JP5374343B2 - Core-shell particle and method for producing core-shell particle - Google Patents

Core-shell particle and method for producing core-shell particle Download PDF

Info

Publication number
JP5374343B2
JP5374343B2 JP2009277611A JP2009277611A JP5374343B2 JP 5374343 B2 JP5374343 B2 JP 5374343B2 JP 2009277611 A JP2009277611 A JP 2009277611A JP 2009277611 A JP2009277611 A JP 2009277611A JP 5374343 B2 JP5374343 B2 JP 5374343B2
Authority
JP
Japan
Prior art keywords
core
polymer
shell
hydrophobic
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009277611A
Other languages
Japanese (ja)
Other versions
JP2011115755A (en
Inventor
恭幸 山田
道也 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2009277611A priority Critical patent/JP5374343B2/en
Publication of JP2011115755A publication Critical patent/JP2011115755A/en
Application granted granted Critical
Publication of JP5374343B2 publication Critical patent/JP5374343B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide core-shell particles used as an epoxy resin curing accelerator and capable of enhancing the storage stability of an epoxy resin composition and the reliability of cured matter, and a method for manufacturing the core-shell particles. <P>SOLUTION: The core-shell particle includes a core agent in a shell comprising a polymer. The polymer contains a thermoplastic polymer having a hydrophilic group and a hydrophobic group and the core agent is a hydrophobic imidazole compound. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、エポキシ樹脂用硬化促進剤として用いられ、エポキシ樹脂組成物の貯蔵安定性及び硬化物の信頼性を高めることのできるコアシェル粒子に関する。また、本発明は、該コアシェル粒子の製造方法に関する。 The present invention relates to a core-shell particle that can be used as a curing accelerator for an epoxy resin and can improve the storage stability of the epoxy resin composition and the reliability of the cured product. The present invention also relates to a method for producing the core-shell particles.

エポキシ樹脂は、接着剤、シール剤、コーティング剤等の様々な用途に用いられている。一般に、エポキシ樹脂には、硬化反応を進行させるための成分として硬化剤が、また、硬化性を向上させるための成分として硬化促進剤が添加される。特に、硬化剤又は硬化促進剤とエポキシ樹脂とを一液にするために、潜在性をもたせた硬化剤又は硬化促進剤が多用されている。 Epoxy resins are used in various applications such as adhesives, sealants, and coating agents. Generally, a curing agent is added to the epoxy resin as a component for causing the curing reaction to proceed, and a curing accelerator is added as a component for improving the curability. In particular, in order to make the curing agent or the curing accelerator and the epoxy resin into one liquid, a latent curing agent or curing accelerator is frequently used.

例えば、特許文献1に記載の異方導電性接着剤においては、平均粒径が0.1〜3μmであり、マイクロカプセル壁材膜の厚さが0.01〜0.3μmであるマイクロカプセル化イミダゾール誘導体エポキシ化合物が用いられている。
しかしながら、このようなマイクロカプセル化イミダゾール誘導体エポキシ化合物は、イミダゾール誘導体とエポキシ化合物とを途中段階まで反応させ、反応生成物を微粉砕して得られた粉体であり、イミダゾール誘導体とエポキシ化合物との接触界面が硬化しているにすぎない。そのため、このようなマイクロカプセル化イミダゾール誘導体エポキシ化合物をエポキシ樹脂用硬化剤又は硬化促進剤として用いる場合には、時間の経過とともに硬化反応が進行しやすく、充分な貯蔵安定性が得られない。
For example, in the anisotropic conductive adhesive described in Patent Document 1, microencapsulation having an average particle diameter of 0.1 to 3 μm and a microcapsule wall material film thickness of 0.01 to 0.3 μm Imidazole derivative epoxy compounds are used.
However, such a microencapsulated imidazole derivative epoxy compound is a powder obtained by reacting an imidazole derivative and an epoxy compound up to an intermediate stage and finely pulverizing the reaction product. The contact interface is only cured. Therefore, when such a microencapsulated imidazole derivative epoxy compound is used as a curing agent or curing accelerator for an epoxy resin, the curing reaction tends to proceed with time, and sufficient storage stability cannot be obtained.

そこで、硬化反応を途中段階まで進行させることでマイクロカプセル化するのではなく、硬化剤又は硬化促進剤と、シェルとなるポリマーとが溶解された溶液を用い、所定の方法によってポリマーを析出させることで、硬化剤又は硬化促進剤を内包するマイクロカプセルを製造する方法が検討されている。
例えば、特許文献2には、アミン化合物と、有機溶媒中に所定のポリマーからなる膜物質が溶解された疎水性溶液とを、混合して溶解し、これを乳化剤を溶解した水性媒体中に乳化分散させた後、加熱して上記有機溶媒を除去することにより、上記アミン化合物と膜物質とを相分離させて膜物質によってアミン化合物を被覆保護するマイクロカプセルの製法が記載されている。
Therefore, rather than microencapsulating by proceeding the curing reaction to an intermediate stage, using a solution in which a curing agent or a curing accelerator and a shell polymer are dissolved, the polymer is precipitated by a predetermined method. Thus, a method for producing a microcapsule containing a curing agent or a curing accelerator has been studied.
For example, in Patent Document 2, an amine compound and a hydrophobic solution in which a film substance made of a predetermined polymer is dissolved in an organic solvent are mixed and dissolved, and this is emulsified in an aqueous medium in which an emulsifier is dissolved. A method for producing a microcapsule is described in which after the dispersion, the organic solvent is removed by heating to phase-separate the amine compound and the membrane material, and the amine compound is coated and protected by the membrane material.

しかしながら、特許文献2に記載の方法では、使用するアミン化合物及び膜物質の極性によっては、相分離が不充分となってコアシェル構造が形成されないことがある。また、特許文献2に記載の方法では、球形のマイクロカプセルを製造することが困難であり、マイクロカプセルのアスペクト比が大きくなる。マイクロカプセルのアスペクト比が大きくなると、シェル厚みが一定ではなくなり、このようなマイクロカプセルをエポキシ樹脂用硬化剤又は硬化促進剤として用いる場合には、貯蔵中に部分的に硬化剤又は硬化促進剤が滲み出してエポキシ樹脂組成物の貯蔵安定性が低下したり、硬化が不均一となって硬化物の信頼性が低下したりする等の問題が生じる。 However, in the method described in Patent Document 2, depending on the polarity of the amine compound and membrane material used, phase separation may be insufficient and a core-shell structure may not be formed. Moreover, in the method described in Patent Document 2, it is difficult to produce spherical microcapsules, and the aspect ratio of the microcapsules is increased. When the aspect ratio of the microcapsules is increased, the shell thickness is not constant, and when such microcapsules are used as a curing agent or a curing accelerator for epoxy resins, a part of the curing agent or the curing accelerator is not stored during storage. There are problems such as oozing out and the storage stability of the epoxy resin composition being lowered, and the curing being non-uniform and the reliability of the cured product being lowered.

特許第3981341号公報Japanese Patent No. 3981341 特許第3411049号公報Japanese Patent No. 3411049

本発明は、エポキシ樹脂用硬化促進剤として用いられ、エポキシ樹脂組成物の貯蔵安定性及び硬化物の信頼性を高めることのできるコアシェル粒子を提供することを目的とする。また、本発明は、該コアシェル粒子の製造方法を提供することを目的とする。 An object of this invention is to provide the core-shell particle which is used as a hardening accelerator for epoxy resins, and can improve the storage stability of an epoxy resin composition, and the reliability of hardened | cured material. Another object of the present invention is to provide a method for producing the core-shell particles.

本発明は、ポリマーからなるシェルに、コア剤を内包するコアシェル粒子であって、前記ポリマーは、疎水性イミダゾール化合物と反応することのできる親水性基と、疎水性基とを有する熱可塑性ポリマーを含有し、前記コア剤は、疎水性イミダゾール化合物であるコアシェル粒子である。
また、本発明は、本発明のコアシェル粒子を製造する方法であって、ポリマーとコア剤とを、前記ポリマーと前記コア剤とを共に溶解することのできる溶剤に溶解させて、前記ポリマーと前記コア剤とを含有する混合溶液を調製する工程と、前記混合溶液を水性媒体中に乳化分散させる工程と、前記水性媒体中で前記溶剤を除去する工程とを有するコアシェル粒子の製造方法である。
以下、本発明を詳述する。
The present invention is a core-shell particle in which a core agent is encapsulated in a shell made of a polymer, and the polymer is a thermoplastic polymer having a hydrophilic group capable of reacting with a hydrophobic imidazole compound and a hydrophobic group. The core agent is a core-shell particle that is a hydrophobic imidazole compound.
Further, the present invention is a method for producing the core-shell particles of the present invention, wherein a polymer and a core agent are dissolved in a solvent capable of dissolving both the polymer and the core agent, It is a method for producing core-shell particles, comprising a step of preparing a mixed solution containing a core agent, a step of emulsifying and dispersing the mixed solution in an aqueous medium, and a step of removing the solvent in the aqueous medium.
The present invention is described in detail below.

