JP5676733B1 - Electrolyte solution, lithium battery and electrochemical carrier structure - Google Patents

Electrolyte solution, lithium battery and electrochemical carrier structure Download PDF

Info

Publication number
JP5676733B1
JP5676733B1 JP2013271412A JP2013271412A JP5676733B1 JP 5676733 B1 JP5676733 B1 JP 5676733B1 JP 2013271412 A JP2013271412 A JP 2013271412A JP 2013271412 A JP2013271412 A JP 2013271412A JP 5676733 B1 JP5676733 B1 JP 5676733B1
Authority
JP
Japan
Prior art keywords
electrolyte solution
weight
parts
additive
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013271412A
Other languages
Japanese (ja)
Other versions
JP2015050182A (en
Inventor
錦淑 鄭
錦淑 鄭
長榮 楊
長榮 楊
復民 王
復民 王
國展 邱
國展 邱
峰柏 曾
峰柏 曾
俊毅 邱
俊毅 邱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Application granted granted Critical
Publication of JP5676733B1 publication Critical patent/JP5676733B1/en
Publication of JP2015050182A publication Critical patent/JP2015050182A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

【課題】電解質溶液、リチウム電池、電気化学キャリア構造を提供する。【解決手段】電解質溶液は、81〜88重量部の有機溶剤と12〜19重量部のリチウム塩との混合溶液100重量部に対し、0.1〜15重量部の添加剤を含み、添加剤の構造は以下のとおりである。[pは5〜31、qは1〜5、rは9〜40、xは3〜40、yは1〜31、及び各zはそれぞれ独立し、1〜40]【選択図】図1An electrolyte solution, a lithium battery, and an electrochemical carrier structure are provided. An electrolyte solution includes 0.1 to 15 parts by weight of an additive with respect to 100 parts by weight of a mixed solution of 81 to 88 parts by weight of an organic solvent and 12 to 19 parts by weight of a lithium salt. The structure of is as follows. [P is 5-31, q is 1-5, r is 9-40, x is 3-40, y is 1-31, and each z is independent, 1-40]

Description

本発明は、電解質溶液に関するものであって、特に、その添加剤の組成に関するものである。   The present invention relates to an electrolyte solution, and in particular to the composition of the additive.

デジタルカメラや携帯電話、ノート型パソコン等、現在の携帯型電子製品は、軽量の電池が必要である。各種電池の中でも、重複して充電できるリチウム電池の単位重量が提供する電量は、鉛蓄電池、ニッケル水素充電池、ニッケル亜鉛電池、ニッケルカドミウム電池等の従来の電池よりも3倍高い。このほか、リチウム電池は快速に充電できる。   Current portable electronic products such as digital cameras, mobile phones, and notebook computers require lightweight batteries. Among various types of batteries, the unit weight of a lithium battery that can be charged in duplicate is three times higher than that of conventional batteries such as a lead storage battery, a nickel hydrogen rechargeable battery, a nickel zinc battery, and a nickel cadmium battery. In addition, lithium batteries can be charged quickly.

リチウム電池のうち、陰極材料は、一般に、遷移金属酸化物、たとえば、LiNiO、LiCoO、LiMn、LiFePO、またはLiNiCo1−xである。陽極材料は、一般に、リチウム金属、リチウムとその他の金属との合金、または炭素質材料(carbonaceous material)、たとえば、グラファイトである。電解質は液体または固体であり、固体電解質の中でも、高分子電解質が特に注目されている。これは、高分子電解質は液体から流出せず、且つ、準備しやすいからである。高分子電解質は、さらに、完全な固体かゲル体かに分けられる。両者の差異は、ゲル体が有機電解質溶液を含み、固体が含まないことである。 Of the lithium batteries, the cathode material is typically a transition metal oxide, such as LiNiO 2 , LiCoO 2 , LiMn 2 O 4 , LiFePO 4 , or LiNi x Co 1-x O 2 . The anode material is typically lithium metal, an alloy of lithium and other metals, or a carbonaceous material such as graphite. The electrolyte is liquid or solid, and among the solid electrolytes, a polymer electrolyte is particularly attracting attention. This is because the polymer electrolyte does not flow out of the liquid and is easy to prepare. Polyelectrolytes are further divided into complete solid or gel bodies. The difference between the two is that the gel body contains an organic electrolyte solution and no solid.

台湾特許公告番号I384668(特許文献1)は有機非プロトン性溶媒、少なくとも一種の塩および少なくとも一種のキレートホウ酸塩添加剤の電解質を開示している。   Taiwan Patent Publication No. I384668 discloses an electrolyte of an organic aprotic solvent, at least one salt and at least one chelate borate additive.

台湾特許公告番号I376828(特許文献2)は、有機溶剤、リチウム塩、および添加剤を含む電解質溶液を開示している。添加剤は、マレイミド(maleimide)、ビスマレイミド(bismaleimide)、ポリマレイミド(polymaleimide)、ポリビスマレイミド(poly(bismaleimide))、ビスマレイミドとマレイミドとのコポリマー(copolymer of bismaleimide and polymaleimide)、または上述の混合物、およびビニレンカーボネートを含む。   Taiwan Patent Publication No. I376828 (Patent Document 2) discloses an electrolyte solution containing an organic solvent, a lithium salt, and an additive. Additives include maleimide, bismaleimide, polymaleimide, polybismaleimide, copolymer of bismaleimide and polymaleimide, or mixtures of the above And vinylene carbonate.

一般に、従来の水相電解質溶液はリチウム電池に適さない。これは、水と陽極中のリチウムとが激しい反応を生成するからである。そのため、リチウム塩を溶解する溶剤を有機溶剤に変える必要があり、これらの有機溶剤は、高イオン伝導性、高誘電係数、および低粘性等の特性を有する必要がある。しかし、このような3特性を同時に有する有機溶剤は少ないので、混合溶剤が好ましい選択である。よって、さらにリチウム電池の効率を高める新しい電解質溶液の組成が必要である。   In general, conventional aqueous electrolyte solutions are not suitable for lithium batteries. This is because water and lithium in the anode produce a violent reaction. Therefore, it is necessary to change the solvent for dissolving the lithium salt into an organic solvent, and these organic solvents need to have characteristics such as high ion conductivity, high dielectric constant, and low viscosity. However, since there are few organic solvents having these three characteristics at the same time, a mixed solvent is a preferred choice. Therefore, there is a need for a new electrolyte solution composition that further increases the efficiency of the lithium battery.

台湾特許出願公告第I384668号明細書Taiwan Patent Application Publication No. I384668 Specification 台湾特許出願公告第I376828号明細書Taiwan Patent Application Publication No. I376828 Specification

本発明は、電解質溶液、リチウム電池および電気化学キャリア構造を提供することを目的とする。   The present invention aims to provide an electrolyte solution, a lithium battery and an electrochemical carrier structure.

本発明の一実施形態に係る電解質溶液は、81から88重量部の有機溶剤と12から19重量部のリチウム塩との混合溶液100重量部に対し、0.1から15重量部の添加剤を含み、添加剤の構造は以下のとおりである:   The electrolyte solution according to an embodiment of the present invention includes 0.1 to 15 parts by weight of an additive with respect to 100 parts by weight of a mixed solution of 81 to 88 parts by weight of an organic solvent and 12 to 19 parts by weight of a lithium salt. The structure of the additive is as follows:

Figure 0005676733

式中、pは5から31の間;qは1から5の間;rは9から40の間;xは3から40の間;yは1から31の間;および各zはそれぞれ独立し、1から40の間である。
Figure 0005676733

Where p is between 5 and 31; q is between 1 and 5; r is between 9 and 40; x is between 3 and 40; y is between 1 and 31; and each z is independently Between 1 and 40.

本発明の一実施形態に係るリチウム電池は、上述の電解質溶液を含む。   The lithium battery which concerns on one Embodiment of this invention contains the above-mentioned electrolyte solution.

本発明の一実施形態に係る電気化学キャリア構造は、上述の電解質溶液を含む。   An electrochemical carrier structure according to an embodiment of the present invention includes the electrolyte solution described above.

本発明による添加剤を含む電解質溶液は、効果的に、電池容量を改善することができる。   The electrolyte solution containing the additive according to the present invention can effectively improve the battery capacity.

本発明の一実施形態における電池容量(amp hours,Ah)と充放電回数との曲線比較図である。It is a curve comparison figure of the battery capacity (amp hours, Ah) and charge / discharge frequency in one embodiment of the present invention.

本発明の一実施形態に係る電解質溶液は、81から88重量部の有機溶剤と12から19重量部のリチウム塩との混合溶液100重量部に対し、0.1から15重量部の添加剤を含み、式(1)に示される。   The electrolyte solution according to an embodiment of the present invention includes 0.1 to 15 parts by weight of an additive with respect to 100 parts by weight of a mixed solution of 81 to 88 parts by weight of an organic solvent and 12 to 19 parts by weight of a lithium salt. And is shown in equation (1).

Figure 0005676733
Figure 0005676733

式(1)中、pは5から31の間である。pの数値が過小の場合、アルコキシ基(alkoxy group)が少なく、リチウムイオンとの会合伝送効果が悪く、リチウム電池パフォーマンスを低下させる。式(1)中、qは1から5の間である。qの数値が過大である場合、グラフトされるアルコキシ基が少なく、リチウムイオンとの会合伝送効果が悪く、リチウム電池パフォーマンスを低下させる。式(1)中、rは9から40の間である。式(1)中、xは3から40の間である。xの数値が過大の場合、リチウムイオンとの会合伝送効果が悪く、リチウム電池パフォーマンスを低下させる。式(1)中、yは1から31の間である。式(1)中、各zはそれぞれ独立し、1から40の間である。   In formula (1), p is between 5 and 31. When the value of p is too small, there are few alkoxy groups, the effect of associative transmission with lithium ions is poor, and lithium battery performance is reduced. In formula (1), q is between 1 and 5. When the numerical value of q is excessive, there are few alkoxy groups to be grafted, the effect of associative transmission with lithium ions is poor, and the lithium battery performance is lowered. In the formula (1), r is between 9 and 40. In formula (1), x is between 3 and 40. If the value of x is excessive, the effect of associative transmission with lithium ions is poor and the lithium battery performance is reduced. In formula (1), y is between 1 and 31. In formula (1), each z is independent and is between 1 and 40.

上述の添加剤の合成方法は以下のとおりである。まず、ポリオキシアルキレンアミン(poly(oxyalkylene)-amine)とメタクリル酸グリシジル(Glycidyl Methacrylate)とを混合し、テトラヒドロフラン(Tetrahydrofuran,THF)中に入れて、60℃から80℃で加熱すると共に、4−12時間反応させる。反応式は式(2)に示される。   The method for synthesizing the above-described additive is as follows. First, poly (oxyalkylene) -amine and glycidyl methacrylate (Glycidyl Methacrylate) are mixed, put into tetrahydrofuran (Tetrahydrofuran, THF), heated at 60 to 80 ° C., and 4- React for 12 hours. The reaction formula is shown in Formula (2).

Figure 0005676733
Figure 0005676733

式(2)中、ポリオキシアルキレンアミン(poly(oxyalkylene)-amine)は市販のJEFFAMINE(登録商標)シリーズ、たとえば、M−600(x=9,y=1)、M−1000(x=3,y=19)、M−2005(x=29,y=6)、またはM−2070(x=10,y=31)が挙げられる。   In the formula (2), poly (oxyalkylene) -amine is a commercially available JEFFAMINE® series, for example, M-600 (x = 9, y = 1), M-1000 (x = 3). , Y = 19), M-2005 (x = 29, y = 6), or M-2070 (x = 10, y = 31).

続いて、式(2)の産物と、トリス(2−メトキシエトキシ)ビニル)シラン(Tris(2-methoxyethoxy)(vinyl)silane)と、ポリ(メチルシロキサン)(poly(methysiloxane))と、白金触媒(Platinum catalyst)とを用い、ヒドロシリル化触媒反応(J. Appl Electrochem(2009)39:253)を行う。反応式は式(3)に示される:   Subsequently, the product of formula (2), tris (2-methoxyethoxy) vinyl) silane, poly (methysiloxane), and platinum catalyst (Platinum catalyst) and hydrosilylation catalytic reaction (J. Appl Electrochem (2009) 39: 253). The reaction equation is shown in equation (3):

Figure 0005676733
Figure 0005676733

式(3)中、ポリ(メチルシロキサン)(poly(methysiloxane))は、Aldrich(#176206,nは26から51の間)から購入可能であり、トリス(2−メトキシエトキシ)ビニル)シラン(Tris(2-methoxyethoxy)(vinyl)silane)は、Aldrich(#175587)から購入可能である。理解できることは、式(3)の産物はランダム共重合体であることである。   In formula (3), poly (methysiloxane) can be purchased from Aldrich (# 176206, n is between 26 and 51) and tris (2-methoxyethoxy) vinyl) silane (Tris (2-methoxyethoxy) (vinyl) silane) can be purchased from Aldrich (# 175587). What can be understood is that the product of formula (3) is a random copolymer.

本発明の一実施形態において、有機溶剤は、γ−ブチロラクトン(γ-butyrolactone)、炭酸エチレン(Ethylene carbonate)、炭酸プロピレン(Propylene carbonate)、炭酸ジエチル(Diethyl carbonate)、酢酸プロピル(Propyl acetate)、炭酸ジメチル(dimethyl carbonate)、炭酸エチルメチル(ethyl methyl carbonate)、または上述の組み合わせを含むことが好ましい。有機溶剤とリチウム塩との混合溶液100重量部を基準とすると、当該混合溶液中の有機溶剤は81から88重量部である。   In one embodiment of the present invention, the organic solvent may be γ-butyrolactone, Ethylene carbonate, Propylene carbonate, Diethyl carbonate, Propyl acetate, Carbonic acid. Preferably, it includes dimethyl carbonate, ethyl methyl carbonate, or a combination of the above. On the basis of 100 parts by weight of the mixed solution of the organic solvent and the lithium salt, the organic solvent in the mixed solution is 81 to 88 parts by weight.

本発明の一実施形態において、リチウム塩は、LiPF、LiBF、LiAsF、LiSbF、LiClO、LiAlCl、LiGaCl、LiNO、LiC(SOCF、LiN(SOCF、LiSCN、LiOSCFCF、LiCSO、LiOCCF、LiSOF、LiB(C、LiCFSO、または上述の組み合わせであることが好ましい。有機溶剤とリチウム塩との混合溶液100重量部を基準とすると、当該混合溶液中のリチウム塩は12から19重量部である。リチウム塩を用いる量が多過ぎる場合、電解質中に完全に溶解できず、リチウム塩を析出させて、電解質溶液の導電性を低下させる。反対に、リチウム塩を用いる量が少な過ぎる場合、電解質溶液に十分な導電度を有させることができない。 In one embodiment of the present invention, the lithium salt, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiClO 4, LiAlCl 4, LiGaCl 4, LiNO 3, LiC (SO 2 CF 3) 3, LiN (SO 2 CF 3 ) 2 , LiSCN, LiO 3 SCF 2 CF 3 , LiC 6 F 5 SO 3 , LiO 2 CCF 3 , LiSO 3 F, LiB (C 6 H 5 ) 4 , LiCF 3 SO 3 , or a combination of the above Is preferred. Based on 100 parts by weight of the mixed solution of the organic solvent and the lithium salt, the lithium salt in the mixed solution is 12 to 19 parts by weight. When the amount of the lithium salt used is too large, the lithium salt cannot be completely dissolved in the electrolyte, and the lithium salt is deposited to lower the conductivity of the electrolyte solution. Conversely, if the amount of lithium salt used is too small, the electrolyte solution cannot have sufficient conductivity.

有機溶剤とリチウム塩との混合溶液100重量部を基準とすると、電解質溶液中の添加剤は0.1から15重量部である。添加剤の比率が高過ぎる場合、過多な添加剤は、容量の下降を生じる。添加剤の比率が低過ぎる場合、リチウム電池または電気化学キャリア構造のパフォーマンスを改善することができない。   Based on 100 parts by weight of the mixed solution of the organic solvent and the lithium salt, the additive in the electrolyte solution is 0.1 to 15 parts by weight. If the additive ratio is too high, too much additive will cause a decrease in volume. If the additive ratio is too low, the performance of the lithium battery or electrochemical carrier structure cannot be improved.

リチウムイオン電池は、例えば以下のようにして製造することができる。まず、上述の有機溶剤、リチウム塩および添加剤を、必要な比率で混合して、電解質溶液を形成する。混合方法は、例えば、攪拌、超音波処理、または上述の組み合わせにより、標準リチウムイオン電池に注入する。標準リチウムイオン電池正極極板製法に基づいて、正極極板を製造する。標準リチウムイオン電池負極ペーストを合わせて使用して、標準負極極板を製造する。正、負電極を組み合わせて、標準電池芯(Jelly Roll)を形成し、尺寸は、3.5mm(高さ)・58mm(幅)・120mm(長さ)、即ち、3558120標準型電池芯で、7.8グラムの液体電解液を注入し、パッケージと化成すると、本実施形態に係るリチウムイオン電池が得られる。   A lithium ion battery can be manufactured as follows, for example. First, the above-mentioned organic solvent, lithium salt, and additive are mixed in a necessary ratio to form an electrolyte solution. The mixing method is, for example, injected into a standard lithium ion battery by stirring, sonication, or a combination of the above. A positive electrode plate is manufactured based on a standard lithium ion battery positive electrode plate manufacturing method. A standard negative electrode plate is manufactured using a standard lithium ion battery negative electrode paste. The standard battery core (Jelly Roll) is formed by combining the positive and negative electrodes, and the scale is 3.5 mm (height), 58 mm (width), 120 mm (length), that is, 3558120 standard battery core, When 7.8 grams of liquid electrolyte is injected to form a package, the lithium ion battery according to this embodiment is obtained.

