KR100813309B1 - Nonaqueous electrolyte for lithium secondary batteries having enhanced cycle performance and lithium secondary batteries comprising the same - Google Patents

Nonaqueous electrolyte for lithium secondary batteries having enhanced cycle performance and lithium secondary batteries comprising the same Download PDF

Info

Publication number
KR100813309B1
KR100813309B1 KR1020060118625A KR20060118625A KR100813309B1 KR 100813309 B1 KR100813309 B1 KR 100813309B1 KR 1020060118625 A KR1020060118625 A KR 1020060118625A KR 20060118625 A KR20060118625 A KR 20060118625A KR 100813309 B1 KR100813309 B1 KR 100813309B1
Authority
KR
South Korea
Prior art keywords
lithium secondary
group
nhc
secondary battery
halogen
Prior art date
Application number
KR1020060118625A
Other languages
Korean (ko)
Inventor
박정기
서정은
이준영
이용민
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020060118625A priority Critical patent/KR100813309B1/en
Application granted granted Critical
Publication of KR100813309B1 publication Critical patent/KR100813309B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

A nonaqueous electrolyte solution for a lithium secondary battery, and lithium secondary battery containing the nonaqueous electrolyte solution are provided to improve initial charge/discharge characteristics and high temperature lifetime characteristics. A nonaqueous electrolyte solution comprise a silane-based additive represented by X_n SiY_(4-n), wherein n is 1-3; X is CH2=CH-, CH2=(CH3)COOC3H6-, HN2C3H6-, NH2C2H4NHC3H6-, NH2COCHC3H6-, CH3COOC2H4NHC2H4NHC3H6-, NH2C2H4NHC2H4NHC3H6-, SHC3H6-, ClC3H6-, CH3-, CH2H5-, C2H5OCONHC3H6-, OCNC3H6-, C6H5-, C6H5CH2NHC3H6-, C3H5NC3H6-, H- or a halogen atom; and Y is an alkyl, alkoxy, acetoxy or cycloalkyl group capable of being substituted with a halogen atom, an aryl group, an aralkyl group or a phenyl group, a phenyl capable of being substituted with a halogen atom, -OC2H4OCH3, -Si(CH3)3, -OSi(CH3)3, -OSi(CH3)2H, -O(CH2CH2O)mCH3; -N(CH3)2 or a halogen atom; m is 1-10, but the case that X is CH2=CH- and Y is -OC2H4OCH3 is excluded.

Description

개선된 사이클 성능을 가지는 리튬 이차전지용 비수 전해액 및 이를 이용한 리튬이차전지{Nonaqueous electrolyte for lithium secondary batteries having enhanced cycle performance and Lithium secondary batteries comprising the same}Nonaqueous electrolyte for lithium secondary battery having improved cycle performance and lithium secondary battery using the same {Nonaqueous electrolyte for lithium secondary batteries having enhanced cycle performance and Lithium secondary batteries comprising the same}

도 1은 본 발명에 따른 비수 전해액이 적용된 단위전지의 고온 충방전 특성에 관한 실험결과를 나타낸 그래프이다.1 is a graph showing the experimental results of the high temperature charge and discharge characteristics of a unit cell to which a nonaqueous electrolyte according to the present invention is applied.

도 2는 본 발명에 따른 비수 전해액이 적용된 단위전지를 고온(60℃)에서 10회 충방전 후, 음극 표면 위에 형성된 표면 모폴로지를 주사전자현미경으로 측정한 결과를 나타낸다.Figure 2 shows the results of measuring the surface morphology formed on the surface of the negative electrode after the charge and discharge of the unit cell to which the nonaqueous electrolyte according to the present invention is applied at high temperature (60 ° C.) 10 times by a scanning electron microscope.

본 발명은 리튬이차전지용 비수 전해액 및 이를 포함하는 리튬이차전지에 관한 것으로, 보다 상세하게는 초기 충방전시 안정된 피막을 형성하여 초기 충방전 특성 및 고온 수명 특성이 향상된 리튬이차전지용 비수 전해액 및 이를 포함하는 리튬이차전지에 관한 것이다.The present invention relates to a non-aqueous electrolyte for lithium secondary batteries and a lithium secondary battery comprising the same, and more particularly, to a non-aqueous electrolyte for lithium secondary batteries having an improved initial charge and discharge characteristics and high temperature life characteristics by forming a stable film during initial charge and discharge, and the same. It relates to a lithium secondary battery.

최근 급속한 정보통신 기술의 고도화와 더불어 급격히 성장하고 있는 휴대전화, 노트북 PC, PDA 등 모바일 IT (Information Technology)관련 전자기기의 필수적인 전원으로 사용되는 소형 이차전지(Secondary battery)에 대한 수요가 기하급수적으로 증가하는 추세에 있다. 각종 휴대형 정보통신기기에서 전지가 차지하는 무게비중이 노트북 PC의 경우 10~20%, 휴대전화의 경우 50% 내외를 차지할 정도로 이차전지는 기기본체의 소형경량화에 크게 영향을 미칠 뿐만 아니라 장시간 연속사용여부가 휴대형 정보통신기기의 중요한 경쟁요소가 되고 있어 향후 이와 같은 기기의 요구를 충족해줄 수 있는 소형 이차전지의 개발이 전지산업뿐만 아니라 전자정보통신 제품의 경쟁력을 결정짓는 핵심요소가 될 것이다.Recently, with the rapid advancement of information and communication technology, the demand for small secondary battery used as an essential power source for mobile IT (Information Technology) related electronic devices such as mobile phone, notebook PC, PDA, etc. is growing exponentially. There is a growing trend. The weight of the battery in various portable information and communication devices accounts for 10-20% for notebook PCs and 50% for mobile phones. The secondary battery not only affects the compactness and weight of the device, but also can be used continuously for a long time. Has become an important competitive factor for portable information and communication devices, and the development of small secondary batteries that can meet the demands of such devices will be a key factor in determining the competitiveness of not only the battery industry but also electronic information and communication products.

이동통신 시스템의 전송속도 증가추이에 따라 기존의 이차전지 (니켈-카드뮴전지, 니켈수소합금전지)로는 휴대형 정보통신기기와 소형 전자기기의 고기능화 (무선 인터넷 및 무선 데이터 통신 서비스)에 따른 에너지 소비량을 충족시킬 수 없으므로 소형 이차전지의 고에너지 밀도화ㆍ고성능화ㆍ고안정성이 요구되고 있다. 이를 위해 일본, 미국 등 선진국들은 오래전부터 국가 주도형 연구개발이 활발히 추진되어왔으며, 현재 세계적으로 가장 각광받고 있는 소형 이차전지가 리튬 이차전지이다. As the transmission speed of mobile communication systems increases, the existing secondary batteries (nickel-cadmium batteries, nickel-metal hydride batteries) are used to increase energy consumption due to the high functionalization of portable information communication devices and small electronic devices (wireless Internet and wireless data communication services). Since it cannot satisfy | fill, high energy density, high performance, and high stability of a small secondary battery are calculated | required. To this end, developed countries such as Japan and the United States have been actively promoting national-led R & D for a long time, and lithium secondary batteries are the most popular small secondary batteries in the world.

리튬 이차전지 시스템은 전기화학적 산화ㆍ환원 반응에서 생성되는 자유에너지 변화를 전기에너지로 끌어낼 수 있는 화학에너지 변환장치중의 하나로 양극, 음극 및 액체전해질 (유기용매+염) 로 구성되어지며 두 전극간 물리적 접촉 방지를 위해 박막형 격리막 (separator)이 사용되어지고 있다. Lithium secondary battery system is one of the chemical energy conversion devices that can draw the change of free energy generated by electrochemical oxidation / reduction reaction into electrical energy. It consists of positive electrode, negative electrode and liquid electrolyte (organic solvent + salt). Thin film separators are being used to prevent physical contact.

리튬 이차전지의 고에너지밀도화, 고성능화 및 고안전성을 확보하기 위해서는 전극소재 뿐 아니라 고기능성 전해질 소재의 개발이 필수적이다. 기존의 전해질 기능을 보완할 수 있는 고기능성 전해질 시스템은 부동태피막 안정화제, 과충전방지제, 난연제 등의 기능성 첨가제를 포함하는 비수 전해액이다. In order to ensure high energy density, high performance, and high safety of lithium secondary batteries, development of high functional electrolyte materials as well as electrode materials is essential. A high functional electrolyte system that can supplement the existing electrolyte function is a non-aqueous electrolyte containing functional additives such as passivation film stabilizer, overcharge inhibitor, flame retardant.

리튬이온 이차전지의 경우 초기 충전시 양극인 리튬금속 산화물로부터 나온 리튬 이온이 음극인 그라파이트 전극으로 이동하여 그라파이트에 삽입된다. 이때 리튬이온과 비수 전해액 또는 염의 음이온 등의 분해산물이 반응하여 그라파이트 표면 위에 얇은 피막을 형성하게 되는데, 이러한 피막을 부동태피막(Solid electrolyte interface layer:SEI layer)이라고 한다. 이 부동태피막은 리튬 이온은 통과시키되 전자의 이동은 막아준다. 또한 그라파이트 음극에 리튬이온이 분자량이 큰 전해액의 유기용매 환원 부산물과 함께 삽입되면서 그라파이트 구조가 붕괴되는 것을 막아준다. 이리하여 부동태피막이 형성되고 나면, 리튬 이온이 다른 유기용매나 염의 음이온 등과 추가적인 부반응을 하지 않도록 막아주어 방전 용량이 긴 충방전 동안에도 유지될 수 있도록 도와준다. 즉, 전지의 초기 충전시 음극 활물질 입자 표면에 형성되는 부동태피막의 성분 및 모폴로지가 전지의 안정성 및 충방전 특성을 결정한다. 이런 긍정적인 효과를 기대할 수 있는 부동태피막이 본래의 의도와는 달리 안정적으로 형성되지 못하면 오히려 유기용매의 추가적인 분해를 유도할 수 있다. 이로 인해 가역적으로 이동하는 리튬이온의 수를 감소시키고 충방전 용량의 감소 및 효율이 떨어지게 된다. 이러한 경향은 고온에서 충방전시 더욱 심각하다. 따라서 고성능 이차전지를 구현하기 위해서는 혼합 유기용매 성분보다 낮은 전위에서 먼저 분해하여 안정한 부동태 피막을 형성할 수 있는 기능성 물질이 필요하다. 기능성 물질이 첨가되지 않을 경우에는 전지의 초기 충전시 사용된 유기용매의 환원분해 반응에 의해 리튬이온과 전자가 소모되어 비가역 용량을 증가시키고 형성된 저항층이 반복적인 충방전 동안 전지의 계속적인 용량감소를 유발하게 된다.In the case of a lithium ion secondary battery, during initial charging, lithium ions from the lithium metal oxide, which is a positive electrode, move to a graphite electrode, which is a negative electrode, and are inserted into graphite. At this time, decomposition products such as lithium ions and nonaqueous electrolytes or anions of salts react to form a thin film on the graphite surface. Such a film is referred to as a solid electrolyte interface layer (SEI layer). The passivation film allows lithium ions to pass but prevents electrons from moving. In addition, the lithium ion is inserted into the graphite negative electrode together with the organic solvent reduction by-product of the large molecular weight electrolyte to prevent the graphite structure from decaying. Thus, after the passivation film is formed, lithium ions are prevented from further side reactions with other organic solvents or anions of salts, thereby helping to maintain the discharge capacity even during long charge and discharge. That is, the components and morphology of the passivation film formed on the surface of the negative electrode active material particles during initial charging of the battery determine the stability and charge / discharge characteristics of the battery. If the passive film, which can expect such a positive effect, is not formed stably unlike the original intention, it may lead to further decomposition of the organic solvent. This reduces the number of lithium ions reversibly moving, decreases the charge and discharge capacity and decreases the efficiency. This tendency is more severe when charging and discharging at high temperatures. Therefore, in order to implement a high performance secondary battery, a functional material that can decompose first at a lower potential than a mixed organic solvent component to form a stable passivation film is required. If no functional substance is added, lithium ions and electrons are consumed by the reductive decomposition reaction of the organic solvent used in the initial charging of the battery, increasing irreversible capacity, and the formed resistance layer decreases the battery continuously during repeated charging and discharging. Will cause.

유기용매의 환원 분해반응으로 인한 전지 성능의 저하를 최소화하기 위해 일본 특허공개 제7-176323호는 전해액에 CO2를 첨가하는 방법을 개시하고 있고, 일본 특허공개 제7-320779호에는 전해액에 설파이드계 화합물을 첨가하여 전해액 분해를 억제하는 방법이 기재되어 있다. 또한 대한민국특허 10-0412527호에서는 비닐 에스테르계 화합물을 포함한 전해액을 만들어 안정한 부동태피막을 만들려 시도하였다. 이와 같이 기존에 의하면 소량의 유기 또는 무기물을 첨가함으로써 초기 충전시 유기용매보다 낮은 전위에서 환원 분해하여 음극 표면에 보다 안정한 피막을 형성하려 노력하였다. 그러나 첨가되는 화합물의 특성에 따라 오히려 비가역 용량을 증가시키기도 하고, 음극인 카본과 상호작용하여 분해되거나 불안정한 피막을 형성하기도 하였으며, 고온에서 이러한 경향은 보다 심해졌다. In order to minimize the deterioration of battery performance due to the reduction decomposition reaction of the organic solvent, Japanese Patent Laid-Open No. 7-176323 discloses a method of adding CO 2 to the electrolyte, and Japanese Patent Laid-Open No. 7-320779 discloses sulfide in the electrolyte. A method of suppressing decomposition of an electrolyte by adding a system compound is described. In addition, Korean Patent No. 10-0412527 attempted to make a stable passivation film by making an electrolyte solution containing a vinyl ester compound. As described above, by adding a small amount of organic or inorganic substances, it has been tried to form a more stable film on the surface of the negative electrode by reducing decomposition at a lower potential than the organic solvent during initial charging. However, depending on the nature of the compound added, rather than increasing the irreversible capacity, and interacted with the carbon as the negative electrode to form a decomposed or unstable coating, this tendency was more severe at high temperatures.

본 발명은 상기한 바와 같은 종래 기술의 문제점을 해결하기 위해 안출된 것 으로, 그 목적은 초기 충방전시 안정된 피막을 형성하여 초기 충방전 특성 및 고온 수명 특성이 향상된 리튬이차전지용 비수 전해액을 제공함에 있다.The present invention has been made to solve the problems of the prior art as described above, the object is to form a stable film during the initial charge and discharge to provide a non-aqueous electrolyte for lithium secondary battery improved initial charge and discharge characteristics and high temperature life characteristics have.

본 발명의 다른 목적은 초기 충방전시 안정된 피막을 형성하여 초기 충방전 특성 및 고온 수명 특성이 향상된 리튬이차전지를 제공함에 있다.Another object of the present invention is to provide a lithium secondary battery having improved initial charge and discharge characteristics and high temperature life characteristics by forming a stable film during initial charge and discharge.

상기한 목적을 달성하기 위하여 본 발명은 실레인계 첨가제를 포함하는 리튬이차전지용 비수 전해액을 제공한다.In order to achieve the above object, the present invention provides a nonaqueous electrolyte solution for a lithium secondary battery including a silane-based additive.

또한, 본 발명은 양극, 음극, 분리막 및 비수 전해액을 포함하며, 상기 비수 전해액에 실레인계 첨가제가 포함된 리튬이차전지를 제공한다.The present invention also provides a lithium secondary battery including a positive electrode, a negative electrode, a separator, and a nonaqueous electrolyte, and a silane-based additive included in the nonaqueous electrolyte.

이하, 본 발명의 내용을 보다 상세하게 설명하면 다음과 같다.Hereinafter, the content of the present invention in more detail as follows.

본 발명에 따른 리튬이차전지용 비수 전해액은 리튬염이 용해된 유기용매에 실레인계 화합물로 구성되는 부동태 피막 안정화제를 함유한다.The nonaqueous electrolyte solution for lithium secondary batteries according to the present invention contains a passivation film stabilizer composed of a silane compound in an organic solvent in which lithium salt is dissolved.

본 발명에 사용될 수 있는 유기용매는 에틸렌카보네이트(EC), 프로필렌카보네이트(PC), 디메틸카보네이트(DMC), 디에틸카보네이트(DEC), 감마부틸로락톤(γBL), 에틸메틸카보네이트(EMC), 디메톡시에탄(DME), 디에톡시에탄(DEE), 2-메틸테트라하이드로퓨란(2-MeTHF), 디메틸설폭사이드 중에서 선택되어진 1종 또는 2종이상의 혼합용매를 들 수 있다. 유기용매의 혼합비는 본 발명의 목적을 저해하지 않는 한 특별히 한정되는 것은 아니며, 통상의 리튬 전지용 비수 전해액 제조시의 혼합비를 따른다. Organic solvents that can be used in the present invention are ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), gamma butyrolactone (γ BL), ethyl methyl carbonate (EMC), dimethicone 1 type, or 2 or more types of mixed solvent chosen from methoxyethane (DME), diethoxy ethane (DEE), 2-methyl tetrahydrofuran (2-MeTHF), and dimethyl sulfoxide. The mixing ratio of the organic solvent is not particularly limited as long as the object of the present invention is not impaired, and the mixing ratio of the non-aqueous electrolyte solution for normal lithium batteries is followed.

상기 리튬염으로는 LiClO4, LiCF3SO3, LiAsF6, LiBF4, LiN(CF3SO2)2, LiPF6, LiSCN, LiC(CF3SO2)3, LiBOB 로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 혼합염을 들 수 있다. 상기 리튬염은 0.5~2.0M의 농도로 첨가되며, 염의 농도가 0.5M 미만이면 전해액의 전도도가 낮아짐으로써 전해액 성능이 떨어지고, 2.0M를 초과하는 경우에는 저온에서의 점도 증가에 기인한 리튬 이온의 이동도가 감소하여 저온성능이 떨어지는 문제점이 발생할 우려가 있다.The lithium salt may be selected from the group consisting of LiClO 4 , LiCF 3 SO 3 , LiAsF 6 , LiBF 4 , LiN (CF 3 SO 2 ) 2 , LiPF 6 , LiSCN, LiC (CF 3 SO 2 ) 3 , LiBOB Or 2 or more types of mixed salts. The lithium salt is added in a concentration of 0.5 ~ 2.0M, when the salt concentration is less than 0.5M, the conductivity of the electrolyte is lowered, the performance of the electrolyte is lowered, if it exceeds 2.0M of lithium ions due to the increase in viscosity at low temperatures There is a fear that the problem of low temperature performance is reduced due to reduced mobility.

본 발명에 사용가능한 실레인계의 부동태 피막용 첨가제는 하기 화학식으로 표시되는 화합물을 포함한다.The silane-based passivation coating additive which can be used in the present invention includes a compound represented by the following formula.

XnSiY4-n (n=1~3)X n SiY 4-n (n = 1 ~ 3)

X= CH2=CH-, CH2=(CH3)COOC3H6-, HN2C3H6-, NH2C2H4NHC3H6-, NH2COCHC3H6-, CH3COOC2H4NHC2H4NHC3H6-, NH2C2H4NHC2H4NHC3H6-, SHC3H6-, ClC3H6-, CH3-, CH2H5-, C2H5OCONHC3H6-, OCNC3H6-, C6H5-, C6H5CH2NHC3H6-, C3H5NC3H6-, H- 및 할로겐에서 선택된다.X = CH 2 = CH-, CH 2 = (CH 3 ) COOC 3 H 6- , HN 2 C 3 H 6- , NH 2 C 2 H 4 NHC 3 H 6- , NH 2 COCHC 3 H 6- , CH 3 COOC 2 H 4 NHC 2 H 4 NHC 3 H 6- , NH 2 C 2 H 4 NHC 2 H 4 NHC 3 H 6- , SHC 3 H 6- , ClC 3 H 6- , CH 3- , CH 2 H 5- , C 2 H 5 OCONHC 3 H 6- , OCNC 3 H 6- , C 6 H 5- , C 6 H 5 CH 2 NHC 3 H 6- , C 3 H 5 NC 3 H 6- , H- and Selected from halogen.

Y= -H, 할로겐, 아릴기, 아랄킬기 및 알릴기로 구성되는 군에서 선택되는 작용기로 치환 가능한 알킬, 알콕시, 아세톡시 및 사이클로알킬, 할로겐으로 치환 가능한 페닐, -OC2H4OCH3, -Si(CH3)3, -OSi(CH3)3, -OSi(CH3)2H, -O(CH2CH2O)mCH3 (m=1~10), -N(CH3)2 및 할로겐에서 선택된다 (다만, X= CH2=CH-이고 동시에 Y= -OC2H4OCH3 인 경우는 제외). 상기에서 치환가능한 작용기는 특별히 한정되는 것은 아니며, 예를 들어 아릴기로 페닐기, 나프틸기 등을 포함하는 방향족 고리의 수가 1~3인 것, 아랄킬기 및 알릴기는 탄소수 1~10의 것이 사용될 수 있다.Y = -H, alkyl, alkoxy, acetoxy and cycloalkyl which can be substituted by a functional group selected from the group consisting of halogen, aryl, aralkyl and allyl groups, phenyl which can be substituted by halogen, -OC 2 H 4 OCH 3 ,- Si (CH 3 ) 3 , -OSi (CH 3 ) 3 , -OSi (CH 3 ) 2 H, -O (CH 2 CH 2 O) m CH 3 (m = 1-10), -N (CH 3 ) 2 and halogen, except when X = CH 2 = CH- and at the same time Y = -OC 2 H 4 OCH 3 . The functional group which can be substituted in the above is not specifically limited, For example, the number of the aromatic rings which contain a phenyl group, a naphthyl group, etc. as an aryl group is 1-3, and an aralkyl group and an allyl group have a C1-C10 thing can be used.