本発明者らは、ポリマーからなるシェルに、コア剤を内包するコアシェル粒子であって、ポリマーが親水性基と疎水性基とを有する熱可塑性ポリマーを含有し、コア剤が疎水性イミダゾール化合物であるコアシェル粒子は、エポキシ樹脂用硬化促進剤として好適に用いられ、エポキシ樹脂組成物の貯蔵安定性及び硬化物の信頼性を高めることができることを見出し、本発明を完成させるに至った。 The inventors of the present invention provide core-shell particles encapsulating a core agent in a polymer shell, wherein the polymer contains a thermoplastic polymer having a hydrophilic group and a hydrophobic group, and the core agent is a hydrophobic imidazole compound. A certain core-shell particle is suitably used as a curing accelerator for an epoxy resin, and it has been found that the storage stability of the epoxy resin composition and the reliability of the cured product can be improved, and the present invention has been completed.

まず、本発明のコアシェル粒子について説明する。
本発明のコアシェル粒子は、ポリマーからなるシェルに、コア剤を内包するコアシェル粒子である。
First, the core-shell particles of the present invention will be described.
The core-shell particles of the present invention are core-shell particles in which a core agent is encapsulated in a polymer shell.

上記ポリマーは、親水性基と疎水性基とを有する熱可塑性ポリマーを含有する。
本発明のコアシェル粒子は、例えば、上記ポリマーと上記コア剤とを溶剤に溶解させて得られる混合溶液を、水性媒体中に乳化分散させた後、この水性媒体中で溶剤を除去し、上記ポリマーと上記コア剤とを相分離させ、上記ポリマーを析出させてコアシェル構造を形成することにより得られる。このとき、上記ポリマーが上記親水性基と疎水性基とを有する熱可塑性ポリマーを含有することにより、上記ポリマーは上記コア剤と充分に相分離することができ、更に、上記混合溶液は上記水性媒体中で充分に安定なエマルジョンを形成できることから上記ポリマーからなる相の上記水性媒体に接する表面が平滑に維持される。
そのため、本発明のコアシェル粒子は、上記ポリマーが上記親水性基と疎水性基とを有する熱可塑性ポリマーを含有することにより、コアシェル構造を有するとともに、アスペクト比の小さいコアシェル粒子となる。
The polymer contains a thermoplastic polymer having a hydrophilic group and a hydrophobic group.
The core-shell particles of the present invention are obtained by, for example, emulsifying and dispersing a mixed solution obtained by dissolving the polymer and the core agent in a solvent, and then removing the solvent in the aqueous medium. And the core agent are phase-separated and the polymer is precipitated to form a core-shell structure. At this time, since the polymer contains the thermoplastic polymer having the hydrophilic group and the hydrophobic group, the polymer can be sufficiently phase-separated from the core agent. Since a sufficiently stable emulsion can be formed in the medium, the surface of the polymer phase in contact with the aqueous medium is maintained smooth.
Therefore, the core-shell particle of the present invention is a core-shell particle having a core-shell structure and a small aspect ratio, when the polymer contains the thermoplastic polymer having the hydrophilic group and the hydrophobic group.

なお、コアシェル粒子のアスペクト比が小さいと、シェル厚みがほぼ一定となり、このようなコアシェル粒子をエポキシ樹脂用硬化促進剤として用いることで、貯蔵中に部分的に上記コア剤が滲み出してエポキシ樹脂組成物の貯蔵安定性が低下したり、硬化が不均一となって硬化物の信頼性が低下したりする等の問題を軽減することができる。 In addition, when the aspect ratio of the core-shell particles is small, the shell thickness becomes almost constant. By using such core-shell particles as a curing accelerator for epoxy resin, the core agent partially oozes out during storage, and the epoxy resin Problems such as deterioration in storage stability of the composition and reduction in reliability of the cured product due to non-uniform curing can be reduced.

上記親水性基は特に限定されないが、後述するコア剤に用いられる疎水性イミダゾール化合物と反応することのできる官能基が好ましい。
上記疎水性イミダゾール化合物と反応することのできる官能基として、例えば、グリシジル基、水酸基、カルボキシル基、スルホ基等が挙げられる。なかでも、グリシジル基が好ましい。
Although the said hydrophilic group is not specifically limited, The functional group which can react with the hydrophobic imidazole compound used for the core agent mentioned later is preferable.
Examples of the functional group capable of reacting with the hydrophobic imidazole compound include a glycidyl group, a hydroxyl group, a carboxyl group, and a sulfo group . Of these, a glycidyl group is preferable.

上記疎水性基は特に限定されず、例えば、フェニル基、メチル基、エチル基、プロピル基、メタクリル基等が挙げられる。なかでも、フェニル基が好ましい。 The hydrophobic group is not particularly limited, and examples thereof include a phenyl group, a methyl group, an ethyl group, a propyl group, and a methacryl group. Of these, a phenyl group is preferred.

上記親水性基と疎水性基とを有する熱可塑性ポリマーとして、具体的には、例えば、ポリスチレン誘導体、ポリメタクリル酸誘導体等が挙げられる。なかでも、ポリスチレン誘導体が好ましい。
上記ポリスチレン誘導体は、上記親水性基と上記疎水性基とを有するポリスチレン誘導体であれば特に限定されないが、例えば、上記親水性基としてグリシジル基を有し、上記疎水性基としてポリスチレン骨格に由来するフェニル基を有するポリスチレン誘導体が好ましい。
Specific examples of the thermoplastic polymer having a hydrophilic group and a hydrophobic group include polystyrene derivatives and polymethacrylic acid derivatives. Of these, polystyrene derivatives are preferred.
The polystyrene derivative is not particularly limited as long as it is a polystyrene derivative having the hydrophilic group and the hydrophobic group. For example, the polystyrene derivative has a glycidyl group as the hydrophilic group and is derived from a polystyrene skeleton as the hydrophobic group. A polystyrene derivative having a phenyl group is preferred.

上記親水性基と疎水性基とを有する熱可塑性ポリマーは、分子中の親水性基の数と疎水性基の数との比が0.5:9.5〜3.5:6.5であることが好ましい。上記範囲よりも分子中の親水性基の数が少ないと、上記ポリマーの疎水性が大きくなりすぎて、粒子がコアシェル粒子とならないことがある。上記範囲よりも分子中の親水性基の数が多いと、上記ポリマーの親水性が大きくなりすぎて、コアシェル粒子のアスペクト比が大きくなることがある。上記親水性基と疎水性基とを有する熱可塑性ポリマーは、分子中の親水性基の数と疎水性基の数との比が2.0:8.0〜3.1:6.9であることがより好ましい。 The thermoplastic polymer having a hydrophilic group and a hydrophobic group has a ratio of the number of hydrophilic groups to the number of hydrophobic groups in the molecule of 0.5: 9.5 to 3.5: 6.5. Preferably there is. If the number of hydrophilic groups in the molecule is less than the above range, the hydrophobicity of the polymer becomes too large, and the particles may not become core-shell particles. If the number of hydrophilic groups in the molecule is larger than the above range, the hydrophilicity of the polymer may become too high, and the aspect ratio of the core-shell particles may increase. The thermoplastic polymer having a hydrophilic group and a hydrophobic group has a ratio of the number of hydrophilic groups to the number of hydrophobic groups in the molecule of 2.0: 8.0 to 3.1: 6.9. More preferably.

上記親水性基と疎水性基とを有する熱可塑性ポリマーの重量平均分子量は特に限定されないが、好ましい下限が5000、好ましい上限が10万である。上記親水性基と疎水性基とを有する熱可塑性ポリマーの重量平均分子量が5000未満であると、コアシェル粒子の耐熱性が低下して、このようなコアシェル粒子をエポキシ樹脂用硬化促進剤として用いる場合には、所望のエポキシ樹脂の硬化温度に到達する前に硬化が始まってしまうことがあり、また、コアシェル粒子の耐溶剤性が低下して、このようなコアシェル粒子をエポキシ樹脂用硬化促進剤として溶剤と混合して用いる場合には、シェルが溶解してエポキシ樹脂組成物の長期の貯蔵安定性が低下することがある。上記親水性基と疎水性基とを有する熱可塑性ポリマーの重量平均分子量が10万を超えると、上記ポリマーの析出速度が速くなりすぎて粒子がコアシェル粒子とならないことがあり、また、コアシェル粒子のアスペクト比が大きくなることがある。 The weight average molecular weight of the thermoplastic polymer having the hydrophilic group and the hydrophobic group is not particularly limited, but a preferable lower limit is 5000 and a preferable upper limit is 100,000. When the weight average molecular weight of the thermoplastic polymer having the hydrophilic group and the hydrophobic group is less than 5000, the heat resistance of the core-shell particle is lowered, and the core-shell particle is used as a curing accelerator for epoxy resin. In some cases, the curing may start before reaching the curing temperature of the desired epoxy resin, and the solvent resistance of the core-shell particles is reduced, and such core-shell particles are used as a curing accelerator for epoxy resins. When used by mixing with a solvent, the shell may dissolve and the long-term storage stability of the epoxy resin composition may decrease. When the weight average molecular weight of the thermoplastic polymer having the hydrophilic group and the hydrophobic group exceeds 100,000, the precipitation rate of the polymer may become too fast and the particles may not become core-shell particles. Aspect ratio may increase.