本発明の上述およびその他の目的、特徴、および長所をさらにわかりやすくするため、以下で実施例および図面により説明する。   In order to make the aforementioned and other objects, features and advantages of the present invention more comprehensible, examples and figures are described below.

実施例1
式(2)に示されるように、0.6モル分のメタクリル酸グリシジル(Glycidyl Methacrylate)と0.6モル分のポリオキシアルキレンアミン(poly(oxyalkylene)-amine)(JEFFAMINE(登録商標)2070,x=10,y=31)とを、100mLのテトラヒドロフラン(Tetrahydrofuran,THF)中に入れると共に、60℃から80℃で加熱して、4時間反応させ、式(2)で示される産物を合成した。
Example 1
As shown in Formula (2), 0.6 mol of glycidyl methacrylate (Glycidyl Methacrylate) and 0.6 mol of poly (oxyalkylene) -amine (JEFFAMINE® 2070, x = 10, y = 31) was placed in 100 mL of tetrahydrofuran (Tetrahydrofuran, THF) and heated at 60 ° C. to 80 ° C. for 4 hours to synthesize a product represented by formula (2). .

続いて、式(3)に示されるように、1モル分のポリ(メチルシロキサン)(poly(methysiloxane))(Aldrichの#176206)、0.6モルの式(2)の産物、0.3モルのトリス(2−メトキシエトキシ)ビニル)シラン(Tris(2-methoxyethoxy)(vinyl)silane)(Aldrichの#175587)、および0.1〜1モルの白金触媒を反応させて、添加剤を合成した。この添加剤は式(1)に示され、pは16から31、qは3から5、rは9から15、xは35、yは6、zは1である。   Subsequently, as shown in Formula (3), 1 mole of poly (methysiloxane) (Aldrich # 176206), 0.6 moles of the product of Formula (2), 0.3 Additives are reacted by reacting Mole of Tris (2-methoxyethoxy) (vinyl) silane (Aldrich # 175587) and 0.1-1 mole of platinum catalyst. did. This additive is shown in Formula (1), p is 16 to 31, q is 3 to 5, r is 9 to 15, x is 35, y is 6, and z is 1.

90重量部のLiCoO、5重量部のPVDF、および5重量部のアセチレンブラック(導電パウダー)を、N−メチル−2−ピロリドン(N-Methyl-2-pyrrolidone,NMP)中に分散させて、このゲル体をアルミ箔に塗布して乾燥させ、圧縮すると共に裁断して、負極を形成した。 90 parts by weight of LiCoO 2 , 5 parts by weight of PVDF, and 5 parts by weight of acetylene black (conductive powder) were dispersed in N-Methyl-2-pyrrolidone (NMP), This gel body was applied to an aluminum foil, dried, compressed and cut to form a negative electrode.

95重量部のグラファイトと5重量部のPVDFとをNMP中に分散させ、このゲル体をアルミ箔に塗布して乾燥させ、圧縮すると共に裁断して、正極を形成した。   95 parts by weight of graphite and 5 parts by weight of PVDF were dispersed in NMP, this gel body was applied to an aluminum foil, dried, compressed, and cut to form a positive electrode.

18.4重量部の炭酸プロピレン(Propylene carbonate,PC)、30.7重量部の炭酸エチレン(Ethylene carbonate,EC)、および37.1重量部の炭酸ジエチル(Diethyl carbonate,DEC)を混合して、電解質溶液の有機溶剤とした。この有機溶剤にリチウム塩としてLiPF(13.8重量部)を溶解し、有機溶剤とリチウム塩との混合溶液を調製した(合計100重量部)。この混合溶液に添加剤を加え、電解質溶液とした。この電解質溶液の添加剤は上述のとおりである(1重量部)。 18.4 parts by weight of propylene carbonate (PC), 30.7 parts by weight of ethylene carbonate (EC), and 37.1 parts by weight of diethyl carbonate (DEC), An organic solvent for the electrolyte solution was used. LiPF 6 (13.8 parts by weight) as a lithium salt was dissolved in this organic solvent to prepare a mixed solution of the organic solvent and the lithium salt (total 100 parts by weight). Additives were added to this mixed solution to obtain an electrolyte solution. The additive of the electrolyte solution is as described above (1 part by weight).

続いて、隔離膜(PP)により陽極と陰極とを隔離後、陽極と陰極との間の収容領域に、上述の電解質溶液を加えた。最後に、パッケージ構造で、上述の構造をパッケージした。   Subsequently, after the anode and the cathode were separated from each other by the separator (PP), the above-described electrolyte solution was added to the accommodation region between the anode and the cathode. Finally, the above structure was packaged in a package structure.

比較例1
電解質溶液が本発明の添加剤を含まないことを除いて、比較例1は、実施例1と類似する。
Comparative Example 1
Comparative Example 1 is similar to Example 1 except that the electrolyte solution does not contain the additive of the present invention.

実施例1および比較例1の電池を、固定電流/電圧によって、充放電した。まず、2.4mAの固定電流で、電流が0.1mA以下になるまで、電池を4.2Vに充電し、測定された容量(amp hour,Ah)を表1に示した。続いて、固定電流2.4Aにより、電池を、カットオフ電圧(2.75V)になるまで放電した。上述の過程を300回繰り返した。実施例1および比較例1の電池容量(amp hours,Ah)と充放電回数との曲線が図1に示される。   The batteries of Example 1 and Comparative Example 1 were charged and discharged with a fixed current / voltage. First, at a fixed current of 2.4 mA, the battery was charged to 4.2 V until the current became 0.1 mA or less, and the measured capacity (amp hour, Ah) is shown in Table 1. Subsequently, the battery was discharged with a fixed current of 2.4 A until the cut-off voltage (2.75 V) was reached. The above process was repeated 300 times. Curves of the battery capacity (amp hours, Ah) and the number of times of charging / discharging in Example 1 and Comparative Example 1 are shown in FIG.

図1から分かるように、本発明の実施例1は、比較例1と比較すると、電池容量が約10%から15%高く、350回充放電後、電池容量は、約30%から40%高い。上述のデータから分かるように、本発明による添加剤を含む電解質溶液は、効果的に、電池容量を改善することができる。   As can be seen from FIG. 1, the battery capacity of Example 1 of the present invention is about 10% to 15% higher than that of Comparative Example 1, and the battery capacity is about 30% to 40% higher after 350 charge / discharge cycles. . As can be seen from the above data, the electrolyte solution containing the additive according to the present invention can effectively improve the battery capacity.

実施例2
比較例1の電解質溶液中の添加剤含量が0.1重量部であることを除いて、実施例2は実施例1と類似する。
2.4mAの固定電流により、電流が0.1mA以下になるまで、電池を4.2Vに充電し、その容量(amp hour,Ah)を測定して、表1に示した。
Example 2
Example 2 is similar to Example 1 except that the additive content in the electrolyte solution of Comparative Example 1 is 0.1 parts by weight.
The battery was charged to 4.2 V with a fixed current of 2.4 mA until the current became 0.1 mA or less, and its capacity (amp hour, Ah) was measured and shown in Table 1.

実施例3
比較例1の電解質溶液中の添加剤含量が5重量部であることを除いて、実施例3は実施例1と類似する。
2.4mAの固定電流で、電流が0.1mA以下になるまで、電池を4.2Vに充電し、その容量(amp hour,Ah)を測定して、表1に示した。
Example 3
Example 3 is similar to Example 1 except that the additive content in the electrolyte solution of Comparative Example 1 is 5 parts by weight.
The battery was charged at 4.2 V until the current became 0.1 mA or less at a fixed current of 2.4 mA, and its capacity (amp hour, Ah) was measured and shown in Table 1.

実施例4
比較例1の電解質溶液中の添加剤含量が10重量部であることを除いて、実施例4は実施例1と類似する。
2.4mAの固定電流で、電流が0.1mA以下になるまで、電池を4.2Vに充電して、その容量(amp hour,Ah)を測定して、表1に示した。
Example 4
Example 4 is similar to Example 1 except that the additive content in the electrolyte solution of Comparative Example 1 is 10 parts by weight.
The battery was charged at 4.2 V at a fixed current of 2.4 mA until the current became 0.1 mA or less, and its capacity (amp hour, Ah) was measured.

実施例5
比較例1の電解質溶液中の添加剤含量が15重量部であることを除いて、実施例5は実施例1と類似する。
2.4mAの固定電流で、電流が0.1mA以下になるまで、電池を4.2Vに充電し、その容量(amp hour,Ah)を測定して、表1に示した。
Example 5
Example 5 is similar to Example 1 except that the additive content in the electrolyte solution of Comparative Example 1 is 15 parts by weight.
The battery was charged at 4.2 V until the current became 0.1 mA or less at a fixed current of 2.4 mA, and its capacity (amp hour, Ah) was measured and shown in Table 1.

Figure 0005676733
Figure 0005676733

本発明では好ましい実施形態を前述の通り開示したが、これらは決して本発明に限定するものではなく、当該技術を熟知する者なら誰でも、本発明の精神と領域を脱しない範囲内で各種の変動や潤色を加えることができ、従って本発明の保護範囲は、特許請求の範囲で指定した内容を基準とする。   Although preferred embodiments of the present invention have been disclosed in the present invention as described above, these are not intended to limit the present invention in any way, and any person who is familiar with the technology can make various modifications within the spirit and scope of the present invention. Variations and moist colors can be added, so the protection scope of the present invention is based on what is specified in the claims.

Claims (5)

電解質溶液であって、
81から88重量部の有機溶剤と12から19重量部のリチウム塩との混合溶液100重量部に対し、0.1から15重量部の添加剤を含み、
前記添加剤の構造は、
Figure 0005676733

式中、pは5から31の間;
qは1から5の間;
rは9から40の間;
xは3から40の間;
yは1から31の間;および
各zはそれぞれ独立し、1から40の間であることを特徴とする電解質溶液。
An electrolyte solution,
0.1 to 15 parts by weight of an additive is added to 100 parts by weight of a mixed solution of 81 to 88 parts by weight of an organic solvent and 12 to 19 parts by weight of a lithium salt,
The structure of the additive is:
Figure 0005676733

Where p is between 5 and 31;
q is between 1 and 5;
r is between 9 and 40;
x is between 3 and 40;
An electrolyte solution characterized in that y is between 1 and 31; and each z is independently between 1 and 40.
前記有機溶剤は、γ−ブチロラクトン(γ-butyrolactone)、炭酸エチレン(Ethylene carbonate)、炭酸プロピレン(Propylene carbonate)、炭酸ジエチル(Diethyl carbonate)、酢酸プロピル(Propyl acetate)、炭酸ジメチル(dimethyl carbonate)、炭酸エチルメチル(ethyl methyl carbonate)、または上述の組み合わせを含むことを特徴とする請求項1に記載の電解質溶液。   The organic solvent includes γ-butyrolactone, γ-butyrolactone, ethylene carbonate, propylene carbonate, diethyl carbonate, propyl acetate, dimethyl carbonate, carbonic acid. The electrolyte solution according to claim 1, comprising ethyl methyl carbonate or a combination of the above. 前記リチウム塩は、LiPF、LiBF、LiAsF、LiSbF、LiClO、LiAlCl、LiGaCl、LiNO、LiC(SOCF、LiN(SOCF、LiSCN、LiOSCFCF、LiCSO、LiOCCF、LiSOF、LiB(C、LiCFSO、または上述の組み合わせを含むことを特徴とする請求項1または2に記載の電解質溶液。 The lithium salt is LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 , LiClO 4 , LiAlCl 4 , LiGaCl 4 , LiNO 3 , LiC (SO 2 CF 3 ) 3 , LiN (SO 2 CF 3 ) 2 , LiSCN, LiO 3 SCF 2 CF 3 , LiC 6 F 5 SO 3 , LiO 2 CCF 3 , LiSO 3 F, LiB (C 6 H 5 ) 4 , LiCF 3 SO 3 , or a combination of the above, Or the electrolyte solution of 2. リチウム電池であって、請求項1から3のいずれか一項に記載の電解質溶液を含むことを特徴とするリチウム電池。   It is a lithium battery, Comprising: The lithium battery characterized by including the electrolyte solution as described in any one of Claim 1 to 3. 電気化学キャリア構造であって、請求項1から3のいずれか一項に記載の電解質溶液を含むことを特徴とする電気化学キャリア構造。   An electrochemical carrier structure comprising the electrolyte solution according to any one of claims 1 to 3.
JP2013271412A 2013-09-02 2013-12-27 Electrolyte solution, lithium battery and electrochemical carrier structure Active JP5676733B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW102131490 2013-09-02
TW102131490 2013-09-02

Publications (2)

Publication Number Publication Date
JP5676733B1 true JP5676733B1 (en) 2015-02-25
JP2015050182A JP2015050182A (en) 2015-03-16

Family

ID=52672674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013271412A Active JP5676733B1 (en) 2013-09-02 2013-12-27 Electrolyte solution, lithium battery and electrochemical carrier structure

Country Status (2)

Country Link
JP (1) JP5676733B1 (en)
TW (1) TWI520408B (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004235141A (en) * 2003-01-09 2004-08-19 Samsung Sdi Co Ltd Nonaqueous electrolyte and lithium secondary battery
JP2007077052A (en) * 2005-09-13 2007-03-29 Shin Etsu Chem Co Ltd Cyclic carbonate-modified organic silicon compound and non-aqueous electrolyte solution including the same, secondary cell and capacitor
JP2007087935A (en) * 2005-08-23 2007-04-05 Shin Etsu Chem Co Ltd Nonaqueous electrolyte, secondary battery, and electrochemical capacitor
JP2007141496A (en) * 2005-11-15 2007-06-07 Samsung Sdi Co Ltd Lithium secondary battery
JP2008044934A (en) * 2006-08-16 2008-02-28 Samsung Sdi Co Ltd Silane compound, organic electrolyte solution using the same and lithium cell
JP2010165667A (en) * 2008-12-18 2010-07-29 Sanyo Chem Ind Ltd Additive for electrolyte
JP2010272376A (en) * 2009-05-21 2010-12-02 Denso Corp Nonaqueous electrolyte and nonaqueous electrolyte secondary battery having this electrolyte
JP2013136557A (en) * 2011-11-30 2013-07-11 Adeka Corp Method for producing 1,3-difluorodisiloxane compound

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004235141A (en) * 2003-01-09 2004-08-19 Samsung Sdi Co Ltd Nonaqueous electrolyte and lithium secondary battery
JP2007087935A (en) * 2005-08-23 2007-04-05 Shin Etsu Chem Co Ltd Nonaqueous electrolyte, secondary battery, and electrochemical capacitor
JP2007077052A (en) * 2005-09-13 2007-03-29 Shin Etsu Chem Co Ltd Cyclic carbonate-modified organic silicon compound and non-aqueous electrolyte solution including the same, secondary cell and capacitor
JP2007141496A (en) * 2005-11-15 2007-06-07 Samsung Sdi Co Ltd Lithium secondary battery
JP2008044934A (en) * 2006-08-16 2008-02-28 Samsung Sdi Co Ltd Silane compound, organic electrolyte solution using the same and lithium cell
JP2010165667A (en) * 2008-12-18 2010-07-29 Sanyo Chem Ind Ltd Additive for electrolyte
JP2010272376A (en) * 2009-05-21 2010-12-02 Denso Corp Nonaqueous electrolyte and nonaqueous electrolyte secondary battery having this electrolyte
JP2013136557A (en) * 2011-11-30 2013-07-11 Adeka Corp Method for producing 1,3-difluorodisiloxane compound

Also Published As

Publication number Publication date
TWI520408B (en) 2016-02-01
JP2015050182A (en) 2015-03-16
TW201511389A (en) 2015-03-16

Similar Documents

Publication Publication Date Title
CN103314471B (en) Positive pole, nonaqueous electrolyte battery and power brick
KR101223628B1 (en) Rechargeable lithium battery
US20140356734A1 (en) Electrolyte for lithium ion secondary battery and lithium ion secondary battery comprising the same
CN108242557B (en) Electrolyte solution and secondary battery
JP2009302058A (en) Lithium battery
US20160190580A1 (en) Battery electrode paste composition
JP2010009799A (en) Nonaqueous electrolyte secondary battery
CN107112502A (en) Anode for nonaqueous electrolyte secondary battery plate and the rechargeable nonaqueous electrolytic battery using the negative plate
KR100813309B1 (en) Nonaqueous electrolyte for lithium secondary batteries having enhanced cycle performance and lithium secondary batteries comprising the same
CN109950610B (en) Electrolyte composition and use thereof
CN105938897A (en) Lithium ion secondary battery
CN109390629B (en) Electrolyte and battery
US20170263936A1 (en) Lithium metal electrode, method for preparing the same, and lithium rechargeable battery using the same
CN110808411B (en) Electrolyte and lithium ion battery
CN109309249B (en) Electrolyte and electrochemical energy storage device
KR101521646B1 (en) Secondary battery with high capacity and longevity comprising silazane-based compound
JP5779452B2 (en) Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
CN109309208B (en) Positive electrode slurry, positive plate and electrochemical energy storage device
JP3650548B2 (en) Electrode active material and non-aqueous electrolyte secondary battery using the electrode active material
WO2023112787A1 (en) Nonaqueous electrolytic solution and lithium-ion secondary battery
CN107293783B (en) Electrolyte and lithium ion battery
JP5676733B1 (en) Electrolyte solution, lithium battery and electrochemical carrier structure
JP6933260B2 (en) Non-aqueous electrolyte solution for lithium ion secondary battery and lithium ion secondary battery using it
CN108539198B (en) Solvent for coating positive electrode active material for secondary battery, positive electrode active material slurry containing same, and secondary battery manufactured therefrom
CN109494402B (en) Electrolyte and lithium battery

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141225

R150 Certificate of patent or registration of utility model

Ref document number: 5676733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250