JP5676336B2 - Fuel reformer - Google Patents

Fuel reformer Download PDF

Info

Publication number
JP5676336B2
JP5676336B2 JP2011070750A JP2011070750A JP5676336B2 JP 5676336 B2 JP5676336 B2 JP 5676336B2 JP 2011070750 A JP2011070750 A JP 2011070750A JP 2011070750 A JP2011070750 A JP 2011070750A JP 5676336 B2 JP5676336 B2 JP 5676336B2
Authority
JP
Japan
Prior art keywords
evaporator
water
internal structure
reformer
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011070750A
Other languages
Japanese (ja)
Other versions
JP2012201583A (en
Inventor
卓 若林
卓 若林
桑葉 孝一
孝一 桑葉
遠藤 聡
聡 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Osaka Gas Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Osaka Gas Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2011070750A priority Critical patent/JP5676336B2/en
Publication of JP2012201583A publication Critical patent/JP2012201583A/en
Application granted granted Critical
Publication of JP5676336B2 publication Critical patent/JP5676336B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は、原燃料ガスを水蒸気を用いて改質処理する燃料改質装置に関する。   The present invention relates to a fuel reformer for reforming raw fuel gas using steam.

天然ガス等の炭化水素を含む原燃料ガスを用いて燃料電池を運転するためには、原燃料ガスと水蒸気と混合して燃料改質を行う必要がある。その改質処理で用いるための水蒸気を生成するためには、可燃性ガスを燃焼させて得た燃焼熱を利用することが多い。特許文献1には、供給される蒸発用水を、燃焼器から伝えられる燃焼熱を用いて加熱して蒸発させる蒸発器が記載されている。具体的には、特許文献1に記載の蒸発器では、蒸発器を構成する容器の外側に燃焼熱を直接与えて容器を加熱した状態で、その容器の内側に蒸発用水を滴下して供給する。その結果、滴下された蒸発用水は容器の内側表面で気化する。   In order to operate a fuel cell using raw fuel gas containing hydrocarbons such as natural gas, it is necessary to perform fuel reforming by mixing raw fuel gas and water vapor. In order to generate water vapor for use in the reforming treatment, combustion heat obtained by burning a combustible gas is often used. Patent Document 1 describes an evaporator that heats and evaporates supplied water for evaporation using combustion heat transmitted from the combustor. Specifically, in the evaporator described in Patent Document 1, evaporation water is dropped and supplied to the inside of the container while the combustion heat is directly applied to the outside of the container constituting the evaporator and the container is heated. . As a result, the dropped evaporation water is vaporized on the inner surface of the container.

尚、特許文献1に記載されているような容器の内側に蒸発用水を滴下する方式を採用する従来の蒸発器では、安定した水蒸気の発生が行えない可能性がある。例えば、蒸発器の容器の内側に滴下される蒸発用水の量が増加すると、容器に対して充分な加熱が行われていたとしても、容器の内側表面と接触した一部の蒸発用水のみが先に気化して蒸気の層を作ることで、容器の内側表面と接触しなかった残りの蒸発用水には充分な熱が伝わらずに気化せず、結果として、供給した蒸発用水の量に応じた水蒸気量を得られない可能性がある。或いは、供給されて容器の内側表面と接触した蒸発用水の一部が突沸することで瞬間的に気化し、残りはその突沸によって飛散された先で更に容器の内側表面と接触して瞬間的に気化されるというように安定した気化が行われない恐れがある。また、蒸発器の容器の内側に滴下される蒸発用水の量が少なすぎると、滴下された蒸発用水の全てが瞬間的に気化して水蒸気が発生し、次に蒸発用水が滴下されるまで水蒸気の発生が行われない(即ち、蒸気濃度の脈動が生じる)可能性がある。   In addition, in the conventional evaporator which employ | adopts the system which dripping the water for evaporation inside the container as described in patent document 1, there exists a possibility that generation | occurrence | production of stable water vapor | steam cannot be performed. For example, if the amount of evaporating water dripped inside the container of the evaporator increases, only a portion of the evaporating water in contact with the inner surface of the container is first, even if the container is sufficiently heated. Vaporized to form a vapor layer, the remaining evaporation water that did not come into contact with the inner surface of the container did not vaporize because sufficient heat was not transferred, and as a result, the amount of evaporation water supplied The amount of water vapor may not be obtained. Alternatively, a part of the water for evaporation that has been supplied and contacted with the inner surface of the container is instantly vaporized by sudden bumping, and the rest is instantaneously contacted with the inner surface of the container at the point where it was scattered by the bumping. There is a risk that stable vaporization will not be performed. Also, if the amount of evaporating water dripped inside the evaporator vessel is too small, all of the evaporating water is instantly vaporized to generate water vapor, and then until the evaporating water is dripped. May not occur (i.e., pulsation of vapor concentration may occur).

特許文献2には、特許文献1に記載の発明において問題となり得る蒸気濃度の脈動を抑制可能な蒸発器が記載されている。具体的には、特許文献2に記載の発明では、蒸発用水を滴下して供給するのではなく、蒸発器の内部に蒸発用水を貯める貯水部を設け、蒸発用水は貯水部で一時的に保持されて予熱された後で気化される。   Patent Document 2 describes an evaporator that can suppress pulsation of vapor concentration, which can be a problem in the invention described in Patent Document 1. Specifically, in the invention described in Patent Document 2, a water storage unit for storing the evaporation water is provided inside the evaporator instead of dropping and supplying the evaporation water, and the evaporation water is temporarily held in the water storage unit. It is vaporized after being preheated.

特開2008−7349号公報JP 2008-7349 A 特開2010−238444号公報JP 2010-238444 A

しかし、特許文献2に記載の発明では、蒸発器において生成されて改質器へ供給される水蒸気量は、蒸発器への蒸発用水の供給量で決まるのではなく、蒸発器へ燃焼器から与えられる燃焼熱量で決まる。つまり、既に蒸発器の内部に貯留されている蒸発用水を気化させる方式が採用されているので、貯留されている蒸発用水に与えられる熱量(即ち、蒸発器へ燃焼器から与えられる燃焼熱量)を大きくすることで発生する水蒸気量が多くなり、蒸発用水に与えられる熱量を小さくすることで発生する水蒸気量が少なくなる。そのため、発生させる水蒸気量の増減を細かく制御するためには、燃焼器で発生する燃焼熱量を細かく制御しなければならないが、実際にはそのような細かな制御は困難である。更に、燃料電池の出力変動時には、改質器へ供給する水蒸気量も即座に変化させなければならないが、燃焼器から蒸発器へ与える燃焼熱量を変化させても、即座に所望の水蒸気量が得られるとは限らず、結果として、応答性が悪くなるという問題が生じる。   However, in the invention described in Patent Document 2, the amount of water vapor generated in the evaporator and supplied to the reformer is not determined by the amount of evaporation water supplied to the evaporator, but supplied from the combustor to the evaporator. It depends on the amount of combustion heat generated. That is, since the method of vaporizing the evaporation water already stored in the evaporator is adopted, the amount of heat given to the stored evaporation water (that is, the amount of combustion heat given from the combustor to the evaporator) The amount of water vapor generated increases by increasing the amount, and the amount of water vapor generated decreases by reducing the amount of heat given to the evaporation water. Therefore, in order to finely control the increase / decrease in the amount of water vapor to be generated, it is necessary to finely control the amount of combustion heat generated in the combustor, but in reality such fine control is difficult. Furthermore, when the output of the fuel cell fluctuates, the amount of steam supplied to the reformer must be changed immediately, but even if the amount of combustion heat given from the combustor to the evaporator is changed, the desired amount of steam can be obtained immediately. As a result, there arises a problem that the responsiveness is deteriorated.

本発明は、上記の課題に鑑みてなされたものであり、その目的は、蒸発器で生成される水蒸気量を安定して制御可能な燃料改質装置を提供する点にある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a fuel reformer capable of stably controlling the amount of water vapor generated by an evaporator.

上記目的を達成するための本発明に係る燃料改質装置の特徴構成は、
可燃性ガスを燃焼して燃焼熱を発生させる燃焼器と
供給される蒸発用水を、前記燃焼器から伝えられる前記燃焼熱を用いて加熱して蒸発させる蒸発器と、
供給される原燃料ガスを前記蒸発器にて生成された水蒸気を用いて改質処理する改質器とを備える燃料改質装置であって、
前記蒸発器を構成する容器は、前記燃焼熱が直接伝えられる最外郭構造体と、前記燃焼器との間に前記最外郭構造体を挟んで位置し、前記容器の内部に供給される前記蒸発用水が接触する位置に設けられる内部構造体を有し、
前記内部構造体の、前記蒸発用水が接触する面は、供給される前記蒸発用水が広がる平面状に形成される平面部分を有し、
前記改質器は、前記蒸発器への前記蒸発用水の供給方向に沿って前記蒸発器の下流側に、前記蒸発器に隣接して設けられ、前記蒸発器と前記改質器とは通気性を有する仕切部材で仕切られており、前記平面部分にて生成された水蒸気が前記仕切部材を通して前記改質器に供給される点にある。
In order to achieve the above object, the characteristic configuration of the fuel reformer according to the present invention is as follows:
A combustor that combusts a combustible gas to generate combustion heat, and an evaporator that heats and evaporates the supplied evaporating water using the combustion heat transmitted from the combustor;
A fuel reformer comprising a reformer that reforms the supplied raw fuel gas using water vapor generated in the evaporator,
The container constituting the evaporator is located between the outermost structure to which the combustion heat is directly transmitted and the outermost structure between the combustor, and is supplied to the inside of the container. possess an internal structure that water is provided in a position in contact,
The surface of the internal structure that comes into contact with the evaporating water has a flat portion that is formed in a planar shape in which the supplied evaporating water spreads,
The reformer is provided on the downstream side of the evaporator along the supply direction of the evaporation water to the evaporator, adjacent to the evaporator, and the evaporator and the reformer are air permeable. And the steam generated in the planar portion is supplied to the reformer through the partition member .

上記特徴構成によれば、供給される蒸発用水が接触する内部構造体は、燃焼器で発生される燃焼熱が直接伝えられる最外郭構造体よりも燃焼器から離れて設けられる。つまり、内部構造体には燃焼熱が最外郭構造体を介して間接的に伝わるため、内部構造体に伝わる燃焼熱は最外郭構造体に伝わる燃焼熱よりも小さくなる。その結果、最外郭構造体に蒸発用水を接触させる場合に比べて、蒸発用水の気化が瞬間的に激しく行われないようにできる。例えば、最外郭構造体に蒸発用水を接触させた場合には、その蒸発用水の一部が突沸することで瞬間的に気化し、残りはその突沸によって飛散された先で瞬間的に気化されるというように安定した気化が行われない恐れがある。しかし、本特徴構成では、相対的に低温の内部構造体に対して蒸発用水を接触させるので蒸発用水の突沸の発生が抑制され、蒸発用水の蒸発が安定して進行するようにできる。
加えて、蒸発用水の蒸発が安定して進行するため、蒸発器に供給する蒸発用水の量の増減に応じて、蒸発器で発生する水蒸気量を変化させることができる。つまり、燃料電池を出力変動させようとした場合に、蒸発器で生成されて改質器へ供給される水蒸気量を速やかに変化させることもできる。
従って、蒸発器で生成される水蒸気量を安定して制御可能な燃料改質装置を提供できる。
また内部構造体上に滞留する蒸発用水の層が厚くなると、全ての蒸発用水に対して(特に上層部分の蒸発用水に対して)内部構造体の熱が均等に伝わり難くなる。
ところが本特徴構成によれば、内部構造体の平面部分において、供給される蒸発用水が広がるため、内部構造体上に滞留する蒸発用水の層の厚さは薄くなる。つまり、内部構造体から全ての蒸発用水に対して熱が均等に伝わり易くなる。特に、蒸発用水は、内部構造体上に供給されてから徐々に広がる過程で継続して内部構造体から良好に熱を受け続けることができる。
According to the above characteristic configuration, the internal structure with which the supplied evaporation water contacts is provided farther from the combustor than the outermost structure to which combustion heat generated in the combustor is directly transmitted. In other words, since the combustion heat is indirectly transmitted to the internal structure via the outermost structure, the combustion heat transmitted to the inner structure is smaller than the combustion heat transmitted to the outermost structure. As a result, the evaporation water can be prevented from being vaporized momentarily compared with the case where the evaporation water is brought into contact with the outermost structure. For example, when evaporating water is brought into contact with the outermost structure, a part of the evaporating water is instantly vaporized, and the rest is instantly vaporized at the point where the water is scattered by the bumping. There is a risk that stable vaporization will not be performed. However, in this feature configuration, since the evaporating water is brought into contact with the relatively low temperature internal structure, the occurrence of bumping of the evaporating water is suppressed, and the evaporating water evaporates stably.
In addition, since evaporation of evaporation water proceeds stably, the amount of water vapor generated in the evaporator can be changed according to the increase or decrease in the amount of evaporation water supplied to the evaporator. That is, when the output of the fuel cell is to be changed, the amount of water vapor generated by the evaporator and supplied to the reformer can be changed quickly.
Therefore, it is possible to provide a fuel reformer that can stably control the amount of water vapor generated in the evaporator.
Further, when the layer of evaporation water staying on the internal structure becomes thick, it becomes difficult for the heat of the internal structure to be evenly transmitted to all the evaporation water (especially to the evaporation water in the upper layer portion).
However, according to the present characteristic configuration, the evaporation water supplied spreads in the planar portion of the internal structure, and therefore the thickness of the evaporation water staying on the internal structure is reduced. That is, heat is easily transmitted from the internal structure to all the evaporation water. In particular, the evaporating water can continue to receive heat from the internal structure satisfactorily in the process of gradually spreading after being supplied onto the internal structure.

本発明に係る燃料改質装置の更に別の特徴構成は、前記内部構造体の前記平面部分の周囲の全部に又は部分的に、前記平面部分に存在する前記蒸発用水を堰き止めることができる堰構造が設けられている点にある。   Still another characteristic configuration of the fuel reforming apparatus according to the present invention is a weir capable of damming the water for evaporation existing in the planar portion, all or part of the periphery of the planar portion of the internal structure. The structure is provided.

上記特徴構成によれば、堰構造を設けることで、蒸発用水が広がる範囲を制限できる。   According to the above characteristic configuration, by providing the weir structure, it is possible to limit the range in which the evaporation water spreads.

本発明に係る燃料改質装置の更に別の特徴構成は、前記内部構造体の、前記蒸発用水が接触する面に親水化処理が施されている点にある。   Yet another characteristic configuration of the fuel reformer according to the present invention is that a surface of the internal structure that is in contact with the evaporating water is subjected to a hydrophilic treatment.

上記特徴構成によれば、親水化処理の効果によって、蒸発用水が内部構造体の表面に広がり易くなる。その結果、蒸発器に供給された蒸発用水に対して内部構造体から熱が均等に伝わり易くなるため、蒸発用水の気化が安定して行われるようになる。   According to the above characteristic configuration, the evaporation water can easily spread on the surface of the internal structure due to the effect of the hydrophilic treatment. As a result, heat is easily transmitted from the internal structure to the evaporation water supplied to the evaporator, so that evaporation of the evaporation water is stably performed.

本発明に係る燃料改質装置の更に別の特徴構成は、前記内部構造体は、供給された前記蒸発用水が下流側の前記改質器に向かう方向に流れるように形成されている点にある。   Still another characteristic configuration of the fuel reformer according to the present invention is that the internal structure is formed so that the supplied water for evaporation flows in a direction toward the reformer on the downstream side. .

上記特徴構成によれば、蒸発用水を改質器に近い位置に移動させながら気化させることができる。その結果、発生する水蒸気が改質器に供給され易くなる。   According to the above characteristic configuration, the evaporation water can be vaporized while being moved to a position close to the reformer. As a result, the generated steam is easily supplied to the reformer.

本発明に係る燃料改質装置の更に別の特徴構成は、前記蒸発器は、前記内部構造体を形成する部材を、前記最外郭構造体を形成する容器の内部の壁面で支持又は当該壁面に接合して構成される点にある。   Still another characteristic configuration of the fuel reforming apparatus according to the present invention is that the evaporator supports or forms a member that forms the inner structure on a wall surface inside a container that forms the outermost structure. It is in the point comprised by joining.

上記特徴構成によれば、適当な形状の内部構造体を、最外郭構造体を形成する容器の内部に設けて支持させる又は接合させることで、蒸発器を得ることができる。つまり、蒸発器を作製するにあたり、最外郭構造体は従来と同様の容器で流用し、内部構造体のみを新たに作製してその容器(最外郭構造体)の内部に設置すればよい。このような構成を採用することで、既存の蒸発器の容器に対しても内部構造体を設置することが可能となる。   According to the above characteristic configuration, an evaporator can be obtained by providing and supporting or joining an appropriately shaped internal structure inside the container forming the outermost structure. That is, in manufacturing the evaporator, the outermost structure may be diverted in a container similar to the conventional one, and only the inner structure may be newly prepared and installed inside the container (outermost structure). By adopting such a configuration, it is possible to install an internal structure even in an existing evaporator container.

第1実施形態の燃料改質装置を備える燃料電池発電装置の構成を示す図である。It is a figure showing composition of a fuel cell power generator provided with a fuel reformer of a 1st embodiment. 第1実施形態の燃料改質装置が備える蒸発器及び改質器の内部の構成を側方から見た透視図である。It is the perspective view which looked at the internal structure of the evaporator with which the fuel reformer of 1st Embodiment is equipped, and the reformer from the side. 第1実施形態の蒸発器の構成を示す図である。It is a figure which shows the structure of the evaporator of 1st Embodiment. 第2実施形態の蒸発器の構成を示す図である。It is a figure which shows the structure of the evaporator of 2nd Embodiment. 第3実施形態の蒸発器の構成を示す図である。It is a figure which shows the structure of the evaporator of 3rd Embodiment. 第4実施形態の蒸発器の構成を示す図である。It is a figure which shows the structure of the evaporator of 4th Embodiment. 第5実施形態の燃料改質装置が備える蒸発器及び改質器の内部の構成を側方から見た透視図である。It is the perspective view which looked at the internal structure of the evaporator with which the fuel reformer of 5th Embodiment is equipped, and the reformer from the side. 別の燃料改質装置が備える蒸発器及び改質器の内部の構成を側方から見た一部切欠き透視図である。It is the partially notched perspective view which looked at the internal structure of the evaporator with which another fuel reformer is equipped, and a reformer from the side. 別の燃料改質装置が備える蒸発器の内部の構成を側方から見た一部切欠き透視図である。It is the partially notched perspective view which looked at the structure inside the evaporator with which another fuel reformer is provided from the side.

<第1実施形態>
図1は、第1実施形態の燃料改質装置Rを備える燃料電池発電装置の構成を示す図である。図2は、第1実施形態の燃料改質装置Rが備える蒸発器2及び改質器3の構成を示す図である。図3は、蒸発器2の内部の構成を斜め上方から見た透視図である。燃料電池発電装置は、水素を主成分とする改質ガスを生成する燃料改質装置Rと、燃料改質装置Rで生成された改質ガスと酸素(空気)とを用いて発電する燃料電池部21とを装置筐体1の内部に備える。後述するように、第1実施形態の燃料改質装置Rは、燃焼器22と蒸発器2と改質器3とを備える。
<First Embodiment>
FIG. 1 is a diagram illustrating a configuration of a fuel cell power generator including a fuel reformer R according to the first embodiment. FIG. 2 is a diagram illustrating a configuration of the evaporator 2 and the reformer 3 included in the fuel reformer R of the first embodiment. FIG. 3 is a perspective view of the internal configuration of the evaporator 2 as viewed obliquely from above. The fuel cell power generator is a fuel reformer R that generates a reformed gas mainly composed of hydrogen, and a fuel cell that generates power using the reformed gas and oxygen (air) generated by the fuel reformer R. The unit 21 is provided inside the apparatus housing 1. As will be described later, the fuel reformer R of the first embodiment includes a combustor 22, an evaporator 2, and a reformer 3.

〔燃料電池部〕
燃料電池部21は、改質ガスが通流する燃料通流部24と空気が通流する空気通流部25とを備えた複数の固体酸化物型のセル26を電気的に直列接続された状態で備えたセルスタックにて構成されている。図示は省略するが、セル26は、燃料極と空気極との間に固体電解質層を備えた固体酸化物型に構成される。燃料通流部24を改質ガスが通流することで燃料極に改質ガスが供給され、空気通流部25を空気が通流することで空気極に空気が供給される。燃料電池部21は、複数のセル26が燃料通流部24の改質ガス排出口24e及び空気通流部25の空気排出口25eが上向きになる姿勢で横方向に並ぶ状態で、装置筐体1の内部に設置されている。尚、セル26としては、燃料通流部24及び空気通流部25を備えた各種の形状や構成のセルが使用可能であり、その形状や構成については上記に限定されるものではない。
[Fuel cell part]
The fuel cell unit 21 is electrically connected in series with a plurality of solid oxide cells 26 having a fuel flow part 24 through which reformed gas flows and an air flow part 25 through which air flows. It is composed of a cell stack prepared in the state. Although not shown, the cell 26 is configured in a solid oxide type having a solid electrolyte layer between a fuel electrode and an air electrode. The reformed gas is supplied to the fuel electrode by flowing the reformed gas through the fuel flow portion 24, and the air is supplied to the air electrode by flowing air through the air flow portion 25. The fuel cell unit 21 includes a plurality of cells 26 arranged in a horizontal direction in a posture in which the reformed gas discharge port 24e of the fuel flow unit 24 and the air discharge port 25e of the air flow unit 25 face upward. 1 is installed inside. In addition, as the cell 26, the cell of the various shapes and structures provided with the fuel flow part 24 and the air flow part 25 can be used, About the shape and structure, it is not limited above.

加えて、燃料電池部21には、改質器3から改質ガス供給路23を通して供給される改質ガスを受け入れるガスマニホールド27が設けられる。複数のセル26は、ガスマニホールド27の上方側に上述のように並ぶ状態で配置され、ガスマニホールド27と複数のセル26における燃料通流部24の下端のガス導入口(図示せず)とが連通接続されている。そして、ガスマニホールド27に供給された改質ガスが複数のセル26夫々の燃料通流部24に対して下端のガス導入口から供給されて、各燃料通流部24を下方側から上方側に通流して発電反応に供される。発電反応に供されたのちの排改質ガスは、上端の改質ガス排出口24eから排出される。   In addition, the fuel cell unit 21 is provided with a gas manifold 27 that receives the reformed gas supplied from the reformer 3 through the reformed gas supply path 23. The plurality of cells 26 are arranged above the gas manifold 27 as described above, and the gas manifold 27 and a gas introduction port (not shown) at the lower end of the fuel flow portion 24 in the plurality of cells 26 are arranged. Communication connection is established. Then, the reformed gas supplied to the gas manifold 27 is supplied from the gas introduction port at the lower end to the fuel flow portions 24 of the plurality of cells 26 so that each fuel flow portion 24 is moved from the lower side to the upper side. It flows and is used for power generation reaction. The exhaust reformed gas after being subjected to the power generation reaction is discharged from the reformed gas discharge port 24e at the upper end.

装置筐体1には、空気導入口28が設けられる、その空気導入口28には空気供給路29が接続される。ブロア30の作動により、空気が空気供給路29を通して装置筐体1内に供給される。複数のセル26夫々における空気通流部25の下端部近傍には、装置筐体1内と空気通流部25内とを連通する空気供給孔(図示せず)が設けられている。複数のセル26夫々の空気通流部25には装置筐体1内の空気がこの空気供給孔を通して供給されて、各空気通流部25を下方側から上方側に通流して発電反応に供される。発電反応に供されたのちの排空気は、上端の空気排出口25eから排出される。   The apparatus housing 1 is provided with an air inlet 28, and an air supply path 29 is connected to the air inlet 28. By the operation of the blower 30, air is supplied into the apparatus housing 1 through the air supply path 29. An air supply hole (not shown) that connects the inside of the apparatus housing 1 and the inside of the air flow portion 25 is provided in the vicinity of the lower end portion of the air flow portion 25 in each of the plurality of cells 26. Air in the device casing 1 is supplied to the air flow portions 25 of each of the plurality of cells 26 through the air supply holes, and each air flow portion 25 flows from the lower side to the upper side to be used for a power generation reaction. Is done. The exhaust air after being subjected to the power generation reaction is exhausted from the upper air exhaust port 25e.

燃料電池部21の上方には、各セル26の燃料通流部24の改質ガス排出口24eから排出される排改質ガスと空気通流部25の空気排出口25eから排出される排空気とを燃焼させる燃焼空間が形成される。つまり、燃料電池部21により、燃焼器22が実現される。加えて、後述するように、一体で構成された蒸発器2と改質器3とが、燃焼器22として機能する燃料電池部21の上方の燃焼空間に隣接して設けられている。   Above the fuel cell unit 21, exhaust reformed gas discharged from the reformed gas discharge port 24 e of the fuel flow part 24 of each cell 26 and exhaust air discharged from the air discharge port 25 e of the air flow part 25. A combustion space is formed. That is, the combustor 22 is realized by the fuel cell unit 21. In addition, as will be described later, the integrally configured evaporator 2 and reformer 3 are provided adjacent to the combustion space above the fuel cell unit 21 that functions as the combustor 22.

装置筐体1には、燃焼器22にて発生した燃焼排ガスを外部に排出させる排出部31が下面部等に形成されている。そして、装置筐体1内には、排出部31から外部に排出される燃焼排ガス中の一酸化炭素ガスを除去する燃焼触媒部32(例えば、白金系触媒)が設けられている。   In the apparatus housing 1, a discharge portion 31 that discharges combustion exhaust gas generated in the combustor 22 to the outside is formed on the lower surface portion or the like. And in the apparatus housing | casing 1, the combustion catalyst part 32 (for example, platinum-type catalyst) which removes the carbon monoxide gas in the combustion exhaust gas discharged | emitted from the discharge part 31 outside is provided.

〔燃料改質装置〕
燃料改質装置Rは、燃料電池部21により実現される燃焼器22と蒸発器2と改質器3とを備える。
燃焼器22は、可燃性ガスを燃焼して燃焼熱を発生させる。具体的には、上述したように、燃焼器22は、各セル26の燃料通流部24の改質ガス排出口24eから排出される排改質ガス(可燃性ガス)と空気通流部25の空気排出口25eから排出される排空気とを燃焼させて燃焼熱を発生させる。
[Fuel reformer]
The fuel reformer R includes a combustor 22, an evaporator 2, and a reformer 3 realized by the fuel cell unit 21.
The combustor 22 burns combustible gas and generates combustion heat. Specifically, as described above, the combustor 22 includes the exhaust reformed gas (combustible gas) discharged from the reformed gas discharge port 24 e of the fuel flow part 24 of each cell 26 and the air flow part 25. The exhaust air discharged from the air discharge port 25e is combusted to generate combustion heat.

図2に示すように、蒸発器2を構成する容器C1と、改質器3を構成する容器C2とは単一の筐体Cで構成されている。つまり、蒸発器2と改質器3とは、単一の筐体Cの内部空間を、通気性を有する仕切部材33を用いて上流側区域と下流側区域とに仕切り、上流側区域を蒸発器2とし、下流側区域を改質器3として形成される。本実施形態では、上流側区域の蒸発器2の部分における筐体Cの内部空間の断面積と、下流側区域の改質器3の部分における筐体Cの内部空間の断面積とは同一に形成されている。そして、蒸発器2の内部空間には、原燃料ガス(G)が供給される原燃料ガス供給管7と、蒸発用水が供給される蒸発用水供給管6とが、容器C1の外部から引き込まれて内部に突出し、蒸発器2として用いられる上流側区域の内部に、原燃料ガス及び蒸発用水が供給される。   As shown in FIG. 2, the container C1 constituting the evaporator 2 and the container C2 constituting the reformer 3 are constituted by a single casing C. That is, the evaporator 2 and the reformer 3 partition the internal space of the single casing C into an upstream area and a downstream area using a partition member 33 having air permeability, and evaporate the upstream area. The downstream section is formed as the reformer 3. In the present embodiment, the cross-sectional area of the internal space of the casing C in the portion of the evaporator 2 in the upstream section and the cross-sectional area of the internal space of the casing C in the portion of the reformer 3 in the downstream section are the same. Is formed. A raw fuel gas supply pipe 7 to which the raw fuel gas (G) is supplied and an evaporation water supply pipe 6 to which evaporation water is supplied are drawn into the internal space of the evaporator 2 from the outside of the container C1. The raw fuel gas and the evaporating water are supplied into the upstream area used as the evaporator 2.

蒸発器2は、供給される蒸発用水を、燃焼器22から伝えられる燃焼熱を用いて加熱して蒸発させる。蒸発器2に供給される蒸発用水は、蒸発用水タンク8に貯えられている水である。つまり、蒸発用水タンク8に貯えられている蒸発用水は、蒸発用水タンク8に連結される蒸発用水供給管6を介して蒸発器2に供給される。具体的には、蒸発用水ポンプ9が動作することで蒸発用水タンク8に貯えられている蒸発用水が蒸発用水供給管6を通流して蒸発器2の内部に流入する。   The evaporator 2 evaporates the supplied evaporation water by heating it using the combustion heat transmitted from the combustor 22. The evaporation water supplied to the evaporator 2 is water stored in the evaporation water tank 8. That is, the evaporation water stored in the evaporation water tank 8 is supplied to the evaporator 2 through the evaporation water supply pipe 6 connected to the evaporation water tank 8. Specifically, when the evaporation water pump 9 is operated, the evaporation water stored in the evaporation water tank 8 flows through the evaporation water supply pipe 6 and flows into the evaporator 2.

改質器3は、供給される原燃料ガスを蒸発器2にて生成された水蒸気を用いて改質処理する。図2に示すように、改質器3の内部には改質触媒3aが充填されており、この改質触媒3aの触媒作用によって原燃料ガスが改質処理される。改質器3には原燃料ガス供給管7を介して原燃料ガスが供給される。原燃料ガス供給管7には昇圧ポンプ10が設けられている。更に、昇圧ポンプ10の下流側の原燃料ガス供給管7には、原燃料ガス(例えば、都市ガス等)に含まれる硫黄化合物を取り除くための脱硫器11が設けられている。そして、昇圧ポンプ10が動作することで、原燃料ガスが原燃料ガス供給管7を通流し且つ脱硫器11で脱硫された後で蒸発器2の内部に流入する。   The reformer 3 reforms the supplied raw fuel gas using the steam generated by the evaporator 2. As shown in FIG. 2, the reformer 3 is filled with a reforming catalyst 3a, and the raw fuel gas is reformed by the catalytic action of the reforming catalyst 3a. A raw fuel gas is supplied to the reformer 3 through a raw fuel gas supply pipe 7. The raw fuel gas supply pipe 7 is provided with a booster pump 10. Further, the raw fuel gas supply pipe 7 on the downstream side of the booster pump 10 is provided with a desulfurizer 11 for removing sulfur compounds contained in the raw fuel gas (for example, city gas). When the booster pump 10 is operated, the raw fuel gas flows through the raw fuel gas supply pipe 7 and is desulfurized by the desulfurizer 11 and then flows into the evaporator 2.

〔蒸発器の構成〕
次に、蒸発器2の構成について説明する。
図2及び図3に示すように、蒸発器2を構成する容器C1は、燃焼器22で発生される燃焼熱が直接伝えられる最外郭構造体2aと、燃焼器22との間に最外郭構造体2aを挟んで位置し、容器C1の内部に供給される蒸発用水が接触する位置に設けられる内部構造体2bを有する。特に、図3(a)は蒸発器2の内部の構成を説明する斜視図であり、図3(b)は蒸発器2の断面図である。蒸発器2を構成する容器C1の内部には、原燃料ガス供給管7と蒸発用水供給管6とが引き込まれ、各供給管の先端は容器C1の内部で開口されている。そして、蒸発用水供給管6を介して容器C1の内部に供給される蒸発用水が蒸発用水供給管6の先端から内部構造体2b上に流出することで、内部構造体2bの表面と蒸発用水とが接触する。本実施形態では、蒸発用水供給管6の先端の高さは、内部構造体2bよりも僅かに高い位置にある。つまり、蒸発用水供給管6の先端は内部構造体2bに近い位置で開口されているので、蒸発用水供給管6の先端から流出した蒸発用水を、液滴が間欠的に滴下されるような状態ではなく、まとまったままで連続的に内部構造体2bの表面に到達するような状態で供給することができる。その結果、内部構造体2bの表面に対して、一定量の蒸発用水を連続的に安定供給できる。
[Evaporator configuration]
Next, the configuration of the evaporator 2 will be described.
As shown in FIGS. 2 and 3, the container C <b> 1 constituting the evaporator 2 has an outermost structure between the outermost structure 2 a to which combustion heat generated in the combustor 22 is directly transmitted and the combustor 22. It has an internal structure 2b that is located across the body 2a and is provided at a position where the evaporating water supplied to the inside of the container C1 comes into contact. 3A is a perspective view for explaining the internal configuration of the evaporator 2, and FIG. 3B is a cross-sectional view of the evaporator 2. FIG. The raw fuel gas supply pipe 7 and the evaporation water supply pipe 6 are drawn into the container C1 constituting the evaporator 2, and the tips of the supply pipes are opened inside the container C1. Then, the evaporating water supplied to the inside of the container C1 through the evaporating water supply pipe 6 flows out from the tip of the evaporating water supply pipe 6 onto the inner structure 2b, so that the surface of the inner structure 2b, the evaporating water, Touch. In the present embodiment, the height of the tip of the evaporating water supply pipe 6 is slightly higher than the internal structure 2b. That is, since the tip of the evaporating water supply pipe 6 is opened at a position close to the internal structure 2b, the evaporating water flowing out from the tip of the evaporating water supply pipe 6 is dropped intermittently. Instead, it can be supplied in such a state that it continuously reaches the surface of the internal structure 2b while staying together. As a result, a constant amount of evaporation water can be continuously and stably supplied to the surface of the internal structure 2b.

加えて、蒸発器2は、内部構造体2bを形成する部材を、最外郭構造体2aを形成する容器C1の内部の壁面で支持又はその壁面に接合して構成される。具体的には、内部構造体2bは、例えば金属製の板状部材を折り曲げ加工、プレス加工、切削加工、接合加工等することで作製される。そして、内部構造体2bの、蒸発用水が接触する面は、上方から供給される蒸発用水を受ける盆状に形成されている。   In addition, the evaporator 2 is configured by supporting or joining a member forming the internal structure 2b with a wall surface inside the container C1 forming the outermost structure 2a. Specifically, the internal structure 2b is produced, for example, by bending a metal plate-like member, pressing, cutting, joining, or the like. The surface of the internal structure 2b that comes into contact with the evaporation water is formed in a basin shape for receiving the evaporation water supplied from above.

内部構造体2bの盆状部分Pは、蒸発器2から改質器3へ向かう方向を前方とした場合、底部Pbの周囲に前端部Pfと後端部Prと側部Psとが設けられた状態で構成される。加えて、内部構造体2bは、蒸発器2から改質器3へ向かう方向に沿った長手状に形成されている。内部構造体2bの盆状部分Pの底部Pbは、供給される蒸発用水が広がる平面状に形成される。つまり、内部構造体2bの蒸発用水が接触する面は平面部分(即ち、底部Pb)を有する。この平面部分としての底部Pb上では、供給される蒸発用水が広がるため、内部構造体2b上に滞留する蒸発用水の層の厚さは薄くなる。つまり、内部構造体2b上に滞留する蒸発用水の層が厚くなると、内部構造体2bの熱が全ての蒸発用水に対して(特に上層部分の蒸発用水に対して)均等に伝わり難くなるが、本実施形態のように内部構造体2b上に滞留する蒸発用水の層の厚さが薄くなると、内部構造体2bから全ての蒸発用水に対して均等に熱が伝わり易くなる。特に、蒸発用水は、内部構造体2bに供給されてから底部Pb上を流れて徐々に広がる過程で継続して内部構造体2bから良好に熱を受け続けることができる。   The basal part P of the internal structure 2b is provided with a front end part Pf, a rear end part Pr, and a side part Ps around the bottom part Pb when the direction from the evaporator 2 toward the reformer 3 is the front. Consists of states. In addition, the internal structure 2 b is formed in a longitudinal shape along the direction from the evaporator 2 toward the reformer 3. The bottom part Pb of the basin-shaped part P of the internal structure 2b is formed in a planar shape in which the supplied evaporation water is spread. In other words, the surface of the internal structure 2b with which the evaporation water contacts has a flat surface portion (that is, the bottom portion Pb). On the bottom portion Pb as the flat portion, the supplied evaporation water spreads, so the thickness of the evaporation water layer staying on the internal structure 2b is reduced. That is, when the evaporation water layer staying on the internal structure 2b becomes thick, the heat of the internal structure 2b becomes difficult to be transmitted uniformly to all the evaporation water (especially to the evaporation water in the upper layer portion). When the thickness of the evaporating water layer staying on the internal structure 2b is reduced as in the present embodiment, heat is easily transferred from the internal structure 2b to all evaporating water equally. In particular, the evaporating water can continue to receive heat from the internal structure 2b satisfactorily in the process of flowing on the bottom Pb and gradually spreading after being supplied to the internal structure 2b.

更に具体的に説明すると、蒸発器2において蒸発用水供給管6の先端部は下流側の改質器3の方に向いて開口しているため、蒸発用水は内部構造体2bの後端部Pr側から前端部Pfの方向に流出する。そして、平面部分としての底部Pbは水平となるように設置されているため、内部構造体2bの後端部Prの付近の底部Pbに対して前端部Pfの方向に向けて供給された蒸発用水は、底部Pb上を前端部Pfの方向に流れながら薄く広がる。そして、蒸発用水が内部構造体2bから熱を継続的に受けながら広がりつつ流れる間に、蒸発用水の蒸発が発生する。このように、内部構造体2bの底部Pb上では、後方(後端部Pr側)に蒸発用水が供給されて、前方(前端部Pf)へ行くにつれて蒸発により水量が減少するため、内部構造体2bに供給された蒸発用水は、内部構造体2b上を下流側の改質器3に向かう方向に流れることとなる。   More specifically, since the front end portion of the evaporating water supply pipe 6 in the evaporator 2 opens toward the downstream reformer 3, the evaporating water passes through the rear end portion Pr of the internal structure 2b. Outflow from the side toward the front end Pf. And since the bottom part Pb as a plane part is installed so that it may become horizontal, the evaporating water supplied toward the direction of the front-end part Pf with respect to the bottom part Pb near the rear-end part Pr of the internal structure 2b Spreads thinly while flowing on the bottom Pb in the direction of the front end Pf. The evaporation water evaporates while the evaporation water flows while continuously receiving heat from the internal structure 2b. In this way, on the bottom Pb of the internal structure 2b, evaporation water is supplied to the rear (rear end Pr side), and the amount of water decreases by evaporation as it goes to the front (front end Pf). The evaporating water supplied to 2b flows in a direction toward the downstream reformer 3 on the internal structure 2b.

更に、内部構造体2bの底部Pb(平面部分)の周囲の全部に、底部Pbに存在する蒸発用水を堰き止めることができる堰構造としての前端部Pfと後端部Prと側部Psとが設けられている。その結果、蒸発用水が広がる範囲を制限できる。特に、蒸発用水が内部構造体2bから溢れないようにできる。加えて、図2及び図3に示すように、改質器3に近い前端部Pfは、改質器3から離れた後端部Prよりも、底部Pbから上方への高さが低くなっている。従って、内部構造体2bの盆状部分Pに蒸発用水が貯まったとしても、貯まった蒸発用水は堰の低い前端部Pfから溢れる。   Furthermore, a front end portion Pf, a rear end portion Pr, and a side portion Ps as a weir structure capable of blocking the evaporation water existing in the bottom portion Pb are provided around the entire bottom portion Pb (planar portion) of the internal structure 2b. Is provided. As a result, it is possible to limit the range in which the evaporation water spreads. In particular, the evaporation water can be prevented from overflowing from the internal structure 2b. In addition, as shown in FIGS. 2 and 3, the front end portion Pf close to the reformer 3 has a lower height from the bottom portion Pb than the rear end portion Pr away from the reformer 3. Yes. Therefore, even if evaporating water is stored in the basin-shaped portion P of the internal structure 2b, the stored evaporating water overflows from the lower front end portion Pf of the weir.

以上のように、供給される蒸発用水が接触する内部構造体2bは、燃焼器22で発生される燃焼熱が直接伝えられる最外郭構造体2aよりも燃焼器22から離れて設けられる。つまり、内部構造体2bには燃焼熱が最外郭構造体2aを介して間接的に伝わるため、内部構造体2bに伝わる燃焼熱は最外郭構造体2aに伝わる燃焼熱よりも小さくなる。その結果、最外郭構造体2aに蒸発用水を接触させる場合に比べて、蒸発用水の気化が瞬間的に激しく行われないようにできる。例えば、最外郭構造体2aに蒸発用水を接触させた場合には、その蒸発用水の一部が突沸することで瞬間的に気化し、残りはその突沸によって飛散された先で瞬間的に気化されるというように安定した気化が行われない恐れがある。しかし、本実施形態では、相対的に低温の内部構造体2bに対して蒸発用水を接触させるので蒸発用水の突沸の発生が抑制され、蒸発用水の蒸発が安定して進行するようにできる。   As described above, the internal structure 2b with which the supplied evaporation water contacts is provided farther from the combustor 22 than the outermost structure 2a to which the combustion heat generated in the combustor 22 is directly transmitted. That is, since the combustion heat is indirectly transmitted to the internal structure 2b through the outermost structure 2a, the combustion heat transmitted to the internal structure 2b is smaller than the combustion heat transmitted to the outermost structure 2a. As a result, it is possible to prevent the evaporation of the evaporation water from being instantaneously intense as compared with the case where the evaporation water is brought into contact with the outermost structure 2a. For example, when evaporating water is brought into contact with the outermost structure 2a, a part of the evaporating water is instantly vaporized and the rest is instantly vaporized at the point where the water is scattered by the bumping. There is a risk that stable vaporization will not be performed. However, in this embodiment, since the evaporating water is brought into contact with the relatively low temperature internal structure 2b, the occurrence of bumping of evaporating water is suppressed, and the evaporating water evaporates stably.

加えて、燃焼器22で発生される燃焼熱は最外郭構造体2aを介して内部構造体2bに伝わるので、燃焼器22で発生される燃焼熱量が変動してもその燃焼熱量の変動は最外郭構造体2aで緩和された上で内部構造体2bに伝わる。つまり、燃焼器22での燃焼状態が変動しても、内部構造体2bに伝わる熱はその変動に対して過敏に追従せずに緩やかに変化するため、内部構造体2bで発生する水蒸気量を過敏に変化させないようにできる。   In addition, the combustion heat generated in the combustor 22 is transmitted to the internal structure 2b via the outermost structure 2a. After being relaxed by the outer structure 2a, it is transmitted to the inner structure 2b. In other words, even if the combustion state in the combustor 22 fluctuates, the heat transmitted to the internal structure 2b changes gently without following the fluctuation sensitively, so the amount of water vapor generated in the internal structure 2b is reduced. It can be prevented from changing sensitively.

更に、内部構造体2bの、蒸発用水が接触する面に親水化処理を施してもよい。親水化処理の効果によって、蒸発用水が内部構造体2bの表面の特定の部位において表面積が小さくなるように集まるのではなく、蒸発用水が内部構造体2bの表面で更に薄く広がり易くなる。その結果、蒸発器2に供給された蒸発用水に対して内部構造体2bから熱が均等に伝わり易くなるため、蒸発用水の気化が安定して行われるようになる。   Further, the surface of the internal structure 2b that comes into contact with the evaporating water may be subjected to a hydrophilic treatment. Due to the effect of the hydrophilization treatment, the evaporation water does not gather so as to have a small surface area at a specific portion of the surface of the internal structure 2b, but the evaporation water is more easily spread on the surface of the internal structure 2b. As a result, heat is easily transmitted from the internal structure 2b to the evaporation water supplied to the evaporator 2, so that the evaporation water can be stably vaporized.

<第2実施形態>
第2実施形態の燃料改質装置は、蒸発器の内部構造体の形状が第1実施形態に示した形状と異なり、他は第1実施形態に示したのと同様である。従って、以下の説明では、第2実施形態の蒸発器の内部構造体の形状のみを説明する。
Second Embodiment
The fuel reformer of the second embodiment is the same as that shown in the first embodiment except that the shape of the internal structure of the evaporator is different from the shape shown in the first embodiment. Therefore, in the following description, only the shape of the internal structure of the evaporator according to the second embodiment will be described.

図4(a)は第2実施形態の蒸発器2の内部の構成を説明する斜視図であり、図4(b)は第2実施形態の蒸発器2の断面図である。
本実施形態でも、内部構造体2bは、燃焼器22との間に最外郭構造体2aを挟んで位置し、容器C1の内部に供給される蒸発用水が接触する位置に設けられる。そして、蒸発用水供給管6を介して容器C1の内部に供給される蒸発用水が蒸発用水供給管6の先端から内部構造体2b上に流出することで、内部構造体2bの表面と蒸発用水とが接触する。加えて、蒸発器2は、内部構造体2bを形成する部材を、最外郭構造体2aを形成する容器C1の内部の壁面で支持又はその壁面に接合して構成される。具体的には、内部構造体2bは、例えば金属製の板状部材を折り曲げ加工、プレス加工、切削加工、接合加工等することで作製される。そして、内部構造体2bの、蒸発用水が接触する面は、上方から供給される蒸発用水を受ける盆状に形成されている。
FIG. 4A is a perspective view illustrating an internal configuration of the evaporator 2 according to the second embodiment, and FIG. 4B is a cross-sectional view of the evaporator 2 according to the second embodiment.
Also in this embodiment, the internal structure 2b is located with the outermost structure 2a sandwiched between it and the combustor 22, and is provided at a position where the evaporation water supplied to the inside of the container C1 comes into contact. Then, the evaporating water supplied to the inside of the container C1 through the evaporating water supply pipe 6 flows out from the tip of the evaporating water supply pipe 6 onto the inner structure 2b, so that the surface of the inner structure 2b, the evaporating water, Touch. In addition, the evaporator 2 is configured by supporting or joining a member forming the internal structure 2b with a wall surface inside the container C1 forming the outermost structure 2a. Specifically, the internal structure 2b is produced, for example, by bending a metal plate-like member, pressing, cutting, joining, or the like. The surface of the internal structure 2b that comes into contact with the evaporation water is formed in a basin shape for receiving the evaporation water supplied from above.

本実施形態の内部構造体2bの盆状部分Pは、蒸発器2から改質器3へ向かう方向を前方とした場合、底部Pbの周囲に前端部Pfと後端部Prと側部Psとが設けられた状態で構成される。本実施形態でも、上記第1実施形態と同様に、内部構造体2bの盆状部分Pの底部Pbは、供給される蒸発用水が広がる平面状に形成される。つまり、内部構造体2bの蒸発用水が接触する面は平面部分(即ち、底部Pb)を有する。更に、内部構造体2bの側部Psは、底部Pbを基準として上向きの上行側部Ps1と、下向きの下行側部Ps2とで構成される。そして、2つの上行側部Ps1の間に底部Pbが連結され、2つの下行側部Ps2は容器C1の内壁面と接触して支持され又は接合される。例えば、一枚の金属製の板状部材で構成される側部Psを上行側部Ps1と下行側部Ps2とに折り曲げて構成できる。   When the direction from the evaporator 2 toward the reformer 3 is the front, the tray-like portion P of the internal structure 2b of the present embodiment has a front end portion Pf, a rear end portion Pr, and a side portion Ps around the bottom portion Pb. It is comprised in the state provided. Also in this embodiment, as in the first embodiment, the bottom portion Pb of the basin-shaped portion P of the internal structure 2b is formed in a planar shape in which the supplied evaporation water is spread. In other words, the surface of the internal structure 2b with which the evaporation water contacts has a flat surface portion (that is, the bottom portion Pb). Furthermore, the side part Ps of the internal structure 2b is composed of an upward ascending side part Ps1 and a downwardly facing down side part Ps2 with respect to the bottom part Pb. The bottom portion Pb is connected between the two ascending side portions Ps1, and the two descending side portions Ps2 are supported or joined in contact with the inner wall surface of the container C1. For example, the side portion Ps formed of a single metal plate-like member can be configured to be bent into an ascending side portion Ps1 and a descending side portion Ps2.

<第3実施形態>
第3実施形態の燃料改質装置は、蒸発器の内部構造体の形状が第1実施形態に示した形状と異なり、他は第1実施形態に示したのと同様である。従って、以下の説明では、第3実施形態の蒸発器の内部構造体の形状のみを説明する。
<Third Embodiment>
The fuel reformer of the third embodiment is the same as that shown in the first embodiment except that the shape of the internal structure of the evaporator is different from the shape shown in the first embodiment. Therefore, in the following description, only the shape of the internal structure of the evaporator according to the third embodiment will be described.

図5(a)は第3実施形態の蒸発器2の内部の構成を説明する斜視図であり、図5(b)は第3実施形態の蒸発器2の断面図である。
本実施形態の内部構造体2bの盆状部分Pは、蒸発器2から改質器3へ向かう方向を前方とした場合、底部Pbの前方及び後方に前端部Pfと後端部Prとが夫々設けられた状態で構成される。本実施形態でも、上記実施形態と同様に、内部構造体2bの盆状部分Pの底部Pbは、供給される蒸発用水が広がる平面状に形成される。つまり、内部構造体2bの蒸発用水が接触する面は平面部分(即ち、底部Pb)を有する。そして、底部Pbの左右側方部分は、容器C1の内壁面に対して直接接合されている。つまり、本実施形態では、内部構造体2bの底部Pb(平面部分)の周囲は、堰構造としての前端部Pfと後端部Prとで部分的に囲まれているだけである。但し、内部構造体2bの底部Pbの、前端部Pfと後端部Prとで囲まれていない部分は容器C1の内壁面で直接接合されているため、その容器C1の内壁面が、蒸発用水を堰き止めることができる堰構造として実質的に機能する。その結果、内部構造体2bの底部Pbの周囲が、前端部Pfと後端部Prと容器C1の内壁面とで囲まれ、その囲まれた部分で蒸発用水の広がりが制限される。
Fig.5 (a) is a perspective view explaining the structure inside the evaporator 2 of 3rd Embodiment, FIG.5 (b) is sectional drawing of the evaporator 2 of 3rd Embodiment.
When the direction from the evaporator 2 to the reformer 3 is the front, the tray-like portion P of the internal structure 2b of the present embodiment has a front end Pf and a rear end Pr in front and rear of the bottom Pb, respectively. It is configured in the provided state. Also in this embodiment, as in the above embodiment, the bottom portion Pb of the basin-shaped portion P of the internal structure 2b is formed in a planar shape in which the supplied evaporation water is spread. In other words, the surface of the internal structure 2b with which the evaporation water contacts has a flat surface portion (that is, the bottom portion Pb). And the left-right side part of the bottom part Pb is directly joined with respect to the inner wall face of the container C1. That is, in the present embodiment, the periphery of the bottom portion Pb (planar portion) of the internal structure 2b is only partially surrounded by the front end portion Pf and the rear end portion Pr as the dam structure. However, the portion of the bottom Pb of the internal structure 2b that is not surrounded by the front end portion Pf and the rear end portion Pr is directly joined by the inner wall surface of the container C1, so that the inner wall surface of the container C1 is the water for evaporation. Substantially function as a dam structure that can dampen the dam. As a result, the periphery of the bottom portion Pb of the internal structure 2b is surrounded by the front end portion Pf, the rear end portion Pr, and the inner wall surface of the container C1, and the spread of the evaporation water is limited in the surrounded portion.

<第4実施形態>
第4実施形態の燃料改質装置は、蒸発器の内部構造体の形状が第1実施形態に示した形状と異なり、他は第1実施形態に示したのと同様である。従って、以下の説明では、第4実施形態の蒸発器の内部構造体の形状のみを説明する。
<Fourth embodiment>
The fuel reformer of the fourth embodiment is the same as that shown in the first embodiment except that the shape of the internal structure of the evaporator is different from the shape shown in the first embodiment. Therefore, in the following description, only the shape of the internal structure of the evaporator of the fourth embodiment will be described.

図6(a)は第3実施形態の蒸発器2の内部の構成を説明する斜視図であり、図6(b)は第3実施形態の蒸発器2の断面図である。
本実施形態の内部構造体2bの盆状部分Pは、蒸発器2から改質器3へ向かう方向を前方とした場合、底部Pbの周囲に前端部Pfと後端部Prと側部Psとが設けられた状態で構成される。本実施形態でも、上記実施形態と同様に、内部構造体2bの盆状部分Pの底部Pbは、供給される蒸発用水が広がる平面状に形成される。つまり、内部構造体2bの蒸発用水が接触する面は平面部分(即ち、底部Pb)を有する。更に、底部Pbの下方には2つの脚部Plが連結されて、底部Pbを下方から支えている。そして、2つの脚部Plが容器C1の内壁面に対して接合されている。
Fig.6 (a) is a perspective view explaining the structure inside the evaporator 2 of 3rd Embodiment, FIG.6 (b) is sectional drawing of the evaporator 2 of 3rd Embodiment.
When the direction from the evaporator 2 toward the reformer 3 is the front, the tray-like portion P of the internal structure 2b of the present embodiment has a front end portion Pf, a rear end portion Pr, and a side portion Ps around the bottom portion Pb. It is comprised in the state provided. Also in this embodiment, as in the above embodiment, the bottom portion Pb of the basin-shaped portion P of the internal structure 2b is formed in a planar shape in which the supplied evaporation water is spread. In other words, the surface of the internal structure 2b with which the evaporation water contacts has a flat surface portion (that is, the bottom portion Pb). Further, two leg portions Pl are connected to the bottom of the bottom portion Pb to support the bottom portion Pb from below. The two legs Pl are joined to the inner wall surface of the container C1.

<第5実施形態>
第5実施形態の燃料改質装置は、蒸発器の構造が第1実施形態に示した構造と異なり、他は第1実施形態に示したのと同様である。従って、以下の説明では、第5実施形態の蒸発器の構造のみを説明する。
<Fifth Embodiment>
The fuel reformer of the fifth embodiment is the same as that shown in the first embodiment except that the structure of the evaporator is different from that shown in the first embodiment. Therefore, in the following description, only the structure of the evaporator of the fifth embodiment will be described.

図7(a)は第5実施形態の燃料改質装置Rが備える蒸発器2及び改質器3の内部の構成を側方から見た透視図であり、図7(b)は第5実施形態の蒸発器2の断面図である。
本実施形態では、蒸発器2の容器C1を二重底構造としている。そして、二重底構造の内側を内部構造体2dとして機能させ、外側を最外郭構造体2cとして機能させる。加えて、内部構造体2bは、蒸発器2から改質器3へ向かう方向に沿った長手状に形成されている。具体的には、図7(b)に示すように、断面視でU字型の金属性又はセラミック製等の部材(即ち、最外郭構造体2c)を内部構造体2dの外側底面に接合することで、最外郭構造体2cが内部構造体2dの下方を覆うように構成してある。その結果、その最外郭構造体2cに対して燃焼器22の燃焼熱が直接伝わり、他方で、内部構造体2dに対して燃焼器22の燃焼熱が直接伝わらないようにしている。
FIG. 7A is a perspective view of the internal structures of the evaporator 2 and the reformer 3 provided in the fuel reformer R of the fifth embodiment when viewed from the side, and FIG. 7B is the fifth embodiment. It is sectional drawing of the evaporator 2 of a form.
In this embodiment, the container C1 of the evaporator 2 has a double bottom structure. Then, the inner side of the double bottom structure functions as the inner structure 2d, and the outer side functions as the outermost structure 2c. In addition, the internal structure 2 b is formed in a longitudinal shape along the direction from the evaporator 2 toward the reformer 3. Specifically, as shown in FIG. 7B, a U-shaped metallic or ceramic member (that is, the outermost structure 2c) is joined to the outer bottom surface of the internal structure 2d in a cross-sectional view. Thus, the outermost structure 2c is configured to cover the lower part of the internal structure 2d. As a result, the combustion heat of the combustor 22 is directly transmitted to the outermost structure 2c, and the combustion heat of the combustor 22 is not directly transmitted to the internal structure 2d.

このように、蒸発用水供給管6を介して容器C1の内部に供給される蒸発用水が蒸発用水供給管6の先端から内部構造体2d上に流出することで、内部構造体2dの表面と蒸発用水とが接触する。そして、供給される蒸発用水が接触する内部構造体2dは、燃焼器22で発生される燃焼熱が直接伝えられる最外郭構造体2cよりも燃焼器22から離れて設けられる。つまり、相対的に低温の内部構造体2dに対して蒸発用水を接触させるので蒸発用水の突沸の発生が抑制され、蒸発器2で生成される水蒸気量を安定して推移させることが可能となる。   Thus, the evaporation water supplied into the container C1 through the evaporation water supply pipe 6 flows out from the tip of the evaporation water supply pipe 6 onto the internal structure 2d, thereby evaporating the surface of the internal structure 2d and the evaporation. Contact with water. The internal structure 2d that comes into contact with the supplied evaporation water is provided farther from the combustor 22 than the outermost structure 2c to which combustion heat generated in the combustor 22 is directly transmitted. That is, since the evaporation water is brought into contact with the relatively low temperature internal structure 2d, the occurrence of bumping of the evaporation water is suppressed, and the amount of water vapor generated in the evaporator 2 can be stably changed. .

本実施形態でも、上記実施形態と同様に、内部構造体2bの、蒸発用水が接触する底部2eは、供給される蒸発用水が広がる平面状に形成される。つまり、内部構造体2bの蒸発用水が接触する面は平面部分(即ち、底部2e)を有する。蒸発器2において蒸発用水供給管6の先端部は下流側の改質器3の方に向いて開口しているため、蒸発用水は前方の改質器3の方向に流出する。そして、平面部分としての底部2eは水平となるように設置されているため、内部構造体2bの底部2eに対して前方の改質器3の方向に向けて供給された蒸発用水は、底部2e上を前方に流れながら薄く広がる。そして、蒸発用水が内部構造体2bから熱を継続的に受けながら広がりつつ流れる間に、蒸発用水の蒸発が発生する。このように、内部構造体2bの底部2e上では、後方に蒸発用水が供給されて前方で蒸発が行われて水量が減少するため、内部構造体2bに供給された蒸発用水は、内部構造体2b上を下流側の改質器3に向かう方向に流れることとなる。   Also in the present embodiment, as in the above-described embodiment, the bottom 2e of the internal structure 2b with which the evaporation water contacts is formed in a planar shape in which the supplied evaporation water spreads. That is, the surface of the internal structure 2b with which the evaporating water contacts has a flat surface portion (that is, the bottom portion 2e). In the evaporator 2, the tip of the evaporation water supply pipe 6 opens toward the downstream reformer 3, so that the evaporation water flows out in the direction of the front reformer 3. And since the bottom part 2e as a plane part is installed so that it may become horizontal, the water for evaporation supplied toward the direction of the front reformer 3 with respect to the bottom part 2e of the internal structure 2b is the bottom part 2e. It spreads thinly while flowing forward. The evaporation water evaporates while the evaporation water flows while continuously receiving heat from the internal structure 2b. Thus, on the bottom 2e of the internal structure 2b, evaporating water is supplied to the rear and evaporates in the front to reduce the amount of water. Therefore, the evaporating water supplied to the internal structure 2b It flows in the direction toward the reformer 3 on the downstream side on 2b.

更に、図7に例示した二重底の構造(特に、最外郭構造体2c及び内部構造体2dの構造)を他の構造に変更してもよい。例えば、図8(a)は別の燃料改質装置Rが備える蒸発器2及び改質器3の内部の構成を側方から見た一部切欠き透視図であり、図8(b)はその蒸発器2の断面図である。
本例でも、蒸発器2の容器C1を二重底構造とし、二重底構造の内側を内部構造体2dとして機能させ、外側を最外郭構造体2cとして機能させる。この例でも、内部構造体2bの、蒸発用水が接触する底部2eは、供給される蒸発用水が広がる平面状に形成される。つまり、内部構造体2bの蒸発用水が接触する面は平面部分(即ち、底部2e)を有する。更に、図8(b)に示すように、最外郭構造体2cとなる金属性又はセラミック製等の部材(即ち、最外郭構造体2c)を、内部構造体2dの外側側面に接合することで、最外郭構造体2cが内部構造体2dの下方から側方を覆うように構成してある。その結果、その最外郭構造体2cに対して燃焼器22の燃焼熱が直接伝わり、他方で、内部構造体2dに対して燃焼器22の燃焼熱が直接伝わらないようにしている。
Furthermore, the double bottom structure illustrated in FIG. 7 (particularly, the structure of the outermost structure 2c and the inner structure 2d) may be changed to another structure. For example, FIG. 8A is a partially cutaway perspective view of the internal configuration of the evaporator 2 and the reformer 3 provided in another fuel reformer R, as viewed from the side, and FIG. It is sectional drawing of the evaporator 2. FIG.
Also in this example, the container C1 of the evaporator 2 has a double bottom structure, the inside of the double bottom structure functions as the internal structure 2d, and the outside functions as the outermost structure 2c. Also in this example, the bottom 2e of the internal structure 2b with which the evaporating water contacts is formed in a planar shape in which the supplied evaporating water spreads. That is, the surface of the internal structure 2b with which the evaporating water contacts has a flat surface portion (that is, the bottom portion 2e). Further, as shown in FIG. 8B, a metallic or ceramic member (that is, the outermost structure 2c) to be the outermost structure 2c is joined to the outer side surface of the inner structure 2d. The outermost structure 2c is configured to cover the side from the lower side of the internal structure 2d. As a result, the combustion heat of the combustor 22 is directly transmitted to the outermost structure 2c, and the combustion heat of the combustor 22 is not directly transmitted to the internal structure 2d.

<別実施形態>
<1>
上記実施形態において、蒸発器2の内部空間への蒸発用水供給管6の引き込み方を変更してもよい。例えば、図9は、蒸発器2の内部の構成を側方から見た透視図である。図9(a)に示すように、蒸発用水供給管6が容器C1の側壁を斜めに貫通するように引き込んでもよい。また、図9(b)に示すように、蒸発用水供給管6が容器C1の側壁を垂直に貫通するように引き込んだ後、斜め下方向に屈曲させてもよい。図9(a)及び図9(b)に示した何れの例でも、蒸発用水供給管6の先端が内部構造体2bの非常に近くで開口されるので、蒸発用水供給管6の先端から流出した蒸発用水を、液滴が間欠的に滴下されるような状態ではなく、まとまったままで連続的に内部構造体2bの表面に到達するような状態で供給することができる。
<Another embodiment>
<1>
In the above embodiment, the way in which the evaporating water supply pipe 6 is drawn into the internal space of the evaporator 2 may be changed. For example, FIG. 9 is a perspective view of the internal configuration of the evaporator 2 as viewed from the side. As shown in FIG. 9A, the evaporating water supply pipe 6 may be drawn so as to penetrate the side wall of the container C1 obliquely. Further, as shown in FIG. 9B, the evaporating water supply pipe 6 may be bent obliquely downward after being drawn so as to vertically penetrate the side wall of the container C1. In any of the examples shown in FIGS. 9A and 9B, the evaporating water supply pipe 6 is opened from the front end of the evaporating water supply pipe 6 because the front end of the evaporating water supply pipe 6 is opened very close to the internal structure 2b. The evaporated water can be supplied not in a state where droplets are dropped intermittently, but in a state in which the droplets are continuously gathered and reach the surface of the internal structure 2b.

<2>
上記実施形態において、最外郭構造体2a、2c及び内部構造体2b、2dの形状を例示したが、上述した以外の形状に構成してもよい。
<2>
In the said embodiment, although the shape of outermost structure 2a, 2c and the internal structure 2b, 2d was illustrated, you may comprise in shapes other than having mentioned above.

<3>
上記実施形態において、内部構造体2bの平面部分としての底部Pb、2eが水平となるように設置する例を説明したが、例えば、底部Pbを下流側に向けて傾斜させる(即ち、改質器3に近い側が低くなるように傾斜させる)ように設置してもよい。このように底部Pb、2eを下流側に向けて傾斜させておくことで、供給された蒸発用水を下流側の改質器3に向かう方向に強制的に流すことができる。
<3>
In the above embodiment, the example in which the bottom portions Pb and 2e as the planar portion of the internal structure 2b are installed to be horizontal has been described. For example, the bottom portion Pb is inclined toward the downstream side (that is, the reformer It may be installed so that the side close to 3 is lowered). By thus inclining the bottom portions Pb and 2e toward the downstream side, the supplied evaporation water can be forced to flow in the direction toward the reformer 3 on the downstream side.

<4>
上記実施形態において、内部構造体2bの、蒸発用水が接触する面は、供給される蒸発用水が広がる平面状に形成される平面部分(上述した底部Pb、2e)を有する例を説明したが、それら底部Pb、2eが完全な平面でなくてもよい。例えば、底部Pb、2eが下に凸の形状で僅かに湾曲していてもよい。或いは、底部Pb、2eの表面に微細な凹凸があってもよい。
<4>
In the above-described embodiment, an example in which the surface of the internal structure 2b that comes into contact with the evaporation water has a planar portion (the above-described bottom portions Pb and 2e) that is formed into a planar shape in which the supplied evaporation water spreads has been described. These bottom parts Pb and 2e may not be a perfect plane. For example, the bottoms Pb and 2e may be slightly curved with a downwardly convex shape. Alternatively, there may be fine irregularities on the surfaces of the bottoms Pb and 2e.

<5>
上記実施形態において、内部構造体2bの後端部Prを設けず、蒸発器2を構成する容器C1の側壁でその後端部Prの役割を兼用してもよい。具体的には、内部構造体2bの底部Pbを容器C1の上流側の側壁(即ち、蒸発用水供給管6が貫通して引き込まれている側壁)に接合することで、容器C1の側壁が蒸発用水を堰き止めることができる堰構造として機能するように構成してもよい。
<5>
In the above embodiment, the rear end portion Pr of the internal structure 2b may not be provided, and the role of the rear end portion Pr may be shared by the side wall of the container C1 constituting the evaporator 2. Specifically, the side wall of the container C1 evaporates by joining the bottom Pb of the internal structure 2b to the upstream side wall of the container C1 (that is, the side wall through which the evaporation water supply pipe 6 is drawn). You may comprise so that it may function as a dam structure which can dam water.

本発明は、蒸発器において安定した水蒸気の発生を行える燃料改質装置を提供するために利用できる。   The present invention can be used to provide a fuel reformer capable of generating stable water vapor in an evaporator.

2 蒸発器
2a、2c 最外郭構造体
2b、2d 内部構造体
3 改質器
22 燃焼器
33 仕切部材
C 筐体
C1 容器(蒸発器)
Pb 底部(平面部分)
R 燃料改質装置
2 evaporators 2a, 2c outermost structures 2b, 2d internal structures 3 reformer 22 combustor 33 partition member C casing C1 container (evaporator)
Pb bottom (plane part)
R Fuel reformer

Claims (5)

可燃性ガスを燃焼して燃焼熱を発生させる燃焼器と、
供給される蒸発用水を、前記燃焼器から伝えられる前記燃焼熱を用いて加熱して蒸発させる蒸発器と、
供給される原燃料ガスを前記蒸発器にて生成された水蒸気を用いて改質処理する改質器とを備える燃料改質装置であって、
前記蒸発器を構成する容器は、前記燃焼熱が直接伝えられる最外郭構造体と、前記燃焼器との間に前記最外郭構造体を挟んで位置し、前記容器の内部に供給される前記蒸発用水が接触する位置に設けられる内部構造体を有し、
前記内部構造体の、前記蒸発用水が接触する面は、供給される前記蒸発用水が広がる平面状に形成される平面部分を有し、
前記改質器は、前記蒸発器への前記蒸発用水の供給方向に沿って前記蒸発器の下流側に、前記蒸発器に隣接して設けられ、前記蒸発器と前記改質器とは通気性を有する仕切部材で仕切られており、前記平面部分にて生成された水蒸気が前記仕切部材を通して前記改質器に供給される燃料改質装置。
A combustor that burns combustible gas to generate combustion heat;
An evaporator that heats and evaporates the supplied water for evaporation using the combustion heat transmitted from the combustor;
A fuel reformer comprising a reformer that reforms the supplied raw fuel gas using water vapor generated in the evaporator,
The container constituting the evaporator is located between the outermost structure to which the combustion heat is directly transmitted and the outermost structure between the combustor, and is supplied to the inside of the container. possess an internal structure that water is provided in a position in contact,
The surface of the internal structure that comes into contact with the evaporating water has a flat portion that is formed in a planar shape in which the supplied evaporating water spreads,
The reformer is provided on the downstream side of the evaporator along the supply direction of the evaporation water to the evaporator, adjacent to the evaporator, and the evaporator and the reformer are air permeable. A fuel reformer that is partitioned by a partition member having a flow rate, and in which the steam generated in the planar portion is supplied to the reformer through the partition member .
前記内部構造体の前記平面部分の周囲の全部に又は部分的に、前記平面部分に存在する前記蒸発用水を堰き止めることができる堰構造が設けられている請求項に記載の燃料改質装置。 2. The fuel reformer according to claim 1 , wherein a dam structure capable of damming the water for evaporation existing in the planar portion is provided around or partially around the planar portion of the internal structure. . 前記内部構造体の、前記蒸発用水が接触する面に親水化処理が施されている請求項1または2に記載の燃料改質装置。 The fuel reformer according to claim 1 or 2 , wherein a surface of the internal structure that is in contact with the evaporation water is subjected to a hydrophilic treatment. 前記内部構造体は、供給された前記蒸発用水が下流側の前記改質器に向かう方向に流れるように形成されている請求項1〜の何れか一項に記載の燃料改質装置。 The fuel reformer according to any one of claims 1 to 3 , wherein the internal structure is formed so that the supplied water for evaporation flows in a direction toward the downstream reformer. 前記蒸発器は、前記内部構造体を形成する部材を、前記最外郭構造体を形成する容器の内部の壁面で支持又は当該壁面に接合して構成される請求項1〜の何れか一項に記載の燃料改質装置。 The evaporator, the member forming the inner structure, according to claim 1 any one of 4 constructed above bonded to the support or the wall surface inside of the container wall forming the outermost structure The fuel reformer described in 1.
JP2011070750A 2011-03-28 2011-03-28 Fuel reformer Active JP5676336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011070750A JP5676336B2 (en) 2011-03-28 2011-03-28 Fuel reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011070750A JP5676336B2 (en) 2011-03-28 2011-03-28 Fuel reformer

Publications (2)

Publication Number Publication Date
JP2012201583A JP2012201583A (en) 2012-10-22
JP5676336B2 true JP5676336B2 (en) 2015-02-25

Family

ID=47182937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011070750A Active JP5676336B2 (en) 2011-03-28 2011-03-28 Fuel reformer

Country Status (1)

Country Link
JP (1) JP5676336B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017217434A1 (en) * 2016-06-16 2017-12-21 京セラ株式会社 Reformer, cell stack device, fuel cell module and fuel cell device
WO2022069924A1 (en) * 2020-10-02 2022-04-07 Ceres Intellectual Property Company Limited Solid oxide fuel cell system and water vapor generator and method of operation

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11314917A (en) * 1998-05-08 1999-11-16 Sumitomo Metal Mining Co Ltd Production of fine powder
JP4400012B2 (en) * 2001-08-01 2010-01-20 カシオ計算機株式会社 Evaporator, reformer, and fuel cell system
JP2004149402A (en) * 2002-10-10 2004-05-27 Matsushita Electric Ind Co Ltd Hydrogen generator and fuel cell system having the same
JP4366136B2 (en) * 2002-10-10 2009-11-18 パナソニック株式会社 Hydrogen generator and fuel cell power generation system
JP4278416B2 (en) * 2003-03-25 2009-06-17 大阪瓦斯株式会社 Steam generator for raw fuel reforming
JP2005233477A (en) * 2004-02-18 2005-09-02 Nissan Motor Co Ltd Evaporator
JP4832184B2 (en) * 2006-06-28 2011-12-07 京セラ株式会社 Fuel cell
US8486164B2 (en) * 2008-09-05 2013-07-16 Samsung Sdi Co., Ltd. Evaporator and fuel reformer having the same
JP2010238444A (en) * 2009-03-30 2010-10-21 Aisin Seiki Co Ltd Fuel battery device
JP5725443B2 (en) * 2010-03-31 2015-05-27 Toto株式会社 Fuel cell module

Also Published As

Publication number Publication date
JP2012201583A (en) 2012-10-22

Similar Documents

Publication Publication Date Title
JP4979935B2 (en) Fuel reformer
JP4832184B2 (en) Fuel cell
JP5866546B2 (en) Fuel cell system
JP6066580B2 (en) Fuel cell system
JP5876313B2 (en) Fuel cell device
KR20040032785A (en) Hydrogen generating device and fuel cell system using the same
JP2015204172A (en) fuel cell system
JP5676336B2 (en) Fuel reformer
JP2001064658A (en) Evaporator
JP4836668B2 (en) Fuel cell
JP3603274B2 (en) Fuel evaporator
EP2568523B1 (en) Evaporator for fuel cell
JP5907751B2 (en) Solid oxide fuel cell
JP4278416B2 (en) Steam generator for raw fuel reforming
JP6753930B2 (en) Reformer, cell stack device, fuel cell module and fuel cell device
JP2005263603A (en) Reformer and fuel cell system
JP2014238992A (en) Vaporizer for fuel cell module and fuel cell module having the same
JP6477085B2 (en) Fuel cell system
JP6453595B2 (en) Solid oxide fuel cell system
JP5537200B2 (en) Gas-liquid supply device and reformer provided with the gas-liquid supply device
JP6809012B2 (en) Modified water evaporator and power generator
JP6405171B2 (en) Solid oxide fuel cell system
JP2017183135A (en) Solid oxide fuel cell device
JP2013168264A (en) Solid oxide fuel cell
JP2018077990A (en) Fuel cell system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140203

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140203

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141225

R150 Certificate of patent or registration of utility model

Ref document number: 5676336

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250