JP6066580B2 - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP6066580B2
JP6066580B2 JP2012101448A JP2012101448A JP6066580B2 JP 6066580 B2 JP6066580 B2 JP 6066580B2 JP 2012101448 A JP2012101448 A JP 2012101448A JP 2012101448 A JP2012101448 A JP 2012101448A JP 6066580 B2 JP6066580 B2 JP 6066580B2
Authority
JP
Japan
Prior art keywords
fuel
fuel gas
output current
anode
characteristic curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012101448A
Other languages
Japanese (ja)
Other versions
JP2013229228A (en
Inventor
卓 若林
卓 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2012101448A priority Critical patent/JP6066580B2/en
Publication of JP2013229228A publication Critical patent/JP2013229228A/en
Application granted granted Critical
Publication of JP6066580B2 publication Critical patent/JP6066580B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は、原燃料を改質して燃料ガスを生成する改質器と、改質器で生成された燃料ガスが供給されるアノード、及び、酸素ガスが供給されるカソードを有する燃料電池と、発電反応で用いられた後にアノードから排出される排出燃料ガス中の燃料成分と発電反応に用いられた後にカソードから排出される排出酸素ガスとを燃焼させ、その燃焼熱によって改質器を加熱する燃焼部と、燃料電池の出力電流を調節する出力調節手段と、改質器からアノードへの燃料ガスの供給量を調節する燃料ガス供給量調節手段と、出力調節手段及び燃料ガス供給量調節手段の動作を制御する運転制御手段とを備える燃料電池システムに関する。   The present invention relates to a reformer for reforming raw fuel to generate fuel gas, an anode to which fuel gas generated by the reformer is supplied, and a fuel cell having a cathode to which oxygen gas is supplied. The fuel component in the exhaust gas exhausted from the anode after being used in the power generation reaction and the exhaust oxygen gas exhausted from the cathode after being used in the power generation reaction are combusted, and the reformer is heated by the combustion heat A combustion unit that performs output adjustment, an output adjustment unit that adjusts an output current of the fuel cell, a fuel gas supply amount adjustment unit that adjusts a supply amount of fuel gas from the reformer to the anode, an output adjustment unit, and a fuel gas supply amount adjustment The present invention relates to a fuel cell system comprising operation control means for controlling the operation of the means.

特許文献1には、アノードに供給される燃料ガスの量に対する、アノードで発電反応に用いられる燃料ガスの量の比率である燃料利用率の目標値を出力電流の関数として定めている特性曲線に従って、出力調節手段の動作を制御して出力電流を調節し及び燃料ガス供給量調節手段の動作を制御して改質器からアノードへの燃料ガスの供給量を調節するように構成されている燃料電池システムが記載されている。つまり、特許文献1に記載の燃料電池システムでは、燃料電池の出力電流に応じて、燃料利用率を調節している。そして、燃焼部において、燃料電池の発電反応で消費されずに排出される排出燃料ガス中の燃料成分(H2など)を燃焼させ、改質器の加熱に利用している。 Patent Document 1 discloses a characteristic curve that defines a target value of the fuel utilization rate, which is a ratio of the amount of fuel gas used for power generation reaction at the anode to the amount of fuel gas supplied to the anode, as a function of output current. The fuel is configured to control the operation of the output adjusting means to adjust the output current, and to control the operation of the fuel gas supply amount adjusting means to adjust the supply amount of the fuel gas from the reformer to the anode. A battery system is described. That is, in the fuel cell system described in Patent Document 1, the fuel utilization rate is adjusted according to the output current of the fuel cell. In the combustion section, fuel components (such as H 2 ) in the exhaust gas discharged without being consumed by the power generation reaction of the fuel cell are burned and used for heating the reformer.

このような燃料電池システムにおいて、燃焼部での燃焼が失火すると、改質器での熱量の不足や、燃焼排気ガス中の可燃性・毒性ガス(H2、CO)の増加が生じるので、燃焼部での失火を極力避けることが望ましい。尚、排出燃料ガス中に含まれる燃料成分、即ち、燃料電池のアノードで発電反応に利用されなかった燃料成分は、燃料利用率が高くなるほど少なくなる。そのため、燃料利用率が高くなると、燃焼部に供給される燃料成分の絶対量の減少による発熱量(燃焼負荷)の低下、燃料成分の濃度減少により、安定した燃焼が行われ難くなる。そのため、定常状態では燃焼部において燃焼が維持できていたとしても、負荷変動などにより排出燃料ガス中の燃料成分の量が変化した場合、流速変化から火炎が不安定になりやすく、著しい場合には失火に至る。 In such a fuel cell system, if the combustion in the combustion section misfires, there will be a shortage of heat in the reformer and an increase in combustible and toxic gases (H 2 , CO) in the combustion exhaust gas. It is desirable to avoid misfire in the area as much as possible. The fuel component contained in the exhaust fuel gas, that is, the fuel component not used for the power generation reaction at the anode of the fuel cell decreases as the fuel utilization rate increases. Therefore, when the fuel utilization rate increases, stable combustion is difficult to be performed due to a decrease in the amount of heat generation (combustion load) due to a decrease in the absolute amount of the fuel component supplied to the combustion section and a decrease in the concentration of the fuel component. Therefore, even if combustion can be maintained in the combustion section in the steady state, if the amount of fuel components in the exhaust fuel gas changes due to load fluctuations, etc., the flame tends to become unstable due to changes in flow velocity, It leads to misfire.

尚、特許文献1に記載の燃料電池システムでは、燃料利用率が、低出力電流域では高出力電流域より低くなるようにすることで、発電反応に使用されなかった排出燃料ガス中の燃料成分の熱量が低出力電流域で増大し、燃焼部における燃料の熱量はほぼ一定に維持できるという効果を狙っている。   In the fuel cell system described in Patent Document 1, the fuel utilization rate is lower in the low output current region than in the high output current region, so that the fuel component in the exhaust fuel gas that has not been used for the power generation reaction. The amount of heat of the fuel increases in the low output current region, and the effect is that the amount of heat of the fuel in the combustion section can be maintained almost constant.

特開2010−92836号公報JP 2010-92936 A

特許文献1に記載のように、燃料利用率が、低出力電流域では高出力電流域より低くなるようにしたとしても、出力電流を増大変化させようとすると、排出燃料ガス中の燃料成分の量、即ち、燃焼部に供給される燃料成分の量が変化して、それを原因とする失火が発生する可能性がある。
特に出力電流を増大変化させる際には、出力電流の増大と共に燃料ガスの生成量を増大させるが、増量された燃料ガスがアノードに到達する前に出力電流が増大される、即ち、アノードへ供給される燃料ガスの量が増大される前にアノードでの燃料ガスの消費量が増大されることになる。そのため、燃焼部での燃焼に用いることのできる燃料成分の量が減少するため、燃焼部での失火が相対的に発生し易くなる。この現象は、先に説明した燃料利用率を出力電流に関係して制御するとき、燃料利用率を出力電流に対して一意的に固定している場合に顕著となり易い。
As described in Patent Document 1, even if the fuel utilization rate is made lower in the low output current region than in the high output current region, if the output current is increased and changed, the fuel component in the exhaust fuel gas The amount, that is, the amount of the fuel component supplied to the combustion section may change, and misfire may occur due to the change.
In particular, when the output current is increased, the amount of fuel gas generated is increased with the increase of the output current, but the output current is increased before the increased amount of fuel gas reaches the anode, that is, supplied to the anode. The fuel gas consumption at the anode will be increased before the amount of fuel gas to be increased. For this reason, the amount of fuel components that can be used for combustion in the combustion section is reduced, and misfires in the combustion section are relatively likely to occur. This phenomenon tends to be prominent when the fuel utilization rate described above is controlled in relation to the output current and the fuel utilization rate is uniquely fixed with respect to the output current.

本発明は、上記の課題に鑑みてなされたものであり、その目的は、燃焼部での燃焼を安定して維持した状態で出力電流を増加変化させることのできる燃料電池システムを提供する点にある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a fuel cell system capable of increasing and changing an output current while stably maintaining combustion in a combustion section. is there.

上記目的を達成するための本発明に係る燃料電池システムの特徴構成は、原燃料を改質して燃料ガスを生成する改質器と、前記改質器で生成された前記燃料ガスが供給されるアノード、及び、酸素ガスが供給されるカソードを有する燃料電池と、発電反応で用いられた後に前記アノードから排出される排出燃料ガス中の燃料成分と発電反応に用いられた後に前記カソードから排出される排出酸素ガスとを燃焼させ、その燃焼熱によって前記改質器を加熱する燃焼部と、前記燃料電池の出力電流を調節する出力調節手段と、前記改質器から前記アノードへの前記燃料ガスの供給量を調節する燃料ガス供給量調節手段と、前記出力調節手段及び前記燃料ガス供給量調節手段の動作を制御する運転制御手段とを備え、
前記運転制御手段は、前記アノードに供給される前記燃料ガスの量に対する、前記アノードで発電反応に用いられる前記燃料ガスの量の比率である燃料利用率の目標値を前記出力電流の関数として定めている特性曲線に従って、前記出力調節手段の動作を制御して前記出力電流を調節し及び前記燃料ガス供給量調節手段の動作を制御して前記改質器から前記アノードへの前記燃料ガスの供給量を調節するように構成されている燃料電池システムであって、
前記出力電流を所定の目標電流に向けて増大変化させるとき、前記出力電流を維持させたまま、前記燃料ガス供給量調節手段の動作を制御して前記改質器から前記アノードへの前記燃料ガスの供給量を増加させて前記特性曲線で定められている増大開始時の前記燃料利用率の目標値よりも前記燃料利用率を低下させた後で、前記出力調節手段及び前記燃料ガス供給量調節手段の動作を制御して前記出力電流及び前記燃料利用率を前記目標電流及び前記特性曲線に従って当該目標電流の関数で定められる増大完了時の前記燃料利用率の目標値に向けて変化させる過渡時運転を行い、
前記運転制御手段は、前記出力電流を前記燃焼部での前記排出燃料ガスと前記排出酸素ガスとの燃焼が不安定になる電流範囲を通って増大変化させるときに前記過渡時運転を行う点にある。
In order to achieve the above object, the fuel cell system according to the present invention includes a reformer that reforms raw fuel to generate fuel gas, and the fuel gas generated by the reformer is supplied. And a fuel cell having a cathode to which oxygen gas is supplied, and a fuel component in exhaust fuel gas discharged from the anode after being used in a power generation reaction and discharged from the cathode after being used in a power generation reaction A combustion section that burns exhausted oxygen gas to be heated and heats the reformer by the combustion heat; output adjusting means that adjusts an output current of the fuel cell; and the fuel from the reformer to the anode A fuel gas supply amount adjusting means for adjusting a gas supply amount; and an operation control means for controlling operations of the output adjusting means and the fuel gas supply amount adjusting means,
The operation control means determines, as a function of the output current, a target value of a fuel utilization rate that is a ratio of the amount of the fuel gas used in the power generation reaction at the anode to the amount of the fuel gas supplied to the anode. According to the characteristic curve, the operation of the output adjusting means is controlled to adjust the output current, and the operation of the fuel gas supply amount adjusting means is controlled to supply the fuel gas from the reformer to the anode. A fuel cell system configured to regulate the amount,
When increasing the output current toward a predetermined target current, the fuel gas from the reformer to the anode is controlled by controlling the operation of the fuel gas supply amount adjusting means while maintaining the output current. After the fuel usage rate is reduced below the target value of the fuel usage rate at the start of the increase determined by the characteristic curve by increasing the supply amount of the fuel, the output adjusting means and the fuel gas supply amount adjustment A transient time in which the output current and the fuel usage rate are controlled to change toward the target value of the fuel usage rate at the completion of the increase determined by a function of the target current according to the target current and the characteristic curve There line operation,
Said operation control means, line cormorants point the transient during operation when the combustion increasing change through the current range becomes unstable and the exhaust fuel gas and the exhaust oxygen gas and the output current in the combustion portion It is in.

上記特徴構成によれば、出力電流を所定の目標電流に向けて増大変化させるとき、出力電流を維持させたまま、燃料ガス供給量調節手段の動作を制御して改質器からアノードへの燃料ガスの供給量を増加させて特性曲線で定められている増大開始時の燃料利用率の目標値よりも燃料利用率を低下させることで、アノードで発電反応に用いられずに排出される排出燃料ガス中の燃料成分の量が増大する。つまり、燃焼部での燃焼量が増大することで、燃焼を安定させることができる。そして、そのように燃焼が安定された状態で出力電流及び燃料利用率が変化される。
従って、燃焼部での燃焼を安定して維持した状態で出力電流を増加変化させることのできる燃料電池システムを提供できる。
また上記特徴構成によれば、例えば、燃料電池毎に燃焼が不安定になる電流範囲が分かっているのであれば、その電流範囲を通って出力電流を増大変化させるときに上記過渡時運転を行うと、燃焼部での燃焼をより安定させることができる。
According to the above characteristic configuration, when the output current is increased and changed toward the predetermined target current, the operation of the fuel gas supply amount adjusting means is controlled while maintaining the output current, and the fuel from the reformer to the anode is controlled. Exhaust fuel that is discharged without being used in the power generation reaction at the anode by increasing the gas supply amount and lowering the fuel utilization rate from the target value of the fuel utilization rate at the start of the increase defined in the characteristic curve The amount of fuel components in the gas increases. That is, combustion can be stabilized by increasing the amount of combustion in the combustion section. Then, the output current and the fuel utilization rate are changed in such a state that the combustion is stabilized.
Therefore, it is possible to provide a fuel cell system capable of increasing and changing the output current while stably maintaining the combustion in the combustion section.
Further, according to the above characteristic configuration, for example, if a current range in which combustion becomes unstable is known for each fuel cell, the transient operation is performed when the output current is increased and changed through the current range. And the combustion in a combustion part can be stabilized more.

本発明に係る燃料電池システムの別の特徴構成は、前記運転制御手段は、
前記出力電流を前記所定の目標電流に向けて増大変化させるとき、
増大開始時に、前記燃料ガス供給量調節手段の動作を制御して前記改質器から前記アノードへの前記燃料ガスの供給量を増加させて、前記燃料利用率を、前記燃料利用率の目標値を前記出力電流の関数として定めている、前記特性曲線とは別で且つ前記特性曲線よりも低燃料利用率側にある過渡時特性曲線で定められている前記燃料利用率の過渡時目標値に低下させ、
引き続いて、
前記出力調節手段及び前記燃料ガス供給量調節手段の動作を制御して、前記出力電流及び前記燃料利用率を、前記過渡時特性曲線で定められている値に従って変化させ、
前記出力電流が前記目標電流に到達すると、前記改質器から前記アノードへの前記燃料ガスの供給量を減少させて、前記燃料利用率を、前記特性曲線で定められている前記燃料利用率の目標値に上昇させて、増大変化を完了する前記過渡時運転を行う点にある。
Another characteristic configuration of the fuel cell system according to the present invention is that the operation control means includes:
When increasing the output current toward the predetermined target current,
At the start of increase, the operation of the fuel gas supply amount adjusting means is controlled to increase the supply amount of the fuel gas from the reformer to the anode, and the fuel utilization rate is set to the target value of the fuel utilization rate. Is determined as a function of the output current, and is a transient target value of the fuel utilization rate determined by a transient characteristic curve that is different from the characteristic curve and located on the low fuel utilization rate side of the characteristic curve. Lower,
Then,
By controlling the operation of the output adjusting means and the fuel gas supply amount adjusting means, the output current and the fuel utilization rate are changed according to values determined by the transient characteristic curve,
When the output current reaches the target current, the supply amount of the fuel gas from the reformer to the anode is decreased, and the fuel utilization rate is set to the fuel utilization rate defined by the characteristic curve. The transient operation is completed by increasing the target value to complete the increase change.

上記特徴構成によれば、出力電流を所定の目標電流に向けて増大変化させるとき、増大開始時に、燃料ガス供給量調節手段の動作を制御して改質器からアノードへの燃料ガスの供給量を増加させて、燃料利用率を、燃料利用率の目標値を出力電流の関数として定めている、特性曲線とは別で且つ特性曲線よりも低燃料利用率側にある過渡時特性曲線で定められている燃料利用率の過渡時目標値に低下させことで、アノードで発電反応に用いられずに排出される排出燃料ガス中の燃料成分の量が増大する。つまり、燃焼部での燃焼量が増大することで、燃焼を安定させることができる。
更に、そのような燃焼が安定した状態で、燃料利用率が、目標電流に対して過渡時特性曲線で定められている燃料利用率の過渡時目標値となるように、出力電流及び燃料利用率を共に変化させる。つまり、燃焼が安定した状態を維持しながら、出力電流を目標電流に到達させることができる。
また更に、出力電流が目標電流に到達した後、改質器からアノードへの燃料ガスの供給量を減少させて、燃料利用率を、特性曲線で定められている燃料利用率の目標値に上昇させて、一連の出力電流増大変化を完了することで、安定した燃焼が維持できる程度まで排出燃料ガス中の燃料成分の量を減らすことができ、それだけ発電効率を向上させることができる。
According to the above characteristic configuration, when the output current is increased and changed toward a predetermined target current, the amount of fuel gas supplied from the reformer to the anode is controlled by controlling the operation of the fuel gas supply amount adjusting means at the start of the increase. The fuel utilization rate is determined by a transient characteristic curve that is different from the characteristic curve and that is on the low fuel utilization side of the characteristic curve, where the target value of the fuel utilization rate is defined as a function of the output current. By reducing the fuel utilization rate that has been achieved to the transient target value, the amount of the fuel component in the exhausted fuel gas that is discharged without being used in the power generation reaction at the anode increases. That is, combustion can be stabilized by increasing the amount of combustion in the combustion section.
Further, in such a state where combustion is stable, the output current and the fuel utilization rate are set so that the fuel utilization rate becomes the transient target value of the fuel utilization rate determined by the transient characteristic curve with respect to the target current. Together. That is, the output current can reach the target current while maintaining a stable combustion state.
Furthermore, after the output current reaches the target current, the amount of fuel gas supplied from the reformer to the anode is decreased, and the fuel utilization rate is increased to the target value of the fuel utilization rate defined in the characteristic curve. Thus, by completing a series of output current increase changes, the amount of the fuel component in the exhaust fuel gas can be reduced to the extent that stable combustion can be maintained, and the power generation efficiency can be improved accordingly.

本発明に係る燃料電池システムの更に別の特徴構成は、原燃料を改質して燃料ガスを生成する改質器と、前記改質器で生成された前記燃料ガスが供給されるアノード、及び、酸素ガスが供給されるカソードを有する燃料電池と、発電反応で用いられた後に前記アノードから排出される排出燃料ガス中の燃料成分と発電反応に用いられた後に前記カソードから排出される排出酸素ガスとを燃焼させ、その燃焼熱によって前記改質器を加熱する燃焼部と、前記燃料電池の出力電流を調節する出力調節手段と、前記改質器から前記アノードへの前記燃料ガスの供給量を調節する燃料ガス供給量調節手段と、前記出力調節手段及び前記燃料ガス供給量調節手段の動作を制御する運転制御手段とを備え、
前記運転制御手段は、前記アノードに供給される前記燃料ガスの量に対する、前記アノードで発電反応に用いられる前記燃料ガスの量の比率である燃料利用率の目標値を前記出力電流の関数として定めている特性曲線に従って、前記出力調節手段の動作を制御して前記出力電流を調節し及び前記燃料ガス供給量調節手段の動作を制御して前記改質器から前記アノードへの前記燃料ガスの供給量を調節するように構成されている燃料電池システムであって、
前記特性曲線として、
前記出力電流を増大変化させる場合に適用する増大変化時特性曲線と、
前記出力電流を増大変化させる以外の場合に適用する通常変化時特性曲線とを備え、
同一出力電流に対応する、前記増大変化時特性曲線上の燃料利用率が、前記通常変化時
特性曲線上の燃料利用率より小さく設定されており、
前記増大変化時特性曲線は、前記出力電流を前記燃焼部での前記排出燃料ガスと前記排出酸素ガスとの燃焼が不安定になる電流範囲で増大変化させる場合に適用され、
前記出力電流を所定の目標電流に向けて増大変化させるとき、前記出力電流を維持させたまま、前記燃料ガス供給量調節手段の動作を制御して前記改質器から前記アノードへの前記燃料ガスの供給量を増加させて、前記燃料利用率を前記増大変化時特性曲線で定められている前記燃料利用率の目標値に低下させた後で、前記出力調節手段及び前記燃料ガス供給量調節手段の動作を制御して、前記出力電流及び前記燃料利用率を前記増大変化時特性曲線に従って前記所定の目標電流に向けて変化させる点にある。
Still another characteristic configuration of the fuel cell system according to the present invention includes a reformer that reforms raw fuel to generate fuel gas, an anode that is supplied with the fuel gas generated by the reformer, and A fuel cell having a cathode to which oxygen gas is supplied, and a fuel component in exhaust fuel gas discharged from the anode after being used in a power generation reaction and discharged oxygen discharged from the cathode after being used in the power generation reaction A combustion section that burns gas and heats the reformer by the combustion heat; output adjusting means that adjusts an output current of the fuel cell; and a supply amount of the fuel gas from the reformer to the anode A fuel gas supply amount adjusting means for adjusting the output, and an operation control means for controlling operations of the output adjusting means and the fuel gas supply amount adjusting means,
The operation control means determines, as a function of the output current, a target value of a fuel utilization rate that is a ratio of the amount of the fuel gas used in the power generation reaction at the anode to the amount of the fuel gas supplied to the anode. According to the characteristic curve, the operation of the output adjusting means is controlled to adjust the output current, and the operation of the fuel gas supply amount adjusting means is controlled to supply the fuel gas from the reformer to the anode. A fuel cell system configured to regulate the amount,
As the characteristic curve,
An increasing change characteristic curve applied when increasing the output current;
A normal change characteristic curve applied to cases other than increasing the output current,
The fuel utilization rate on the characteristic curve at the time of increase corresponding to the same output current is set smaller than the fuel utilization rate on the characteristic curve at the time of normal change,
The increase change characteristic curve is applied when the output current is increased and changed in a current range in which combustion of the exhaust fuel gas and the exhaust oxygen gas in the combustion section becomes unstable,
When increasing the output current toward a predetermined target current, the fuel gas from the reformer to the anode is controlled by controlling the operation of the fuel gas supply amount adjusting means while maintaining the output current. After the fuel supply rate is reduced to the target value of the fuel usage rate determined by the characteristic curve at the time of increase, the output adjusting means and the fuel gas supply amount adjusting means are increased. Is controlled to change the output current and the fuel utilization rate toward the predetermined target current according to the characteristic curve at the time of increasing change.

上記特徴構成によれば、同一出力電流に対応する、増大変化時特性曲線上の燃料利用率が、通常変化時特性曲線上の燃料利用率より小さく設定されている、即ち、排出燃料ガス中の燃料成分の量が相対的に増大するように設定されているので、増大変化時特性曲線を適用すると、燃焼部での燃焼は安定するようになる。その結果、出力電流を増大変化させる場合に増大変化時特性曲線を適用することで、燃焼部での燃焼を安定させた状態で出力電流を増大させることができる。また、出力電流を増大変化させる以外の場合に通常変化時特性曲線を適用することで、アノードに供給する燃料ガスの量を相対的に減らすことができ、それだけ発電効率を向上させることができる。
また上記特徴構成によれば、例えば、燃料電池毎に燃焼が不安定になる電流範囲が分かっているのであれば、その電流範囲を通って出力電流を増大変化させるときに上記増大変化時特性曲線を適用すると、燃焼部での燃焼をより安定させることができる。
According to the above characteristic configuration, the fuel utilization rate on the characteristic curve at the time of increase change corresponding to the same output current is set smaller than the fuel utilization rate on the characteristic curve at the time of normal change, that is, in the exhaust fuel gas Since the amount of the fuel component is set to relatively increase, the combustion in the combustion section becomes stable when the characteristic curve at the time of increase change is applied. As a result, when the output current is increased, the output current can be increased while the combustion in the combustion section is stabilized by applying the characteristic curve at the time of increase change. Further, by applying the normal change characteristic curve in cases other than increasing the output current, the amount of fuel gas supplied to the anode can be relatively reduced, and the power generation efficiency can be improved accordingly.
Further, according to the above characteristic configuration, for example, if the current range in which the combustion becomes unstable is known for each fuel cell, the above characteristic curve at the time of increase change when the output current is increased through the current range. When is applied, combustion in the combustion section can be further stabilized.

本発明に係る燃料電池システムの更に別の特徴構成は、前記増大変化時特性曲線は、前記出力電流を前記燃焼部での前記排出燃料ガスと前記排出酸素ガスとの燃焼が不安定になる電流範囲で増大変化させる場合に適用される点にある。   Still another characteristic configuration of the fuel cell system according to the present invention is that the characteristic curve at the time of the increase change indicates that the output current is a current at which combustion of the exhaust fuel gas and the exhaust oxygen gas in the combustion section becomes unstable. It is in the point applied when increasing and changing within a range.

上記特徴構成によれば、例えば、燃料電池毎に燃焼が不安定になる電流範囲が分かっているのであれば、その電流範囲を通って出力電流を増大変化させるときに上記増大変化時特性曲線を適用すると、燃焼部での燃焼をより安定させることができる。   According to the above characteristic configuration, for example, if the current range in which combustion becomes unstable is known for each fuel cell, the above-mentioned characteristic curve at the time of increase change is obtained when the output current is increased and changed through the current range. When applied, combustion in the combustion section can be further stabilized.

燃料電池システムの構成を示す図である。It is a figure which shows the structure of a fuel cell system. 燃料電池の出力電流と燃料利用率との設定関係を示す特性曲線のグラフである。It is a graph of the characteristic curve which shows the setting relationship between the output current of a fuel cell, and a fuel utilization factor.

図1は、燃料電池システムの構成を示す図である。本発明に係る燃料電池システムは、原燃料を改質して水素ガスを主成分とする燃料ガスを生成する改質器3と、改質器3で生成された燃料ガスが供給されるアノード24、及び、酸素ガスが供給されるカソード25を有する燃料電池21と、発電反応で用いられた後にアノード24から排出される排出燃料ガス中の燃料成分と発電反応に用いられた後にカソード25から排出される排出酸素ガスとをそれらの混合状態で燃焼させ、その燃焼熱によって改質器3を加熱する燃焼部22とを備える。本実施形態では、これら改質器3と燃料電池21と燃焼部22とは装置筐体1の内部に収容されている。更に、装置筐体1の内部には、蒸発器2も収容されている。   FIG. 1 is a diagram showing a configuration of a fuel cell system. The fuel cell system according to the present invention includes a reformer 3 for reforming raw fuel to generate a fuel gas mainly composed of hydrogen gas, and an anode 24 to which the fuel gas generated by the reformer 3 is supplied. And the fuel cell 21 having the cathode 25 to which oxygen gas is supplied, and the fuel component in the exhaust fuel gas discharged from the anode 24 after being used in the power generation reaction and discharged from the cathode 25 after being used in the power generation reaction. And a combustion section 22 that combusts the exhausted oxygen gas in a mixed state and heats the reformer 3 with the combustion heat. In the present embodiment, the reformer 3, the fuel cell 21, and the combustion unit 22 are accommodated inside the apparatus housing 1. Furthermore, an evaporator 2 is also housed inside the apparatus housing 1.

燃料電池21は、改質器3で生成された水素ガスを主成分とする燃料ガスが供給されるアノード24と酸素ガス(空気)が供給されるカソード25とを備えた固体酸化物形のセル26を複数個電気的に直列接続した状態で備えたセルスタックにて構成されている。図示は省略するが、セル26は、アノード24とカソード25との間に固体電解質層を備えた固体酸化物形に構成される。アノード24には燃料ガスが通流するように構成され、カソード25には空気が通流するように構成される。燃料電池21は、複数のセル26がアノード24の燃料ガス排出口24e及びカソード25の空気排出口25eが上向きになる姿勢で横方向に並ぶ状態で、装置筐体1の内部に設置されている。尚、セル26の形状や構造は図1に例示したものに限定されない。   The fuel cell 21 is a solid oxide cell having an anode 24 to which a fuel gas mainly composed of hydrogen gas generated by the reformer 3 is supplied and a cathode 25 to which oxygen gas (air) is supplied. It is comprised with the cell stack provided with the state which connected 26 in multiple numbers electrically in series. Although not shown, the cell 26 is configured in a solid oxide form having a solid electrolyte layer between the anode 24 and the cathode 25. The anode 24 is configured to allow fuel gas to flow, and the cathode 25 is configured to allow air to flow. The fuel cell 21 is installed inside the apparatus housing 1 in a state in which a plurality of cells 26 are arranged in a horizontal direction in a posture in which the fuel gas discharge port 24e of the anode 24 and the air discharge port 25e of the cathode 25 are directed upward. . The shape and structure of the cell 26 are not limited to those illustrated in FIG.

燃料電池21には、改質器3から燃料ガス供給路23を通して供給される燃料ガスを受け入れるガスマニホールド27が設けられる。複数のセル26は、ガスマニホールド27の上方側に上述のように並ぶ状態で配置され、ガスマニホールド27と複数のセル26におけるアノード24の下端のガス導入口(図示せず)とが連通接続されている。そして、ガスマニホールド27に供給された燃料ガスが、複数のセル26夫々のアノード24に対して下端のガス導入口から供給され、各アノード24に対して下方側から上方側に通流して発電反応に供される。発電反応に供された後の燃料ガスは、上端の燃料ガス排出口24eから排出燃料ガスとして排出される。   The fuel cell 21 is provided with a gas manifold 27 that receives fuel gas supplied from the reformer 3 through the fuel gas supply path 23. The plurality of cells 26 are arranged above the gas manifold 27 as described above, and the gas manifold 27 and a gas inlet (not shown) at the lower end of the anode 24 in the plurality of cells 26 are connected in communication. ing. The fuel gas supplied to the gas manifold 27 is supplied from the gas inlet at the lower end to the anode 24 of each of the plurality of cells 26, and flows from the lower side to the upper side with respect to each anode 24 to generate a power generation reaction. To be served. The fuel gas after being subjected to the power generation reaction is discharged as an exhaust fuel gas from the upper end fuel gas discharge port 24e.

装置筐体1には、空気導入口28が設けられ、その空気導入口28には空気供給路29が接続される。ブロア30の作動により、空気が空気供給路29を通して装置筐体1内に供給される。複数のセル26夫々におけるカソード25の下端部近傍には、装置筐体1内とカソード25とを連通する空気供給孔(図示せず)が設けられている。複数のセル26夫々のカソード25には装置筐体1内の空気がこの空気供給孔を通して供給され、各カソード25に対して下方側から上方側に通流して発電反応に供される。発電反応に供された後の空気は、上端の空気排出口25eから排出酸素ガスとして排出される。   The apparatus housing 1 is provided with an air inlet 28, and an air supply path 29 is connected to the air inlet 28. By the operation of the blower 30, air is supplied into the apparatus housing 1 through the air supply path 29. In the vicinity of the lower end portion of the cathode 25 in each of the plurality of cells 26, an air supply hole (not shown) that communicates the inside of the apparatus housing 1 and the cathode 25 is provided. The air in the apparatus housing 1 is supplied to the cathodes 25 of each of the plurality of cells 26 through the air supply holes, and flows from the lower side to the upper side with respect to the cathodes 25 to be used for the power generation reaction. The air after being subjected to the power generation reaction is discharged as exhausted oxygen gas from the upper air discharge port 25e.

燃料電池21の上方には、各セル26のアノード24の燃料ガス排出口24eから排出される排出燃料ガスとカソード25の空気排出口25eから排出される排出酸素ガスとを燃焼させる燃焼空間が形成される。つまり、燃料電池21により、燃焼部22が実現される。加えて、後述するように、一体で構成された蒸発器2と改質器3とが、燃焼部22として機能する燃料電池21の上方の燃焼空間に隣接して設けられている。   Above the fuel cell 21, a combustion space is formed for burning the exhaust fuel gas discharged from the fuel gas discharge port 24 e of the anode 24 of each cell 26 and the exhaust oxygen gas discharged from the air discharge port 25 e of the cathode 25. Is done. That is, the combustion unit 22 is realized by the fuel cell 21. In addition, as will be described later, the integrally configured evaporator 2 and reformer 3 are provided adjacent to the combustion space above the fuel cell 21 that functions as the combustion unit 22.

装置筐体1には、燃焼部22にて発生した燃焼排ガスを外部に排出させる排出部31が下面部等に形成されている。そして、装置筐体1内には、排出部31から外部に排出される燃焼排ガス中の一酸化炭素ガスを除去する燃焼触媒部32(例えば、白金系触媒)が設けられている。   In the apparatus housing 1, a discharge part 31 for discharging the combustion exhaust gas generated in the combustion part 22 to the outside is formed on the lower surface part or the like. And in the apparatus housing | casing 1, the combustion catalyst part 32 (for example, platinum-type catalyst) which removes the carbon monoxide gas in the combustion exhaust gas discharged | emitted from the discharge part 31 outside is provided.

本実施形態において、燃料電池21のアノード24に供給される燃料ガスを生成する燃料改質装置Rは、改質器3と、蒸発器2と、燃料電池21により実現される燃焼部22とで構成される。
燃焼部22は、可燃性ガスを燃焼して燃焼熱を発生させる。具体的には、上述したように、燃焼部22は、各セル26のアノード24の燃料ガス排出口24eから排出される排出燃料ガス中の燃料成分(主に水素ガス)とカソード25の空気排出口25eから排出される排出酸素ガスとを燃焼させて燃焼熱を発生させる。
In the present embodiment, the fuel reformer R that generates the fuel gas supplied to the anode 24 of the fuel cell 21 includes the reformer 3, the evaporator 2, and the combustion unit 22 realized by the fuel cell 21. Composed.
The combustion part 22 burns combustible gas and generates combustion heat. Specifically, as described above, the combustor 22 is configured so that the fuel component (mainly hydrogen gas) in the discharged fuel gas discharged from the fuel gas discharge port 24 e of the anode 24 of each cell 26 and the air discharge of the cathode 25. The exhaust oxygen gas discharged from the outlet 25e is combusted to generate combustion heat.

蒸発器2の内部空間には、原燃料ガスが供給される原燃料ガス供給管7と、改質水が供給される改質水供給管6とが、蒸発器2の外部から引き込まれる。そして、蒸発器2の内部に、原燃料ガス及び改質水が供給される。蒸発器2に対する原燃料ガスの供給量は、原燃料ガス供給管7の途中に設けられる原燃料流量調節弁4によって調節可能である。蒸発器2に対する改質水の供給量は、改質水供給管6の途中に設けられる改質水ポンプ9によって調節可能である。   A raw fuel gas supply pipe 7 to which raw fuel gas is supplied and a reformed water supply pipe 6 to which reformed water is supplied are drawn into the internal space of the evaporator 2 from the outside of the evaporator 2. Then, raw fuel gas and reformed water are supplied into the evaporator 2. The amount of raw fuel gas supplied to the evaporator 2 can be adjusted by a raw fuel flow rate adjustment valve 4 provided in the middle of the raw fuel gas supply pipe 7. The amount of reforming water supplied to the evaporator 2 can be adjusted by a reforming water pump 9 provided in the middle of the reforming water supply pipe 6.

そして、蒸発器2は、供給される改質水を、燃焼部22から伝えられる燃焼熱を用いて加熱して蒸発させる。更に、蒸発器2では、改質水の蒸発によって生成された水蒸気と、原燃料ガスとが混合される。
改質器3は、供給される原燃料ガスを蒸発器2にて生成された水蒸気を用いて改質処理する。具体的には、改質器3の内部には改質触媒が充填されており、この改質触媒の触媒作用によって原燃料ガスが改質処理される。
The evaporator 2 evaporates the supplied reforming water by heating it using the combustion heat transmitted from the combustion unit 22. Further, in the evaporator 2, the water vapor generated by the evaporation of the reforming water and the raw fuel gas are mixed.
The reformer 3 reforms the supplied raw fuel gas using the steam generated by the evaporator 2. Specifically, the reformer 3 is filled with a reforming catalyst, and the raw fuel gas is reformed by the catalytic action of the reforming catalyst.

本発明に係る燃料電池システムは、燃料電池21の出力電流を調節する出力調節手段Lと、改質器3からアノード24への燃料ガスの供給量を調節する燃料ガス供給量調節手段Fと、出力調節手段L及び燃料ガス供給量調節手段Fの動作を制御する運転制御手段Cとを備える。燃料ガス供給量調節手段Fは、上述した原燃料流量調節弁4及び改質水ポンプ9によって実現できる。つまり、改質器3に供給される原燃料ガスの量及び水蒸気の量を調節することで、改質器3での燃料ガスの生成量、即ち、改質器3からアノード24への燃料ガスの供給量が調節される。燃料電池21の出力電流を調節する出力調節手段Lは、例えばインバータ装置などの電力変換装置である。そして、この出力調節手段Lを介して、燃料電池21の発電電力が様々な電力消費装置に供給される。   The fuel cell system according to the present invention includes output adjusting means L for adjusting the output current of the fuel cell 21, fuel gas supply amount adjusting means F for adjusting the supply amount of fuel gas from the reformer 3 to the anode 24, And an operation control means C for controlling operations of the output adjustment means L and the fuel gas supply amount adjustment means F. The fuel gas supply amount adjusting means F can be realized by the raw fuel flow rate adjusting valve 4 and the reforming water pump 9 described above. That is, by adjusting the amount of raw fuel gas and the amount of water vapor supplied to the reformer 3, the amount of fuel gas generated in the reformer 3, that is, the fuel gas from the reformer 3 to the anode 24. The supply amount is adjusted. The output adjustment means L that adjusts the output current of the fuel cell 21 is a power conversion device such as an inverter device, for example. Then, the power generated by the fuel cell 21 is supplied to various power consuming devices via the output adjusting means L.

運転制御手段Cは、燃料電池21が出力すべき電流(出力電流)を決定し、その出力電流を出力調節手段Lに伝達する。そして、出力調節手段Lが、燃料電池21の出力電流を調節することで、燃料電池21ではその出力電流に応じた発電反応(即ち、出力電流に応じた燃料ガスの消費)が行われることとなる。尚、燃料電池21の出力電流が所望の値になるためには、燃料電池21のアノード24に対して適切な量の燃料ガスが供給されていること及びカソード25に対して適切な量の酸素ガスが供給されていることが必要である。そのため、運転制御手段Cは、原燃料流量調節弁4及び改質水ポンプ9の動作を制御して改質器3へ供給される原燃料の量及び水蒸気の量を調節することで、改質器3で生成される燃料ガスの量、即ち、改質器3から燃料電池21のアノード24に供給される燃料ガスの量を調節する。また、運転制御手段Cは、ブロア30の動作を制御して、燃料電池21のカソード25に供給される酸素ガスの量を調節する。   The operation control means C determines the current (output current) to be output by the fuel cell 21 and transmits the output current to the output adjustment means L. The output adjusting means L adjusts the output current of the fuel cell 21 so that the fuel cell 21 performs a power generation reaction corresponding to the output current (that is, consumption of fuel gas corresponding to the output current). Become. In order for the output current of the fuel cell 21 to have a desired value, an appropriate amount of fuel gas is supplied to the anode 24 of the fuel cell 21 and an appropriate amount of oxygen is supplied to the cathode 25. It is necessary that gas is supplied. Therefore, the operation control means C controls the operations of the raw fuel flow rate adjusting valve 4 and the reforming water pump 9 to adjust the amount of raw fuel and the amount of steam supplied to the reformer 3, thereby reforming. The amount of fuel gas generated in the reactor 3, that is, the amount of fuel gas supplied from the reformer 3 to the anode 24 of the fuel cell 21 is adjusted. The operation control means C controls the operation of the blower 30 to adjust the amount of oxygen gas supplied to the cathode 25 of the fuel cell 21.

図2は、燃料電池の出力電流と燃料利用率との設定関係を示す特性曲線のグラフである。この燃料利用率は、アノード24に供給される燃料ガスの量(即ち、改質器3で生成される燃料ガスの量に相当)に対する、アノード24で発電反応に用いられる燃料ガスの量の比率である。そして、運転制御手段Cは、燃料利用率の目標値を出力電流の関数として定めている図2の特性曲線に従って、出力調節手段Lの動作を制御して出力電流を調節し及び燃料ガス供給量調節手段Fの動作を制御して改質器3からアノード24への燃料ガスの供給量を調節するように構成されている。   FIG. 2 is a graph of a characteristic curve showing a setting relationship between the output current of the fuel cell and the fuel utilization rate. This fuel utilization rate is the ratio of the amount of fuel gas used in the power generation reaction at the anode 24 to the amount of fuel gas supplied to the anode 24 (that is, equivalent to the amount of fuel gas generated at the reformer 3). It is. Then, the operation control means C controls the operation of the output adjusting means L according to the characteristic curve of FIG. 2 that defines the target value of the fuel utilization rate as a function of the output current, and adjusts the output current and the fuel gas supply amount. The operation of the adjusting means F is controlled to adjust the amount of fuel gas supplied from the reformer 3 to the anode 24.

図2の特性曲線では、出力電流Iが決まると、その出力電流Iを燃料電池21で発生させるのに要する燃料ガスの量が決まる。つまり、燃料電池21のアノード24で発電反応に用いられる燃料ガスの量が決まる。また、出力電流Iが決まると、そのときの燃料利用率Uf(I)が決まる。その結果、燃料電池21のアノード24で発電反応に用いられる燃料ガスの量と、燃料利用率とから、燃料電池21のアノード24で発電反応に用いられずに排出される排出燃料ガス中の燃料成分の量も導出できる。従って、出力電流Iに対して、図2の特性曲線で決定される燃料利用率Uf(I)を満たすための、燃料電池21のアノード24に供給する必要がある燃料ガスの量(発電反応に用いられる燃料ガスの量、及び、発電反応に用いられずに排出される排出燃料ガス中の燃料成分の量)が導出される。そして、その燃料電池21のアノード24に供給する必要がある燃料ガスの量は、改質器3で生成するべき燃料ガスの量であるので、その燃料ガスを生成するために必要な原燃料ガスの量及び水蒸気の量を導出できる。その結果、運転制御手段Cは、燃料ガス供給量調節手段Fとしての原燃料流量調節弁4及び改質水ポンプ9に対して、改質器3へ供給する原燃料ガスの量及び水蒸気の量を調節するように指令する。   In the characteristic curve of FIG. 2, when the output current I is determined, the amount of fuel gas required to generate the output current I in the fuel cell 21 is determined. That is, the amount of fuel gas used for the power generation reaction at the anode 24 of the fuel cell 21 is determined. When the output current I is determined, the fuel utilization rate Uf (I) at that time is determined. As a result, based on the amount of fuel gas used for the power generation reaction at the anode 24 of the fuel cell 21 and the fuel utilization rate, the fuel in the exhausted fuel gas discharged without being used for the power generation reaction at the anode 24 of the fuel cell 21. The amount of the component can also be derived. Therefore, the amount of fuel gas that needs to be supplied to the anode 24 of the fuel cell 21 to satisfy the fuel utilization rate Uf (I) determined by the characteristic curve of FIG. The amount of the fuel gas used and the amount of the fuel component in the exhaust fuel gas discharged without being used in the power generation reaction) are derived. And since the quantity of the fuel gas which needs to be supplied to the anode 24 of the fuel cell 21 is the quantity of the fuel gas which should be produced | generated by the reformer 3, the raw fuel gas required in order to produce | generate the fuel gas And the amount of water vapor can be derived. As a result, the operation control means C is supplied to the reformer 3 with respect to the raw fuel flow rate adjusting valve 4 and the reforming water pump 9 as the fuel gas supply amount adjusting means F, and the amount of water vapor. Command to adjust.

〔過渡時運転〕
次に、運転制御手段Cが燃料電池21の出力電流を増大変化させるときに行う過渡時運転について説明する。図2には、燃料電池21の出力電流を、増大開始時の出力電流I1から、所定の目標電流I2に増大変化させる場合を例示する。
[Transient operation]
Next, the transient operation performed when the operation control means C increases and changes the output current of the fuel cell 21 will be described. FIG. 2 illustrates a case where the output current of the fuel cell 21 is increased and changed from the output current I1 at the start of increase to a predetermined target current I2.

運転制御手段Cは、現在の出力電流I1を所定の目標電流I2に向けて増大変化させるとき、燃料ガス供給量調節手段Fの動作を制御して改質器3からアノード24への燃料ガスの供給量を増加させて特性曲線Ufa(I)で定められている増大開始時(現在)の燃料利用率の目標値:Ufa(I1)よりも燃料利用率を低下させた後で、出力調節手段L及び燃料ガス供給量調節手段Fの動作を制御して、出力電流及び燃料利用率を、目標電流I2及び特性曲線Ufa(I)に従ってその目標電流I2の関数で定められる増大完了時の燃料利用率の目標値Ufa(I2)に向けて変化させる過渡時運転を行う。   The operation control means C controls the operation of the fuel gas supply amount adjusting means F to increase the current output current I1 toward the predetermined target current I2, and controls the operation of the fuel gas from the reformer 3 to the anode 24. Output adjustment means after increasing the supply amount and lowering the fuel utilization rate from the target value: Ufa (I1) at the start of increase (current) determined by the characteristic curve Ufa (I) L and the fuel gas supply amount adjusting means F are controlled so that the output current and the fuel usage rate are determined as a function of the target current I2 and the characteristic curve Ufa (I), and the fuel usage at the completion of the increase. Transient operation is performed to change the target value Ufa (I2) of the rate.

具体的には、図2の点Aは増大開始時の出力電流及び燃料利用率(出力電流,燃料利用率)を示し、それぞれの値は(I1,Ufa(I1))である。運転制御手段Cは、この出力電流I1を目標電流I2に増大変化させようとするとき、先ず、点Aよりも燃料利用率を低下させる。図2に示す例では、出力電流はI1を維持させたまま、燃料利用率のみをUfb(I1)に低下させる。ここで、出力電流を維持したままで燃料利用率を低下させるためには、燃料電池21のアノード24へ供給する燃料ガスの量を増大させればよい。そして、燃料利用率のみを低下させた結果、出力電流及び燃料利用率は点B(I1,Ufb(I1))の状態になる。   Specifically, point A in FIG. 2 indicates the output current and the fuel utilization rate (output current, fuel utilization rate) at the start of increase, and the respective values are (I1, Ufa (I1)). When the operation control means C tries to increase the output current I1 to the target current I2, the operation control means C first lowers the fuel utilization rate from the point A. In the example shown in FIG. 2, only the fuel utilization rate is reduced to Ufb (I1) while maintaining the output current I1. Here, in order to reduce the fuel utilization rate while maintaining the output current, the amount of fuel gas supplied to the anode 24 of the fuel cell 21 may be increased. As a result of reducing only the fuel utilization rate, the output current and the fuel utilization rate are in the state of point B (I1, Ufb (I1)).

図2に示すように、本実施形態では、実線で示す特性曲線Ufa(I)とは別で且つ特性曲線Ufa(I)よりも低燃料利用率側にある過渡時特性曲線Ufb(I)(図2中では細線で示す)を利用している。この過渡時特性曲線Ufb(I)も、燃料利用率の目標値を出力電流の関数として定めている。そして、点B(I1,Ufb(I1))は、この過渡時特性曲線Ufb(I)上の点である。つまり、運転制御手段Cは、増大開始時に、燃料ガス供給量調節手段Fの動作を制御して改質器3での燃料ガスの生成量を増加させて、燃料利用率を過渡時特性曲線Ufb(I)で定められている燃料利用率の過渡時目標値Ufb(I1)に低下させている。   As shown in FIG. 2, in the present embodiment, the transient characteristic curve Ufb (I) () is different from the characteristic curve Ufa (I) indicated by the solid line and is located on the low fuel utilization rate side of the characteristic curve Ufa (I). In FIG. 2, it is indicated by a thin line). This transient characteristic curve Ufb (I) also defines the target value of the fuel utilization rate as a function of the output current. Point B (I1, Ufb (I1)) is a point on the transient characteristic curve Ufb (I). That is, at the start of increase, the operation control means C controls the operation of the fuel gas supply amount adjusting means F to increase the amount of fuel gas generated in the reformer 3, and the fuel utilization rate is changed to the transient characteristic curve Ufb. The fuel utilization rate determined in (I) is lowered to the transient target value Ufb (I1).

引き続いて、運転制御手段Cは、点Bの状態から出力電流が目標電流I2に到達するまで、出力調節手段L及び燃料ガス供給量調節手段Fの動作を制御して、出力電流及び燃料利用率を、過渡時特性曲線Ufb(I)で定められている値に従って変化させる。その結果、出力電流はI2になり、燃料利用率はUfb(I2)になる。つまり、このときの出力電流及び燃料利用率は点C(I2,Ufb(I2))の状態になる。   Subsequently, the operation control means C controls the operation of the output adjusting means L and the fuel gas supply amount adjusting means F from the state of the point B until the output current reaches the target current I2, and the output current and the fuel utilization rate are controlled. Is changed according to a value defined by the transient characteristic curve Ufb (I). As a result, the output current becomes I2, and the fuel utilization rate becomes Ufb (I2). That is, the output current and the fuel utilization rate at this time are in the state of point C (I2, Ufb (I2)).

そして、運転制御手段Cは、出力電流が目標電流I2に到達すると、改質器3からアノード24への燃料ガスの供給量を減少させて、燃料利用率を、特性曲線Ufa(I)で定められている燃料利用率の目標値Ufa(I2)に上昇させる。その結果、出力電流をI1からI2へと増大変化させる過渡時運転が完了する。   Then, when the output current reaches the target current I2, the operation control means C reduces the amount of fuel gas supplied from the reformer 3 to the anode 24, and determines the fuel utilization rate by the characteristic curve Ufa (I). To the target value Ufa (I2) of the fuel utilization rate. As a result, the transient operation for increasing the output current from I1 to I2 is completed.

このように、本実施形態では、特性曲線として、出力電流を増大変化させる場合に適用する増大変化時特性曲線(上述した「過渡時特性曲線」)Ufb(I)と、出力電流を増大変化させる以外の場合(即ち、出力電流を一定に保つ或いは低下させる場合)に適用する通常変化時特性曲線(上述した「特性曲線」)Ufa(I)とを備える。特に、同一出力電流に対応する、増大変化時特性曲線Ufb(I)上の燃料利用率は、通常変化時特性曲線Ufa(I)上の燃料利用率より小さく設定されている。   As described above, in the present embodiment, as the characteristic curve, the characteristic curve at the time of increase change (the above-mentioned “transient characteristic curve during transient”) Ufb (I) applied when increasing the output current and the output current are increased. And a normal characteristic curve (the above-mentioned “characteristic curve”) Ufa (I) applied to cases other than (ie, when the output current is kept constant or reduced). In particular, the fuel utilization rate on the increasing change characteristic curve Ufb (I) corresponding to the same output current is set to be smaller than the fuel utilization rate on the normal changing characteristic curve Ufa (I).

以上のように、出力電流を所定の目標電流に向けて増大変化させるとき、増大開始時に、燃料ガス供給量調節手段Fの動作を制御して改質器3からアノード24への燃料ガスの供給量を増加させて、増大開始時の燃料利用率Ufa(I1)を、特性曲線Ufa(I)とは別で且つ特性曲線Ufa(I)よりも低燃料利用率側にある過渡時特性曲線Ufb(I)で定められている燃料利用率の過渡時目標値Ufb(I1)に低下させことで、アノード24で発電反応に用いられずに排出される排出燃料ガス中の燃料成分の量が増大する。つまり、燃焼部22での燃焼量が増大することで、燃焼を安定させることができる。
更に、そのような燃焼が安定した状態で、目標電流I2に対して過渡時特性曲線Ufb(I)で定められている燃料利用率の過渡時目標値Ufb(I2)となるように、出力電流及び燃料利用率を共に変化させる。つまり、燃焼が安定した状態を維持しながら、出力電流を目標電流に到達させることができる。
また更に、出力電流が目標電流I2に到達した後、改質器3からアノード24への燃料ガスの供給量を減少させて、燃料利用率を、特性曲線Ufa(I)で定められている燃料利用率の目標値Ufa(I2)に上昇させて増大変化を完了することで、安定した燃焼が維持できる程度まで排出燃料ガス中の燃料成分の量を減らすことができ、それだけ発電効率を向上させることができる。
As described above, when the output current is increased and changed toward the predetermined target current, the operation of the fuel gas supply amount adjusting means F is controlled at the start of the increase to supply the fuel gas from the reformer 3 to the anode 24. By increasing the amount, the fuel utilization rate Ufa (I1) at the start of the increase is different from the characteristic curve Ufa (I) and is on the lower fuel utilization rate side than the characteristic curve Ufa (I). By reducing the fuel utilization rate determined in (I) to the transient target value Ufb (I1), the amount of the fuel component in the discharged fuel gas discharged without being used in the power generation reaction at the anode 24 increases. To do. That is, combustion can be stabilized by increasing the amount of combustion in the combustion section 22.
Further, in such a state where combustion is stable, the output current is set so that the target value Ufb (I2) of the fuel utilization rate determined by the transient characteristic curve Ufb (I) with respect to the target current I2 is obtained. And change the fuel utilization rate. That is, the output current can reach the target current while maintaining a stable combustion state.
Further, after the output current reaches the target current I2, the amount of fuel gas supplied from the reformer 3 to the anode 24 is decreased, and the fuel utilization rate is determined by the characteristic curve Ufa (I). By increasing the utilization rate to the target value Ufa (I2) and completing the increase change, the amount of fuel components in the exhaust fuel gas can be reduced to the extent that stable combustion can be maintained, and the power generation efficiency is improved accordingly. be able to.

<別実施形態>
<1>
上記実施形態では、燃料電池システムの構成について具体例を挙げて説明したが、その構成は適宜変更可能である。例えば、原燃料ガス供給管7の途中に、原燃料ガス(例えば、都市ガス等)に含まれる硫黄化合物を取り除くための脱硫器等を設けてもよい。
また、燃料電池21及び燃料改質装置Rが装置筐体1の内部に収容し、その装置筐体1の内部にガスや水などを取り込む構成について図示したが、それらの構成は例示目的で記載したものであり適宜変更可能である。
<Another embodiment>
<1>
In the above embodiment, the configuration of the fuel cell system has been described with a specific example, but the configuration can be changed as appropriate. For example, a desulfurizer or the like for removing sulfur compounds contained in the raw fuel gas (for example, city gas) may be provided in the middle of the raw fuel gas supply pipe 7.
Further, although the fuel cell 21 and the fuel reformer R are shown in the apparatus housing 1 and the gas or water is taken into the apparatus housing 1, the structures are described for illustrative purposes. It can be changed as appropriate.

<2>
上記実施形態では、点A(I1,Ufa(I1))から点D(I2,Ufa(I2))へ出力電流及び燃料利用率を変化させるとき、点A→点B→点C→点Dという手順で出力電流及び燃料利用率を変化させる例を説明したが、他の手順で点Aから点Dへと出力電流及び燃料利用率を変化させてもよい。例えば、点A→点B→点Dという手順で出力電流及び燃料利用率を変化させてもよい。但し、点Bから点Dへの変化において、Ufa(I)を超えないことを条件とする。
また、上記実施形態では、出力電流I1を所定の目標電流I2に向けて増大変化させるとき、先ず、出力電流I1は変更させず、且つ、燃料利用率のみを増大開始時の燃料利用率の目標値Ufa(I1)よりも低下させてUfb(I1)に変更させる例を説明したが、このとき、燃料利用率を低下させると共に出力電流を変化させるような改変も可能である。
<2>
In the above embodiment, when changing the output current and the fuel utilization rate from the point A (I1, Ufa (I1)) to the point D (I2, Ufa (I2)), the point A → the point B → the point C → the point D. Although the example in which the output current and the fuel usage rate are changed in the procedure has been described, the output current and the fuel usage rate may be changed from the point A to the point D in another procedure. For example, the output current and the fuel utilization rate may be changed in the order of point A → point B → point D. However, it is a condition that the change from point B to point D does not exceed Ufa (I).
In the above embodiment, when the output current I1 is increased and changed toward the predetermined target current I2, first, the output current I1 is not changed, and only the fuel utilization rate is set as the target of the fuel utilization rate at the start of the increase. The example in which the value Ufa (I1) is decreased to be changed to Ufb (I1) has been described. However, at this time, the fuel utilization rate can be reduced and the output current can be changed.

<3>
上記実施形態において、出力電流を増大変化させるときに燃焼部での燃焼状態が不安定になるような出力電流の範囲が例えば実験的に分かっているのであれば、そのような出力電流の範囲(図2に示す例では、出力電流I1〜I2までの特定の出力電流範囲)を通って出力電流を増大変化させるときに上述した過渡時運転を行ってもよい。つまり、運転制御手段Cが、出力電流を燃焼部22での排出燃料ガスと排出酸素ガスとの燃焼が不安定になる電流範囲を通って増大変化させるときに過渡時運転を行うように(即ち、増大変化時特性曲線Ufb(I)が、出力電流を燃焼部22での排出燃料ガスと排出酸素ガスとの燃焼が不安定になる電流範囲で増大変化させる場合に適用されるように)構成してもよい。
<3>
In the above embodiment, if an output current range in which the combustion state in the combustion section becomes unstable when increasing the output current is experimentally known, for example, such an output current range ( In the example shown in FIG. 2, the transient operation described above may be performed when the output current is increased and changed through a specific output current range (output currents I1 to I2). That is, the operation control means C performs the transient operation when the output current is increased and changed through the current range in which the combustion of the exhaust fuel gas and the exhaust oxygen gas in the combustion section 22 becomes unstable (that is, The characteristic curve Ufb (I) at the time of increase change is applied when the output current is increased and changed in a current range in which combustion of the exhaust fuel gas and the exhaust oxygen gas in the combustion section 22 becomes unstable) May be.

本発明は、燃焼部での燃焼を安定して維持した状態で出力電流を増加変化させることのできる燃料電池システムに利用できる。   INDUSTRIAL APPLICABILITY The present invention can be used for a fuel cell system that can increase and change the output current while stably maintaining combustion in the combustion section.

3 改質器
4 原燃料流量調節弁(燃料ガス供給量調節手段 F)
9 改質水ポンプ(燃料ガス供給量調節手段 F)
21 燃料電池
22 燃焼部
24 アノード
25 カソード
C 運転制御手段
L 出力調節手段
3 Reformer 4 Raw fuel flow rate adjustment valve (Fuel gas supply amount adjustment means F)
9 Reformed water pump (Fuel gas supply amount adjustment means F)
21 Fuel cell 22 Combustion unit 24 Anode 25 Cathode C Operation control means L Output adjustment means

Claims (3)

原燃料を改質して燃料ガスを生成する改質器と、前記改質器で生成された前記燃料ガスが供給されるアノード、及び、酸素ガスが供給されるカソードを有する燃料電池と、発電反応で用いられた後に前記アノードから排出される排出燃料ガス中の燃料成分と発電反応に用いられた後に前記カソードから排出される排出酸素ガスとを燃焼させ、その燃焼熱によって前記改質器を加熱する燃焼部と、前記燃料電池の出力電流を調節する出力調節手段と、前記改質器から前記アノードへの前記燃料ガスの供給量を調節する燃料ガス供給量調節手段と、前記出力調節手段及び前記燃料ガス供給量調節手段の動作を制御する運転制御手段とを備え、
前記運転制御手段は、前記アノードに供給される前記燃料ガスの量に対する、前記アノードで発電反応に用いられる前記燃料ガスの量の比率である燃料利用率の目標値を前記出力電流の関数として定めている特性曲線に従って、前記出力調節手段の動作を制御して前記出力電流を調節し及び前記燃料ガス供給量調節手段の動作を制御して前記改質器から前記アノードへの前記燃料ガスの供給量を調節するように構成されている燃料電池システムであって、
前記出力電流を所定の目標電流に向けて増大変化させるとき、前記出力電流を維持させたまま、前記燃料ガス供給量調節手段の動作を制御して前記改質器から前記アノードへの前記燃料ガスの供給量を増加させて前記特性曲線で定められている増大開始時の前記燃料利用率の目標値よりも前記燃料利用率を低下させた後で、前記出力調節手段及び前記燃料ガス供給量調節手段の動作を制御して前記出力電流及び前記燃料利用率を前記目標電流及び前記特性曲線に従って当該目標電流の関数で定められる増大完了時の前記燃料利用率の目標値に向けて変化させる過渡時運転を行い、
前記運転制御手段は、前記出力電流を前記燃焼部での前記排出燃料ガスと前記排出酸素ガスとの燃焼が不安定になる電流範囲を通って増大変化させるときに前記過渡時運転を行う燃料電池システム。
A fuel cell having a reformer for reforming raw fuel to generate fuel gas, an anode to which the fuel gas generated by the reformer is supplied, and a cathode to which oxygen gas is supplied, and power generation The fuel component in the exhaust gas exhausted from the anode after being used in the reaction and the exhaust oxygen gas exhausted from the cathode after being used in the power generation reaction are combusted, and the reformer is controlled by the combustion heat. A combustion unit for heating; output adjusting means for adjusting an output current of the fuel cell; fuel gas supply amount adjusting means for adjusting the supply amount of the fuel gas from the reformer to the anode; and the output adjusting means. And an operation control means for controlling the operation of the fuel gas supply amount adjusting means,
The operation control means determines, as a function of the output current, a target value of a fuel utilization rate that is a ratio of the amount of the fuel gas used in the power generation reaction at the anode to the amount of the fuel gas supplied to the anode. According to the characteristic curve, the operation of the output adjusting means is controlled to adjust the output current, and the operation of the fuel gas supply amount adjusting means is controlled to supply the fuel gas from the reformer to the anode. A fuel cell system configured to regulate the amount,
When increasing the output current toward a predetermined target current, the fuel gas from the reformer to the anode is controlled by controlling the operation of the fuel gas supply amount adjusting means while maintaining the output current. After the fuel usage rate is reduced below the target value of the fuel usage rate at the start of the increase determined by the characteristic curve by increasing the supply amount of the fuel, the output adjusting means and the fuel gas supply amount adjustment A transient time in which the output current and the fuel usage rate are controlled to change toward the target value of the fuel usage rate at the completion of the increase determined by a function of the target current according to the target current and the characteristic curve by controlling the operation of the means There line operation,
It said operation control means, line cormorants fuel the transient during operation when the combustion increasing change through the current range becomes unstable and the exhaust fuel gas and the exhaust oxygen gas and the output current in the combustion portion Battery system.
前記運転制御手段は、
前記出力電流を前記所定の目標電流に向けて増大変化させるとき、
増大開始時に、前記燃料ガス供給量調節手段の動作を制御して前記改質器から前記アノードへの前記燃料ガスの供給量を増加させて、前記燃料利用率を、前記燃料利用率の目標値を前記出力電流の関数として定めている、前記特性曲線とは別で且つ前記特性曲線よりも低燃料利用率側にある過渡時特性曲線で定められている前記燃料利用率の過渡時目標値に低下させ、
引き続いて、
前記出力調節手段及び前記燃料ガス供給量調節手段の動作を制御して、前記出力電流及び前記燃料利用率を、前記過渡時特性曲線で定められている値に従って変化させ、
前記出力電流が前記目標電流に到達すると、前記改質器から前記アノードへの前記燃料ガスの供給量を減少させて、前記燃料利用率を、前記特性曲線で定められている前記燃料利用率の目標値に上昇させて、増大変化を完了する前記過渡時運転を行う請求項1に記載の燃料電池システム。
The operation control means includes
When increasing the output current toward the predetermined target current,
At the start of increase, the operation of the fuel gas supply amount adjusting means is controlled to increase the supply amount of the fuel gas from the reformer to the anode, and the fuel utilization rate is set to the target value of the fuel utilization rate. Is determined as a function of the output current, and is a transient target value of the fuel utilization rate determined by a transient characteristic curve that is different from the characteristic curve and located on the low fuel utilization rate side of the characteristic curve. Lower,
Then,
By controlling the operation of the output adjusting means and the fuel gas supply amount adjusting means, the output current and the fuel utilization rate are changed according to values determined by the transient characteristic curve,
When the output current reaches the target current, the supply amount of the fuel gas from the reformer to the anode is decreased, and the fuel utilization rate is set to the fuel utilization rate defined by the characteristic curve. The fuel cell system according to claim 1, wherein the transient operation is performed by increasing the target value to complete an increase change.
原燃料を改質して燃料ガスを生成する改質器と、前記改質器で生成された前記燃料ガスが供給されるアノード、及び、酸素ガスが供給されるカソードを有する燃料電池と、発電反応で用いられた後に前記アノードから排出される排出燃料ガス中の燃料成分と発電反応に用いられた後に前記カソードから排出される排出酸素ガスとを燃焼させ、その燃焼熱によって前記改質器を加熱する燃焼部と、前記燃料電池の出力電流を調節する出力調節手段と、前記改質器から前記アノードへの前記燃料ガスの供給量を調節する燃料ガス供給量調節手段と、前記出力調節手段及び前記燃料ガス供給量調節手段の動作を制御する運転制御
手段とを備え、
前記運転制御手段は、前記アノードに供給される前記燃料ガスの量に対する、前記アノードで発電反応に用いられる前記燃料ガスの量の比率である燃料利用率の目標値を前記出力電流の関数として定めている特性曲線に従って、前記出力調節手段の動作を制御して前記出力電流を調節し及び前記燃料ガス供給量調節手段の動作を制御して前記改質器から前記アノードへの前記燃料ガスの供給量を調節するように構成されている燃料電池システムであって、
前記特性曲線として、
前記出力電流を増大変化させる場合に適用する増大変化時特性曲線と、
前記出力電流を増大変化させる以外の場合に適用する通常変化時特性曲線とを備え、
同一出力電流に対応する、前記増大変化時特性曲線上の燃料利用率が、前記通常変化時特性曲線上の燃料利用率より小さく設定されており、
前記増大変化時特性曲線は、前記出力電流を前記燃焼部での前記排出燃料ガスと前記排出酸素ガスとの燃焼が不安定になる電流範囲で増大変化させる場合に適用され、
前記出力電流を所定の目標電流に向けて増大変化させるとき、前記出力電流を維持させたまま、前記燃料ガス供給量調節手段の動作を制御して前記改質器から前記アノードへの前記燃料ガスの供給量を増加させて、前記燃料利用率を前記増大変化時特性曲線で定められている前記燃料利用率の目標値に低下させた後で、前記出力調節手段及び前記燃料ガス供給量調節手段の動作を制御して、前記出力電流及び前記燃料利用率を前記増大変化時特性曲線に従って前記所定の目標電流に向けて変化させる燃料電池システム。
A fuel cell having a reformer for reforming raw fuel to generate fuel gas, an anode to which the fuel gas generated by the reformer is supplied, and a cathode to which oxygen gas is supplied, and power generation The fuel component in the exhaust gas exhausted from the anode after being used in the reaction and the exhaust oxygen gas exhausted from the cathode after being used in the power generation reaction are combusted, and the reformer is controlled by the combustion heat. A combustion unit for heating; output adjusting means for adjusting an output current of the fuel cell; fuel gas supply amount adjusting means for adjusting the supply amount of the fuel gas from the reformer to the anode; and the output adjusting means. And an operation control means for controlling the operation of the fuel gas supply amount adjusting means,
The operation control means determines, as a function of the output current, a target value of a fuel utilization rate that is a ratio of the amount of the fuel gas used in the power generation reaction at the anode to the amount of the fuel gas supplied to the anode. According to the characteristic curve, the operation of the output adjusting means is controlled to adjust the output current, and the operation of the fuel gas supply amount adjusting means is controlled to supply the fuel gas from the reformer to the anode. A fuel cell system configured to regulate the amount,
As the characteristic curve,
An increasing change characteristic curve applied when increasing the output current;
A normal change characteristic curve applied to cases other than increasing the output current,
The fuel utilization rate on the characteristic curve at the time of increase corresponding to the same output current is set smaller than the fuel utilization rate on the characteristic curve at the time of normal change,
The increase change characteristic curve is applied when the output current is increased and changed in a current range in which combustion of the exhaust fuel gas and the exhaust oxygen gas in the combustion section becomes unstable,
When increasing the output current toward a predetermined target current, the fuel gas from the reformer to the anode is controlled by controlling the operation of the fuel gas supply amount adjusting means while maintaining the output current. After the fuel supply rate is reduced to the target value of the fuel usage rate determined by the characteristic curve at the time of increase, the output adjusting means and the fuel gas supply amount adjusting means are increased. The fuel cell system is configured to control the operation to change the output current and the fuel utilization rate toward the predetermined target current in accordance with the increasing change characteristic curve.
JP2012101448A 2012-04-26 2012-04-26 Fuel cell system Active JP6066580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012101448A JP6066580B2 (en) 2012-04-26 2012-04-26 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012101448A JP6066580B2 (en) 2012-04-26 2012-04-26 Fuel cell system

Publications (2)

Publication Number Publication Date
JP2013229228A JP2013229228A (en) 2013-11-07
JP6066580B2 true JP6066580B2 (en) 2017-01-25

Family

ID=49676663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012101448A Active JP6066580B2 (en) 2012-04-26 2012-04-26 Fuel cell system

Country Status (1)

Country Link
JP (1) JP6066580B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6637778B2 (en) * 2016-02-05 2020-01-29 大阪瓦斯株式会社 Fuel cell system
JP6701804B2 (en) * 2016-02-26 2020-05-27 アイシン精機株式会社 Fuel cell system
JP6721363B2 (en) * 2016-03-11 2020-07-15 大阪瓦斯株式会社 Fuel cell system and operating method thereof
JP6611662B2 (en) * 2016-04-13 2019-11-27 大阪瓦斯株式会社 Fuel cell system
JP6611661B2 (en) * 2016-04-13 2019-11-27 大阪瓦斯株式会社 Fuel cell system
JP6958078B2 (en) * 2017-08-01 2021-11-02 株式会社アイシン Fuel cell system
EP3570357B1 (en) * 2018-05-16 2021-10-06 Panasonic Intellectual Property Management Co., Ltd. Fuel cell system
CN113841273A (en) * 2019-05-27 2021-12-24 京瓷株式会社 Fuel cell device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3460897B2 (en) * 1995-11-21 2003-10-27 三菱電機株式会社 Fuel cell generator
JP4934950B2 (en) * 2004-08-17 2012-05-23 三菱マテリアル株式会社 Fuel cell power generator and operation control method
JP5052756B2 (en) * 2005-03-11 2012-10-17 アイシン精機株式会社 Operation method of fuel cell power generation system, fuel cell power generation system
JP4789505B2 (en) * 2005-05-11 2011-10-12 アイシン精機株式会社 Fuel cell system
JP5412960B2 (en) * 2008-09-12 2014-02-12 Toto株式会社 Fuel cell device
JP2010257751A (en) * 2009-04-24 2010-11-11 Honda Motor Co Ltd Method of controlling fuel cell system
CN103140977B (en) * 2010-09-29 2015-08-05 Toto株式会社 Solid oxide fuel cell

Also Published As

Publication number Publication date
JP2013229228A (en) 2013-11-07

Similar Documents

Publication Publication Date Title
JP6066580B2 (en) Fuel cell system
JP5643712B2 (en) Fuel cell module
JP5551954B2 (en) Fuel cell power generator
JP4147659B2 (en) Control device for reformer
JP2008091049A (en) Fuel cell power generation system and operation method therefor
KR20150042616A (en) Device and Method for heating the Fuel cell and Apparatus having the same
JP2018110079A (en) Fuel cell system and operation method therefor
JP2009205868A (en) Solid oxide fuel cell system and solid oxide fuel cell
JP2004119299A (en) Fuel cell system
JP2007109590A (en) Reforming device for fuel cell, and fuel cell system equipped with the reforming device for fuel cell
JP5122028B2 (en) Power generation system and operation method thereof
JP5548534B2 (en) Power generator
JP6405171B2 (en) Solid oxide fuel cell system
JP6804685B1 (en) Fuel cell device and fuel cell management system
JP7226129B2 (en) Fuel cell system and its control method
JP2007265854A (en) Fuel cell system and its control method
JP5943781B2 (en) How to set fuel utilization
JP2007073302A (en) Fuel reforming system
JP7018733B2 (en) Solid oxide fuel cell
JP6755425B1 (en) Fuel cell device
JP2007026998A (en) Fuel cell temperature control method for fused carbonate type fuel cell power generator, and device for the same
JP7066561B2 (en) Fuel cell module and program
JP5021895B2 (en) Fuel cell power generation system
JP6115310B2 (en) Fuel cell system
JP6637778B2 (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161220

R150 Certificate of patent or registration of utility model

Ref document number: 6066580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150