上記ポリマーは、更に、無機ポリマーを含有してもよい。
上記ポリマーが上記無機ポリマーを含有することで、コアシェル粒子は耐溶剤性が向上し、溶剤と混合する場合であってもエポキシ樹脂用硬化促進剤として好適に用いられる。
上記無機ポリマーは特に限定されないが、分子中に2個以上の炭素数1〜6のアルコキシ基を有し、かつ、Si、Al、Zr及びTiからなる群より選択される少なくとも1種の金属元素を含有する有機金属化合物の重合体が好ましい。このような有機金属化合物の重合体として、例えば、シリコーン樹脂、ポリボロシロキサン樹脂、ポリカルボシラン樹脂、ポリシラスチレン樹脂、ポリシラザン樹脂、ポリチタノカルボシラン樹脂等が挙げられる。なかでも、シリコーン樹脂が好ましく、グリシジル基を有するシリコーン樹脂がより好ましい。
The polymer may further contain an inorganic polymer.
When the polymer contains the inorganic polymer, the core-shell particles have improved solvent resistance and can be suitably used as a curing accelerator for epoxy resins even when mixed with a solvent.
The inorganic polymer is not particularly limited, and has at least one metal element selected from the group consisting of Si, Al, Zr, and Ti, having two or more alkoxy groups having 1 to 6 carbon atoms in the molecule. The polymer of the organometallic compound containing is preferable. Examples of such a polymer of an organometallic compound include silicone resins, polyborosiloxane resins, polycarbosilane resins, polysilastyrene resins, polysilazane resins, and polytitanocarbosilane resins. Among these, a silicone resin is preferable, and a silicone resin having a glycidyl group is more preferable.

上記ポリマーが上記無機ポリマーを含有する場合、上記親水性基と疎水性基とを有する熱可塑性ポリマーの配合量と、上記無機ポリマーの配合量との重量比が4:6〜7:3であることが好ましい。上記範囲よりも上記親水性基と疎水性基とを有する熱可塑性ポリマーの配合量が少ないと、コアシェル粒子のアスペクト比が大きくなることがあり、また、コアシェル粒子の耐熱性が大きくなりすぎて、温度によっては、加熱しても上記コア剤が放出されないことがある。上記範囲よりも上記親水性基と疎水性基とを有する熱可塑性ポリマーの配合量が多いと、コアシェル粒子の耐溶剤性が低下して、このようなコアシェル粒子をエポキシ樹脂用硬化促進剤として溶剤と混合して用いる場合には、シェルが溶解して
エポキシ樹脂組成物の長期の貯蔵安定性が低下することがある。上記親水性基と疎水性基とを有する熱可塑性ポリマーの配合量と、上記無機ポリマーの配合量との重量比は、5:5〜6:4であることがより好ましい。
When the said polymer contains the said inorganic polymer, the weight ratio of the compounding quantity of the thermoplastic polymer which has the said hydrophilic group and hydrophobic group, and the compounding quantity of the said inorganic polymer is 4: 6-7: 3. It is preferable. When the blending amount of the thermoplastic polymer having the hydrophilic group and the hydrophobic group is smaller than the above range, the aspect ratio of the core-shell particle may be increased, and the heat resistance of the core-shell particle is excessively increased. Depending on the temperature, the core agent may not be released even when heated. When the blending amount of the thermoplastic polymer having the hydrophilic group and the hydrophobic group is larger than the above range, the solvent resistance of the core-shell particle is lowered, and such a core-shell particle is used as a curing accelerator for epoxy resin. When mixed and used, the shell may dissolve and the long-term storage stability of the epoxy resin composition may decrease. The weight ratio between the blending amount of the thermoplastic polymer having the hydrophilic group and the hydrophobic group and the blending amount of the inorganic polymer is more preferably 5: 5 to 6: 4.

上記コア剤は、疎水性イミダゾール化合物である。
なお、本明細書中、疎水性イミダゾール化合物とは、水に最大限溶解させたときの濃度が5重量%未満であるイミダゾール化合物を意味する。
The core agent is a hydrophobic imidazole compound.
In the present specification, the hydrophobic imidazole compound means an imidazole compound having a concentration of less than 5% by weight when dissolved in water to the maximum.

上記疎水性イミダゾール化合物は、水に最大限溶解させたときの濃度が5重量%未満であれば特に限定されないが、炭素数11以上の炭化水素基を有するイミダゾール化合物が好ましい。
上記炭素数11以上の炭化水素基を有するイミダゾール化合物として、例えば、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、1−シアノエチルイミダゾール、1−シアノエチル−2−フェニルイミダゾリウムトリメリテイト、2,4−ジアミノ−6−[2’−ウンデシルイミダゾリル−(1’)−エチル−s−トリアジン等が挙げられる。なかでも、2−ウンデシルイミダゾールが好ましい。
Although the said hydrophobic imidazole compound will not be specifically limited if the density | concentration when dissolved in water to the maximum is less than 5 weight%, The imidazole compound which has a C11 or more hydrocarbon group is preferable.
Examples of the imidazole compound having a hydrocarbon group having 11 or more carbon atoms include 2-undecylimidazole, 2-heptadecylimidazole, 1-cyanoethylimidazole, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4 -Diamino-6- [2'-undecylimidazolyl- (1 ')-ethyl-s-triazine and the like. Of these, 2-undecylimidazole is preferable.

本発明のコアシェル粒子における上記コア剤の内包率は特に限定されないが、好ましい下限が20重量%、好ましい上限が50重量%である。上記コア剤の内包率が20重量%未満であると、コアシェル粒子のシェル厚みが増大し、温度によっては、加熱しても上記コア剤が放出されないことがある。上記コア剤の内包率が50重量%を超えると、コアシェル粒子のシェル厚みが低下し、上記シェルの保持性が低下することがある。本発明のコアシェル粒子における上記コア剤の内包率のより好ましい下限は30重量%、より好ましい上限は40重量%である。
なお、本発明のコアシェル粒子におけるシェル厚みは特に限定されないが、好ましい下限が0.05μm、好ましい上限が1.0μmであり、より好ましい下限が0.1μm、より好ましい上限が0.5μmである。
The inclusion ratio of the core agent in the core-shell particles of the present invention is not particularly limited, but a preferred lower limit is 20% by weight and a preferred upper limit is 50% by weight. When the encapsulation rate of the core agent is less than 20% by weight, the shell thickness of the core-shell particles increases, and depending on the temperature, the core agent may not be released even when heated. When the encapsulation rate of the core agent exceeds 50% by weight, the shell thickness of the core-shell particles may decrease, and the retention of the shell may decrease. The more preferable lower limit of the inclusion ratio of the core agent in the core-shell particles of the present invention is 30% by weight, and the more preferable upper limit is 40% by weight.
The shell thickness in the core-shell particles of the present invention is not particularly limited, but a preferable lower limit is 0.05 μm, a preferable upper limit is 1.0 μm, a more preferable lower limit is 0.1 μm, and a more preferable upper limit is 0.5 μm.

更に、上記コア剤の内包率が上記範囲を外れると、コアシェル粒子を製造する際の上記ポリマーと上記コア剤との量の割合が大きく変化することから、コアシェル構造が形成されなかったり、コアシェル粒子のアスペクト比が大きくなったりすることがある。 Furthermore, if the encapsulation rate of the core agent is out of the above range, the ratio of the amount of the polymer and the core agent in producing the core-shell particles varies greatly, so that the core-shell structure is not formed or the core-shell particles The aspect ratio may increase.

本発明のコアシェル粒子の平均粒子径は特に限定されないが、好ましい下限が0.5μm、好ましい上限が5.0μmである。上記平均粒子径が0.5μm未満であると、上記範囲の内包率を維持しようとすると、コアシェル粒子のシェル厚みが低下し、上記シェルの保持性が低下することがある。上記平均粒子径が5.0μmを超えると、コアシェル粒子をエポキシ樹脂用硬化促進剤として用いる場合に、加熱により上記コア剤が放出された後、大きなボイドが生じて硬化物の信頼性が低下することがある。本発明のコアシェル粒子の平均粒子径のより好ましい上限は3.0μmである。 The average particle diameter of the core-shell particles of the present invention is not particularly limited, but a preferable lower limit is 0.5 μm and a preferable upper limit is 5.0 μm. When the average particle diameter is less than 0.5 μm, the shell thickness of the core-shell particles may be lowered and the retention of the shell may be lowered when maintaining the inclusion ratio in the above range. When the average particle diameter exceeds 5.0 μm, when the core-shell particles are used as a curing accelerator for epoxy resin, after the core agent is released by heating, a large void is generated to reduce the reliability of the cured product. Sometimes. A more preferable upper limit of the average particle diameter of the core-shell particles of the present invention is 3.0 μm.

本発明のコアシェル粒子のアスペクト比は特に限定されないが、好ましい上限が1.1である。上記アスペクト比が1.1を超えると、コアシェル粒子のシェル厚みが一定ではなくなり、このようなコアシェル粒子をエポキシ樹脂用硬化促進剤として用いる場合には、貯蔵中に部分的に上記コア剤が滲み出してエポキシ樹脂組成物の貯蔵安定性が低下したり、硬化が不均一となって硬化物の信頼性が低下したりすることがある。本発明のコアシェル粒子のアスペクト比のより好ましい上限は1.05である。 The aspect ratio of the core-shell particle of the present invention is not particularly limited, but a preferable upper limit is 1.1. When the aspect ratio exceeds 1.1, the shell thickness of the core-shell particles is not constant, and when the core-shell particles are used as an epoxy resin curing accelerator, the core agent partially bleeds during storage. In some cases, the storage stability of the epoxy resin composition may be reduced, or the curing may be uneven and the reliability of the cured product may be reduced. A more preferable upper limit of the aspect ratio of the core-shell particle of the present invention is 1.05.

本発明のコアシェル粒子の粒子径のCV値は特に限定されないが、好ましい上限が50%である。上記粒子径のCV値が50%を超えると、コアシェル粒子をエポキシ樹脂用硬化促進剤として用いる場合には、貯蔵中に部分的に上記コア剤が滲み出してエポキシ樹脂組
成物の貯蔵安定性が低下したり、硬化が不均一となって硬化物の信頼性が低下したりすることがある。上記粒子径のCV値のより好ましい上限は30%である。
The CV value of the particle diameter of the core-shell particles of the present invention is not particularly limited, but a preferable upper limit is 50%. When the CV value of the particle diameter exceeds 50%, when the core-shell particle is used as an epoxy resin curing accelerator, the core agent partially oozes out during storage, and the storage stability of the epoxy resin composition is increased. It may decrease, or the curing may become non-uniform and the reliability of the cured product may decrease. A more preferable upper limit of the CV value of the particle diameter is 30%.

なお、本明細書中、コアシェル粒子の平均粒子径、アスペクト比及び粒子径のCV値は、以下のようにして求めた値を意味する。
コアシェル粒子を、走査型電子顕微鏡を用いて1視野に約100個のコアシェル粒子が観察できる倍率で観察し、任意に選択した50個のコアシェル粒子の最長径及び最短径を、ノギスを用いて測定する。最長径を粒子径とし、粒子径の数平均値を求め、これを平均粒子径とし、最短径に対する最長径の比(最長径/最短径)の数平均値を求め、これをアスペクト比とする。なお、アスペクト比は、1に近くなるほど真球状に近いことを意味する。
また、粒子径のCV値は、下記式(1)で表される。
CV値(%)=(粒子径の標準偏差σ/数平均粒子径Dn)×100 (1)
In the present specification, the average particle diameter, the aspect ratio, and the CV value of the particle diameter of the core-shell particles mean values obtained as follows.
The core-shell particles are observed with a scanning electron microscope at a magnification at which about 100 core-shell particles can be observed in one field of view, and the longest and shortest diameters of 50 arbitrarily selected core-shell particles are measured using a caliper. To do. Using the longest diameter as the particle diameter, the number average value of the particle diameters is obtained, and this is used as the average particle diameter. The number average value of the ratio of the longest diameter to the shortest diameter (longest diameter / shortest diameter) is obtained, and this is used as the aspect ratio. . The aspect ratio means that the closer to 1, the closer to a true sphere.
Further, the CV value of the particle diameter is represented by the following formula (1).
CV value (%) = (standard deviation σ of particle diameter / number average particle diameter Dn) × 100 (1)

本発明のコアシェル粒子は、100〜200℃以上の温度に加熱されると上記シェルが溶解又は崩壊し、上記コア剤、即ち、上記疎水性イミダゾール化合物を放出することから、エポキシ樹脂用硬化促進剤として好適に用いられる。
本発明のコアシェル粒子は、アスペクト比が小さく、シェル厚みがほぼ一定であり、このようなコアシェル粒子をエポキシ樹脂用硬化促進剤として用いることで、貯蔵中に部分的に上記コア剤が滲み出してエポキシ樹脂組成物の貯蔵安定性が低下したり、硬化が不均一となって硬化物の信頼性が低下したりする等の問題を軽減することができる。
When the core-shell particle of the present invention is heated to a temperature of 100 to 200 ° C. or higher, the shell dissolves or disintegrates and releases the core agent, that is, the hydrophobic imidazole compound. Is preferably used.
The core-shell particle of the present invention has a small aspect ratio and a substantially constant shell thickness. By using such a core-shell particle as an epoxy resin curing accelerator, the core agent partially oozes out during storage. Problems, such as the storage stability of an epoxy resin composition falling, or the reliability of hardened | cured material falling by hardening non-uniform | heterogenous, can be reduced.

次に、本発明のコアシェル粒子の製造方法について説明する。
本発明のコアシェル粒子の製造方法においては、まず、上述したようなポリマーとコア剤とを、上記ポリマーと上記コア剤とを共に溶解することのできる溶剤に溶解させて、上記ポリマーと上記コア剤とを含有する混合溶液を調製する工程を行う。
Next, the manufacturing method of the core-shell particle of this invention is demonstrated.
In the method for producing core-shell particles of the present invention, first, the polymer and the core agent as described above are dissolved in a solvent capable of dissolving both the polymer and the core agent, and the polymer and the core agent are dissolved. The process of preparing the mixed solution containing these is performed.

上記溶剤は、上記ポリマーと上記コア剤とを共に溶解することができれば特に限定されず、使用するポリマーとコア剤とに合わせて適宜選択されるが、例えば、メチルイソブチルケトン、シクロヘキサンとイソプロピルアルコールとの混合溶剤、酢酸エチルとイソプロピルアルコールとの混合溶剤、メチルエチルケトンとイソプロピルアルコールとの混合溶剤等が挙げられる。 The solvent is not particularly limited as long as it can dissolve both the polymer and the core agent, and is appropriately selected according to the polymer and the core agent to be used. For example, methyl isobutyl ketone, cyclohexane and isopropyl alcohol And a mixed solvent of ethyl acetate and isopropyl alcohol, a mixed solvent of methyl ethyl ketone and isopropyl alcohol, and the like.

本発明のコアシェル粒子の製造方法においては、次いで、上記混合溶液を水性媒体中に乳化分散させる工程を行う。
上記水性媒体は特に限定されず、例えば、水、又は、水とメタノール、エタノール、n−プロピルアルコール、イソプロピルアルコール等の水溶性有機溶剤との混合物等が挙げられる。
上記水性媒体の添加量は特に限定されないが、上記混合溶液100重量部に対する好ましい下限が300重量部、好ましい上限が1000重量部である。
Next, in the method for producing core-shell particles of the present invention, a step of emulsifying and dispersing the mixed solution in an aqueous medium is performed.
The said aqueous medium is not specifically limited, For example, the mixture of water and water-soluble organic solvents, such as methanol, ethanol, n-propyl alcohol, and isopropyl alcohol, etc. are mentioned.
The addition amount of the aqueous medium is not particularly limited, but a preferable lower limit with respect to 100 parts by weight of the mixed solution is 300 parts by weight, and a preferable upper limit is 1000 parts by weight.

上記水性媒体は、必要に応じて、乳化剤を含有してもよい。
上記乳化剤は特に限定されず、例えば、アルキル硫酸スルホン酸塩、アルキルベンゼンスルホン酸塩、アルキル硫酸トリエタノールアミン、ポリオキシエチレンアルキルエーテル等が挙げられる。
The aqueous medium may contain an emulsifier as necessary.
The emulsifier is not particularly limited, and examples thereof include alkyl sulfate sulfonate, alkyl benzene sulfonate, alkyl sulfate triethanolamine, and polyoxyethylene alkyl ether.

上記乳化分散させる方法は特に限定されず、例えば、上記混合溶液に上記水性媒体を滴下し、ホモジナイザーを用いて攪拌する方法、超音波照射により乳化する方法、マイクロチャネル又はSPG膜を通過させて乳化する方法、スプレーで噴霧する方法、転相乳化法等が挙げられる。 The method of emulsifying and dispersing is not particularly limited. For example, the aqueous medium is dropped into the mixed solution and stirred using a homogenizer, the method of emulsifying by ultrasonic irradiation, the microchannel or the SPG membrane is used for emulsification. For example, a spraying method, and a phase inversion emulsification method.

本発明のコアシェル粒子の製造方法においては、次いで、上記水性媒体中で上記溶剤を除去する工程を行う。
上記溶剤を除去する方法は特に限定されず、例えば、加熱しながら減圧する方法、上記ポリマーの貧溶媒を添加する方法等が挙げられる。
In the method for producing core-shell particles of the present invention, a step of removing the solvent in the aqueous medium is then performed.
The method for removing the solvent is not particularly limited, and examples thereof include a method for reducing pressure while heating, a method for adding a poor solvent for the polymer, and the like.

上記水性媒体中で上記溶剤を除去する工程を行うことにより、上記ポリマーと上記コア剤とが相分離し、上記ポリマーが析出してコアシェル構造が形成され、コアシェル粒子分散液が得られる。
なお、上記ポリマーが上記親水性基と疎水性基とを有する熱可塑性ポリマーを含有することにより、上記ポリマーは上記コア剤と充分に相分離することができ、更に、上記混合溶液は上記水性媒体中で充分に安定なエマルジョンを形成できることから上記ポリマーからなる相の上記水性媒体に接する表面が平滑に維持される。そのため、本発明のコアシェル粒子の製造方法によれば、コアシェル構造を有するとともに、アスペクト比の小さいコアシェル粒子を製造することができる。
更に、上記コア剤を上記疎水性イミダゾール化合物とすることにより、上記ポリマーと上記コア剤との相分離をより安定化することができる。
By performing the step of removing the solvent in the aqueous medium, the polymer and the core agent are phase-separated, the polymer is precipitated to form a core-shell structure, and a core-shell particle dispersion is obtained.
In addition, when the polymer contains the thermoplastic polymer having the hydrophilic group and the hydrophobic group, the polymer can be sufficiently phase-separated from the core agent, and the mixed solution can be used as the aqueous medium. Since a sufficiently stable emulsion can be formed therein, the surface of the polymer phase in contact with the aqueous medium is kept smooth. Therefore, according to the method for producing core-shell particles of the present invention, core-shell particles having a core-shell structure and a small aspect ratio can be produced.
Furthermore, the phase separation between the polymer and the core agent can be further stabilized by using the hydrophobic imidazole compound as the core agent.

本発明のコアシェル粒子の製造方法においては、得られたコアシェル粒子分散液中のコアシェル粒子を、純水を用いて繰り返して洗浄した後、真空乾燥等により乾燥してもよい。 In the method for producing core-shell particles of the present invention, the core-shell particles in the obtained core-shell particle dispersion may be repeatedly washed with pure water and then dried by vacuum drying or the like.

以上のような本発明のコアシェル粒子の製造方法によって、上記ポリマーからなるシェルに、上記コア剤を内包するコアシェル粒子が得られる。
本発明のコアシェル粒子の製造方法によって製造されるコアシェル粒子は、アスペクト比が小さく、シェル厚みがほぼ一定であり、このようなコアシェル粒子をエポキシ樹脂用硬化促進剤として用いることで、貯蔵中に部分的に上記コア剤が滲み出してエポキシ樹脂組成物の貯蔵安定性が低下したり、硬化が不均一となって硬化物の信頼性が低下したりする等の問題を軽減することができる。
By the method for producing core-shell particles of the present invention as described above, core-shell particles in which the core agent is encapsulated in the shell made of the polymer are obtained.
The core-shell particles produced by the method for producing core-shell particles of the present invention have a small aspect ratio and a substantially constant shell thickness. By using such a core-shell particle as a curing accelerator for epoxy resin, it is possible to partially In particular, it is possible to reduce problems such as the core agent oozing out and the storage stability of the epoxy resin composition being lowered, or the curing being non-uniform and the reliability of the cured product being lowered.

本発明によれば、エポキシ樹脂用硬化促進剤として用いられ、エポキシ樹脂組成物の貯蔵安定性及び硬化物の信頼性を高めることのできるコアシェル粒子を提供することができる。また、本発明によれば、該コアシェル粒子の製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, it can be used as a hardening accelerator for epoxy resins, and can provide the core-shell particle which can improve the storage stability of an epoxy resin composition, and the reliability of hardened | cured material. Moreover, according to this invention, the manufacturing method of this core-shell particle can be provided.

以下に実施例を掲げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 Examples of the present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

(実施例1)
親水性基と疎水性基とを有する熱可塑性ポリマーとしてマープルーフ(G−0130S、ポリスチレン一部エポキシ置換、日油社製)3重量部と、疎水性イミダゾール化合物として2−ウンデシルイミダゾール3.2重量部と、無機ポリマーとしてシリコーン樹脂(X−41−1053、アルコキシオリゴマー一部エポキシ置換、信越化学工業社製)3重量部とを、シクロヘキサンとイソプロピルアルコール(IPA)との混合溶剤(シクロヘキサン:イソプロピルアルコール(IPA)=9:1)170重量部に溶解させて、混合溶液を得た。この混合溶液に、乳化剤としてポリオキシエチレンラウリルエーテル2重量%を含有する水1000重量部を滴下して、ホモジナイザーを用いて3000rpmで攪拌して乳化分散させた。その後、得られた分散液を減圧装置付反応器で加熱しながら減圧して、溶剤を除去することにより、コアシェル粒子分散液を得た。得られたコアシェル粒子分散液中のコアシェル粒子を、純水を用いて繰り返して洗浄した後、真空乾燥した。
Example 1
As a thermoplastic polymer having a hydrophilic group and a hydrophobic group, 3 parts by weight of Proof (G-0130S, polystyrene partially epoxy-substituted, manufactured by NOF Corporation), and 2-undecylimidazole 3.2 as a hydrophobic imidazole compound. A mixed solvent of cyclohexane and isopropyl alcohol (IPA) (cyclohexane: isopropyl) with 3 parts by weight of a silicone resin (X-41-1053, partially substituted with an alkoxy oligomer, manufactured by Shin-Etsu Chemical Co., Ltd.) as an inorganic polymer. It was dissolved in 170 parts by weight of alcohol (IPA) = 9: 1) to obtain a mixed solution. To this mixed solution, 1000 parts by weight of water containing 2% by weight of polyoxyethylene lauryl ether as an emulsifier was dropped, and the mixture was emulsified and dispersed by stirring at 3000 rpm using a homogenizer. Thereafter, the obtained dispersion was decompressed while being heated in a reactor equipped with a decompression device to remove the solvent, thereby obtaining a core-shell particle dispersion. The core-shell particles in the obtained core-shell particle dispersion were repeatedly washed with pure water and then vacuum-dried.

(実施例2)
親水性基と疎水性基とを有する熱可塑性ポリマーとしてマープルーフ(G−1010S、ポリスチレン一部エポキシ置換、日油社製)3重量部と、疎水性イミダゾール化合物として2−ウンデシルイミダゾール3.2重量部と、無機ポリマーとしてシリコーン樹脂(X−41−1053、アルコキシオリゴマー一部エポキシ置換、信越化学工業社製)3重量部とを、酢酸エチルとイソプロピルアルコール(IPA)との混合溶剤(酢酸エチル:イソプロピルアルコール(IPA)=6:4)170重量部に溶解させて、混合溶液を得た。この混合溶液に、乳化剤としてポリオキシエチレンラウリルエーテル2重量%を含有する水1000重量部を滴下して、ホモジナイザーを用いて3000rpmで攪拌して乳化分散させた。その後、得られた分散液を減圧装置付反応器で加熱しながら減圧して、溶剤を除去することにより、コアシェル粒子分散液を得た。得られたコアシェル粒子分散液中のコアシェル粒子を、純水を用いて繰り返して洗浄した後、真空乾燥した。
(Example 2)
As a thermoplastic polymer having a hydrophilic group and a hydrophobic group, 3 parts by weight of Marproof (G-1010S, polystyrene partially epoxy-substituted, manufactured by NOF Corporation), and 2-undecylimidazole 3.2 as a hydrophobic imidazole compound. A mixed solvent (ethyl acetate) of ethyl acetate and isopropyl alcohol (IPA) with 3 parts by weight of silicone resin (X-41-1053, partially substituted with alkoxy oligomer, manufactured by Shin-Etsu Chemical Co., Ltd.) as an inorganic polymer. : Isopropyl alcohol (IPA) = 6: 4) dissolved in 170 parts by weight to obtain a mixed solution. To this mixed solution, 1000 parts by weight of water containing 2% by weight of polyoxyethylene lauryl ether as an emulsifier was dropped, and the mixture was emulsified and dispersed by stirring at 3000 rpm using a homogenizer. Thereafter, the obtained dispersion was decompressed while being heated in a reactor equipped with a decompression device to remove the solvent, thereby obtaining a core-shell particle dispersion. The core-shell particles in the obtained core-shell particle dispersion were repeatedly washed with pure water and then vacuum-dried.

(実施例3)
親水性基と疎水性基とを有する熱可塑性ポリマーとしてマープルーフ(G−0130S、ポリスチレン一部エポキシ置換、日油社製)2.4重量部と、疎水性イミダゾール化合物として2−ウンデシルイミダゾール3.2重量部と、無機ポリマーとしてシリコーン樹脂(X−41−1053、アルコキシオリゴマー一部エポキシ置換、信越化学工業社製)3.6重量部とを、シクロヘキサンとイソプロピルアルコール(IPA)との混合溶剤(シクロヘキサン:イソプロピルアルコール(IPA)=9:1)170重量部に溶解させて、混合溶液を得た。この混合溶液に、乳化剤としてポリオキシエチレンラウリルエーテル2重量%を含有する水1000重量部を滴下して、ホモジナイザーを用いて3000rpmで攪拌して乳化分散させた。その後、得られた分散液を減圧装置付反応器で加熱しながら減圧して、溶剤を除去することにより、コアシェル粒子分散液を得た。得られたコアシェル粒子分散液中のコアシェル粒子を、純水を用いて繰り返して洗浄した後、真空乾燥した。
(Example 3)
Marpproof (G-0130S, polystyrene partially epoxy-substituted, manufactured by NOF Corporation) as a thermoplastic polymer having a hydrophilic group and a hydrophobic group, and 2-undecylimidazole 3 as a hydrophobic imidazole compound .2 parts by weight and 3.6 parts by weight of a silicone resin (X-41-1053, alkoxy oligomer partially epoxy-substituted, manufactured by Shin-Etsu Chemical Co., Ltd.) as an inorganic polymer, a mixed solvent of cyclohexane and isopropyl alcohol (IPA) (Cyclohexane: isopropyl alcohol (IPA) = 9: 1) It was dissolved in 170 parts by weight to obtain a mixed solution. To this mixed solution, 1000 parts by weight of water containing 2% by weight of polyoxyethylene lauryl ether as an emulsifier was dropped, and the mixture was emulsified and dispersed by stirring at 3000 rpm using a homogenizer. Thereafter, the obtained dispersion was decompressed while being heated in a reactor equipped with a decompression device to remove the solvent, thereby obtaining a core-shell particle dispersion. The core-shell particles in the obtained core-shell particle dispersion were repeatedly washed with pure water and then vacuum-dried.

(実施例4)
親水性基と疎水性基とを有する熱可塑性ポリマーとしてマープルーフ(G−0130S、ポリスチレン一部エポキシ置換、日油社製)4.2重量部と、疎水性イミダゾール化合物として2−ウンデシルイミダゾール3.2重量部と、無機ポリマーとしてシリコーン樹脂(X−41−1053、アルコキシオリゴマー一部エポキシ置換、信越化学工業社製)1.8重量部とを、シクロヘキサンとイソプロピルアルコール(IPA)との混合溶剤(シクロヘキサン:イソプロピルアルコール(IPA)=9:1)170重量部に溶解させて、混合溶液を得た。この混合溶液に、乳化剤としてポリオキシエチレンラウリルエーテル2重量%を含有する水1000重量部を滴下して、ホモジナイザーを用いて3000rpmで攪拌して乳化分散させた。その後、得られた分散液を減圧装置付反応器で加熱しながら減圧して、溶剤を除去することにより、コアシェル粒子分散液を得た。得られたコアシェル粒子分散液中のコアシェル粒子を、純水を用いて繰り返して洗浄した後、真空乾燥した。
Example 4
Marpproof (G-0130S, polystyrene partially epoxy-substituted, manufactured by NOF Corporation) as a thermoplastic polymer having a hydrophilic group and a hydrophobic group, and 2-undecylimidazole 3 as a hydrophobic imidazole compound .2 parts by weight and 1.8 parts by weight of a silicone resin (X-41-1053, partially substituted by an alkoxy oligomer, manufactured by Shin-Etsu Chemical Co., Ltd.) as an inorganic polymer, a mixed solvent of cyclohexane and isopropyl alcohol (IPA) (Cyclohexane: isopropyl alcohol (IPA) = 9: 1) It was dissolved in 170 parts by weight to obtain a mixed solution. To this mixed solution, 1000 parts by weight of water containing 2% by weight of polyoxyethylene lauryl ether as an emulsifier was dropped, and the mixture was emulsified and dispersed by stirring at 3000 rpm using a homogenizer. Thereafter, the obtained dispersion was decompressed while being heated in a reactor equipped with a decompression device to remove the solvent, thereby obtaining a core-shell particle dispersion. The core-shell particles in the obtained core-shell particle dispersion were repeatedly washed with pure water and then vacuum-dried.

(実施例5)
親水性基と疎水性基とを有する熱可塑性ポリマーとしてマープルーフ(G−0130S、ポリスチレン一部エポキシ置換、日油社製)6重量部と、疎水性イミダゾール化合物として2−ウンデシルイミダゾール3.2重量部とを、シクロヘキサンとイソプロピルアルコール(IPA)との混合溶剤(シクロヘキサン:イソプロピルアルコール(IPA)=9:1)170重量部に溶解させて、混合溶液を得た。この混合溶液に、乳化剤としてポリオキシエチレンラウリルエーテル2重量%を含有する水1000重量部を滴下して、ホモジナイザーを用いて3000rpmで攪拌して乳化分散させた。その後、得られた分散液
を減圧装置付反応器で加熱しながら減圧して、溶剤を除去することにより、コアシェル粒子分散液を得た。得られたコアシェル粒子分散液中のコアシェル粒子を、純水を用いて繰り返して洗浄した後、真空乾燥した。
(Example 5)
As a thermoplastic polymer having a hydrophilic group and a hydrophobic group, 6 parts by weight of Marproof (G-0130S, polystyrene partially epoxy-substituted, manufactured by NOF Corporation), and 2-undecylimidazole 3.2 as a hydrophobic imidazole compound. Part by weight was dissolved in 170 parts by weight of a mixed solvent of cyclohexane and isopropyl alcohol (IPA) (cyclohexane: isopropyl alcohol (IPA) = 9: 1) to obtain a mixed solution. To this mixed solution, 1000 parts by weight of water containing 2% by weight of polyoxyethylene lauryl ether as an emulsifier was dropped, and the mixture was emulsified and dispersed by stirring at 3000 rpm using a homogenizer. Thereafter, the obtained dispersion was decompressed while being heated in a reactor equipped with a decompression device to remove the solvent, thereby obtaining a core-shell particle dispersion. The core-shell particles in the obtained core-shell particle dispersion were repeatedly washed with pure water and then vacuum-dried.

(実施例6)
親水性基と疎水性基とを有する熱可塑性ポリマーとしてマープルーフ(G−0130S、ポリスチレン一部エポキシ置換、日油社製)2重量部と、疎水性イミダゾール化合物として2−ウンデシルイミダゾール3.2重量部と、無機ポリマーとしてシリコーン樹脂(X−41−1053、アルコキシオリゴマー一部エポキシ置換、信越化学工業社製)4重量部とを、シクロヘキサンとイソプロピルアルコール(シクロヘキサン:イソプロピルアルコール(IPA)=9:1)170重量部に溶解させて混合溶液を得た。この混合溶液に、乳化剤としてポリオキシエチレンラウリルエーテル2重量%を含有する水1000重量部を滴下して、ホモジナイザーを用いて3000rpmで撹拌して乳化分散させた。その後、得られた溶液を減圧装置付反応器で加熱しながら減圧して、溶剤を除去することにより、粒子分散液を得た。得られた粒子分散液中の粒子を、純水を用いて繰り返して洗浄した後、真空乾燥した。
(Example 6)
2 parts by weight of Marproof (G-0130S, polystyrene partially epoxy-substituted, manufactured by NOF Corporation) as a thermoplastic polymer having a hydrophilic group and a hydrophobic group, and 2-undecylimidazole 3.2 as a hydrophobic imidazole compound Part by weight and 4 parts by weight of silicone resin (X-41-1053, alkoxy oligomer partially epoxy-substituted, manufactured by Shin-Etsu Chemical Co., Ltd.) as an inorganic polymer, cyclohexane and isopropyl alcohol (cyclohexane: isopropyl alcohol (IPA) = 9: 1) A mixed solution was obtained by dissolving in 170 parts by weight. To this mixed solution, 1000 parts by weight of water containing 2% by weight of polyoxyethylene lauryl ether as an emulsifier was dropped, and the mixture was emulsified and dispersed by stirring at 3000 rpm using a homogenizer. Thereafter, the resulting solution was depressurized while being heated in a reactor equipped with a depressurization apparatus to remove the solvent, thereby obtaining a particle dispersion. The particles in the obtained particle dispersion were repeatedly washed with pure water and then vacuum dried.

(実施例7)
親水性基と疎水性基とを有する熱可塑性ポリマーとしてマープルーフ(G−0150M、アクリル系ポリマー一部エポキシ置換、日油社製)6重量部と、疎水性イミダゾール化合物として2−ウンデシルイミダゾール3.2重量部とを、シクロヘキサンとイソプロピルアルコール(IPA)との混合溶剤(シクロヘキサン:イソプロピルアルコール(IPA)=9:1)170重量部に溶解させて、混合溶液を得た。この混合溶液に、乳化剤としてポリオキシエチレンラウリルエーテル2重量%を含有する水1000重量部を滴下して、ホモジナイザーを用いて3000rpmで攪拌して乳化分散させた。その後、得られた分散液を減圧装置付反応器で加熱しながら減圧して、溶剤を除去することにより、コアシェル粒子分散液を得た。得られたコアシェル粒子分散液中のコアシェル粒子を、純水を用いて繰り返して洗浄した後、真空乾燥した。
(Example 7)
As a thermoplastic polymer having a hydrophilic group and a hydrophobic group, 6 parts by weight of Marproof (G-0150M, acrylic polymer partially epoxy-substituted, manufactured by NOF Corporation) and 2-undecylimidazole 3 as a hydrophobic imidazole compound 2 parts by weight was dissolved in 170 parts by weight of a mixed solvent of cyclohexane and isopropyl alcohol (IPA) (cyclohexane: isopropyl alcohol (IPA) = 9: 1) to obtain a mixed solution. To this mixed solution, 1000 parts by weight of water containing 2% by weight of polyoxyethylene lauryl ether as an emulsifier was dropped, and the mixture was emulsified and dispersed by stirring at 3000 rpm using a homogenizer. Thereafter, the obtained dispersion was decompressed while being heated in a reactor equipped with a decompression device to remove the solvent, thereby obtaining a core-shell particle dispersion. The core-shell particles in the obtained core-shell particle dispersion were repeatedly washed with pure water and then vacuum-dried.

(比較例1)
ポリスチレン3重量部と、疎水性イミダゾール化合物として2−ウンデシルイミダゾール3.2重量部と、無機ポリマーとしてシリコーン樹脂(X−41−1053、アルコキシオリゴマー一部エポキシ置換、信越化学工業社製)3重量部とを、シクロヘキサンとイソプロピルアルコール(シクロヘキサン:イソプロピルアルコール(IPA)=9:1)170重量部に溶解させて混合溶液を得た。この混合溶液に、乳化剤としてポリオキシエチレンラウリルエーテル2重量%を含有する水1000重量部を滴下して、ホモジナイザーを用いて3000rpmで撹拌して乳化分散させた。その後、得られた溶液を、減圧装置付反応器で加熱しながら減圧して溶剤を除去することにより、粒子分散液を得た。得られた粒子分散液中の粒子を、純水を用いて繰り返して洗浄した後、真空乾燥した。
(Comparative Example 1)
3 parts by weight of polystyrene, 3.2 parts by weight of 2-undecylimidazole as a hydrophobic imidazole compound, and 3 parts by weight of a silicone resin (X-41-1053, partially substituted by an alkoxy oligomer, manufactured by Shin-Etsu Chemical Co., Ltd.) as an inorganic polymer Was dissolved in 170 parts by weight of cyclohexane and isopropyl alcohol (cyclohexane: isopropyl alcohol (IPA) = 9: 1) to obtain a mixed solution. To this mixed solution, 1000 parts by weight of water containing 2% by weight of polyoxyethylene lauryl ether as an emulsifier was dropped, and the mixture was emulsified and dispersed by stirring at 3000 rpm using a homogenizer. Thereafter, the resulting solution was depressurized while being heated in a reactor equipped with a decompression device to remove the solvent, thereby obtaining a particle dispersion. The particles in the obtained particle dispersion were repeatedly washed with pure water and then vacuum dried.

(評価)
実施例、比較例で得られたコアシェル粒子について以下の評価を行った。結果を表1に示す。
(Evaluation)
The core shell particles obtained in Examples and Comparative Examples were evaluated as follows. The results are shown in Table 1.

(1)平均粒子径、CV値
得られたコアシェル粒子を、走査型電子顕微鏡を用いて1視野に約100個のコアシェル粒子が観察できる倍率で観察し、任意に選択した50個のコアシェル粒子の最長径を粒子径としてノギスを用いて測定した。ここで、平均粒子径とは、数平均粒子径である。また、CV値は、上記式(1)で表される。
(2)アスペクト比
得られたコアシェル粒子を、走査型電子顕微鏡を用いて1視野に約100個のコアシェル粒子が観察できる倍率で観察し、任意に選択した50個のコアシェル粒子の最長径及び最短径を、ノギスを用いて測定した。最短径に対する最長径の比(最長径/最短径)の数平均値を求め、これをアスペクト比とした。
(1) Average particle diameter and CV value The obtained core-shell particles were observed with a scanning electron microscope at a magnification at which about 100 core-shell particles could be observed in one field of view. The longest diameter was measured using a caliper with the particle diameter as the particle diameter. Here, the average particle diameter is the number average particle diameter. The CV value is represented by the above formula (1).
(2) Aspect ratio The obtained core-shell particles were observed with a scanning electron microscope at a magnification at which about 100 core-shell particles could be observed in one field of view, and the longest diameter and shortest of 50 core-shell particles arbitrarily selected The diameter was measured using calipers. The number average value of the ratio of the longest diameter to the shortest diameter (longest diameter / shortest diameter) was determined and used as the aspect ratio.

(3)貯蔵安定性試験
得られたコアシェル粒子とビスフェノールA型エポキシ樹脂(JER828、ジャパンエポキシレジン社製)とを5:10の重量比で混合し、コアシェル粒子含有樹脂組成物を300g調製した後、得られたコアシェル粒子含有樹脂組成物の25℃における粘度(cps)をB型粘度計により測定した。その後、コアシェル粒子含有樹脂組成物を25℃で30日間放置した後の粘度(cps)を測定した。
得られた貯蔵前後(25℃、30日間の放置前後)の粘度の差を算出することにより、貯蔵安定性を評価した。
(3) Storage stability test After the obtained core-shell particles and bisphenol A type epoxy resin (JER828, manufactured by Japan Epoxy Resin Co., Ltd.) were mixed at a weight ratio of 5:10, 300 g of the core-shell particle-containing resin composition was prepared. The viscosity (cps) at 25 ° C. of the obtained core-shell particle-containing resin composition was measured with a B-type viscometer. Then, the viscosity (cps) after leaving the core-shell particle-containing resin composition at 25 ° C. for 30 days was measured.
The storage stability was evaluated by calculating the difference in viscosity between before and after storage (25 ° C., before and after standing for 30 days).

(4)硬化性試験
得られたコアシェル粒子とビスフェノールA型エポキシ樹脂(JER828、ジャパンエポキシレジン社製)とを5:10の重量比で混合し、コアシェル粒子含有樹脂組成物を300g調製した。コアシェル粒子含有樹脂組成物を離型処理したPETフィルムの離型処理面にバーコーターを用いて塗布し、140℃で30分硬化させた後、PETフィルムを剥がして厚さ200μmのフィルム状の測定サンプルを作製した。
得られた測定サンプルについて、テンシロン試験機(RTC−1310A、オリエンテック社製)を用いて、JIS K−6911に準拠して引張速度5mm/minにより引張強度(kgf/cm)を測定することにより、硬化性を評価した。
(4) Curability test The obtained core-shell particles and bisphenol A type epoxy resin (JER828, manufactured by Japan Epoxy Resin Co., Ltd.) were mixed at a weight ratio of 5:10 to prepare 300 g of a core-shell particle-containing resin composition. A PET film that has been subjected to a release treatment of the core-shell particle-containing resin composition is applied using a bar coater and cured at 140 ° C. for 30 minutes, and then the PET film is peeled off to measure a film having a thickness of 200 μm. A sample was made.
The tensile strength (kgf / cm 2 ) of the obtained measurement sample is measured at a tensile speed of 5 mm / min according to JIS K-6911 using a Tensilon tester (RTC-1310A, manufactured by Orientec). Thus, curability was evaluated.

Figure 0005374343
Figure 0005374343

本発明によれば、エポキシ樹脂用硬化促進剤として用いられ、エポキシ樹脂組成物の貯蔵安定性及び硬化物の信頼性を高めることのできるコアシェル粒子を提供することができる。また、本発明によれば、該コアシェル粒子の製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, it can be used as a hardening accelerator for epoxy resins, and can provide the core-shell particle which can improve the storage stability of an epoxy resin composition, and the reliability of hardened | cured material. Moreover, according to this invention, the manufacturing method of this core-shell particle can be provided.

Claims (9)

ポリマーからなるシェルに、コア剤を内包するコアシェル粒子であって、
前記ポリマーは、疎水性イミダゾール化合物と反応することのできる親水性基と、疎水性基とを有する熱可塑性ポリマーを含有し、
前記コア剤は、疎水性イミダゾール化合物であり、
前記疎水性イミダゾール化合物と反応することのできる親水性基は、グリシジル基であることを特徴とするコアシェル粒子。
Core-shell particles containing a core agent in a polymer shell,
The polymer contains a thermoplastic polymer having a hydrophilic group capable of reacting with a hydrophobic imidazole compound and a hydrophobic group;
The core agent is a hydrophobic imidazole compound,
The hydrophilic group capable of reacting with the hydrophobic imidazole compounds, characteristics and to Turkey Asher particles to be a glycidyl group.
疎水性イミダゾール化合物と反応することのできる親水性基と、疎水性基とを有する熱可塑性ポリマーは、ポリスチレン誘導体及びポリメタクリル酸誘導体からなる群より選択される少なくとも1つであることを特徴とする請求項1記載のコアシェル粒子。 The thermoplastic polymer having a hydrophilic group capable of reacting with a hydrophobic imidazole compound and a hydrophobic group is at least one selected from the group consisting of polystyrene derivatives and polymethacrylic acid derivatives. The core-shell particle according to claim 1 . 疎水性イミダゾール化合物と反応することのできる親水性基と、疎水性基とを有する熱可塑性ポリマーは、分子中の親水性基の数と疎水性基の数との比が0.5:9.5〜3.5:6.5であることを特徴とする請求項1又は2記載のコアシェル粒子。 A thermoplastic polymer having a hydrophilic group capable of reacting with a hydrophobic imidazole compound and a hydrophobic group has a ratio of the number of hydrophilic groups to the number of hydrophobic groups in the molecule of 0.5: 9. The core-shell particle according to claim 1, wherein the core-shell particle has a ratio of 5 to 3.5: 6.5. ポリマーは、更に、無機ポリマーを含有することを特徴とする請求項1、2又は3記載のコアシェル粒子。 The core-shell particle according to claim 1, 2 or 3 , wherein the polymer further contains an inorganic polymer. 無機ポリマーは、シリコーン樹脂であることを特徴とする請求項4記載のコアシェル粒子。 The core-shell particle according to claim 4 , wherein the inorganic polymer is a silicone resin. シリコーン樹脂は、グリシジル基を有するシリコーン樹脂であることを特徴とする請求項5記載のコアシェル粒子。 6. The core-shell particle according to claim 5 , wherein the silicone resin is a silicone resin having a glycidyl group. ポリマーは、疎水性イミダゾール化合物と反応することのできる親水性基と、疎水性基とを有する熱可塑性ポリマーの配合量と、無機ポリマーの配合量との重量比が4:6〜7:3であることを特徴とする請求項4、5又は6記載のコアシェル粒子。 In the polymer, the weight ratio of the blending amount of the thermoplastic polymer having a hydrophilic group capable of reacting with the hydrophobic imidazole compound and the hydrophobic group and the blending amount of the inorganic polymer is 4: 6 to 7: 3. The core-shell particle according to claim 4, 5 or 6 . 疎水性イミダゾール化合物は、炭素数11以上の炭化水素基を有するイミダゾール化合物であることを特徴とする請求項1、2、3、4、5、6又は7記載のコアシェル粒子。 The core-shell particle according to claim 1, 2, 3, 4, 5, 6 or 7, wherein the hydrophobic imidazole compound is an imidazole compound having a hydrocarbon group having 11 or more carbon atoms. 請求項1、2、3、4、5、6、7又は8記載のコアシェル粒子を製造する方法であって、
ポリマーとコア剤とを、前記ポリマーと前記コア剤とを共に溶解することのできる溶剤に溶解させて、前記ポリマーと前記コア剤とを含有する混合溶液を調製する工程と、
前記混合溶液を水性媒体中に乳化分散させる工程と、
前記水性媒体中で前記溶剤を除去する工程とを有する
ことを特徴とするコアシェル粒子の製造方法。
A method for producing core-shell particles according to claim 1, 2, 3, 4, 5, 6, 7 or 8 .
Dissolving a polymer and a core agent in a solvent capable of dissolving both the polymer and the core agent to prepare a mixed solution containing the polymer and the core agent;
Emulsifying and dispersing the mixed solution in an aqueous medium;
And a step of removing the solvent in the aqueous medium.
JP2009277611A 2009-12-07 2009-12-07 Core-shell particle and method for producing core-shell particle Expired - Fee Related JP5374343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009277611A JP5374343B2 (en) 2009-12-07 2009-12-07 Core-shell particle and method for producing core-shell particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009277611A JP5374343B2 (en) 2009-12-07 2009-12-07 Core-shell particle and method for producing core-shell particle

Publications (2)

Publication Number Publication Date
JP2011115755A JP2011115755A (en) 2011-06-16
JP5374343B2 true JP5374343B2 (en) 2013-12-25

Family

ID=44281732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009277611A Expired - Fee Related JP5374343B2 (en) 2009-12-07 2009-12-07 Core-shell particle and method for producing core-shell particle

Country Status (1)

Country Link
JP (1) JP5374343B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013006661A2 (en) * 2011-07-06 2013-01-10 President And Fellows Of Harvard College Multiple emulsions and techniques for the formation of multiple emulsions
JP5775416B2 (en) * 2011-10-17 2015-09-09 積水化学工業株式会社 Curing agent and / or curing accelerator encapsulating capsule, and thermosetting resin composition
KR101774984B1 (en) 2013-12-09 2017-09-05 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Curable silsesquioxane polymers, compositions, articles, and methods
US9725561B2 (en) 2014-06-20 2017-08-08 3M Innovative Properties Company Curable polymers comprising silsesquioxane polymer core and silsesquioxane polymer outer layer and methods
WO2015195391A1 (en) 2014-06-20 2015-12-23 3M Innovative Properties Company Adhesive compositions comprising a silsesquioxane polymer crosslinker, articles and methods
WO2015195355A1 (en) 2014-06-20 2015-12-23 3M Innovative Properties Company Adhesive compositions comprising a silsesquioxane polymer crosslinker, articles and methods
WO2016048736A1 (en) 2014-09-22 2016-03-31 3M Innovative Properties Company Curable polymers comprising silsesquioxane polymer core silsesquioxane polymer outer layer, and reactive groups
US9957416B2 (en) 2014-09-22 2018-05-01 3M Innovative Properties Company Curable end-capped silsesquioxane polymer comprising reactive groups

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07304968A (en) * 1994-03-15 1995-11-21 Toray Ind Inc Microencapsulated curing agent, production thereof, thermosetting resin composition, prepreg, and fiber-reinforced composite material
JP4223582B2 (en) * 1996-07-10 2009-02-12 富士フイルム株式会社 Improved microcapsule and method for producing the same
JP2000159861A (en) * 1998-12-01 2000-06-13 Hitachi Ltd Production of microcapsular cure accelerator

Also Published As

Publication number Publication date
JP2011115755A (en) 2011-06-16

Similar Documents

Publication Publication Date Title
JP5374343B2 (en) Core-shell particle and method for producing core-shell particle
EP2710074B1 (en) Water redispersible epoxy polymer powder and method for making the same
TWI658059B (en) Aluminum chelate-based latent hardener, method for producing the same, and thermosetting epoxy resin composition
JP5321082B2 (en) Aluminum chelate-based latent curing agent and method for producing the same
TWI288169B (en) Latent curing agent
JP2009221465A (en) Aluminum chelate-based latent curing agent, its production method, and thermosetting epoxy resin composition
JPWO2017104244A1 (en) Method for producing aluminum chelate-based latent curing agent and thermosetting epoxy resin composition
JP2014087786A (en) Method for manufacturing microcapsule and microcapsule
JP5291484B2 (en) Method for producing polymer fine particles containing curing agent or curing accelerator
JP5677922B2 (en) Curing agent and / or curing accelerator encapsulating capsule, and thermosetting resin composition
JP2008156570A (en) Method of manufacturing latent hardening agent particle, method of manufacturing adhesive, and method of manufacturing adhesive film
JP5438659B2 (en) Method for producing curing agent and / or curing accelerator-encapsulated capsule, curing agent and / or curing accelerator-encapsulated capsule, and thermosetting resin composition
TW201609763A (en) Aluminum chelate-based latent curing agent and production method therefor
JP2011225666A (en) Epoxy resin composition
JP2015232119A (en) Water soluble curing agent- and/or curing accelerator-including capsule, manufacturing method of water soluble curing agent and/or curing accelerator-including capsule and thermosetting resin composition
JP5485830B2 (en) Epoxy resin curing microcapsules
JP5360378B2 (en) Method for producing latent curing agent and method for producing adhesive
JP6377913B2 (en) Microcapsule manufacturing method and microcapsule
WO2014038033A1 (en) Production method for curing agent and/or curing accelerant complex particles, curing agent and/or curing accelerant complex particles, and heat-curable resin composition
JP5620323B2 (en) Method for producing curing agent and / or curing accelerator composite particle, curing agent and / or curing accelerator composite particle, and thermosetting resin composition
JP2015164722A (en) Microcapsule having core-shell structure
JP5775416B2 (en) Curing agent and / or curing accelerator encapsulating capsule, and thermosetting resin composition
JP2011190356A (en) Microcapsule for curing epoxy resin
JP2015232118A (en) Water soluble curing agent- and/or curing accelerator-including capsule and thermosetting resin composition
JP5933977B2 (en) Curing agent and / or curing accelerator encapsulating capsule, and thermosetting resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130920

R151 Written notification of patent or utility model registration

Ref document number: 5374343

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees