤及び/又は硬化促進剤内包カプセルを含有する熱硬化性樹脂組成物を提供することを目的とする。 An object of the present invention is to provide a capsule containing a curing agent and / or a curing accelerator capable of exhibiting excellent thermal storage stability and rapid curability when blended in a curable resin composition. Moreover, an object of this invention is to provide the thermosetting resin composition containing this hardening | curing agent and / or hardening accelerator inclusion capsule.

本発明は、コア剤として硬化剤及び/又は硬化促進剤を内包する硬化剤及び/又は硬化促進剤内包カプセルであって、前記コア剤を被覆するシェルは、微細孔を有し、かつ、表面に、フッ素元素を含有するシロキサン化合物を有する硬化剤及び/又は硬化促進剤内包カプセルである。
以下、本発明を詳述する。
The present invention is a curing agent and / or a curing accelerator-encapsulating capsule containing a curing agent and / or a curing accelerator as a core agent, wherein the shell covering the core agent has micropores and has a surface And a curing agent and / or a curing accelerator-containing capsule having a siloxane compound containing an elemental fluorine.
The present invention is described in detail below.

本発明者は、硬化剤及び/又は硬化促進剤を内包する硬化剤及び/又は硬化促進剤内包カプセルにおいて、シェルに微細孔を有するものとすることにより、硬化剤及び/又は硬化促進剤の放出性を高め、硬化性樹脂組成物に配合された場合の速硬化性を改善できると考えた。しかしながら、このような硬化剤及び/又は硬化促進剤内包カプセルは、シェルに微細孔を有するために硬化剤及び/又は硬化促進剤の保持性の観点からは不充分であり、硬化性樹脂組成物に配合された場合に熱保存安定性が低下していた。また、微細孔を有するシェルを厚くした場合にも、熱保存安定性及び速硬化性を充分に両立することは難しかった。 The inventor releases the curing agent and / or the curing accelerator by making the shell have micropores in the curing agent and / or the curing accelerator-encapsulating capsule encapsulating the curing agent and / or the curing accelerator. It was considered that the quick curability can be improved when blended in the curable resin composition. However, such a curing agent and / or curing accelerator-encapsulating capsule is insufficient from the viewpoint of retention of the curing agent and / or the curing accelerator because it has micropores in the shell, and the curable resin composition When it was blended, the heat storage stability was lowered. In addition, even when the shell having fine pores is made thick, it is difficult to sufficiently achieve both heat storage stability and fast curability.

硬化剤及び/又は硬化促進剤の保持性が低下する原因を検討した結果、本発明者は、シェルと、液体状の硬化剤及び/又は硬化促進剤との濡れ性が高い(接触角が小さい)ことにより、毛管現象によって液体状の硬化剤及び/又は硬化促進剤が漏出してしまうことを見出した。硬化剤及び/又は硬化促進剤がイミダゾール化合物である場合には特に、シェルとの濡れ性が高くなり、漏出が生じやすい。
このような問題に対し、本発明者は、シェルを、微細孔を有し、かつ、表面に、フッ素元素を含有するシロキサン化合物を有するものとすることにより、硬化性樹脂組成物に配合された場合の熱保存安定性及び速硬化性を共に改善できることを見出し、本発明を完成させるに至った。これは、シェルが表面に、フッ素元素を含有するシロキサン化合物を有することにより、シェルと、液体状の硬化剤及び/又は硬化促進剤との濡れ性が低下し、保管時には毛管現象による液体状の硬化剤及び/又は硬化促進剤の漏出を抑制できる一方で、硬化時には硬化剤及び/又は硬化促進剤が気体状となり、シェルの微細孔を容易に通過するためと考えられる。
As a result of examining the cause of the decrease in retention of the curing agent and / or curing accelerator, the present inventor has high wettability between the shell and the liquid curing agent and / or curing accelerator (small contact angle). Thus, it was found that the liquid curing agent and / or curing accelerator leaked out by capillary action. In particular, when the curing agent and / or the curing accelerator is an imidazole compound, the wettability with the shell increases and leakage tends to occur.
In order to solve such a problem, the present inventor has formulated a shell into the curable resin composition by having a fine pore and having a siloxane compound containing a fluorine element on the surface. The present inventors have found that both heat storage stability and fast curability can be improved, and the present invention has been completed. This is because the shell has a siloxane compound containing elemental fluorine on the surface, so that the wettability between the shell and the liquid curing agent and / or curing accelerator decreases, and the liquid state due to capillary action during storage is reduced. While leakage of the curing agent and / or curing accelerator can be suppressed, it is considered that the curing agent and / or curing accelerator is in a gaseous state at the time of curing and easily passes through the micropores of the shell.

本発明の硬化剤及び/又は硬化促進剤内包カプセルは、コア剤として硬化剤及び/又は硬化促進剤を内包し、該コア剤をシェルで被覆する。
上記シェルは、微細孔を有し、かつ、表面に、フッ素元素を含有するシロキサン化合物を有する。シェルを、微細孔を有し、かつ、表面に、フッ素元素を含有するシロキサン化合物を有するものとすることにより、硬化性樹脂組成物に配合された場合の熱保存安定性及び速硬化性を高めることができる。
The curing agent and / or curing accelerator-encapsulating capsule of the present invention encapsulates a curing agent and / or a curing accelerator as a core agent, and coats the core agent with a shell.
The shell has fine pores and has a siloxane compound containing a fluorine element on the surface. By making the shell have fine pores and having a siloxane compound containing a fluorine element on the surface, the heat storage stability and quick curability when blended in the curable resin composition are improved. be able to.

上記微細孔の平均径は、好ましい下限が1nm、好ましい上限が100nmである。平均径が1nm未満であると、硬化剤及び/又は硬化促進剤の放出性が低下し、硬化反応に長時間を要することがある。平均径が100nmを超えると、硬化性樹脂組成物に配合された場合の硬化剤及び/又は硬化促進剤内包カプセルの熱保存安定性が低下することがある。平均径のより好ましい下限は5nm、より好ましい上限は30nmである。
なお、微細孔の平均径は、走査型電子顕微鏡により倍率50000倍でカプセルを観察、撮影し、撮影した写真からノギスで無作為に抽出した50個のカプセルの微細孔径を直接測定することで求めることができる。
As for the average diameter of the micropores, a preferred lower limit is 1 nm and a preferred upper limit is 100 nm. When the average diameter is less than 1 nm, the release property of the curing agent and / or curing accelerator is lowered, and the curing reaction may take a long time. When the average diameter exceeds 100 nm, the thermal storage stability of the capsule containing the curing agent and / or curing accelerator when blended in the curable resin composition may be lowered. A more preferable lower limit of the average diameter is 5 nm, and a more preferable upper limit is 30 nm.
The average diameter of the micropores is obtained by observing and photographing the capsules with a scanning electron microscope at a magnification of 50000 times, and directly measuring the micropore diameters of 50 capsules randomly extracted with a caliper from the photographed photographs. be able to.

シェルの表面には、微細孔部分の表面も、微細孔以外の部分の表面も含まれる。特に、フッ素元素を含有するシロキサン化合物を微細孔部分の表面に存在させることにより、毛管現象による液体状の硬化剤及び/又は硬化促進剤の漏出を抑制でき、硬化性樹脂組成物に配合された場合の硬化剤及び/又は硬化促進剤内包カプセルの熱保存安定性を向上させることができる。 The surface of the shell includes the surface of the fine pore portion and the surface of the portion other than the fine pore portion. In particular, by allowing a siloxane compound containing elemental fluorine to be present on the surface of the fine pore portion, leakage of a liquid curing agent and / or curing accelerator due to capillary action can be suppressed, and the curable resin composition was blended. In this case, the heat storage stability of the capsule containing the curing agent and / or the curing accelerator can be improved.

微細孔を有し、かつ、表面に、フッ素元素を含有するシロキサン化合物を有するシェルを形成する方法として、硬化剤及び/又は硬化促進剤と、シェルを構成するポリマーとを油性溶媒に溶解した混合溶液(1)を、水性媒体に分散させて乳化液(1)とし、次いで、加熱等により油性溶媒を除去してシェルを構成するポリマーを析出させ、微細孔を有するシェルを形成した後、フッ素含有シランカップリング剤により表面処理を行う方法が好ましい。また、シェルを構成するポリマーを油性溶媒に溶解した混合溶液(2)を、水性媒体に分散させて乳化液(2)とし、次いで、混合溶液(2)の液滴に硬化剤及び/又は硬化促進剤を含浸させ、更に、加熱等により油性溶媒を除去してシェルを構成するポリマーを析出させ、微細孔を有するシェルを形成した後、フッ素含有シランカップリング剤により表面処理を行う方法も好ましい。
なお、微細孔が形成される理由としては、加熱等により油性溶媒を除去する際に、油性溶媒の抜け道としてシェルに微細孔が形成されるものと考えられる。
As a method of forming a shell having a fine pore and having a siloxane compound containing a fluorine element on the surface, mixing a curing agent and / or a curing accelerator and a polymer constituting the shell dissolved in an oily solvent The solution (1) is dispersed in an aqueous medium to obtain an emulsion (1), and then the oily solvent is removed by heating or the like to precipitate a polymer constituting the shell to form a shell having fine pores. A method of performing a surface treatment with a contained silane coupling agent is preferred. Further, the mixed solution (2) in which the polymer constituting the shell is dissolved in an oily solvent is dispersed in an aqueous medium to obtain an emulsion (2), and then a hardener and / or a curing agent is added to the droplets of the mixed solution (2). Also preferred is a method of impregnating with an accelerator and further removing the oily solvent by heating or the like to precipitate a polymer constituting the shell to form a shell having micropores, followed by surface treatment with a fluorine-containing silane coupling agent. .
The reason why the micropores are formed is considered to be that micropores are formed in the shell as an escape route of the oily solvent when the oily solvent is removed by heating or the like.

上記フッ素含有シランカップリング剤として、例えば、トリメトキシフルオロシラン、トリエトキシフルオロシラン、トリイソプロポキシフルオロシラン、トリフルオロプロピルトリメトキシシラン、トリフルオロトリエトキシシラン等が挙げられる。なかでも、トリフルオロプロピルトリメトキシシランが好ましい。 Examples of the fluorine-containing silane coupling agent include trimethoxyfluorosilane, triethoxyfluorosilane, triisopropoxyfluorosilane, trifluoropropyltrimethoxysilane, and trifluorotriethoxysilane. Of these, trifluoropropyltrimethoxysilane is preferable.

上記フッ素含有シランカップリング剤の市販品として、例えば、KBM−7103(信越化学工業社製、トリフルオロプロピルトリメトキシシラン)等が挙げられる。 Examples of commercially available fluorine-containing silane coupling agents include KBM-7103 (manufactured by Shin-Etsu Chemical Co., Ltd., trifluoropropyltrimethoxysilane).

上記フッ素含有シランカップリング剤の添加量は、シェルを構成するポリマー5重量部に対する好ましい下限が0.05重量部、好ましい上限が1重量部である。添加量が0.05重量部未満であると、フッ素含有シランカップリング剤による表面処理が不充分となり、毛管現象による液体状の硬化剤及び/又は硬化促進剤の漏出を充分に抑制できず、硬化性樹脂組成物に配合された場合の硬化剤及び/又は硬化促進剤内包カプセルの熱保存安定性が低下することがある。添加量が1重量部を超えると、シェルの微細孔が埋められてしまい、硬化性樹脂組成物に配合された場合の硬化剤及び/又は硬化促進剤内包カプセルの速硬化性が低下することがある。添加量のより好ましい下限は0.1重量部、より好ましい上限は0.5重量部である。 As for the addition amount of the fluorine-containing silane coupling agent, a preferable lower limit with respect to 5 parts by weight of the polymer constituting the shell is 0.05 part by weight, and a preferable upper limit is 1 part by weight. When the addition amount is less than 0.05 parts by weight, the surface treatment with the fluorine-containing silane coupling agent becomes insufficient, and leakage of the liquid curing agent and / or curing accelerator due to capillary phenomenon cannot be sufficiently suppressed, The thermal storage stability of the capsule containing the curing agent and / or curing accelerator when mixed with the curable resin composition may be lowered. When the addition amount exceeds 1 part by weight, the micropores of the shell are filled, and the rapid curability of the capsule containing the curing agent and / or curing accelerator when blended in the curable resin composition may be reduced. is there. The more preferable lower limit of the addition amount is 0.1 parts by weight, and the more preferable upper limit is 0.5 parts by weight.

また、微細孔を有し、かつ、表面に、フッ素元素を含有するシロキサン化合物を有するシェルを形成する方法として、硬化剤及び/又は硬化促進剤と、シェルを構成するポリマーと、フッ素含有シロキサンポリマーとを油性溶媒に溶解した混合溶液(3)を、水性媒体に分散させて乳化液(3)とし、次いで、加熱等により油性溶媒を除去してシェルを構成するポリマー及びフッ素含有シロキサンポリマーを析出させる方法も好ましい。また、シェルを構成するポリマーと、フッ素含有シロキサンポリマーとを油性溶媒に溶解した混合溶液(4)を、水性媒体に分散させて乳化液(4)とし、次いで、混合溶液(4)の液滴に硬化剤及び/又は硬化促進剤を含浸させ、更に、加熱等により油性溶媒を除去してシェルを構成するポリマー及びフッ素含有シロキサンポリマーを析出させる方法も好ましい。
これらの場合にも、微細孔が形成される理由としては、加熱等により油性溶媒を除去する際に、油性溶媒の抜け道としてシェルに微細孔が形成されるものと考えられる。
Moreover, as a method of forming a shell having a fine pore and having a siloxane compound containing a fluorine element on the surface, a curing agent and / or a curing accelerator, a polymer constituting the shell, and a fluorine-containing siloxane polymer A mixed solution (3) obtained by dissolving in an oily solvent is dispersed in an aqueous medium to obtain an emulsion (3). Then, the oily solvent is removed by heating or the like to precipitate a polymer constituting the shell and a fluorine-containing siloxane polymer. The method of making it also preferable. Further, a mixed solution (4) in which a polymer constituting the shell and a fluorine-containing siloxane polymer are dissolved in an oily solvent is dispersed in an aqueous medium to obtain an emulsion (4), and then a droplet of the mixed solution (4) Also preferred is a method of impregnating with a curing agent and / or a curing accelerator and further removing the oily solvent by heating or the like to precipitate the polymer constituting the shell and the fluorine-containing siloxane polymer.
In these cases as well, the reason why the fine pores are formed is considered to be that fine pores are formed in the shell as an escape route of the oily solvent when the oily solvent is removed by heating or the like.

上記フッ素含有シロキサンポリマーとして、例えば、フッ素シリコーン、フッ素樹脂−シロキサングラフト型ポリマー等が挙げられる。なかでも、フッ素とシロキサンとの相乗効果が発現しやすいことから、フッ素樹脂−シロキサングラフト型ポリマーが好ましい。 Examples of the fluorine-containing siloxane polymer include fluorine silicone, a fluororesin-siloxane graft polymer, and the like. Of these, a fluororesin-siloxane graft type polymer is preferable because a synergistic effect of fluorine and siloxane is easily exhibited.

上記フッ素含有シロキサンポリマーの市販品として、例えば、KP−911(信越化学工業社製、フッ素シリコーン)、ZX−007−C、ZX−001、ZX−017、ZX−022、ZX−022−H、ZX−047−D、ZX−058−A、ZX−212、ZX−201、ZX−202(以上、T&K TOKA社製、フッ素樹脂−シロキサングラフト型ポリマー)等が挙げられる。 Examples of commercially available fluorine-containing siloxane polymers include KP-911 (manufactured by Shin-Etsu Chemical Co., Ltd., fluorine silicone), ZX-007-C, ZX-001, ZX-017, ZX-022, ZX-022-H, ZX-047-D, ZX-058-A, ZX-212, ZX-201, ZX-202 (above, manufactured by T & K TOKA, a fluororesin-siloxane graft type polymer) and the like.

上記フッ素含有シロキサンポリマーの添加量は、シェルを構成するポリマー5重量部に対する好ましい下限が0.05重量部、好ましい上限が1重量部である。添加量が0.05重量部未満であると、シェルの表面に存在するフッ素元素を含有するシロキサン化合物の量が低下し、毛管現象による液体状の硬化剤及び/又は硬化促進剤の漏出を充分に抑制できず、硬化性樹脂組成物に配合された場合の硬化剤及び/又は硬化促進剤内包カプセルの熱保存安定性が低下することがある。添加量が1重量部を超えると、シェルの微細孔が埋められてしまい、硬化性樹脂組成物に配合された場合の硬化剤及び/又は硬化促進剤内包カプセルの速硬化性が低下することがある。添加量のより好ましい下限は0.1重量部、より好ましい上限は0.5重量部である。 As for the addition amount of the fluorine-containing siloxane polymer, a preferable lower limit with respect to 5 parts by weight of the polymer constituting the shell is 0.05 part by weight, and a preferable upper limit is 1 part by weight. When the amount added is less than 0.05 parts by weight, the amount of the siloxane compound containing fluorine element present on the surface of the shell is reduced, and the leakage of the liquid curing agent and / or curing accelerator due to capillary action is sufficient. In some cases, the heat storage stability of the capsule containing the curing agent and / or curing accelerator when blended in the curable resin composition may be reduced. When the addition amount exceeds 1 part by weight, the micropores of the shell are filled, and the rapid curability of the capsule containing the curing agent and / or curing accelerator when blended in the curable resin composition may be reduced. is there. The more preferable lower limit of the addition amount is 0.1 parts by weight, and the more preferable upper limit is 0.5 parts by weight.

シェル表面へのフッ素元素を含有するシロキサン化合物の存在は、シェルと同様の組成を有するシェルポリマーフィルムを別途作製し、このシェルポリマーフィルムと硬化剤及び/又は硬化促進剤との接触角を測定することで確認することができる。接触角を測定する方法として、例えば、接触角計を用いる方法、液滴の水平方向から写真を撮影して直接計測する方法等が挙げられる。
シェルポリマーフィルムと硬化剤及び/又は硬化促進剤との接触角の好ましい下限は60°である。接触角が60°未満であると、シェルの表面に存在するフッ素元素を含有するシロキサン化合物の量が低下し、液体状の硬化剤及び/又は硬化促進剤との濡れ性が高くなることで、温度にかかわらず、毛管現象によって液体状の硬化剤及び/又は硬化促進剤がカプセル外に漏出しやすくなることがある。接触角のより好ましい下限は65°、更に好ましい下限は70°である。
The presence of a siloxane compound containing elemental fluorine on the shell surface is prepared by separately preparing a shell polymer film having the same composition as the shell, and measuring the contact angle between the shell polymer film and the curing agent and / or curing accelerator. This can be confirmed. As a method for measuring the contact angle, for example, a method using a contact angle meter, a method of directly taking a photograph from the horizontal direction of a droplet, and the like can be cited.
A preferred lower limit of the contact angle between the shell polymer film and the curing agent and / or curing accelerator is 60 °. When the contact angle is less than 60 °, the amount of the siloxane compound containing fluorine element present on the surface of the shell is reduced, and the wettability with the liquid curing agent and / or curing accelerator is increased. Regardless of the temperature, the liquid curing agent and / or curing accelerator may easily leak out of the capsule due to capillary action. A more preferred lower limit of the contact angle is 65 °, and a more preferred lower limit is 70 °.

上記シェルを構成するポリマーは、硬化剤及び/又は硬化促進剤の放出性を高めるためには、熱可塑性ポリマーを含有することが好ましい。上記熱可塑性ポリマーは、親水性基と疎水性基とを有する熱可塑性ポリマー、水酸基を有するポリビニルアセタール樹脂、又は、アクリロニトリルに由来するセグメントを有する共重合体を含有することが好ましい。
上記親水性基と疎水性基とを有する熱可塑性ポリマーにおける親水性基として、例えば、グリシジル基、水酸基、カルボキシル基、スルホン基等が挙げられる。なかでも、グリシジル基が好ましい。上記親水性基と疎水性基とを有する熱可塑性ポリマーにおける疎水性基として、例えば、フェニル基、メチル基、エチル基、プロピル基、メタクリル基等が挙げられる。なかでも、フェニル基が好ましい。
The polymer constituting the shell preferably contains a thermoplastic polymer in order to enhance the release of the curing agent and / or curing accelerator. The thermoplastic polymer preferably contains a thermoplastic polymer having a hydrophilic group and a hydrophobic group, a polyvinyl acetal resin having a hydroxyl group, or a copolymer having a segment derived from acrylonitrile.
Examples of the hydrophilic group in the thermoplastic polymer having the hydrophilic group and the hydrophobic group include a glycidyl group, a hydroxyl group, a carboxyl group, and a sulfone group. Of these, a glycidyl group is preferable. Examples of the hydrophobic group in the thermoplastic polymer having the hydrophilic group and the hydrophobic group include a phenyl group, a methyl group, an ethyl group, a propyl group, and a methacryl group. Of these, a phenyl group is preferred.

上記親水性基と疎水性基とを有する熱可塑性ポリマーとして、具体的には例えば、ポリスチレン誘導体、ポリメタクリル酸誘導体等が挙げられる。なかでも、ポリスチレン誘導体が好ましい。
上記ポリスチレン誘導体は、上記親水性基と上記疎水性基とを有していればよく、例えば、上記親水性基としてグリシジル基を有し、上記疎水性基としてポリスチレン骨格に由来するフェニル基を有するポリスチレン誘導体が好ましい。
Specific examples of the thermoplastic polymer having the hydrophilic group and the hydrophobic group include polystyrene derivatives and polymethacrylic acid derivatives. Of these, polystyrene derivatives are preferred.
The polystyrene derivative only needs to have the hydrophilic group and the hydrophobic group. For example, the polystyrene derivative has a glycidyl group as the hydrophilic group and a phenyl group derived from a polystyrene skeleton as the hydrophobic group. Polystyrene derivatives are preferred.

上記親水性基と疎水性基とを有する熱可塑性ポリマーの重量平均分子量は、好ましい下限が5000、好ましい上限が10万である。重量平均分子量が5000未満であると、硬化剤及び/又は硬化促進剤内包カプセルの強度、耐熱性又は耐溶剤性が低下し、硬化性樹脂組成物に配合された場合の貯蔵安定性が低下することがある。重量平均分子量が10万を超えると、硬化剤及び/又は硬化促進剤の放出性が低下し、硬化反応に長時間を要することがある。 As for the weight average molecular weight of the thermoplastic polymer which has the said hydrophilic group and hydrophobic group, a preferable minimum is 5000 and a preferable upper limit is 100,000. When the weight average molecular weight is less than 5,000, the strength, heat resistance or solvent resistance of the capsule containing the curing agent and / or curing accelerator is lowered, and the storage stability when blended in the curable resin composition is lowered. Sometimes. When the weight average molecular weight exceeds 100,000, the release property of the curing agent and / or the curing accelerator is lowered, and the curing reaction may take a long time.

上記水酸基を有するポリビニルアセタール樹脂は、通常、ポリ酢酸ビニルのけん化反応により得られたポリビニルアルコールを、アルデヒドでアセタール化することにより得られる。上記アセタール化に使用するアルデヒドとして、例えば、ホルムアルデヒド、アセトアルデヒド、パラアセトアルデヒド、ブチルアルデヒド等が挙げられる。なかでも、ブチルアルデヒドが好ましい。
上記水酸基を有するポリビニルアセタール樹脂の水酸基の含有量、アセタール化度、原料であるポリ酢酸ビニルのアセチル基に由来するアセチル基の含有量、重量平均分子量等を調整することにより、目的に合わせてシェルの物性を調整することができる。
The polyvinyl acetal resin having a hydroxyl group is usually obtained by acetalizing polyvinyl alcohol obtained by a saponification reaction of polyvinyl acetate with an aldehyde. Examples of the aldehyde used for the acetalization include formaldehyde, acetaldehyde, paraacetaldehyde, butyraldehyde and the like. Of these, butyraldehyde is preferred.
By adjusting the hydroxyl content, the degree of acetalization, the content of acetyl groups derived from the acetyl group of polyvinyl acetate as a raw material, the weight average molecular weight, etc. of the polyvinyl acetal resin having a hydroxyl group, the shell can be tailored to the purpose. The physical properties of can be adjusted.

上記水酸基を有するポリビニルアセタール樹脂の重量平均分子量は、好ましい下限が5000、好ましい上限が50万である。重量平均分子量が5000未満であると、硬化剤及び/又は硬化促進剤内包カプセルの強度、耐熱性又は耐溶剤性が低下し、硬化性樹脂組成物に配合された場合の貯蔵安定性が低下することがある。重量平均分子量が50万を超えると、硬化剤及び/又は硬化促進剤の放出性が低下し、硬化反応に長時間を要することがある。重量平均分子量のより好ましい下限は3万、より好ましい上限は30万である。 As for the weight average molecular weight of the said polyvinyl acetal resin which has a hydroxyl group, a preferable minimum is 5000 and a preferable upper limit is 500,000. When the weight average molecular weight is less than 5,000, the strength, heat resistance, or solvent resistance of the capsule containing the curing agent and / or curing accelerator decreases, and the storage stability when blended in the curable resin composition decreases. Sometimes. When the weight average molecular weight exceeds 500,000, the release property of the curing agent and / or the curing accelerator is lowered, and the curing reaction may take a long time. The more preferable lower limit of the weight average molecular weight is 30,000, and the more preferable upper limit is 300,000.

上記水酸基を有するポリビニルアセタール樹脂の市販品として、例えば、BL−10(積水化学工業社製)、BL−2H(積水化学工業社製)、BM−S(積水化学工業社製)、BH−3(積水化学工業社製)、♯−3000K(電気化学工業社製)、MOWITAL B60T(クラレ社製)等が挙げられる。 As a commercial item of the polyvinyl acetal resin which has the said hydroxyl group, for example, BL-10 (made by Sekisui Chemical Co., Ltd.), BL-2H (made by Sekisui Chemical Co., Ltd.), BM-S (made by Sekisui Chemical Co., Ltd.), BH-3 (Manufactured by Sekisui Chemical Co., Ltd.), # -3000K (manufactured by Denki Kagaku Kogyo Co., Ltd.), MOWITAL B60T (manufactured by Kuraray Co., Ltd.) and the like.

熱可塑性ポリマーにアクリロニトリルに由来するセグメントを有する共重合体を用いることにより、シェルのガスバリア性及び耐溶剤性を向上させることができる。
上記アクリロニトリルに由来するセグメントを有する共重合体において、上記アクリロニトリルに由来するセグメント以外の他のモノマーに由来するセグメントは特に限定されない。上記他のモノマーとして、例えば、ビニル基を有する化合物等のラジカル重合性モノマーが挙げられる。上記ビニル基を有する化合物は特に限定されず、例えば、グリシジルメタクリレート(GMA)、メチルメタクリレート(MMA)等のメタクリル酸エステル、アクリル酸エステル、スチレン、ジビニルベンゼン、塩化ビニリデン、ビニルアルコール、ビニルピロリドン、エチレングリコールジメタクリレート、ブタジエン等が挙げられる。なかでも、スチレン、グリシジルメタクリレート(GMA)、メチルメタクリレート(MMA)が好ましい。
By using a copolymer having a segment derived from acrylonitrile as the thermoplastic polymer, the gas barrier property and solvent resistance of the shell can be improved.
In the copolymer having a segment derived from acrylonitrile, a segment derived from another monomer other than the segment derived from acrylonitrile is not particularly limited. As said other monomer, radical polymerizable monomers, such as a compound which has a vinyl group, are mentioned, for example. The compound having a vinyl group is not particularly limited, and examples thereof include methacrylic acid esters such as glycidyl methacrylate (GMA) and methyl methacrylate (MMA), acrylic acid esters, styrene, divinylbenzene, vinylidene chloride, vinyl alcohol, vinyl pyrrolidone, and ethylene. Examples include glycol dimethacrylate and butadiene. Of these, styrene, glycidyl methacrylate (GMA), and methyl methacrylate (MMA) are preferable.

上記アクリロニトリルに由来するセグメントを有する共重合体の重量平均分子量は、好ましい下限が5000、好ましい上限が10万である。重量平均分子量が5000未満であると、硬化剤及び/又は硬化促進剤内包カプセルの強度、耐熱性又は耐溶剤性が低下し、硬化性樹脂組成物に配合された場合の貯蔵安定性が低下することがある。重量平均分子量が10万を超えると、硬化剤及び/又は硬化促進剤の放出性が低下し、硬化反応に長時間を要することがある。重量平均分子量のより好ましい下限は8000、より好ましい上限は5万であり、更に好ましい下限は1万、更に好ましい上限は3万である。 As for the weight average molecular weight of the copolymer having a segment derived from acrylonitrile, a preferable lower limit is 5000 and a preferable upper limit is 100,000. When the weight average molecular weight is less than 5,000, the strength, heat resistance or solvent resistance of the capsule containing the curing agent and / or curing accelerator is lowered, and the storage stability when blended in the curable resin composition is lowered. Sometimes. When the weight average molecular weight exceeds 100,000, the release property of the curing agent and / or the curing accelerator is lowered, and the curing reaction may take a long time. The more preferred lower limit of the weight average molecular weight is 8000, the more preferred upper limit is 50,000, the still more preferred lower limit is 10,000, and the more preferred upper limit is 30,000.

上記シェルを構成するポリマーは、更に、無機ポリマーを含有してもよい。シェルを構成するポリマーに無機ポリマーを用いることにより、硬化剤及び/又は硬化促進剤内包カプセルの強度、耐熱性及び耐溶剤性が向上し、例えば溶剤と混合する場合であっても好適に用いられる。 The polymer constituting the shell may further contain an inorganic polymer. By using an inorganic polymer for the polymer constituting the shell, the strength, heat resistance and solvent resistance of the capsule containing the curing agent and / or curing accelerator are improved. For example, it can be suitably used even when mixed with a solvent. .

上記無機ポリマーとして、分子中に2個以上の炭素数1〜6のアルコキシ基を有し、かつ、Si、Al、Zr及びTiからなる群より選択される少なくとも1種の金属元素を含有する有機金属化合物の重合体が好ましい。このような有機金属化合物の重合体として、例えば、シリコーン樹脂、ポリボロシロキサン樹脂、ポリカルボシラン樹脂、ポリシラスチレン樹脂、ポリシラザン樹脂、ポリチタノカルボシラン樹脂等が挙げられる。なかでも、シリコーン樹脂が好ましく、グリシジル基を有するシリコーン樹脂がより好ましい。 Organic having at least one metal element selected from the group consisting of Si, Al, Zr, and Ti as the inorganic polymer, having 2 or more C1-C6 alkoxy groups in the molecule Polymers of metal compounds are preferred. Examples of such a polymer of an organometallic compound include silicone resins, polyborosiloxane resins, polycarbosilane resins, polysilastyrene resins, polysilazane resins, and polytitanocarbosilane resins. Among these, a silicone resin is preferable, and a silicone resin having a glycidyl group is more preferable.

上記硬化剤及び/又は硬化促進剤は、硬化時に気体状となってシェルの微細孔を容易に通過するためには、融点が100℃未満であることが好ましく、例えば、三級アミン化合物、イミダゾール化合物等のアミン化合物、又は、リン系触媒等が挙げられる。なかでも、硬化性に優れることから、イミダゾール化合物が好ましい。
上記イミダゾール化合物は特に限定されず、例えば、2−ウンデシルイミダゾール、1,2−ジメチルイミダゾール、2−エチル−4−メチルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、1−シアノエチル−2−エチル−4−メチルイミダゾール、1−ドデシル−2−メチル−3−ベンジルイミダゾリウムクロライド、及び、これらの付加体等が挙げられる。
The curing agent and / or curing accelerator is preferably in a gaseous state upon curing and has a melting point of less than 100 ° C. in order to easily pass through the micropores of the shell. For example, a tertiary amine compound, imidazole Examples thereof include amine compounds such as compounds, and phosphorus-based catalysts. Especially, since it is excellent in sclerosis | hardenability, an imidazole compound is preferable.
The imidazole compound is not particularly limited. For example, 2-undecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-dodecyl-2-methyl-3-benzylimidazolium chloride, and These adducts can be mentioned.

また、上記イミダゾール化合物として、疎水性イミダゾール化合物を用いることが好ましい。なお、疎水性イミダゾール化合物とは、水に最大限溶解させたときの濃度が5重量%未満であるイミダゾール化合物を意味する。
上記疎水性イミダゾール化合物は、炭素数11以上の炭化水素基を有するイミダゾール化合物が好ましい。上記炭素数11以上の炭化水素基を有するイミダゾール化合物として、例えば、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、1−シアノエチルイミダゾール等が挙げられる。なかでも、2−ウンデシルイミダゾールが好ましい。
Moreover, it is preferable to use a hydrophobic imidazole compound as the imidazole compound. The hydrophobic imidazole compound means an imidazole compound having a concentration of less than 5% by weight when dissolved in water to the maximum.
The hydrophobic imidazole compound is preferably an imidazole compound having a hydrocarbon group having 11 or more carbon atoms. Examples of the imidazole compound having a hydrocarbon group having 11 or more carbon atoms include 2-undecylimidazole, 2-heptadecylimidazole, 1-cyanoethylimidazole, and the like. Of these, 2-undecylimidazole is preferable.

本発明の硬化剤及び/又は硬化促進剤内包カプセルのシェル厚みは、好ましい下限が0.05μm、好ましい上限が0.8μmである。シェル厚みが0.05μm未満であると、硬化剤及び/又は硬化促進剤内包カプセルの強度、耐熱性又は耐溶剤性が低下し、硬化性樹脂組成物に配合された場合の貯蔵安定性が低下することがある。シェル厚みが0.8μmを超えると、硬化剤及び/又は硬化促進剤の放出性が低下し、硬化反応に長時間を要することがある。シェル厚みのより好ましい下限は0.08μm、より好ましい上限は0.5μmである。
なお、硬化剤及び/又は硬化促進剤内包カプセルのシェル厚みとは、下記式(1)により算出される、カプセルの体積と内包体積比率から算出したシェルの体積を、カプセルの表面積で割ることで求められる値を意味する。
シェル厚み={カプセルの体積−(カプセルの体積×内包体積比率)}/カプセルの表面積 (1)
The preferable lower limit of the shell thickness of the capsule containing the curing agent and / or curing accelerator of the present invention is 0.05 μm, and the preferable upper limit is 0.8 μm. When the shell thickness is less than 0.05 μm, the strength, heat resistance or solvent resistance of the capsule containing the curing agent and / or curing accelerator is lowered, and the storage stability when blended in the curable resin composition is lowered. There are things to do. When the shell thickness exceeds 0.8 μm, the release property of the curing agent and / or curing accelerator is lowered, and the curing reaction may take a long time. A more preferable lower limit of the shell thickness is 0.08 μm, and a more preferable upper limit is 0.5 μm.
In addition, the shell thickness of the encapsulating capsule containing the curing agent and / or curing accelerator is obtained by dividing the volume of the shell calculated from the capsule volume and the encapsulating volume ratio calculated by the following formula (1) by the surface area of the capsule. Means the desired value.
Shell thickness = {Capsule volume− (Capsule volume × Internal volume ratio)} / Capsule surface area (1)

本発明の硬化剤及び/又は硬化促進剤内包カプセルの内包体積比率は、好ましい下限が30体積%、好ましい上限が70体積%である。内包体積比率が30体積%未満であると、硬化剤及び/又は硬化促進剤の放出性が低下し、硬化反応に長時間を要したり硬化剤及び/又は硬化促進剤内包カプセルを多量に配合する必要が生じたりすることがある。内包体積比率が70体積%を超えると、硬化剤及び/又は硬化促進剤内包カプセルのシェルが薄くなりすぎて強度、耐熱性又は耐溶剤性が低下し、貯蔵安定性が低下することがある。内包体積比率のより好ましい下限は40体積%、より好ましい上限は60体積%である。
なお、硬化剤及び/又は硬化促進剤内包カプセルの内包体積比率は、平均粒子径を用いて算出したカプセルの体積とガスクロマトグラフィーを用いて測定したコア剤の含有量から、下記式(2)により算出される値を意味する。
内包体積比率(%)=(コア剤の含有量(重量%)×コア剤の比重(g/cm))/カプセルの体積(cm) (2)
The preferable lower limit of the encapsulating volume ratio of the curing agent and / or curing accelerator-encapsulating capsule of the present invention is 30% by volume, and the preferable upper limit is 70% by volume. When the encapsulated volume ratio is less than 30% by volume, the release property of the curing agent and / or curing accelerator is lowered, and it takes a long time for the curing reaction or a large amount of the encapsulating capsule containing the curing agent and / or curing accelerator is incorporated. May need to be done. If the encapsulated volume ratio exceeds 70% by volume, the shell of the encapsulating capsule containing the curing agent and / or curing accelerator may become too thin, resulting in a decrease in strength, heat resistance or solvent resistance, and storage stability may be decreased. A more preferable lower limit of the inclusion volume ratio is 40% by volume, and a more preferable upper limit is 60% by volume.
The encapsulated volume ratio of the capsulating agent and / or the accelerating agent-encapsulating capsule is expressed by the following formula (2) from the capsule volume calculated using the average particle diameter and the content of the core agent measured using gas chromatography. Means the value calculated by.
Encapsulated volume ratio (%) = (content of core agent (% by weight) × specific gravity of core agent (g / cm 3 )) / volume of capsule (cm 3 ) (2)

本発明の硬化剤及び/又は硬化促進剤内包カプセルの平均粒子径は、好ましい下限が0.5μm、好ましい上限が10μmである。平均粒子径が0.5μm未満であると、所望の範囲の内包率を維持しようとすると、硬化剤及び/又は硬化促進剤内包カプセルの強度、耐熱性又は耐溶剤性が低下し、硬化性樹脂組成物に配合された場合の貯蔵安定性が低下することがある。平均粒子径が10μmを超えると、硬化剤及び/又は硬化促進剤内包カプセルを硬化性樹脂組成物に配合した場合に、加熱により硬化剤及び/又は硬化促進剤が放出された後、大きなボイドが生じて硬化物の信頼性が低下することがある。平均粒子径のより好ましい上限は3.0μmである。
なお、硬化剤及び/又は硬化促進剤内包カプセルの平均粒子径とは、走査型電子顕微鏡を用いて1視野に約100個のカプセルが観察できる倍率で観察し、任意に選択した50個のカプセルの最長径をノギスで測定した平均値を意味する。
The preferable lower limit of the average particle size of the curing agent and / or curing accelerator-encapsulating capsule of the present invention is 0.5 μm, and the preferable upper limit is 10 μm. If the average particle size is less than 0.5 μm, the strength, heat resistance or solvent resistance of the capsules containing the curing agent and / or curing accelerator will be reduced when maintaining the encapsulation rate within the desired range. Storage stability when blended into the composition may be reduced. When the average particle size exceeds 10 μm, when the curing agent and / or curing accelerator-encapsulating capsule is blended with the curable resin composition, a large void is generated after the curing agent and / or the curing accelerator is released by heating. It may occur and the reliability of the cured product may be reduced. A more preferable upper limit of the average particle diameter is 3.0 μm.
The average particle size of the capsules containing the curing agent and / or curing accelerator is 50 capsules arbitrarily selected by observing at a magnification at which about 100 capsules can be observed in one visual field using a scanning electron microscope. Means the average value of the longest diameter measured with calipers.

本発明の硬化剤及び/又は硬化促進剤内包カプセルを製造する方法は、上述したように、硬化剤及び/又は硬化促進剤と、シェルを構成するポリマーとを油性溶媒に溶解した混合溶液(1)を、水性媒体に分散させて乳化液(1)とし、次いで、加熱等により油性溶媒を除去してシェルを構成するポリマーを析出させ、微細孔を有するシェルを形成した後、フッ素含有シランカップリング剤により表面処理を行う方法が好ましい。また、シェルを構成するポリマーを油性溶媒に溶解した混合溶液(2)を、水性媒体に分散させて乳化液(2)とし、次いで、混合溶液(2)の液滴に硬化剤及び/又は硬化促進剤を含浸させ、更に、加熱等により油性溶媒を除去してシェルを構成するポリマーを析出させ、微細孔を有するシェルを形成した後、フッ素含有シランカップリング剤により表面処理を行う方法も好ましい。 As described above, the method for producing the capsule containing the curing agent and / or curing accelerator of the present invention is a mixed solution (1) in which the curing agent and / or the curing accelerator and the polymer constituting the shell are dissolved in an oily solvent. ) Is dispersed in an aqueous medium to obtain an emulsion (1), and then the oily solvent is removed by heating or the like to precipitate a polymer constituting the shell, thereby forming a shell having micropores, and then a fluorine-containing silane cup. A method of performing surface treatment with a ring agent is preferred. Further, the mixed solution (2) in which the polymer constituting the shell is dissolved in an oily solvent is dispersed in an aqueous medium to obtain an emulsion (2), and then a hardener and / or a curing agent is added to the droplets of the mixed solution (2). Also preferred is a method of impregnating with an accelerator and further removing the oily solvent by heating or the like to precipitate a polymer constituting the shell to form a shell having micropores, followed by surface treatment with a fluorine-containing silane coupling agent. .

また、硬化剤及び/又は硬化促進剤と、シェルを構成するポリマーと、フッ素含有シロキサンポリマーとを油性溶媒に溶解した混合溶液(3)を、水性媒体に分散させて乳化液(3)とし、次いで、加熱等により油性溶媒を除去してシェルを構成するポリマー及びフッ素含有シロキサンポリマーを析出させる方法も好ましい。また、シェルを構成するポリマーと、フッ素含有シロキサンポリマーとを油性溶媒に溶解した混合溶液(4)を、水性媒体に分散させて乳化液(4)とし、次いで、混合溶液(4)の液滴に硬化剤及び/又は硬化促進剤を含浸させ、更に、加熱等により油性溶媒を除去してシェルを構成するポリマー及びフッ素含有シロキサンポリマーを析出させる方法も好ましい。 Further, a mixed solution (3) obtained by dissolving a curing agent and / or a curing accelerator, a polymer constituting the shell, and a fluorine-containing siloxane polymer in an oily solvent is dispersed in an aqueous medium to obtain an emulsion (3). Next, a method of removing the oily solvent by heating or the like and precipitating the polymer constituting the shell and the fluorine-containing siloxane polymer is also preferable. Further, a mixed solution (4) in which a polymer constituting the shell and a fluorine-containing siloxane polymer are dissolved in an oily solvent is dispersed in an aqueous medium to obtain an emulsion (4), and then a droplet of the mixed solution (4) Also preferred is a method of impregnating with a curing agent and / or a curing accelerator and further removing the oily solvent by heating or the like to precipitate the polymer constituting the shell and the fluorine-containing siloxane polymer.

上記油性溶媒は特に限定されず、例えば、ベンゼン、イソプレン、ヘキサン、ヘプタン、シクロヘキサン、ギ酸イソブチル、酢酸メチル、酢酸エチル、ジプロピルエーテル、ジブチルエーテル、エタノール、アリルアルコール、1−プロパノール、2−プロパノール、t−ブチルアルコール、アセトン、エチルメチルケトン、N,N−ジメチルホルムアミド、アセトニトリル等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。 The oily solvent is not particularly limited. For example, benzene, isoprene, hexane, heptane, cyclohexane, isobutyl formate, methyl acetate, ethyl acetate, dipropyl ether, dibutyl ether, ethanol, allyl alcohol, 1-propanol, 2-propanol, Examples thereof include t-butyl alcohol, acetone, ethyl methyl ketone, N, N-dimethylformamide, acetonitrile and the like. These may be used alone or in combination of two or more.

上記水性媒体は特に限定されず、例えば、水に、乳化剤、分散安定剤等を添加した水性媒体が用いられる。上記乳化剤は特に限定されず、例えば、アルキル硫酸スルホン酸塩、アルキルベンゼンスルホン酸塩、アルキル硫酸トリエタノールアミン、ポリオキシエチレンアルキルエーテル等が挙げられる。上記分散安定剤は特に限定されず、例えば、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレングリコール等が挙げられる。 The aqueous medium is not particularly limited, and for example, an aqueous medium in which an emulsifier, a dispersion stabilizer and the like are added to water is used. The emulsifier is not particularly limited, and examples thereof include alkyl sulfate sulfonate, alkyl benzene sulfonate, alkyl sulfate triethanolamine, and polyoxyethylene alkyl ether. The dispersion stabilizer is not particularly limited, and examples thereof include polyvinyl alcohol, polyvinyl pyrrolidone, and polyethylene glycol.

上記乳化液(1)〜(4)を調製する際には、混合溶液(1)〜(4)に水性媒体を添加してもよく、水性媒体に混合溶液(1)〜(4)を添加してもよい。乳化方法として、例えば、ホモジナイザーを用いて攪拌する方法、超音波照射により乳化する方法、マイクロチャネル又はSPG膜を通過させて乳化する方法、スプレーで噴霧する方法、転相乳化法等が挙げられる。 When preparing the emulsions (1) to (4), an aqueous medium may be added to the mixed solutions (1) to (4), and the mixed solutions (1) to (4) are added to the aqueous medium. May be. Examples of the emulsification method include a method of stirring using a homogenizer, a method of emulsifying by ultrasonic irradiation, a method of emulsifying by passing through a microchannel or an SPG film, a method of spraying with a spray, and a phase inversion emulsification method.

上記混合溶液(2)又は(4)の液滴に硬化剤及び/又は硬化促進剤を含浸させる方法として、例えば、乳化液(2)又は(4)に液体状の硬化剤及び/又は硬化促進剤を添加し、乳化液(2)又は(4)を攪拌する方法が好ましい。
また、例えば、乳化液(2)又は(4)に固体状の硬化剤及び/又は硬化促進剤を添加し、固体状の硬化剤及び/又は硬化促進剤の融点以上に乳化液(2)又は(4)を加熱して、固体状の硬化剤及び/又は硬化促進剤を液体状とする方法も挙げられる。なかでも、固体状の硬化剤及び/又は硬化促進剤の融点以上かつ100℃未満に乳化液(2)又は(4)を加熱して、水性媒体を蒸発させることなく硬化剤及び/又は硬化促進剤を含浸させる方法が好ましい。
As a method for impregnating the liquid droplets of the mixed solution (2) or (4) with a curing agent and / or a curing accelerator, for example, the emulsion (2) or (4) is a liquid curing agent and / or curing acceleration. A method of adding an agent and stirring the emulsion (2) or (4) is preferred.
Further, for example, a solid curing agent and / or a curing accelerator is added to the emulsion (2) or (4), and the emulsion (2) or the melting point of the solid curing agent and / or the curing accelerator is higher than the melting point. The method of heating (4) and making a solid hardening | curing agent and / or hardening accelerator into a liquid form is also mentioned. Among these, the emulsified liquid (2) or (4) is heated to the melting point of the solid curing agent and / or curing accelerator and to less than 100 ° C. to cure the curing agent and / or curing without evaporating the aqueous medium. A method of impregnating the agent is preferred.

油性溶媒を除去してシェルを構成するポリマー、フッ素含有シロキサンポリマー等を析出させる方法として、30〜70℃に加熱する方法が好ましく、加熱に加えて、0.095〜0.080MPaの圧力となるよう設定して減圧を行う方法がより好ましい。 As a method of precipitating the polymer constituting the shell by removing the oily solvent, the fluorine-containing siloxane polymer, etc., a method of heating to 30 to 70 ° C. is preferable, and in addition to heating, a pressure of 0.095 to 0.080 MPa is obtained. A method in which the pressure is reduced under such settings is more preferable.

得られた硬化剤及び/又は硬化促進剤内包カプセルは、純水を用いて繰り返して洗浄された後、真空乾燥等により乾燥されてもよい。 The obtained curing agent and / or curing accelerator-encapsulating capsule may be repeatedly washed with pure water and then dried by vacuum drying or the like.

本発明の硬化剤及び/又は硬化促進剤内包カプセルは、硬化性樹脂組成物に配合された場合に優れた熱保存安定性及び速硬化性を発揮することができることから、エポキシ樹脂等の熱硬化性樹脂用の潜在性硬化剤又は硬化促進剤として好適に用いられる。
本発明の硬化剤及び/又は硬化促進剤内包カプセルと、熱硬化性化合物とを含有する熱硬化性樹脂組成物もまた、本発明の1つである。
The curing agent and / or curing accelerator-encapsulating capsule of the present invention can exhibit excellent thermal storage stability and fast curability when blended in a curable resin composition, and thus thermosetting epoxy resins and the like. It is suitably used as a latent curing agent or curing accelerator for a conductive resin.
A thermosetting resin composition containing the capsule containing the curing agent and / or curing accelerator of the present invention and a thermosetting compound is also one aspect of the present invention.

本発明によれば、硬化性樹脂組成物に配合された場合に優れた熱保存安定性及び速硬化性を発揮することができる硬化剤及び/又は硬化促進剤内包カプセルを提供することができる。また、本発明によれば、該硬化剤及び/又は硬化促進剤内包カプセルを含有する熱硬化性樹脂組成物を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, when it mix | blends with a curable resin composition, the hardening | curing agent and / or hardening accelerator inclusion capsule which can exhibit the outstanding heat | fever storage stability and rapid sclerosis | hardenability can be provided. Moreover, according to this invention, the thermosetting resin composition containing this hardening | curing agent and / or hardening accelerator inclusion capsule can be provided.

以下に実施例を掲げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 Examples of the present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

(実施例1)
酢酸エチル120重量部と、イソプロピルアルコール(IPA)50重量部と、メタノール25重量部との混合溶媒に、シェルを構成するポリマーとしてスチレン系誘導体ポリマー(マープルーフG−0130SP、日油社製)2.1重量部と、グリシジル基を有するシロキサン(X−41−1053、信越化学工業社製)2.1重量部と、2−ウンデシルイミダゾール3重量部とを溶解させることで混合溶液を得た。
この混合溶液に、乳化剤としてポリオキシエチレンラウリルエーテル2重量部を溶解した水性媒体680重量部を添加して、そこへ酢酸2重量部を添加したのち、2時間撹拌を行った。その後、得られた溶液を減圧装置付反応機中に入れて70℃で4時間溶媒を除去することで、微細孔を有する粒子を得た。得られた粒子を、イオン交換水270重量部と、メタノール30重量部と、25重量%アンモニア水溶液1.9重量部との混合物中に分散させたのち、フッ素含有シランカップリング剤としてトリフルオロプロピルトリメトキシシラン(KBM−7103、信越化学工業社製)0.4重量部を添加して、12時間以上室温で撹拌を行った。その後、得られた粒子を、純水を用いて繰り返し洗浄したのち、真空乾燥を行うことで、硬化促進剤内包カプセルを得た。
なお、得られた硬化促進剤内包カプセルのシェルが微細孔を有することは、走査型電子顕微鏡により確認した。走査型電子顕微鏡により倍率50000倍でカプセルを観察、撮影し、撮影した写真からノギスで無作為に抽出した50個のカプセルの微細孔径を測定したところ、微細孔の平均径は30nmであった。
Example 1
In a mixed solvent of 120 parts by weight of ethyl acetate, 50 parts by weight of isopropyl alcohol (IPA), and 25 parts by weight of methanol, a styrene derivative polymer (Marproof G-0130SP, manufactured by NOF Corporation) 2 as a polymer constituting the shell 2 0.1 parts by weight, 2.1 parts by weight of siloxane having a glycidyl group (X-41-1053, manufactured by Shin-Etsu Chemical Co., Ltd.) and 3 parts by weight of 2-undecylimidazole were obtained to obtain a mixed solution. .
To this mixed solution was added 680 parts by weight of an aqueous medium in which 2 parts by weight of polyoxyethylene lauryl ether was dissolved as an emulsifier, and 2 parts by weight of acetic acid was added thereto, followed by stirring for 2 hours. Thereafter, the obtained solution was put into a reactor equipped with a decompression device, and the solvent was removed at 70 ° C. for 4 hours to obtain particles having fine pores. The obtained particles were dispersed in a mixture of 270 parts by weight of ion-exchanged water, 30 parts by weight of methanol, and 1.9 parts by weight of a 25% by weight aqueous ammonia solution, and then trifluoropropyl as a fluorine-containing silane coupling agent. 0.4 parts by weight of trimethoxysilane (KBM-7103, manufactured by Shin-Etsu Chemical Co., Ltd.) was added, and the mixture was stirred at room temperature for 12 hours or more. Thereafter, the obtained particles were repeatedly washed with pure water and then vacuum-dried to obtain a curing accelerator-encapsulating capsule.
In addition, it confirmed with the scanning electron microscope that the shell of the obtained hardening accelerator inclusion | encapsulation capsule had a micropore. Capsules were observed and photographed with a scanning electron microscope at a magnification of 50000 times, and the fine pore diameters of 50 capsules randomly extracted with a caliper were measured from the photographed photographs. The average pore diameter was 30 nm.

(実施例2)
酢酸エチル120重量部と、イソプロピルアルコール(IPA)50重量部と、メタノール25重量部との混合溶液に、シェルを構成するポリマーとしてスチレン系誘導体ポリマー(マープルーフG−0130SP、日油社製)2.1重量部と、グリシジル基を有するシロキサン(X−41−1053、信越化学工業社製)2.1重量部と、フッ素含有シロキサンポリマーとしてフッ素シリコーン(KP−911、信越化学工業社製)0.5重量部と、2−ウンデシルイミダゾール3重量部とを溶解させることで混合溶液を得た。
この混合溶液に、乳化剤としてポリオキシエチレンラウリルエーテル2重量部を溶解した水性媒体680重量部を添加して、そこへ酢酸2重量部を添加したのち、2時間撹拌を行った。その後、得られた溶液を減圧装置付反応機中に入れて70℃で4時間溶媒を除去することで、微細孔を有する粒子を得た。得られた粒子を、純水を用いて繰り返し洗浄したのち、真空乾燥を行うことで、硬化促進剤内包カプセルを得た。
なお、得られた硬化促進剤内包カプセルのシェルが微細孔を有することは、走査型電子顕微鏡により確認した。走査型電子顕微鏡により倍率50000倍でカプセルを観察、撮影し、撮影した写真からノギスで無作為に抽出した50個のカプセルの微細孔径を測定したところ、微細孔の平均径は25nmであった。
(Example 2)
In a mixed solution of 120 parts by weight of ethyl acetate, 50 parts by weight of isopropyl alcohol (IPA), and 25 parts by weight of methanol, a styrene derivative polymer (Marproof G-0130SP, manufactured by NOF Corporation) 2 as a polymer constituting the shell 2 0.1 part by weight, 2.1 parts by weight of siloxane having a glycidyl group (X-41-1053, manufactured by Shin-Etsu Chemical Co., Ltd.), and fluorine-containing siloxane polymer as fluorosilicone (KP-911, manufactured by Shin-Etsu Chemical Co., Ltd.) 0 A mixed solution was obtained by dissolving 0.5 part by weight and 3 parts by weight of 2-undecylimidazole.
To this mixed solution was added 680 parts by weight of an aqueous medium in which 2 parts by weight of polyoxyethylene lauryl ether was dissolved as an emulsifier, and 2 parts by weight of acetic acid was added thereto, followed by stirring for 2 hours. Thereafter, the obtained solution was put into a reactor equipped with a decompression device, and the solvent was removed at 70 ° C. for 4 hours to obtain particles having fine pores. The obtained particles were repeatedly washed with pure water and then vacuum-dried to obtain a curing accelerator-encapsulating capsule.
In addition, it confirmed with the scanning electron microscope that the shell of the obtained hardening accelerator inclusion | encapsulation capsule had a micropore. Capsules were observed and photographed with a scanning electron microscope at a magnification of 50000 times, and the fine pore diameters of 50 capsules randomly extracted with a caliper were measured from the photographed photographs. The average pore diameter was 25 nm.

(実施例3)
フッ素シリコーン(KP−911、信越化学工業社製)0.5重量部の代わりに、フッ素樹脂−シロキサングラフト型ポリマー(ZX−022−H、T&K TOKA社製)0.5重量部を用いたこと以外は実施例2と同様にして、硬化促進剤内包カプセルを得た。
なお、得られた硬化促進剤内包カプセルのシェルが微細孔を有することは、走査型電子顕微鏡により確認した。走査型電子顕微鏡により倍率50000倍でカプセルを観察、撮影し、撮影した写真からノギスで無作為に抽出した50個のカプセルの微細孔径を測定したところ、微細孔の平均径は15nmであった。
Example 3
Instead of 0.5 parts by weight of fluorosilicone (KP-911, manufactured by Shin-Etsu Chemical Co., Ltd.), 0.5 parts by weight of fluororesin-siloxane graft polymer (ZX-022-H, manufactured by T & K TOKA) was used. Except for the above, a curing accelerator-encapsulating capsule was obtained in the same manner as in Example 2.
In addition, it confirmed with the scanning electron microscope that the shell of the obtained hardening accelerator inclusion | encapsulation capsule had a micropore. Capsules were observed and photographed with a scanning electron microscope at a magnification of 50000 times, and when the fine pore diameters of 50 capsules randomly extracted with a caliper were measured from the photographed photographs, the average pore diameter was 15 nm.

(実施例4)
フッ素シリコーン(KP−911、信越化学工業社製)0.5重量部の代わりに、フッ素樹脂−シロキサングラフト型ポリマー(ZX−047−D、T&K TOKA社製)0.5重量部を用いたこと以外は実施例2と同様にして、硬化促進剤内包カプセルを得た。
なお、得られた硬化促進剤内包カプセルのシェルが微細孔を有することは、走査型電子顕微鏡により確認した。走査型電子顕微鏡により倍率50000倍でカプセルを観察、撮影し、撮影した写真からノギスで無作為に抽出した50個のカプセルの微細孔径を測定したところ、微細孔の平均径は15nmであった。
Example 4
Instead of 0.5 part by weight of fluorosilicone (KP-911, manufactured by Shin-Etsu Chemical Co., Ltd.), 0.5 part by weight of fluororesin-siloxane graft polymer (ZX-047-D, manufactured by T & K TOKA) was used. Except for the above, a curing accelerator-encapsulating capsule was obtained in the same manner as in Example 2.
In addition, it confirmed with the scanning electron microscope that the shell of the obtained hardening accelerator inclusion | encapsulation capsule had a micropore. Capsules were observed and photographed with a scanning electron microscope at a magnification of 50000 times, and when the fine pore diameters of 50 capsules randomly extracted with a caliper were measured from the photographed photographs, the average pore diameter was 15 nm.

(比較例1)
スチレンモノマー5.1重量部と、メタクリル酸メチル1.5重量部と、グリシジル基を有するシロキサン(X−41−1053、信越化学工業社製)6.6重量部とに、2−ウンデシルイミダゾール2.7重量部を溶解させた。そこへ2,2’−アゾビスイソ酪酸ジメチル(V−601)1.3重量部を溶解させることで混合溶液を得た。
この混合溶液に、分散剤として5重量%のポリビニルアルコール(GM−14、日本合成化学社製)を添加した水性媒体76重量部を添加し、数分間マグネットスターラーで撹拌したのち、イオン交換水302重量部を添加してホモジナイザーを用いて12000rpm、10分乳化を行った。この乳化液を反応容器に移し、酢酸1.1重量部を加えて85℃、9時間重合をすることで粒子を得た。その後、得られた粒子を、純水を用いて繰り返し洗浄したのち、真空乾燥を行うことで、硬化促進剤内包カプセルを得た。
なお、走査型電子顕微鏡により倍率50000倍でカプセルを観察、撮影し、撮影した写真から、得られた硬化促進剤内包カプセルのシェルが微細孔を有さないことを確認した。
(Comparative Example 1)
2-Undecylimidazole is added to 5.1 parts by weight of styrene monomer, 1.5 parts by weight of methyl methacrylate, and 6.6 parts by weight of siloxane having a glycidyl group (X-41-1053, manufactured by Shin-Etsu Chemical Co., Ltd.). 2.7 parts by weight were dissolved. A mixed solution was obtained by dissolving 1.3 parts by weight of dimethyl 2,2′-azobisisobutyrate (V-601).
To this mixed solution, 76 parts by weight of an aqueous medium to which 5% by weight of polyvinyl alcohol (GM-14, manufactured by Nippon Synthetic Chemical Co., Ltd.) was added as a dispersant was added, stirred for several minutes with a magnetic stirrer, and then ion-exchanged water 302. A part by weight was added, and emulsification was performed using a homogenizer at 12000 rpm for 10 minutes. The emulsion was transferred to a reaction vessel, 1.1 parts by weight of acetic acid was added, and polymerization was performed at 85 ° C. for 9 hours to obtain particles. Thereafter, the obtained particles were repeatedly washed with pure water and then vacuum-dried to obtain a curing accelerator-encapsulating capsule.
The capsules were observed and photographed with a scanning electron microscope at a magnification of 50000 times, and it was confirmed from the photographed photographs that the shell of the obtained curing accelerator-encapsulating capsules did not have micropores.

(比較例2)
トリフルオロプロピルトリメトキシシラン(KBM−7103、信越化学工業社製)による処理を行わなかったこと以外は実施例1と同様にして、硬化促進剤内包カプセルを得た。
なお、得られた硬化促進剤内包カプセルのシェルが微細孔を有することは、走査型電子顕微鏡により確認した。走査型電子顕微鏡により倍率50000倍でカプセルを観察、撮影し、撮影した写真からノギスで無作為に抽出した50個のカプセルの微細孔径を測定したところ、微細孔の平均径は30nmであった。
(Comparative Example 2)
A curing accelerator-encapsulating capsule was obtained in the same manner as in Example 1 except that the treatment with trifluoropropyltrimethoxysilane (KBM-7103, manufactured by Shin-Etsu Chemical Co., Ltd.) was not performed.
In addition, it confirmed with the scanning electron microscope that the shell of the obtained hardening accelerator inclusion | encapsulation capsule had a micropore. Capsules were observed and photographed with a scanning electron microscope at a magnification of 50000 times, and the fine pore diameters of 50 capsules randomly extracted with a caliper were measured from the photographed photographs. The average pore diameter was 30 nm.

<評価>
実施例及び比較例で用いた各材料、又は、実施例及び比較例で得られた硬化促進剤内包カプセルについて以下の評価を行った。結果を表1に示した。
<Evaluation>
The following evaluation was performed about each material used by the Example and the comparative example, or the hardening accelerator inclusion capsule obtained by the Example and the comparative example. The results are shown in Table 1.

(1)シェルと硬化促進剤との濡れ性(接触角)
シェルを構成するポリマーと、必要に応じてフッ素含有シロキサンポリマーとを有機溶剤中へ溶解させ、そのポリマー溶液を塗工したのち、有機溶剤を除去し、必要に応じてフッ素含有シランカップリング剤により表面処理することにより、実施例及び比較例で得られた硬化促進剤内包カプセルのシェルと同様の組成を有するシェルポリマーフィルムを得た。得られたシェルポリマーフィルムを100℃のホットプレート上にのせ、予め100℃で予熱しておいた硬化促進剤0.03mLをシェルポリマーフィルム上に滴下した。シェルポリマーフィルムと硬化促進剤との接触付近の写真を、液滴の水平方向からデジタルカメラで撮影した。撮影した写真から直接、分度器を用いてシェルと硬化促進剤との接触角を測定した。
(1) Wettability (contact angle) between shell and curing accelerator
The polymer constituting the shell and, if necessary, the fluorine-containing siloxane polymer are dissolved in an organic solvent. After coating the polymer solution, the organic solvent is removed, and if necessary, a fluorine-containing silane coupling agent is used. By performing the surface treatment, a shell polymer film having a composition similar to that of the shell of the curing accelerator-encapsulating capsule obtained in Examples and Comparative Examples was obtained. The obtained shell polymer film was placed on a hot plate at 100 ° C., and 0.03 mL of a curing accelerator preheated at 100 ° C. was dropped onto the shell polymer film. A photograph near the contact between the shell polymer film and the curing accelerator was taken with a digital camera from the horizontal direction of the droplet. The contact angle between the shell and the curing accelerator was measured directly from the photographed photo using a protractor.

(2)硬化促進剤の保持性
融点測定機(ATM−02、アズワン社製)を用いて、100℃の条件下で硬化促進剤内包カプセルを加熱し、硬化促進剤が放出されるまでの時間(硬化促進剤の保持時間)を測定した。
(2) Curing accelerator retention melting point (ATM-02, manufactured by ASONE Co., Ltd.) Time until the curing accelerator is released under the condition of 100 ° C. and the curing accelerator is released. (Holding time of curing accelerator) was measured.

(3)熱保存安定性
エポキシ樹脂(EXA−830−CRP、DIC社製)3重量部及び酸無水物硬化剤(YH307、三菱化学社製)2重量部中に、硬化促進剤内包カプセルを0.57重量部添加して、公転自転撹拌機で撹拌した後、得られたエポキシ樹脂組成物を120℃のオーブンに入れて、30分毎にエポキシ樹脂組成物の粘度を測定することで初期粘度に対する粘度上昇倍率(経時粘度/初期粘度)を求めた。
なお、粘度の測定は、E型粘度計(TVE−25H、東機産業社製、φ24mmローターを使用)を用いて、25℃、0.5rpmの条件で行った。
(3) Heat storage stability epoxy resin (EXA-830-CRP, manufactured by DIC) 3 parts by weight and acid anhydride curing agent (YH307, manufactured by Mitsubishi Chemical) 2 parts by weight of curing accelerator-containing capsules After adding 57 parts by weight and stirring with a revolutionary rotating agitator, the obtained epoxy resin composition was put in an oven at 120 ° C., and the viscosity of the epoxy resin composition was measured every 30 minutes to obtain an initial viscosity. Viscosity increase ratio (viscosity with time / initial viscosity) was determined.
The viscosity was measured using an E-type viscometer (TVE-25H, manufactured by Toki Sangyo Co., Ltd., using a φ24 mm rotor) under the conditions of 25 ° C. and 0.5 rpm.

(4)速硬化性(硬化速度の測定)
エポキシ樹脂(EXA−830−CRP、DIC社製)3重量部及び酸無水物硬化剤(YH307、三菱化学社製)2重量部中に、硬化促進剤内包カプセルを0.57重量部添加して、公転自転撹拌機で撹拌した後、得られたエポキシ樹脂組成物を210℃に熱したホットプレート上に置いたスライドガラスの上に滴下して、エポキシ樹脂組成物が硬化するまでの時間(硬化時間)を測定した。
(4) Fast curability (Measurement of cure speed)
0.57 parts by weight of a curing accelerator-containing capsule was added to 3 parts by weight of an epoxy resin (EXA-830-CRP, manufactured by DIC) and 2 parts by weight of an acid anhydride curing agent (YH307, manufactured by Mitsubishi Chemical Corporation). After stirring with a revolutionary rotating agitator, the obtained epoxy resin composition was dropped on a glass slide placed on a hot plate heated to 210 ° C., and the time until the epoxy resin composition was cured (curing Time).

Figure 0005677922
Figure 0005677922

本発明によれば、硬化性樹脂組成物に配合された場合に優れた熱保存安定性及び速硬化性を発揮することができる硬化剤及び/又は硬化促進剤内包カプセルを提供することができる。また、本発明によれば、該硬化剤及び/又は硬化促進剤内包カプセルを含有する熱硬化性樹脂組成物を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, when it mix | blends with a curable resin composition, the hardening | curing agent and / or hardening accelerator inclusion capsule which can exhibit the outstanding heat | fever storage stability and rapid sclerosis | hardenability can be provided. Moreover, according to this invention, the thermosetting resin composition containing this hardening | curing agent and / or hardening accelerator inclusion capsule can be provided.

Claims (2)

コア剤として硬化剤及び/又は硬化促進剤を内包する硬化剤及び/又は硬化促進剤内包カプセルであって、
前記コア剤を被覆するシェルは、微細孔を有し、かつ、表面に、フッ素元素を含有するシロキサン化合物を有する
ことを特徴とする硬化剤及び/又は硬化促進剤内包カプセル。
A curing agent and / or a curing accelerator-encapsulating capsule containing a curing agent and / or a curing accelerator as a core agent,
The shell covering the core agent has fine pores, and has a siloxane compound containing elemental fluorine on the surface, and a capsule containing a curing agent and / or a curing accelerator.
請求項1記載の硬化剤及び/又は硬化促進剤内包カプセルと、熱硬化性化合物とを含有することを特徴とする熱硬化性樹脂組成物。 A thermosetting resin composition comprising the encapsulating capsule according to claim 1 and / or a curing accelerator, and a thermosetting compound.
JP2011211404A 2011-09-27 2011-09-27 Curing agent and / or curing accelerator encapsulating capsule, and thermosetting resin composition Active JP5677922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011211404A JP5677922B2 (en) 2011-09-27 2011-09-27 Curing agent and / or curing accelerator encapsulating capsule, and thermosetting resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011211404A JP5677922B2 (en) 2011-09-27 2011-09-27 Curing agent and / or curing accelerator encapsulating capsule, and thermosetting resin composition

Publications (2)

Publication Number Publication Date
JP2013071988A JP2013071988A (en) 2013-04-22
JP5677922B2 true JP5677922B2 (en) 2015-02-25

Family

ID=48476753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011211404A Active JP5677922B2 (en) 2011-09-27 2011-09-27 Curing agent and / or curing accelerator encapsulating capsule, and thermosetting resin composition

Country Status (1)

Country Link
JP (1) JP5677922B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015232118A (en) * 2014-05-14 2015-12-24 積水化学工業株式会社 Water soluble curing agent- and/or curing accelerator-including capsule and thermosetting resin composition
JP2016035056A (en) * 2014-07-31 2016-03-17 積水化学工業株式会社 Microcapsule for curing epoxy resin, and epoxy resin composition
US9587076B2 (en) * 2014-09-23 2017-03-07 The Boeing Company Polymer nanoparticles for controlling resin reaction rates
US10400072B2 (en) 2016-04-25 2019-09-03 3M Innovative Properties Company Composite particles for curing epoxy resin compositions and curable and cured epoxy resin compositions prepared using the particles

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02300229A (en) * 1989-05-16 1990-12-12 Sumitomo Bakelite Co Ltd One-component epoxy resin composition
JPH03122114A (en) * 1989-10-06 1991-05-24 Somar Corp Curing agent composition, production thereof and thermosetting epoxy resin composition
JPH07304968A (en) * 1994-03-15 1995-11-21 Toray Ind Inc Microencapsulated curing agent, production thereof, thermosetting resin composition, prepreg, and fiber-reinforced composite material
JP3469370B2 (en) * 1995-09-14 2003-11-25 株式会社東芝 Microcapsule-type curing accelerator and resin composition
GB9909763D0 (en) * 1998-09-12 1999-06-23 Cehmcolloids Ltd Cluring of resins
JP2000159861A (en) * 1998-12-01 2000-06-13 Hitachi Ltd Production of microcapsular cure accelerator

Also Published As

Publication number Publication date
JP2013071988A (en) 2013-04-22

Similar Documents

Publication Publication Date Title
JP5374343B2 (en) Core-shell particle and method for producing core-shell particle
CN110327858B (en) Hollow particles, method for the production thereof, use thereof and method for producing microencapsulated particles
JP5677922B2 (en) Curing agent and / or curing accelerator encapsulating capsule, and thermosetting resin composition
TWI658059B (en) Aluminum chelate-based latent hardener, method for producing the same, and thermosetting epoxy resin composition
WO2016111314A9 (en) Hollow particles, method for producing same, use thereof, and method for producing microcapsule particles
JP5845044B2 (en) Curing agent and / or curing accelerator encapsulating capsule, and thermosetting resin composition
JP2006291090A (en) Hollow resin fine particle, method of manufacturing hollow resin fine particle, and composite material
JP5438659B2 (en) Method for producing curing agent and / or curing accelerator-encapsulated capsule, curing agent and / or curing accelerator-encapsulated capsule, and thermosetting resin composition
WO2014038033A1 (en) Production method for curing agent and/or curing accelerant complex particles, curing agent and/or curing accelerant complex particles, and heat-curable resin composition
JP5620323B2 (en) Method for producing curing agent and / or curing accelerator composite particle, curing agent and / or curing accelerator composite particle, and thermosetting resin composition
JP5651509B2 (en) Shaped particles and method for producing the same
TW201609763A (en) Aluminum chelate-based latent curing agent and production method therefor
JP5608568B2 (en) Curing agent and / or curing accelerator composite particles
JP5775416B2 (en) Curing agent and / or curing accelerator encapsulating capsule, and thermosetting resin composition
JP5933977B2 (en) Curing agent and / or curing accelerator encapsulating capsule, and thermosetting resin composition
TWI551619B (en) Hardening agent and / or hardening accelerator composite particles, hardening agent and / or hardening accelerator composite particles, and thermosetting resin composition
JP2016035056A (en) Microcapsule for curing epoxy resin, and epoxy resin composition
JP2013215685A (en) Production method for liquid enclosing capsule, liquid enclosing capsule and capsule containing composition
JP5485830B2 (en) Epoxy resin curing microcapsules
JP2011225666A (en) Epoxy resin composition
JP2012140547A (en) Method for producing curing agent and/or curing accelerator composite particle
JP5941318B2 (en) Curing agent and / or curing accelerator encapsulating capsule, and thermosetting resin composition
JP2015232118A (en) Water soluble curing agent- and/or curing accelerator-including capsule and thermosetting resin composition
JP2012136650A (en) Hardener and/or hardening promoter-including capsule, and epoxy resin composition
JP2015226899A (en) Micro capsule and thermosetting adhesive composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150105

R151 Written notification of patent or utility model registration

Ref document number: 5677922

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250