상기 알킬, 알콕시 및 아세톡시기는 특별히 한정되는 것은 아니며, 탄소수 1∼10의 것, 사이클로알칸은 탄소수 3~12의 것을 들 수 있다.The said alkyl, alkoxy, and acetoxy group is not specifically limited, A C1-C10 thing and a cycloalkane are C3-C12.

상기 실레인계 첨가제는 리튬염을 포함한 유기용매 총 중량에 대하여 0.1 ~ 10%, 바람직하게는 1 ~ 5 % 첨가되어질 수 있다. 상기 첨가제의 양이 0.1% 미만이면 안정한 부동태 피막을 형성하기 어려우며, 10%를 초과하면 전지의 성능을 떨어뜨리는 문제점이 발생할 우려가 있다.The silane additive may be added in an amount of 0.1 to 10%, preferably 1 to 5%, based on the total weight of the organic solvent including the lithium salt. If the amount of the additive is less than 0.1%, it is difficult to form a stable passivation film, and if it exceeds 10%, there is a concern that a problem of degrading the performance of the battery occurs.

상기에 언급한 본 발명에 따른 비수 전해액에 함유되는 실레인계 화합물은 충방전 시 일반적인 비수 전해액보다 먼저 분해가 되어 피막형성을 제어함으로써 초기 충방전 특성 향상 및 수명 특성의 향상을 가져온다. The silane-based compound contained in the non-aqueous electrolyte according to the present invention mentioned above is decomposed before the general non-aqueous electrolyte during charge and discharge, thereby controlling the film formation, thereby improving initial charge and discharge characteristics and life characteristics.

본 발명은 상기 비수 전해액을 포함하는 리튬이차전지를 포함한다. 리튬이차 전지는 양극, 음극, 분리막 및 본 발명에 따른 비수 전해액을 포함한다. The present invention includes a lithium secondary battery containing the nonaqueous electrolyte. The lithium secondary battery includes a positive electrode, a negative electrode, a separator and a nonaqueous electrolyte according to the present invention.

리튬이차전지용 전극은 양극 활물질 또는 음극 활물질과 같은 전극 활물질을 도전제 및/또는 바인더를 혼합하여 각 전극 슬러리를 제조하고, 제조된 전극 슬러리를 각 전극 집전체에 도포한 후 용매나 분산매를 건조하여 제거하고, 집전체에 전극 활물질을 결착시킴과 동시에 각 전극 활물질 간을 결착시켜 제조한다.In the lithium secondary battery electrode, an electrode active material such as a positive electrode active material or a negative electrode active material is mixed with a conductive agent and / or a binder to prepare each electrode slurry, the prepared electrode slurry is applied to each electrode current collector, and then a solvent or a dispersion medium is dried. It removes and binds an electrode active material to an electrical power collector, and simultaneously binds between each electrode active material, and manufactures it.

본 발명을 구성하는 전극 활물질 중 양극 활물질은 리튬을 흡장 및 방출할 수 있는 물질이라면 제한없이 사용이 가능하다. 예를 들어, LiCoO2, LiNiO2, LiMn2O4, LiMnO2, LiCoPO4, LiNi(1-X)CoXMYO2 (여기에서, M =Al, Ti, Mg 또는 Zr, 0<x≤1, 0≤y≤0.2), LiNixCoyMn(1-x-y)O2 (여기에서, 0<x≤0.5, 0<y≤0.5) 및 LiMxM'yMn(2-x-y)O4 (M, M' = V, Cr, Fe, Co, Ni 또는 Cu, 0<X≤1, 0<Y≤1) 등의 복합 금속 산화물이 있으나, 그 종류가 이것에 한정되는 것은 아니다. 이들은 단독으로 또는 혼합하여 사용될 수 있다.The positive electrode active material of the electrode active material constituting the present invention may be used without limitation as long as it is a material capable of occluding and releasing lithium. For example, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO 2 , LiCoPO 4 , LiNi (1-X) Co X M Y O 2 , where M = Al, Ti, Mg or Zr, 0 <x ≤1, 0≤y≤0.2), LiNi x Co y Mn (1-xy) O 2 ( where, 0 <x≤0.5, 0 <y≤0.5 ) and LiM x M 'y Mn (2 -xy) O 4 (M, M '= V, Cr, Fe, Co, Ni or Cu, 0 <X≤1, 0 < Y≤1) , but the complex metal oxides such as, but not the type is not limited thereto. These may be used alone or in combination.

본 발명의 전극활물질 중 음극활물질은 비제한적인 예로 리튬을 흡장 및 방출할 수 있는 리튬합금, 카본(carbon), 코크(coke), 활성화 카본(activation carbon), 그라파이트(graphite), 실리콘(Si), 주석(Sn)등 금속 및/또는 합금 등을 사용할 수 있다.The negative electrode active material of the electrode active material of the present invention is a non-limiting example of lithium alloy, carbon (carbon), coke (activation carbon), graphite (graphite), silicon (Si) that can occlude and release lithium And metals such as tin (Sn) and / or alloys may be used.

상기 도전재는 전극재료 간의 전도성 접촉을 부여하기 위한 것이므로, 전기 전도성이 높고, 비표면적이 매우 큰 특성이 있는 물질이라면 그 종류에 제한없이 사용할 수 있다. 대표적인 예로 아세틸렌블랙, 케첸블랙, 파네스블랙, 서멀블랙 등의 카본 블랙; 천연흑연, 인조흑연 등을 사용할 수 있다.Since the conductive material is for imparting conductive contact between electrode materials, any material having high electrical conductivity and having a very large specific surface area can be used without limitation. Typical examples include carbon blacks such as acetylene black, ketjen black, farnes black and thermal black; Natural graphite, artificial graphite, etc. can be used.

바인더로는 열가소성 수지, 열경화성 수지 중 어느 하나를 사용하더라도 좋으며, 이들을 조합하여 사용할 수도 있다. 대표적인 예로 폴리불화비닐리덴(PVdF) 또는 이의 공중합체, 폴리테트라플루오로에틸렌(PTFE), SBR(Styrene-Butadiene Rubber) 등이 있다.As the binder, any one of a thermoplastic resin and a thermosetting resin may be used, or a combination thereof may be used. Representative examples include polyvinylidene fluoride (PVdF) or copolymers thereof, polytetrafluoroethylene (PTFE), and SBR (Styrene-Butadiene Rubber).

분산매로는 대표적인 예로 아이소프로필 알코올, N-메틸피롤리돈(NMP), 아세톤, 물 등이 있다.Representative examples of the dispersion medium include isopropyl alcohol, N-methylpyrrolidone (NMP), acetone, and water.

집전체는 전도성이 높은 금속이 일반적으로 사용되는데, 상기 전극 슬러리가 용이하게 접착할 수 있는 금속으로서 전지의 전압범위에서 반응성이 없는 것이면 어느 것이라도 사용할 수 있다. 대표적인 예로 알루미늄, 구리, 니켈, 스테인레스 스틸 등으로 이루어진 메쉬 또는 호일 등이 있다.As the current collector, a metal having high conductivity is generally used, and any metal may be used as long as the electrode slurry is a metal that can be easily bonded as long as it is not reactive in the voltage range of the battery. Representative examples include meshes or foils made of aluminum, copper, nickel, stainless steel, and the like.

본 발명의 리튬이차전지는 당 기술 분야에 알려져 있는 통상적인 방법으로 양극과 음극 사이에 분리막을 개재하여 본 발명에 따른 비수 전해액을 투입하여 제조할 수 있다.The lithium secondary battery of the present invention may be prepared by adding a nonaqueous electrolyte according to the present invention through a separator between a positive electrode and a negative electrode by a conventional method known in the art.

본 발명의 리튬이차전지 제조시에는 분리막으로서 비제한적으로 폴리에틸렌 또는 폴리프로필렌과 같은 폴리올레핀계 분리막을 사용할 수 있다.In preparing the lithium secondary battery of the present invention, a polyolefin-based separator such as polyethylene or polypropylene may be used without limitation.

본 발명의 리튬 이차 전지는 외형에 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.The lithium secondary battery of the present invention is not limited in appearance, but may be cylindrical, square, pouch type, or coin type using a can.

이하 본 발명의 내용을 실시예를 통하여 구체적으로 설명한다. 그러나, 이들은 본 발명을 보다 상세하게 설명하기 위한 것으로 본 발명의 권리범위가 이들에 의해 한정되는 것은 아니다. Hereinafter, the content of the present invention will be described in detail through examples. However, these are intended to explain the present invention in more detail, and the scope of the present invention is not limited thereto.

<실시예 1><Example 1>

에틸렌 카보네이트/디메틸 카보네이트(EC/DMC)가 1:1 부피비로 혼합된 비수성 유기용매에 1M의 LiPF6를 첨가하고 실레인계 부동태피막 안정화제로서 트리스(2-케톡시에톡시)(비닐)실레인을 전해액 대비 1중량% 첨가하여 전해액을 제조하였다.1M LiPF 6 was added to a non-aqueous organic solvent in which ethylene carbonate / dimethyl carbonate (EC / DMC) was mixed in a 1: 1 volume ratio, and tris (2-ketoxyethoxy) (vinyl) silane was used as a silane-based passivation film stabilizer. 1 wt% phosphorus was added to the electrolyte to prepare an electrolyte.

<실시예 2><Example 2>

실시예 1과 동일한 과정으로 전해액을 제조하였으며, 기본 전해액에 트리스(2-케톡시에톡시)(비닐)실레인을 3중량% 첨가하였다.An electrolyte solution was prepared in the same manner as in Example 1, and 3 wt% of tris (2-ketoxyethoxy) (vinyl) silane was added to the basic electrolyte solution.

<실시예 3><Example 3>

실시예 1과 동일한 과정으로 전해액을 제조하였으며, 기본 전해액에 트리스(2-케톡시에톡시)(비닐)실레인을 5중량% 첨가하였다.An electrolyte solution was prepared in the same manner as in Example 1, and 5% by weight of tris (2-methoxyethoxy) (vinyl) silane was added to the basic electrolyte solution.

<비교예>Comparative Example

비닐실레인을 첨가하지 않는 것을 제외하고 상기 실시예 1과 동일한 방법으로 전해액을 제조하였다.An electrolyte was prepared in the same manner as in Example 1, except that vinyl silane was not added.

<시험예 1><Test Example 1>

비교예 1과 실시예 1~3에 의해 제조된 기능성 비수 전해액의 비가역용량 측정을 위하여 단위전지를 제조하였다. 전지 음극은 활물질로 흑연, 결착제로 폴리비닐리덴플루오라이드를 사용하여 구성하였고, 양극은 활물질로 LiCoO2를, 결착제로 폴리비닐리덴플루오라이드를, 도전제로 아세틸렌블랙을 사용하여 구성하였다. 상기 제조된 단위 전지를 C/10의 전류 및 4.2V 충전 전압으로 CC조건으로 충전한 후, C/10의 전류로 3.0V 까지 방전하여, 비가역 용량을 측정하였다. 그 결과를 하기 표1로 나타내었다.A unit cell was prepared for measuring the irreversible capacity of the functional nonaqueous electrolyte prepared by Comparative Example 1 and Examples 1 to 3. The battery negative electrode was composed of graphite as the active material and polyvinylidene fluoride as the binder, and the positive electrode was composed of LiCoO 2 as the active material, polyvinylidene fluoride as the binder and acetylene black as the conductive agent. The unit cell prepared above was charged under a CC condition with a current of C / 10 and a charging voltage of 4.2V, and then discharged to 3.0V with a current of C / 10, thereby measuring irreversible capacity. The results are shown in Table 1 below.

<표 1>TABLE 1

비교예 Comparative example 실시예 1Example 1 실시예2Example 2 실시예3Example 3 비가역 용량Irreversible capacity 28%28% 25%25% 22%22% 19%19%

<시험예 2> <Test Example 2>

비교예 1과 실시예 1~3에 의해 제조된 기능성 비수 전해액이 초기 충전동안 분해된 정도 알아보기 위해 임피던스를 이용하여 벌크저항의 변화를 조사하였다. 그 결과는 하기 표 2와 같다.In order to determine the degree to which the functional nonaqueous electrolyte prepared by Comparative Example 1 and Examples 1 to 3 were decomposed during initial charging, the change in bulk resistance was investigated using impedance. The results are shown in Table 2 below.

<표 2>TABLE 2

Figure 112006088121976-pat00001
Figure 112006088121976-pat00001

<시험예 3><Test Example 3>

비교예 1과 실시예 2에 의해 제조된 기능성 비수 전해액의 고온 충방전 특성을 알아보기 위해 시험예 1과 동일한 과정으로 단위 전지를 구성하여, 60℃에서 C/2의 전류 및 4.2V 충전 전압으로 CC-CV조건으로 충전한 후, C/2의 전류로 3.0V 까지 10회 방전하였다. 충방전 횟수에 따른 용량 변화는 도 1에 음극 표면의 모폴 로지 변화는 도 2에 나타내었다.In order to determine the high temperature charge / discharge characteristics of the functional nonaqueous electrolytes prepared by Comparative Examples 1 and 2, the unit cell was configured in the same manner as in Test Example 1, and the C / 2 current and the 4.2 V charge voltage were used at 60 ° C. After charging under CC-CV conditions, the battery was discharged 10 times to 3.0V with a current of C / 2. The capacity change according to the number of charge and discharge cycles is shown in FIG. 1, and the morphology change of the cathode surface is shown in FIG. 2.

표 1에서 확인할 수 있듯이, 본 발명의 첨가제가 도입되지 않은 비교예에 비하여 첨가제가 도입된 실시예 1~3의 경우, 그 함량이 증가함에 따라 비가역 용량이 감소한다. 또한, 표 2에서 본 발명의 첨가제가 초기 충전 후 벌크저항의 증가를 억제시키는 것으로부터, 유기 용매의 분해를 효과적으로 억제하고 있음을 알 수 있다. As can be seen in Table 1, in the case of Examples 1 to 3 in which the additive is introduced, as compared with the comparative example in which the additive of the present invention is not introduced, the irreversible capacity decreases as the content thereof increases. In addition, it can be seen from Table 2 that the additive of the present invention suppresses the increase in the bulk resistance after the initial charge, thereby effectively suppressing the decomposition of the organic solvent.

도 2로부터 본 발명에 따른 실시예 2의 비수 전해액이 도입된 경우, 도입되지 않은 비교예에 비하여 충방전 이후에도 초기 음극 모폴로지를 잘 유지하고 있음을 알 수 있다.When the nonaqueous electrolyte solution of Example 2 according to the present invention is introduced from FIG. 2, it can be seen that the initial negative electrode morphology is well maintained even after charge and discharge compared to the comparative example which is not introduced.

본 발명에 의하면, 전지의 초기 충방전 시 안정된 피막을 형성하여 초기 충방전 특성 및 고온 수명 특성을 향상 시킨다. 또한 열에 약한 리튬헥사플루오로포스페이트와 같은 리튬염을 포함하는 전해액에 사용하여도 고온 충방전시 우수한 충방전 특성을 보임은 물론, 고율에서의 충방전 특성도 향상된다.According to the present invention, by forming a stable film during the initial charge and discharge of the battery to improve the initial charge and discharge characteristics and high temperature life characteristics. In addition, even when used in an electrolyte solution containing a lithium salt, such as lithium hexafluorophosphate, which is weak in heat, it exhibits excellent charge and discharge characteristics during high temperature charge and discharge, and also improves charge and discharge characteristics at high rates.

상술한 바와 같이, 본 발명의 바람직한 실시예를 참조하여 설명하였지만 해당 기술 분야의 숙련된 당업자라면 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. As described above, although described with reference to a preferred embodiment of the present invention, those skilled in the art will be variously modified and modified within the scope of the present invention without departing from the spirit and scope of the present invention described in the claims below. It will be appreciated that it can be changed.

Claims (12)

하기 화학식으로 표시되는 실레인계 첨가제를 포함하는 리튬이차전지용 비수 전해액.Non-aqueous electrolyte solution for lithium secondary batteries containing a silane-based additive represented by the following formula. XnSiY4-n (n=1~3)X n SiY 4-n (n = 1 ~ 3) X= CH2=CH-, CH2=(CH3)COOC3H6-, HN2C3H6-, NH2C2H4NHC3H6-, NH2COCHC3H6-, CH3COOC2H4NHC2H4NHC3H6-, NH2C2H4NHC2H4NHC3H6-, SHC3H6-, ClC3H6-, CH3-, CH2H5-, C2H5OCONHC3H6-, OCNC3H6-, C6H5-, C6H5CH2NHC3H6-, C3H5NC3H6-, H- 및 할로겐에서 선택된다.X = CH 2 = CH-, CH 2 = (CH 3 ) COOC 3 H 6- , HN 2 C 3 H 6- , NH 2 C 2 H 4 NHC 3 H 6- , NH 2 COCHC 3 H 6- , CH 3 COOC 2 H 4 NHC 2 H 4 NHC 3 H 6- , NH 2 C 2 H 4 NHC 2 H 4 NHC 3 H 6- , SHC 3 H 6- , ClC 3 H 6- , CH 3- , CH 2 H 5- , C 2 H 5 OCONHC 3 H 6- , OCNC 3 H 6- , C 6 H 5- , C 6 H 5 CH 2 NHC 3 H 6- , C 3 H 5 NC 3 H 6- , H- and Selected from halogen. Y= -H, 할로겐, 아릴기, 아랄킬기 및 페닐기로 구성되는 군에서 선택되는 작용기로 치환 가능한 알킬, 알콕시, 아세톡시 및 사이클로알킬; 할로겐으로 치환 가능한 페닐; -OC2H4OCH3, -Si(CH3)3, -OSi(CH3)3, -OSi(CH3)2H, -O(CH2CH2O)mCH3 (m=1~10), -N(CH3)2 및 할로겐에서 선택된다 (다만, X= CH2=CH-이고 동시에 Y= -OC2H4OCH3 인 경우는 제외).Y = -H, alkyl, alkoxy, acetoxy and cycloalkyl which can be substituted by a functional group selected from the group consisting of halogen, aryl group, aralkyl group and phenyl group; Phenyl which is substituted with halogen; -OC 2 H 4 OCH 3 , -Si (CH 3 ) 3 , -OSi (CH 3 ) 3 , -OSi (CH 3 ) 2 H, -O (CH 2 CH 2 O) m CH 3 (m = 1 ~ 10), -N (CH 3 ) 2 and halogen, except when X = CH 2 = CH- and at the same time Y = -OC 2 H 4 OCH 3 . 삭제delete 제 1항에 있어서, 실레인계 첨가제는 리튬염을 포함한 유기용매 총중량의 0.1 ~ 10% 포함되는 리튬이차전지용 비수 전해액.The nonaqueous electrolyte of claim 1, wherein the silane-based additive comprises 0.1 to 10% of the total weight of the organic solvent including lithium salt. 제 1항에 있어서, 비수 전해액은 유기용매로서 에틸렌카보네이트, 프로필렌카보네이트, 디메틸카보네이트, 디에틸카보네이트, 감마부틸로락톤, 에틸메틸카보네이트, 디메톡시에탄, 디에톡시에탄, 2-메틸테트라하이드로퓨란, 디메틸설폭사이드 중에서 선택되어진 1종 또는 2종이상의 혼합용매인 리튬이차전지용 비수 전해액.The nonaqueous electrolyte solution according to claim 1, wherein the nonaqueous electrolyte is an organic solvent, such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, gamma butyrolactone, ethyl methyl carbonate, dimethoxyethane, diethoxyethane, 2-methyltetrahydrofuran, and dimethyl. A nonaqueous electrolyte solution for lithium secondary batteries, which is one or two or more mixed solvents selected from sulfoxides. 제 1항에 있어서, 리튬염으로는 LiClO4, LiCF3SO3, LiAsF6, LiBF4, LiN(CF3SO2)2, LiPF6, LiSCN, LiC(CF3SO2)3, LiBOB 로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 혼합염인 비수 전해액.The method of claim 1, wherein the lithium salt is LiClO 4 , LiCF 3 SO 3 , LiAsF 6 , LiBF 4 , LiN (CF 3 SO 2 ) 2 , LiPF 6 , LiSCN, LiC (CF 3 SO 2 ) 3 , LiBOB Non-aqueous electrolyte solution which is 1 type, or 2 or more types of mixed salt selected from the group. 양극, 음극, 분리막 및 비수 전해액을 포함하며, 상기 비수 전해액은 하기 화학식으로 표시되는 실레인계 첨가제를 포함하는 리튬이차전지It includes a positive electrode, a negative electrode, a separator and a non-aqueous electrolyte, the non-aqueous electrolyte is a lithium secondary battery containing a silane-based additive represented by the following formula XnSiY4-n (n=1~3)X n SiY 4-n (n = 1 ~ 3) X= CH2=CH-, CH2=(CH3)COOC3H6-, HN2C3H6-, NH2C2H4NHC3H6-, NH2COCHC3H6-, CH3COOC2H4NHC2H4NHC3H6-, NH2C2H4NHC2H4NHC3H6-, SHC3H6-, ClC3H6-, CH3-, CH2H5-, C2H5OCONHC3H6-, OCNC3H6-, C6H5-, C6H5CH2NHC3H6-, C3H5NC3H6-, H- 및 할로겐에서 선택된다.X = CH 2 = CH-, CH 2 = (CH 3 ) COOC 3 H 6- , HN 2 C 3 H 6- , NH 2 C 2 H 4 NHC 3 H 6- , NH 2 COCHC 3 H 6- , CH 3 COOC 2 H 4 NHC 2 H 4 NHC 3 H 6- , NH 2 C 2 H 4 NHC 2 H 4 NHC 3 H 6- , SHC 3 H 6- , ClC 3 H 6- , CH 3- , CH 2 H 5- , C 2 H 5 OCONHC 3 H 6- , OCNC 3 H 6- , C 6 H 5- , C 6 H 5 CH 2 NHC 3 H 6- , C 3 H 5 NC 3 H 6- , H- and Selected from halogen. Y= -H, 할로겐, 아릴기, 아랄킬기 및 페닐기로 구성되는 군에서 선택되는 작용기로 치환 가능한 알킬, 알콕시, 아세톡시 및 사이클로알킬; 할로겐으로 치환 가능한 페닐; -OC2H4OCH3, -Si(CH3)3, -OSi(CH3)3, -OSi(CH3)2H, -O(CH2CH2O)mCH3 (m=1~10), -N(CH3)2 및 할로겐에서 선택된다 (다만, X= CH2=CH-이고 동시에 Y= -OC2H4OCH3 인 경우는 제외). Y = -H, alkyl, alkoxy, acetoxy and cycloalkyl which can be substituted by a functional group selected from the group consisting of halogen, aryl group, aralkyl group and phenyl group; Phenyl which is substituted with halogen; -OC 2 H 4 OCH 3 , -Si (CH 3 ) 3 , -OSi (CH 3 ) 3 , -OSi (CH 3 ) 2 H, -O (CH 2 CH 2 O) m CH 3 (m = 1 ~ 10), -N (CH 3 ) 2 and halogen, except when X = CH 2 = CH- and at the same time Y = -OC 2 H 4 OCH 3 . 삭제delete 제 6항에 있어서, 실레인계 첨가제는 리튬염을 함유한 유기용매 총중량의 0.1 ~ 10% 포함되는 리튬이차전지.The lithium secondary battery of claim 6, wherein the silane-based additive comprises 0.1 to 10% of the total weight of the organic solvent containing lithium salt. 제 6항에 있어서, 상기 양극 및 음극을 구성하는 전극 활물질은 하기 물질로부터 선택되어지는 리튬이차전지.The lithium secondary battery according to claim 6, wherein the electrode active material constituting the positive electrode and the negative electrode is selected from the following materials. (A) 양극 활물질(A) positive electrode active material LiCoO2, LiNiO2, LiMn2O4, LiMnO2, LiCoPO4, LiNi(1-X)CoXMYO2 (여기에서, M =Al, Ti, Mg 또는 Zr, 0<x≤1, 0≤y≤0.2), LiNixCoyMn(1-x-y)O2 (여기에서, 0<x≤0.5, 0<y≤0.5) 및 LiMxM'yMn(2-x-y)O4 (M, M' = V, Cr, Fe, Co, Ni 또는 Cu, 0<X≤1, 0<Y≤1)로 이루어진 군에서 선택된 1종 이상.LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO 2 , LiCoPO 4 , LiNi (1-X) Co X M Y O 2 (where M = Al, Ti, Mg or Zr, 0 <x≤1, 0 ≤y≤0.2), LiNi x Co y Mn (1-xy) O 2 ( where, 0 <x≤0.5, 0 <y≤0.5 ) and LiM x M 'y Mn (2 -xy) O 4 (M , M '= V, Cr, Fe, Co, Ni or Cu, 0 <X ≤ 1, 0 <Y ≤ 1) at least one selected from the group consisting of. (B) 음극 활물질(B) negative electrode active material 리튬합금, 카본, 코크, 활성화 카본, 그라파이트, 실리콘, 금속 또는 합금으로 이루어진 군에서 선택된 1종 이상.At least one selected from the group consisting of lithium alloy, carbon, coke, activated carbon, graphite, silicon, metal or alloy. 제 6항에 있어서, 양극 및 음극을 구성하는 도전재는 카본 블랙, 천연흑연 및 인조흑연으로 구성되는 군에서 선택된 1종 이상임을 특징으로 하는 리튬이차전지.The lithium secondary battery according to claim 6, wherein the conductive material constituting the positive electrode and the negative electrode is at least one selected from the group consisting of carbon black, natural graphite, and artificial graphite. 제 6항에 있어서, 양극 및 음극을 구성하는 바인더는 폴리불화비닐리덴 또는 그의 공중합체, 폴리테트라플루오로에틸렌 및 스티렌부타디엔고무로 이루어진 군에서 선택된 1종 이상인 리튬이차전지. The lithium secondary battery according to claim 6, wherein the binder constituting the positive electrode and the negative electrode is at least one selected from the group consisting of polyvinylidene fluoride or a copolymer thereof, polytetrafluoroethylene, and styrenebutadiene rubber. 제 6항에 있어서, 전지를 구성하는 집전체는 메쉬 또는 호일인 리튬이차전지.The lithium secondary battery according to claim 6, wherein the current collector constituting the battery is a mesh or a foil.
KR1020060118625A 2006-11-28 2006-11-28 Nonaqueous electrolyte for lithium secondary batteries having enhanced cycle performance and lithium secondary batteries comprising the same KR100813309B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060118625A KR100813309B1 (en) 2006-11-28 2006-11-28 Nonaqueous electrolyte for lithium secondary batteries having enhanced cycle performance and lithium secondary batteries comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060118625A KR100813309B1 (en) 2006-11-28 2006-11-28 Nonaqueous electrolyte for lithium secondary batteries having enhanced cycle performance and lithium secondary batteries comprising the same

Publications (1)

Publication Number Publication Date
KR100813309B1 true KR100813309B1 (en) 2008-03-13

Family

ID=39398731

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060118625A KR100813309B1 (en) 2006-11-28 2006-11-28 Nonaqueous electrolyte for lithium secondary batteries having enhanced cycle performance and lithium secondary batteries comprising the same

Country Status (1)

Country Link
KR (1) KR100813309B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101820082B (en) * 2009-02-27 2013-06-12 比亚迪股份有限公司 Electrolyte and lithium-ion secondary battery
KR101287102B1 (en) 2011-01-27 2013-07-17 삼성에스디아이 주식회사 Electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same
CN103272651A (en) * 2013-05-27 2013-09-04 浙江大学 Preparation method of porous metal supported manganese dioxide catalysts for oxygen production implemented by using hydrogen peroxide
KR101363388B1 (en) * 2011-03-11 2014-02-14 주식회사 엘지화학 Cable-Type Secondary Battery
WO2014036024A1 (en) * 2012-08-30 2014-03-06 Asahi Kasei Kabushiki Kaisha Materials for battery electrolytes and methods for use
US8703344B2 (en) 2011-06-09 2014-04-22 Asahi Kasei Kabushiki Kaisha Materials for battery electrolytes and methods for use
US9859541B2 (en) 2013-04-10 2018-01-02 Samsung Sdi Co., Ltd. Rechargeable lithium battery and method of fabricating same
US11133530B2 (en) 2016-08-30 2021-09-28 Wildcat Discovery Technologies, Inc. Electrolyte formulations for electrochemical cells containing a silicon electrode
US11322778B2 (en) 2018-05-29 2022-05-03 Wildcat Discovery Technologies, Inc. High voltage electrolyte additives

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61220279A (en) 1985-03-26 1986-09-30 Toshiba Battery Co Ltd Nonaqueous solvent battery
JPH07220736A (en) * 1994-02-07 1995-08-18 Hitachi Maxell Ltd Inorganic nonaqueous electrolyte battery
JPH11354104A (en) 1998-04-09 1999-12-24 Denso Corp Nonaqueous electrolyte secondary battery and manufacture for electrode
JP2002033127A (en) 2000-06-07 2002-01-31 Merck Patent Gmbh Silane compound to be used as electrolyte additive for electrochemical cell
KR20020065748A (en) * 2001-02-07 2002-08-14 주식회사 엘지화학 Electrolyte additive for safety enhancement and lithium ion secondary battery using the same
JP2002343423A (en) 2001-05-15 2002-11-29 Hitachi Ltd Lithium secondary battery
KR20070024400A (en) * 2005-08-25 2007-03-02 신에쓰 가가꾸 고교 가부시끼가이샤 Non-aqueous electrolytic solution, and secondary battery and capacitor using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61220279A (en) 1985-03-26 1986-09-30 Toshiba Battery Co Ltd Nonaqueous solvent battery
JPH07220736A (en) * 1994-02-07 1995-08-18 Hitachi Maxell Ltd Inorganic nonaqueous electrolyte battery
JPH11354104A (en) 1998-04-09 1999-12-24 Denso Corp Nonaqueous electrolyte secondary battery and manufacture for electrode
JP2002033127A (en) 2000-06-07 2002-01-31 Merck Patent Gmbh Silane compound to be used as electrolyte additive for electrochemical cell
KR20020065748A (en) * 2001-02-07 2002-08-14 주식회사 엘지화학 Electrolyte additive for safety enhancement and lithium ion secondary battery using the same
JP2002343423A (en) 2001-05-15 2002-11-29 Hitachi Ltd Lithium secondary battery
KR20070024400A (en) * 2005-08-25 2007-03-02 신에쓰 가가꾸 고교 가부시끼가이샤 Non-aqueous electrolytic solution, and secondary battery and capacitor using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
문헌 "Vinyl tris-2-methoxyethoxy silane-A new class of film-forming electrolyte components for Li-ion cells with graphite anodes"(2006.02.28) 1부

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101820082B (en) * 2009-02-27 2013-06-12 比亚迪股份有限公司 Electrolyte and lithium-ion secondary battery
KR101287102B1 (en) 2011-01-27 2013-07-17 삼성에스디아이 주식회사 Electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same
US8785056B2 (en) 2011-01-27 2014-07-22 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same
KR101363388B1 (en) * 2011-03-11 2014-02-14 주식회사 엘지화학 Cable-Type Secondary Battery
US9219291B2 (en) 2011-03-11 2015-12-22 Lg Chem, Ltd. Cable-type secondary battery
US8703344B2 (en) 2011-06-09 2014-04-22 Asahi Kasei Kabushiki Kaisha Materials for battery electrolytes and methods for use
WO2014036024A1 (en) * 2012-08-30 2014-03-06 Asahi Kasei Kabushiki Kaisha Materials for battery electrolytes and methods for use
US9859541B2 (en) 2013-04-10 2018-01-02 Samsung Sdi Co., Ltd. Rechargeable lithium battery and method of fabricating same
CN103272651A (en) * 2013-05-27 2013-09-04 浙江大学 Preparation method of porous metal supported manganese dioxide catalysts for oxygen production implemented by using hydrogen peroxide
US11133530B2 (en) 2016-08-30 2021-09-28 Wildcat Discovery Technologies, Inc. Electrolyte formulations for electrochemical cells containing a silicon electrode
US11322778B2 (en) 2018-05-29 2022-05-03 Wildcat Discovery Technologies, Inc. High voltage electrolyte additives

Similar Documents

Publication Publication Date Title
CN112313819B (en) Method of manufacturing negative electrode for lithium secondary battery and method of manufacturing lithium secondary battery
JP5323837B2 (en) Non-aqueous electrolyte lithium secondary battery
JP4714072B2 (en) Anode for lithium secondary battery and lithium secondary battery including the same
EP2160788B1 (en) Non-aqueous electrolyte and lithium secondary battery comprising the same
JP6028957B2 (en) Non-aqueous electrolyte and lithium secondary battery including the same
KR100813309B1 (en) Nonaqueous electrolyte for lithium secondary batteries having enhanced cycle performance and lithium secondary batteries comprising the same
JP2019530955A (en) Non-aqueous electrolyte and lithium secondary battery including the same
KR101676085B1 (en) Silicon based anode active material and lithium secondary battery comprising the same
JP2009164082A (en) Nonaqueous electrolyte secondary battery, and manufacturing method thereof
EP2158635A1 (en) Non-aqueous electrolyte and secondary battery comprising the same
KR100875126B1 (en) Electrode for lithium secondary battery having improved cycle performance and lithium secondary battery using same
US20170207497A1 (en) Charging and discharging method for lithium secondary battery
CN106797027B (en) Nonaqueous electrolyte lithium secondary battery
JPWO2012153734A1 (en) Non-aqueous electrolyte and lithium ion battery
JP5687804B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
KR101651143B1 (en) Lithium secondary battery having improved cycle life
CN109119599B (en) Secondary battery and preparation method thereof
KR20170052494A (en) Additive for non-aqueous electrolyte, non-aqueous electrolyte comprising the same, and lithium secondary battery comprising the same
US10090559B2 (en) Non-aqueous electrolyte and lithium secondary battery including the same
KR20150075495A (en) Electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
CN110582883B (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same
EP4044313A1 (en) Electrolyte and electrochemical device and electronic device comprising same
KR101902646B1 (en) Electrolyte for lithium secondary battery, and lithium secondary battery comprising the same
US20190260080A1 (en) Non-aqueous Electrolyte and Lithium Secondary Battery Including the Same
CN111406335B (en) Electrode for lithium secondary battery and lithium secondary battery including the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20120228

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee