JP5676315B2 - Fluid identification device and fluid identification method - Google Patents

Fluid identification device and fluid identification method Download PDF

Info

Publication number
JP5676315B2
JP5676315B2 JP2011049315A JP2011049315A JP5676315B2 JP 5676315 B2 JP5676315 B2 JP 5676315B2 JP 2011049315 A JP2011049315 A JP 2011049315A JP 2011049315 A JP2011049315 A JP 2011049315A JP 5676315 B2 JP5676315 B2 JP 5676315B2
Authority
JP
Japan
Prior art keywords
wave
probe
tubular member
transmitted
propagation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011049315A
Other languages
Japanese (ja)
Other versions
JP2012185083A (en
Inventor
智 藤田
智 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2011049315A priority Critical patent/JP5676315B2/en
Publication of JP2012185083A publication Critical patent/JP2012185083A/en
Application granted granted Critical
Publication of JP5676315B2 publication Critical patent/JP5676315B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、管状部材の内部に存在する流体の種別を識別するための流体識別装置及び流体識別方法に関する。   The present invention relates to a fluid identification device and a fluid identification method for identifying the type of fluid present in a tubular member.

地中には、都市ガスを供給するためのガス管や、上水を供給するための上水道管、下水を回収するための下水道管等の管状部材が埋設されている。土壌の掘削工事を行う際には、それらの管状部材が露出する場合がある。このような場合には、露出した管状部材が有効に使用されているものであるか否か、また有効に使用されている場合にはその内部を流れる流体(例えば、水や都市ガス等)の種別を判定することが必要となる。管状部材が有効に使用されている場合には、その内部を流れる流体の種別に応じて適切な保安処置を取る必要があるからである。   In the ground, tubular members such as a gas pipe for supplying city gas, a water pipe for supplying water, and a sewer pipe for collecting sewage are embedded. When performing excavation work of soil, those tubular members may be exposed. In such a case, whether or not the exposed tubular member is used effectively, and if it is used effectively, the fluid (for example, water or city gas) flowing through the inside is used. It is necessary to determine the type. This is because when the tubular member is effectively used, it is necessary to take an appropriate safety measure depending on the type of fluid flowing through the tubular member.

管状部材の内部に存在する流体の種別を判定する手法としては、従来、穿孔による方法、中性子水分計を用いる方法、クランプオン式の超音波流量計(例えば、下記の特許文献1を参照)を用いる方法等が利用されてきた。しかし、穿孔による方法では、穿孔作業により一旦管状部材が破壊される上に、判定後の復旧作業が必要となるので非効率である。また、中性子水分計を用いる方法では、非破壊で判定を行うことができるものの、管状部材の内部に水分が存在するか否かの判定ができるだけであって、水分以外の流体の種別の判定まではできない。気体用クランプオン式超音波流量計を用いる方法では、非破壊で判定を行うことができるものの、管状部材の材質、外形、内圧等に関する適用条件に制約がある。   Conventionally, as a method for determining the type of fluid existing inside the tubular member, a method by drilling, a method using a neutron moisture meter, and a clamp-on type ultrasonic flow meter (for example, see Patent Document 1 below) are used. The method used has been used. However, the method by drilling is inefficient because the tubular member is once destroyed by the drilling operation and a recovery operation after the determination is required. Moreover, in the method using a neutron moisture meter, although determination can be made nondestructively, it is only possible to determine whether or not moisture is present inside the tubular member, up to the determination of the type of fluid other than moisture. I can't. Although the method using a gas clamp-on type ultrasonic flowmeter can perform nondestructive determination, there are restrictions on application conditions regarding the material, outer shape, internal pressure, and the like of the tubular member.

つまり、管状部材の内部に存在する流体の種別を特段の制約なく簡易に識別することができる有効な方法は未だ確立していないというのが現状である。   That is, the present condition is that the effective method which can identify easily the kind of the fluid which exists in the inside of a tubular member without special restrictions has not yet been established.

特開2009−270882号公報JP 2009-270882 A

本発明は、上記の課題に鑑みてなされたものであり、管状部材の内部に存在する流体の種別を特段の制約なく簡易に識別することができる流体識別装置及び流体識別方法を提供することを目的とする。   The present invention has been made in view of the above problems, and provides a fluid identification device and a fluid identification method that can easily identify the type of fluid present in a tubular member without any particular limitation. Objective.

本発明に係る流体識別装置の特徴構成は、
管状部材の外周面に配置され、超音波を送信する送信用探触子と、
前記管状部材の外周面に配置され、前記送信用探触子から送信される超音波のうち前記管状部材を透過して管内を伝搬する透過伝搬波、及び前記送信用探触子から送信される超音波のうち前記管状部材の本体部内を伝搬する本体内伝搬波、を受信する受信用探触子と、
前記送信用探触子及び前記受信用探触子とは別に前記管状部材の外周面に配置され、前記本体内伝搬波を打ち消すキャンセル波を送信するキャンセル用探触子と、
少なくとも前記透過伝搬波が前記受信用探触子で受信される時点以前の所定期間を対象として、前記受信用探触子で受信される超音波の受信波形に応じて、前記本体内伝搬波と前記キャンセル波との合成波の振幅が全体として前記透過伝搬波よりも小さくなるように、前記キャンセル波の位相、振幅、及び周波数の少なくとも1つを調整する波形調整部と、
前記波形調整部で調整された前記キャンセル波を前記キャンセル用探触子から送信している状態で、前記受信用探触子で前記透過伝搬波を受信し、前記送信用探触子で超音波が送信されてから前記受信用探触子で前記透過伝搬波が受信されるまでの時間差に基づいて前記管状部材の内部での超音波の伝搬速度を算出する音速算出部と、
前記音速算出部により算出された伝搬速度に基づいて前記管状部材の内部に存在する流体の種別を判定する流体判定部と、を備える点にある。
The characteristic configuration of the fluid identification device according to the present invention is:
A transmitting probe that is disposed on the outer peripheral surface of the tubular member and transmits ultrasonic waves;
Of the ultrasonic waves transmitted from the transmission probe, transmitted through the tubular member and propagating through the tube, and transmitted from the transmission probe, arranged on the outer peripheral surface of the tubular member A receiving probe for receiving a propagating wave in the main body that propagates in the main body of the tubular member of the ultrasonic wave; and
A canceling probe that is arranged on the outer peripheral surface of the tubular member separately from the transmitting probe and the receiving probe, and transmits a canceling wave that cancels the propagation wave in the main body,
For at least a predetermined period before the time when the transmitted propagation wave is received by the receiving probe, according to the received waveform of the ultrasonic wave received by the receiving probe, A waveform adjustment unit that adjusts at least one of the phase, amplitude, and frequency of the cancellation wave so that the amplitude of the combined wave with the cancellation wave is smaller than the transmitted propagation wave as a whole;
In a state where the cancel wave adjusted by the waveform adjusting unit is transmitted from the canceling probe, the transmission probe receives the transmitted propagation wave, and the transmitting probe transmits ultrasonic waves. A sound speed calculation unit that calculates a propagation speed of ultrasonic waves inside the tubular member based on a time difference from when the transmitted propagation wave is received by the reception probe after the transmission of
And a fluid determination unit that determines a type of fluid existing inside the tubular member based on the propagation velocity calculated by the sound speed calculation unit.

上記の特徴構成によれば、管状部材の外周面に配置される送信用探触子から送信される超音波のうちの管状部材を透過して管内を伝搬する透過伝搬波が、送信用探触子で送信されてから受信用探触子で受信されるまでの時間差に基づいて、音速算出部により管状部材の内部での超音波の伝搬速度が算出される。超音波の伝搬速度は媒質となる流体の種別に応じて異なることから、流体判定部は、上記のようにして算出された伝搬速度に基づいて管状部材の内部に存在する流体の種別を判定することができる。
このとき、穿孔する等して管状部材を破壊することなく、しかも管状部材の材質、外形、内圧等の制約なくその内部に存在する流体(液体及び気体を含む)の種別を判定することができる。つまり、管状部材の内部に存在する流体の種別を、特段の制約なく簡易に識別することができる流体識別装置を実現することができる。
According to the above characteristic configuration, the transmitted propagation wave that propagates through the tubular member through the tubular member among the ultrasonic waves transmitted from the transmitting probe disposed on the outer peripheral surface of the tubular member is transmitted by the transmitting probe. Based on the time difference between the transmission from the child and the reception probe, the sound velocity calculation unit calculates the ultrasonic wave propagation speed inside the tubular member. Since the ultrasonic propagation speed varies depending on the type of fluid as a medium, the fluid determination unit determines the type of fluid existing inside the tubular member based on the propagation speed calculated as described above. be able to.
At this time, the type of fluid (including liquid and gas) existing inside the tubular member can be determined without puncturing or destroying the tubular member and without any restriction on the material, outer shape, internal pressure, etc. of the tubular member. . That is, it is possible to realize a fluid identification device that can easily identify the type of fluid existing inside the tubular member without any particular limitation.

更に、上記の特徴構成によれば、送信用探触子及び受信用探触子とは別に管状部材の外周面に配置されるキャンセル用探触子から、管状部材の本体部内を伝搬する本体内伝搬波を打ち消すキャンセル波を送信することができる。そのため、送信用探触子から送信される超音波(透過伝搬波及び本体内伝搬波を含む)のうちの本体内伝搬波のみを有効に打ち消すことが可能となり、本体内伝搬波に対して透過伝搬波を明確に識別することが可能となる。つまり、そのようなキャンセル操作を実行しない場合と比較して、受信用探触子が透過伝搬波を受信する際のS/N比を向上させることができる。よって、透過伝搬波が受信用探触子で受信されるまでの時間差、及びこれに基づく管状部材の内部での超音波の伝搬速度を、精度良く算出することができる。従って、管状部材の内部に存在する流体の種別を精度良く判定することができる。   Further, according to the above characteristic configuration, the inside of the main body that propagates in the main body portion of the tubular member from the canceling probe disposed on the outer peripheral surface of the tubular member separately from the transmitting probe and the receiving probe. A cancellation wave that cancels the propagation wave can be transmitted. For this reason, it is possible to effectively cancel only the propagation wave in the main body among the ultrasonic waves (including the transmission propagation wave and the propagation wave in the main body) transmitted from the transmission probe, and transmit the propagation wave in the main body. Propagation waves can be clearly identified. That is, it is possible to improve the S / N ratio when the reception probe receives the transmitted propagation wave as compared with the case where such a cancel operation is not executed. Therefore, the time difference until the transmitted propagation wave is received by the receiving probe and the propagation speed of the ultrasonic wave inside the tubular member based on the time difference can be calculated with high accuracy. Therefore, the type of fluid existing inside the tubular member can be accurately determined.

さらに、上記の特徴構成によれば、送信用探触子から送信される超音波やキャンセル用探触子から送信されるキャンセル波はそれぞれ、その伝搬状態で、特定タイミング及び特定位置における状態(振幅、周波数、及び位相により定まる)を一意的に特定できるものではない。すなわち、これらの波の状態は、管状部材の材質や形状、或いは外部環境等の条件に応じて様々となる。但し、特定の条件に関しては、予め予備試験を行い、受信用探触子で逐次受信される受信波(ここでは、透過伝搬波と本体内伝搬波との合成波)を参照しながら、本体内伝搬波を減衰させるようにキャンセル波の調整(主に周波数、発振タイミング、及びその振幅の調整)を行うことは可能である。一般に、本体内伝搬波は、透過伝搬波に対して先行して受信用探触子に到達するため、本体内伝搬波が到達してから透過伝搬波が到達するまでの時間領域において適切なキャンセル波を特定することで、当該本体内伝搬波を有効に打ち消すキャンセル操作を実現できる。
この点に鑑み、上記の構成によれば、例えば受信用探触子で受信される超音波の受信波形に応じて、キャンセル波の位相、振幅、及び周波数の少なくとも1つを調整することにより、本体内伝搬波とキャンセル波との合成波の振幅を全体として透過伝搬波よりも小さくすることができる。従って、受信用探触子が透過伝搬波を受信する際のS/N比を、測定時の実情に応じて十分に向上させることができ、管状部材の内部に存在する流体の種別を精度良く判定することができる。
Furthermore, according to the above characteristic configuration, the ultrasonic wave transmitted from the transmitting probe and the cancel wave transmitted from the canceling probe are respectively in the propagation state, at the specific timing and at the specific position (amplitude). , Determined by frequency and phase) cannot be uniquely specified. That is, the state of these waves varies depending on conditions such as the material and shape of the tubular member or the external environment. However, with regard to specific conditions, a preliminary test is performed in advance, while referring to a received wave (here, a composite wave of a transmitted propagation wave and a propagation wave in the main body) received by the receiving probe, It is possible to adjust the cancellation wave (mainly frequency, oscillation timing, and amplitude thereof) so as to attenuate the propagation wave. In general, the propagation wave in the main body reaches the receiving probe in advance of the transmitted propagation wave, so appropriate cancellation in the time domain from the arrival of the propagation wave in the main body until the transmission propagation wave arrives. By specifying the wave, a cancel operation for effectively canceling the propagation wave in the main body can be realized.
In view of this point, according to the above configuration, for example, by adjusting at least one of the phase, amplitude, and frequency of the cancellation wave according to the reception waveform of the ultrasonic wave received by the receiving probe, As a whole, the amplitude of the combined wave of the main body propagation wave and the cancellation wave can be made smaller than that of the transmission propagation wave. Therefore, the S / N ratio when the receiving probe receives the transmitted propagation wave can be sufficiently improved according to the actual situation at the time of measurement, and the type of fluid existing inside the tubular member can be accurately determined. Can be determined.

また、
前記送信用探触子からの前記本体内伝搬波が前記キャンセル用探触子に到達するまでの到達時間を表す到達時間データと、前記本体内伝搬波の波形を表す波形データとを、前記管状部材の材質、管径、及び管厚の少なくとも1つに応じて予め記録した記録装置を更に備え、
前記キャンセル用探触子は、前記到達時間データと前記波形データとに基づいて算出される、前記本体内伝搬波とは逆位相となる波形を有する逆位相波を、前記キャンセル波として送信する構成とすると好適である。
Also,
The arrival time data indicating the arrival time until the propagation wave in the main body from the transmission probe reaches the canceling probe, and the waveform data indicating the waveform of the propagation wave in the main body, the tubular A recording device prerecorded according to at least one of the material of the member, the pipe diameter, and the pipe thickness;
The canceling probe transmits, as the canceling wave, an antiphase wave that has a waveform that is calculated based on the arrival time data and the waveform data and has a phase opposite to the propagation wave in the main body. This is preferable.

本体内伝搬波がキャンセル用探触子に到達するまでの到達時間や本体内伝搬波の波形は、管状部材の材質や管径、管厚等に応じて異なり得る。そのため、上記のように管状部材の材質、管径、及び管厚の少なくとも1つ以上に応じた到達時間データと波形データとを記録装置に予め記録して備える構成とすることで、記録装置に記録されたデータに基づいて、本体内伝搬波とは逆位相となる波形を有する逆位相波を比較的簡易に算出することができる。従って、そのようにして算出される逆位相波に基づいて、本体内伝搬波を有効に打ち消し得るキャンセル波を比較的簡易に送信することができる。
また、上記のようにして算出される逆位相波をまず送信してみて、更に先に説明したようなキャンセル波の波形調整を行うことにより、本体内伝搬波を有効に打ち消し得るキャンセル波を短時間で特定でき、結果的にそのようなキャンセル波を簡易且つ適切に送信することができる。
The arrival time until the in-body propagating wave reaches the canceling probe and the waveform of the in-body propagating wave may vary depending on the material of the tubular member, the tube diameter, the tube thickness, and the like. Therefore, as described above, the recording device is provided with the arrival time data and the waveform data corresponding to at least one of the material, the tube diameter, and the tube thickness of the tubular member. Based on the recorded data, it is possible to relatively easily calculate an anti-phase wave having a waveform that is opposite in phase to the intra-body propagation wave. Therefore, based on the antiphase wave calculated as described above, a cancel wave that can effectively cancel the propagation wave in the main body can be transmitted relatively easily.
In addition, by first transmitting the antiphase wave calculated as described above, and further adjusting the waveform of the cancellation wave as described above, the cancellation wave that can effectively cancel the propagation wave in the main body is shortened. As a result, such a cancellation wave can be transmitted easily and appropriately.

また、
前記管状部材の軸線と前記受信用探触子とが配置される仮想平面に対して面対称状に配置される、二つの前記キャンセル用探触子を備える構成とすると好適である。
Also,
It is preferable that the configuration includes two canceling probes arranged in plane symmetry with respect to a virtual plane on which the axis of the tubular member and the receiving probe are arranged.

この構成によれば、送信用探触子から管状部材の周方向の一方側に向かって伝搬する本体内伝搬波と、周方向の他方側に向かって伝搬する本体内伝搬波とを、管状部材の軸線と受信用探触子とが配置される仮想平面に対して面対称状に配置される二つのキャンセル用探触子により同様の態様で打ち消すことができる。よって、比較的簡易に本体内伝搬波を打ち消して、受信用探触子が本体内伝搬波を受信する際のS/N比を向上させることができる。   According to this configuration, the in-body propagating wave propagating from the transmitting probe toward one side in the circumferential direction of the tubular member and the in-body propagating wave propagating toward the other side in the circumferential direction are converted into the tubular member. It is possible to cancel in the same manner by two canceling probes arranged in plane symmetry with respect to a virtual plane in which the axis of the receiving line and the receiving probe are arranged. Therefore, the propagation wave in the main body can be canceled relatively easily, and the S / N ratio when the receiving probe receives the propagation wave in the main body can be improved.

また、
個別に設けられる前記送信用探触子と前記受信用探触子とが、前記仮想平面上において前記管状部材を径方向に挟むように対向して配置されている構成とすると好適である。
Also,
It is preferable that the transmitting probe and the receiving probe provided separately are arranged to face each other so as to sandwich the tubular member in the radial direction on the virtual plane.

この構成によれば、管状部材の軸線と受信用探触子とが配置される仮想平面上において、管状部材を径方向に挟むように対向して個別の送信用探触子と受信用探触子とが配置されるので、送信用探触子からの透過伝搬波の減衰が比較的少ない状態でこれを受信用探触子により受信することができる。よって、例えば送信用探触子と受信用探触子とが共通化され、管状部材の内周面等での透過伝搬波の反射波が送信用探触子と同じ位置に配置された受信用探触子によって受信される場合と比較して、受信用探触子が透過伝搬波を受信する際の検出信号(シグナル)が大きくなる。よって、受信用探触子が透過伝搬波を受信する際のS/N比が大きい状態で、管状部材の内部に存在する流体の種別を精度良く判定することができる。   According to this configuration, on the virtual plane on which the axis of the tubular member and the receiving probe are arranged, the individual transmitting probe and the receiving probe face each other so as to sandwich the tubular member in the radial direction. Since the transmission element is arranged, the transmission probe wave from the transmission probe can be received by the reception probe with relatively little attenuation. Thus, for example, a transmission probe and a reception probe are made common, and a reflected wave of a transmitted propagation wave on the inner peripheral surface of the tubular member is arranged at the same position as the transmission probe. Compared with the case where the probe is received by the probe, the detection signal (signal) when the receiving probe receives the transmitted propagation wave becomes large. Therefore, the type of fluid existing inside the tubular member can be accurately determined in a state where the S / N ratio when the receiving probe receives the transmitted propagation wave is large.

本発明に係る流体識別方法の特徴構成は、
管状部材の外周面に配置された送信用探触子から超音波を送信する送信ステップと、
前記管状部材の外周面に配置された受信用探触子により、前記送信用探触子から送信される超音波のうち前記管状部材を透過して管内を伝搬する透過伝搬波、及び前記送信用探触子から送信される超音波のうち前記管状部材の本体部内を伝搬する本体内伝搬波、を受信する受信ステップと、
前記送信用探触子及び前記受信用探触子とは別に前記管状部材の外周面に配置されるキャンセル用探触子を用いて、前記本体内伝搬波を打ち消すキャンセル波を送信するキャンセル波送信ステップと、
前記受信ステップにおいて少なくとも前記透過伝搬波が前記受信用探触子で受信される時点以前の所定期間を対象として、前記受信用探触子で受信される超音波の受信波形に応じて、前記本体内伝搬波と前記キャンセル波との合成波の振幅が全体として前記透過伝搬波よりも小さくなるように、前記キャンセル波の位相、振幅、及び周波数の少なくとも1つを調整する波形調整ステップと、
前記送信用探触子で超音波が送信されてから前記受信用探触子で前記透過伝搬波が受信されるまでの時間差に基づいて前記管状部材の内部での超音波の伝搬速度を算出する音速算出ステップと、
前記音速算出ステップで算出された伝搬速度に基づいて前記管状部材の内部に存在する流体の種別を判定する流体判定ステップと、を備え
前記波形調整ステップで調整されたキャンセル波を前記キャンセル用探触子から送信している状態で、前記受信用探触子で当該透過伝搬波を受信し、前記音速算出ステップ及び前記流体判定ステップを実行する点にある。
The characteristic configuration of the fluid identification method according to the present invention is:
A transmission step of transmitting ultrasonic waves from a transmission probe disposed on the outer peripheral surface of the tubular member;
Of the ultrasonic waves transmitted from the transmission probe, the transmission wave transmitted through the tubular member and propagated in the tube by the reception probe disposed on the outer peripheral surface of the tubular member, and the transmission A reception step of receiving a propagation wave in the main body that propagates in the main body of the tubular member among the ultrasonic waves transmitted from the probe;
A cancel wave transmission that transmits a cancel wave that cancels the propagation wave in the main body using a cancel probe disposed on the outer peripheral surface of the tubular member separately from the transmission probe and the reception probe. Steps,
In the reception step, at least the transmission propagation wave is received by the reception probe, and the main body according to the reception waveform of the ultrasonic wave received by the reception probe for a predetermined period before the time point A waveform adjustment step of adjusting at least one of the phase, amplitude, and frequency of the cancellation wave so that the amplitude of the combined wave of the inner propagation wave and the cancellation wave is smaller than the transmitted propagation wave as a whole;
The propagation speed of the ultrasonic wave inside the tubular member is calculated based on the time difference from when the ultrasonic wave is transmitted by the transmitting probe to when the transmitted propagation wave is received by the receiving probe. A sound speed calculation step;
A fluid determination step of determining the type of fluid present in the tubular member based on the propagation velocity calculated in the sound speed calculation step ,
In a state where the cancellation wave adjusted in the waveform adjustment step is transmitted from the canceling probe, the transmission probe receives the transmitted propagation wave, and the sound velocity calculation step and the fluid determination step are performed. The point is to execute .

この特徴構成によれば、管状部材の外周面に配置される送信用探触子から送信される超音波のうちの管状部材を透過して管内を伝搬する透過伝搬波が、送信用探触子で送信されてから受信用探触子で受信されるまでの時間差に基づいて、音速算出ステップで管状部材の内部での超音波の伝搬速度が算出される。超音波の伝搬速度は媒質となる流体の種別に応じて異なることから、流体判定ステップにおいて、上記のようにして算出された伝搬速度に基づいて管状部材の内部に存在する流体の種別を判定することができる。
このとき、穿孔する等して管状部材を破壊することなく、しかも管状部材の材質、外形、内圧等の制約なくその内部に存在する流体(液体及び気体を含む)の種別を判定することができる。つまり、管状部材の内部に存在する流体の種別を、特段の制約なく簡易に識別することができる流体識別方法を実現することができる。
According to this characteristic configuration, the transmitted propagation wave that propagates through the tubular member through the tubular member among the ultrasonic waves transmitted from the transmitting probe disposed on the outer peripheral surface of the tubular member is transmitted by the transmitting probe. On the basis of the time difference from when the signal is transmitted to when it is received by the receiving probe, the ultrasonic wave propagation speed inside the tubular member is calculated in the sound speed calculation step. Since the propagation speed of ultrasonic waves varies depending on the type of fluid as a medium, in the fluid determination step, the type of fluid existing inside the tubular member is determined based on the propagation speed calculated as described above. be able to.
At this time, the type of fluid (including liquid and gas) existing inside the tubular member can be determined without puncturing or destroying the tubular member and without any restriction on the material, outer shape, internal pressure, etc. of the tubular member. . That is, it is possible to realize a fluid identification method that can easily identify the type of fluid existing inside the tubular member without any particular limitation.

更に、上記の特徴構成によれば、キャンセル波送信ステップにおいて、送信用探触子及び受信用探触子とは別に管状部材の外周面に配置されるキャンセル用探触子から、管状部材の本体部内を伝搬する本体内伝搬波を打ち消すキャンセル波が送信される。そのため、送信用探触子から送信される超音波(透過伝搬波及び本体内伝搬波を含む)のうちの本体内伝搬波のみを有効に打ち消すことが可能となり、本体内伝搬波に対して透過伝搬波を明確に識別することが可能となる。つまり、そのようなキャンセル波送信ステップを実行しない場合と比較して、受信用探触子が透過伝搬波を受信する際のS/N比を向上させることができる。よって、透過伝搬波が受信用探触子で受信されるまでの時間差、及びこれに基づく管状部材の内部での超音波の伝搬速度を、精度良く算出することができる。従って、管状部材の内部に存在する流体の種別を精度良く判定することができる。   Further, according to the above characteristic configuration, in the cancel wave transmitting step, the main body of the tubular member from the canceling probe disposed on the outer peripheral surface of the tubular member separately from the transmitting probe and the receiving probe. A cancellation wave is transmitted to cancel the propagation wave in the main body that propagates in the unit. For this reason, it is possible to effectively cancel only the propagation wave in the main body among the ultrasonic waves (including the transmission propagation wave and the propagation wave in the main body) transmitted from the transmission probe, and transmit the propagation wave in the main body. Propagation waves can be clearly identified. That is, compared with the case where such a cancellation wave transmission step is not executed, the S / N ratio when the reception probe receives the transmitted propagation wave can be improved. Therefore, the time difference until the transmitted propagation wave is received by the receiving probe and the propagation speed of the ultrasonic wave inside the tubular member based on the time difference can be calculated with high accuracy. Therefore, the type of fluid existing inside the tubular member can be accurately determined.

さらに、上記の特徴構成によれば、先にも説明したように、送信用探触子から送信される超音波やキャンセル用探触子から送信されるキャンセル波の状態は、管状部材の材質や形状、或いは外部環境等の条件に応じて様々となる。但し、特定の条件に関しては、予め予備試験を行い、受信用探触子で逐次受信される受信波(ここでは、透過伝搬波と本体内伝搬波との合成波)を参照しながら、本体内伝搬波を減衰させるようにキャンセル波の調整(主に周波数、発振タイミング、及びその振幅の調整)を行うことは可能である。
この点に鑑み、上記の構成によれば、波形調整ステップにおいて、受信用探触子で受信される超音波の受信波形に応じて、本体内伝搬波とキャンセル波との合成波の振幅が全体として透過伝搬波よりも小さくなるように、キャンセル波の位相、振幅、及び周波数の少なくとも1つが調整される。そして、波形調整ステップで調整されたキャンセル波を送信している状態で流体判定ステップまでの各ステップを実行する構成とすることで、受信用探触子が透過伝搬波を受信する際のS/N比を、測定時の実情に応じて十分に向上させることができ、管状部材の内部に存在する流体の種別を精度良く判定することができる。
Furthermore, according to the above-described characteristic configuration, as described above, the state of the ultrasonic wave transmitted from the transmission probe and the cancellation wave transmitted from the cancellation probe are determined by the material of the tubular member, It varies depending on conditions such as shape or external environment. However, with regard to specific conditions, a preliminary test is performed in advance, while referring to a received wave (here, a composite wave of a transmitted propagation wave and a propagation wave in the main body) received by the receiving probe, It is possible to adjust the cancellation wave (mainly frequency, oscillation timing, and amplitude thereof) so as to attenuate the propagation wave.
In view of this point, according to the above configuration, in the waveform adjustment step, the amplitude of the combined wave of the propagation wave in the main body and the cancellation wave is entirely determined according to the reception waveform of the ultrasonic wave received by the reception probe. As a result, at least one of the phase, amplitude, and frequency of the cancellation wave is adjusted so as to be smaller than the transmitted propagation wave. And by setting it as the structure which performs each step to the fluid determination step in the state which has transmitted the cancellation wave adjusted by the waveform adjustment step, S / at the time of the probe for reception receiving a transmitted propagation wave The N ratio can be sufficiently improved according to the actual situation at the time of measurement, and the type of the fluid existing inside the tubular member can be accurately determined.

さらに、上記の特徴構成によれば、受信用探触子による透過伝搬波の検出に大きな影響を与え得る、透過伝搬波が受信用探触子で受信される時点以前の所定期間におけるノイズを、効果的に小さくすることができる。よって、波形調整ステップの簡易性及び実効性の双方を確保することができる。 Furthermore, according to the above characteristic configuration, noise in a predetermined period before the time point when the transmitted propagation wave is received by the receiving probe, which can greatly affect the detection of the transmitted propagation wave by the receiving probe, It can be effectively reduced. Therefore, both simplicity and effectiveness of the waveform adjustment step can be ensured.

実施形態に係る流体識別装置の全体構成を示す模式図である。It is a mimetic diagram showing the whole fluid discriminating device composition concerning an embodiment. 送信用探触子から送信される超音波の伝搬状態を示す模式図である。It is a schematic diagram which shows the propagation state of the ultrasonic wave transmitted from the probe for transmission. キャンセル用探触子の非作動時における受信用探触子での受信波形の一例である。It is an example of the reception waveform in the probe for reception at the time of non-operation of the probe for cancellation. キャンセル用探触子の作動時における受信用探触子での受信波形の一例である。It is an example of the received waveform in the probe for reception at the time of the action | operation of the probe for cancellation. その他の実施形態に係る流体識別装置を示す模式図である。It is a schematic diagram which shows the fluid identification apparatus which concerns on other embodiment. その他の実施形態に係るキャンセル波送信ステップを概念的に示す模式図である。It is a schematic diagram which shows notionally the cancellation wave transmission step which concerns on other embodiment.

本発明の実施形態について、図面を参照して説明する。本実施形態に係る流体識別装置1は、ガス管等の管状部材Pの内部に存在するガスG(流体の一種)の種別を、非破壊的に(管状部材Pを破壊することなく)判定するためのガス種識別装置である。図1に示すように、流体識別装置1は、超音波を送信する送信用探触子12と、送信用探触子12から送信される超音波を受信する受信用探触子14とを備えている。また、流体識別装置1は、管状部材Pの内部を伝搬する透過伝搬波Wt(図2を参照)の管状部材Pの内部での音速(伝搬速度)Vを算出する音速算出部24と、算出された音速Vに基づいて管状部材Pの内部に存在するガスGの種別を判定する流体判定部25とを備えている。更に、本実施形態に係る流体識別装置1は、管状部材Pの本体部内を伝搬する本体内伝搬波Wb(図2を参照)を打ち消すキャンセル波Wcを送信するキャンセル用探触子18を備えている。これにより、管状部材Pの内部に存在するガスGの種別を特段の制約なく簡易に、しかも精度良く識別することができる。以下、本実施形態に係る流体識別装置1について、詳細に説明する。   Embodiments of the present invention will be described with reference to the drawings. The fluid identification device 1 according to the present embodiment determines the type of the gas G (a kind of fluid) existing inside the tubular member P such as a gas pipe nondestructively (without destroying the tubular member P). This is a gas type identification device. As shown in FIG. 1, the fluid identification apparatus 1 includes a transmission probe 12 that transmits ultrasonic waves, and a reception probe 14 that receives ultrasonic waves transmitted from the transmission probe 12. ing. In addition, the fluid identification device 1 includes a sound speed calculation unit 24 that calculates a sound speed (propagation speed) V inside the tubular member P of the transmitted propagation wave Wt (see FIG. 2) propagating inside the tubular member P, and a calculation. And a fluid determination unit 25 that determines the type of the gas G existing inside the tubular member P based on the sound velocity V. Furthermore, the fluid identification device 1 according to the present embodiment includes a canceling probe 18 that transmits a canceling wave Wc that cancels the in-body propagating wave Wb (see FIG. 2) that propagates in the main body of the tubular member P. Yes. As a result, the type of the gas G existing inside the tubular member P can be easily and accurately identified without any particular limitation. Hereinafter, the fluid identification device 1 according to the present embodiment will be described in detail.

1.流体識別装置のハードウェア構成
図1に示すように、流体識別装置1は、送信用探触子12、受信用探触子14、キャンセル用探触子18、及び制御装置20を主要な構成として備えている。送信用探触子12、受信用探触子14、及びキャンセル用探触子18は、それぞれ管状部材Pの外周面に接して配置されている。また、送信用探触子12、受信用探触子14、及びキャンセル用探触子18は、それぞれ制御装置20との間で情報の受け渡しを行うことができるように構成されている。
1. 1. Hardware Configuration of Fluid Identification Device As shown in FIG. 1, the fluid identification device 1 includes a transmission probe 12, a reception probe 14, a cancellation probe 18, and a control device 20 as main components. I have. The transmitting probe 12, the receiving probe 14, and the canceling probe 18 are disposed in contact with the outer peripheral surface of the tubular member P, respectively. The transmission probe 12, the reception probe 14, and the cancellation probe 18 are each configured to exchange information with the control device 20.

送信用探触子(送信用超音波プローブ)12は、電気と音響とを相互に変換する圧電素子を含むトランスデューサであり、超音波を送信する超音波送信機器である。このような圧電素子としては、例えばPZT(チタン酸ジルコン酸鉛)等の圧電セラミックやPVDF(ポリフッ化ビニリデン)等の高分子圧電素子が用いられる。送信用探触子12は、圧電素子の両端に電極が形成された振動子を備えており、制御装置20からの指令によりその振動子の電極間に電圧が印加されると、圧電素子が伸縮する。この伸縮により振動子から超音波が発生し、発生した超音波は管状部材Pに向けて送信される。なお「超音波」は、気体、液体、固体等の音の媒質が発音体(上記の振動子)の振動を受けて生ずる弾性波のうち、人間の可聴周波数よりも高い周波数(例えば、20kHz以上)の弾性波である。   The transmission probe (transmission ultrasonic probe) 12 is a transducer including a piezoelectric element that mutually converts electricity and sound, and is an ultrasonic transmission device that transmits ultrasonic waves. As such a piezoelectric element, for example, a piezoelectric ceramic such as PZT (lead zirconate titanate) or a polymer piezoelectric element such as PVDF (polyvinylidene fluoride) is used. The transmission probe 12 includes a vibrator having electrodes formed at both ends of the piezoelectric element. When a voltage is applied between the electrodes of the vibrator in response to a command from the control device 20, the piezoelectric element expands and contracts. To do. Due to this expansion and contraction, an ultrasonic wave is generated from the vibrator, and the generated ultrasonic wave is transmitted toward the tubular member P. “Ultrasound” is a frequency higher than the human audible frequency (for example, 20 kHz or more) among elastic waves generated when a sound medium such as gas, liquid, solid, etc. receives vibration of a sounding body (the above vibrator). ) Elastic wave.

図2に示すように、送信用探触子12から送信された超音波は、透過伝搬波Wtと本体内伝搬波Wbとに分かれてそれぞれの媒質中を伝搬する。ここで、透過伝搬波Wtは、送信用探触子12から送信される超音波のうち、管状部材Pを透過して管状部材Pの内部に存在するガスGを媒質として管内(管状部材Pの内周面で区画される空間内)を伝搬する超音波である。   As shown in FIG. 2, the ultrasonic wave transmitted from the transmission probe 12 is divided into a transmitted propagation wave Wt and an intra-body propagation wave Wb and propagates through the respective media. Here, the transmitted propagation wave Wt is transmitted through the tubular member P among the ultrasonic waves transmitted from the transmission probe 12, and the gas G existing inside the tubular member P is used as a medium (in the tubular member P). This is an ultrasonic wave propagating in a space defined by the inner peripheral surface.

一方、本体内伝搬波Wbは、送信用探触子12から送信される超音波のうち、管状部材Pの本体部を構成する材料(例えば、炭素鋼やステンレス等)を媒質として管状部材Pの本体部内を伝搬する超音波である。送信用探触子12から超音波が送信されたとき、その一部は管状部材Pを透過することなく本体内伝搬波Wbとして管状部材Pの本体部内を伝搬する。本実施形態では、本体内伝搬波Wbは、軸線方向から見た場合に管状部材Pの本体部内を周方向の両側に分かれて伝搬する。すなわち、本体内伝搬波Wbは、図2において管状部材Pを周方向の一方側に向かって時計回りに伝搬する波と、周方向の他方側に向かって反時計回りに伝搬する波とを含む。   On the other hand, the in-body propagating wave Wb is the ultrasonic wave transmitted from the transmitting probe 12 and the material (for example, carbon steel, stainless steel, etc.) constituting the main body portion of the tubular member P is used as a medium. Ultrasound propagating in the main body. When an ultrasonic wave is transmitted from the transmission probe 12, a part of the ultrasonic wave propagates in the main body portion of the tubular member P as a main body propagation wave Wb without passing through the tubular member P. In this embodiment, the in-body propagating wave Wb propagates in the body portion of the tubular member P divided into both sides in the circumferential direction when viewed from the axial direction. That is, the in-body propagation wave Wb includes a wave propagating clockwise in the tubular member P toward one side in the circumferential direction in FIG. 2 and a wave propagating counterclockwise toward the other side in the circumferential direction. .

受信用探触子(受信用超音波プローブ)14は、送信用探触子12と同様の構成を有するトランスデューサであり、超音波を受信する超音波受信機器である。この受信用探触子14は、送信用探触子12から送信される超音波のうち、上述した透過伝搬波Wt及び本体内伝搬波Wbの双方を受信する。受信用探触子14が超音波を受信すると、受信用探触子14が有する圧電素子がその超音波の作用により物理的に伸縮する。この伸縮により振動子の電極間に電位差が発生する。発生した電位差に基づく電気信号は、受信信号として制御装置20に送られる。   The reception probe (reception ultrasonic probe) 14 is a transducer having the same configuration as that of the transmission probe 12, and is an ultrasonic reception device that receives ultrasonic waves. The reception probe 14 receives both the above-described transmitted propagation wave Wt and in-body propagation wave Wb among the ultrasonic waves transmitted from the transmission probe 12. When the receiving probe 14 receives an ultrasonic wave, the piezoelectric element of the receiving probe 14 is physically expanded and contracted by the action of the ultrasonic wave. This expansion and contraction generates a potential difference between the electrodes of the vibrator. An electric signal based on the generated potential difference is sent to the control device 20 as a received signal.

本実施形態では、図1及び図2に示すように、これらの送信用探触子12と受信用探触子14とは、それぞれ1つずつ個別に設けられている。また、送信用探触子12と受信用探触子14とは、管状部材Pの同じ軸線方向位置において、管状部材Pを径方向に挟むように対向して配置されている。すなわち、送信用探触子12と受信用探触子14とは、管状部材Pの軸線Lを通る仮想平面Z上において、軸線Lを挟んで互いに反対側に配置されている。   In the present embodiment, as shown in FIGS. 1 and 2, each of the transmission probe 12 and the reception probe 14 is provided individually. Further, the transmission probe 12 and the reception probe 14 are arranged to face each other so as to sandwich the tubular member P in the radial direction at the same axial direction position of the tubular member P. That is, the transmission probe 12 and the reception probe 14 are arranged on opposite sides of the axis L on the virtual plane Z passing through the axis L of the tubular member P.

本実施形態に係る流体識別装置1は、送信用探触子12及び受信用探触子14とは別に、キャンセル用探触子18を備えている。キャンセル用探触子(キャンセル用超音波プローブ)18は、送信用探触子12及び受信用探触子14と同様の構成を有するトランスデューサであり、送信用探触子12とは別に超音波を送信する第二の超音波送信機器である。本実施形態では、流体識別装置1は、このようなキャンセル用探触子18として二つのキャンセル用探触子18a,18bを備えている。これら二つのキャンセル用探触子18a,18bは、管状部材Pの軸線Lと受信用探触子14とが配置される仮想平面Zに対して面対称状に配置されている。なお、「面対称状」とは、多少の位置ずれを有していたとしても全体としては実質的に面対称であるとみなせることを意味する。   The fluid identification apparatus 1 according to the present embodiment includes a canceling probe 18 in addition to the transmitting probe 12 and the receiving probe 14. The canceling probe (cancellation ultrasonic probe) 18 is a transducer having the same configuration as the transmitting probe 12 and the receiving probe 14, and an ultrasonic wave is generated separately from the transmitting probe 12. It is the 2nd ultrasonic transmission apparatus which transmits. In the present embodiment, the fluid identification device 1 includes two canceling probes 18 a and 18 b as such a canceling probe 18. These two canceling probes 18a and 18b are arranged in plane symmetry with respect to a virtual plane Z on which the axis L of the tubular member P and the receiving probe 14 are arranged. Note that the “plane symmetry” means that even if there is some positional deviation, it can be regarded as substantially plane symmetry as a whole.

本実施形態では更に、二つのキャンセル用探触子18a,18bは、送信用探触子12及び受信用探触子14と管状部材Pの同じ軸線方向位置において、管状部材Pを径方向に挟むように対向して配置されている。従って、本実施形態では、送信用探触子12、受信用探触子14、及び二つのキャンセル用探触子18a,18bの計4つの超音波探触子が管状部材Pの同じ軸線方向位置において周方向に均等に分散して配置されている。すなわち、管状部材Pの周方向に沿って一方側へ向かう送信用探触子12から受信用探触子14までの本体内伝搬波Wbの伝搬経路の中間地点に、第一のキャンセル用探触子18aが配置され、管状部材Pの周方向に沿って他方側へ向かう送信用探触子12から受信用探触子14までの本体内伝搬波Wbの伝搬経路の中間地点に、第二のキャンセル用探触子18bが配置されている。なお、各探触子12,14,18a,18bは、管状部材Pの周囲を取り囲むように設置される所定の取付用治具(図示せず)により位置決めされた状態で、管状部材Pの外周部に配置される。キャンセル用探触子18a,18bは、管状部材Pの本体部内を伝搬する本体内伝搬波Wbを打ち消すキャンセル波Wcを送信する。このキャンセル波Wcの詳細に関しては、後述する。   In the present embodiment, the two canceling probes 18a and 18b further sandwich the tubular member P in the radial direction at the same axial position of the transmitting probe 12, the receiving probe 14, and the tubular member P. So as to face each other. Therefore, in the present embodiment, a total of four ultrasonic probes, that is, the transmitting probe 12, the receiving probe 14, and the two canceling probes 18a and 18b, have the same axial position of the tubular member P. Are distributed evenly in the circumferential direction. That is, the first canceling probe is located at the midpoint of the propagation path of the in-body propagating wave Wb from the transmitting probe 12 toward the receiving probe 14 toward the one side along the circumferential direction of the tubular member P. The second element 18a is arranged, and the second point is located at the intermediate point of the propagation path of the in-body propagating wave Wb from the transmitting probe 12 to the receiving probe 14 toward the other side along the circumferential direction of the tubular member P. A canceling probe 18b is arranged. Each probe 12, 14, 18 a, 18 b is positioned by a predetermined mounting jig (not shown) installed so as to surround the periphery of the tubular member P, and the outer periphery of the tubular member P Placed in the section. The canceling probes 18a and 18b transmit a cancel wave Wc that cancels the in-body propagating wave Wb propagating in the main body of the tubular member P. Details of the cancel wave Wc will be described later.

2.流体識別装置のソフトウェア構成(制御装置の構成)
図1に示すように、流体識別装置1に備えられる制御装置20は、第一発信制御部21、第二発信制御部22、受信信号処理部23、音速算出部24、流体判定部25、及び波形調整部26を備えている。これらは、互いに情報の受け渡しを行うことができるように構成されている。なお、図1には、代表的な情報の伝達方向を矢印「→」で示している。また、上述した各探触子12,14,18と、以下に説明する制御装置20の各機能部とが有機的に連携して協働することにより、本発明に係る流体識別方法が実行される。
2. Software configuration of fluid identification device (control device configuration)
As shown in FIG. 1, the control device 20 provided in the fluid identification device 1 includes a first transmission control unit 21, a second transmission control unit 22, a received signal processing unit 23, a sound speed calculation unit 24, a fluid determination unit 25, and A waveform adjustment unit 26 is provided. These are configured to be able to exchange information with each other. In FIG. 1, a typical information transmission direction is indicated by an arrow “→”. In addition, the fluid identification method according to the present invention is executed by organically cooperating and cooperating with each of the probes 12, 14, and 18 described above and the functional units of the control device 20 described below. The

第一発信制御部21は、送信用探触子12からの超音波の送信(超音波発信)を制御する機能部である。第一発信制御部21は、所定の振幅、及び、主に管状部材Pの厚さ(管厚)に応じて決まる管状部材Pの共振周波数のバースト波状の電気信号(電圧信号)を生成する。なお、管状部材Pの共振周波数は、管状部材Pの管厚に基づいて算出することができる。生成した電気信号は、送信用探触子12に送られる。送信用探触子12は、その受け取ったバースト波状の電気信号を超音波に変換して、管状部材Pに向けて超音波パルスを送信する。第一発信制御部21により、本発明における「送信ステップ」が実行される。   The first transmission control unit 21 is a functional unit that controls transmission of ultrasonic waves (ultrasonic transmission) from the transmission probe 12. The first transmission control unit 21 generates a burst-wave electric signal (voltage signal) having a predetermined amplitude and a resonance frequency of the tubular member P mainly determined according to the thickness (tube thickness) of the tubular member P. The resonance frequency of the tubular member P can be calculated based on the tube thickness of the tubular member P. The generated electrical signal is sent to the transmission probe 12. The transmission probe 12 converts the received burst-wave electric signal into an ultrasonic wave and transmits an ultrasonic pulse toward the tubular member P. The “transmission step” in the present invention is executed by the first transmission control unit 21.

受信信号処理部23は、本発明における「受信ステップ」において受信用探触子14で受信される超音波に基づく電気信号(受信信号)を受け取り、その受信信号を処理する機能部である。受信信号処理部23は、フィルタ等を介して特定の周波数成分の超音波に基づく電気信号を除去する。また、受信信号処理部23は、アナログデジタル変換回路(A/D変換回路)等を介してアナログ受信信号をデジタル受信信号に変換する。受信信号処理部23は、所定周波数域のデジタル受信信号を音速算出部24及び表示装置40(モニタ等)に出力する。表示装置40には、受け取った受信信号が受信波形として可視化されて表示される。また、受信信号処理部23は、受信信号を後述する波形調整部26にも出力する。   The reception signal processing unit 23 is a functional unit that receives an electrical signal (reception signal) based on the ultrasonic wave received by the reception probe 14 in the “reception step” of the present invention and processes the reception signal. The reception signal processing unit 23 removes an electrical signal based on an ultrasonic wave having a specific frequency component through a filter or the like. The reception signal processing unit 23 converts an analog reception signal into a digital reception signal via an analog / digital conversion circuit (A / D conversion circuit) or the like. The reception signal processing unit 23 outputs a digital reception signal in a predetermined frequency range to the sound speed calculation unit 24 and the display device 40 (a monitor or the like). On the display device 40, the received signal received is visualized and displayed as a received waveform. The reception signal processing unit 23 also outputs the reception signal to a waveform adjustment unit 26 described later.

音速算出部24は、管状部材Pの内部での超音波の音速(以下、単に「管内音速」という場合がある)Vを算出する機能部である。音速算出部24は、受信信号処理部23からの受信信号を受け取り、この受信信号を解析することによって管内音速Vを算出する。上記のとおり、送信用探触子12から送信される超音波には、透過伝搬波Wtと本体内伝搬波Wbとが含まれる。ここで、管状部材Pの内部に存在するガスGと管状部材Pの本体部を構成する材料との間での音響インピーダンスの差により、透過伝搬波Wtは、本体内伝搬波Wbよりもかなり送れて受信用探触子14に到達する。音速算出部24は、送信用探触子12で超音波が送信されてから、それらのうち透過伝搬波Wtが受信用探触子14で受信されるまでの時間差ΔTに基づいて、管内音速Vを算出する。音速算出部24により、本発明における「音速算出ステップ」が実行される。   The sound speed calculation unit 24 is a functional unit that calculates the sound speed of ultrasonic waves inside the tubular member P (hereinafter sometimes simply referred to as “in-tube sound speed”) V. The sound speed calculation unit 24 receives the reception signal from the reception signal processing unit 23, and calculates the in-tube sound speed V by analyzing the reception signal. As described above, the ultrasonic wave transmitted from the transmission probe 12 includes the transmitted propagation wave Wt and the in-body propagation wave Wb. Here, due to the difference in acoustic impedance between the gas G existing inside the tubular member P and the material constituting the main body portion of the tubular member P, the transmitted propagation wave Wt can be sent much more than the in-body propagation wave Wb. To the receiving probe 14. The sound velocity calculation unit 24 calculates the in-tube sound velocity V based on the time difference ΔT from when the ultrasonic wave is transmitted by the transmission probe 12 until the transmitted propagation wave Wt is received by the reception probe 14. Is calculated. The sound speed calculation unit 24 executes the “sound speed calculation step” in the present invention.

より具体的には、制御装置20内ではクロックパルス発生回路等によりクロックパルスが生成されており、音速算出部24は、送信用探触子12で超音波が送信されてから受信用探触子14で透過伝搬波Wtが受信されたことが検出されるまでのクロックパルス数をカウントすることにより、それらの間の時間差ΔTを計測する。音速算出部24は、計測された時間差ΔTの情報と、既知の管状部材Pの内径φ(図2を参照)の情報とに基づいて、管内音速Vを算出する。すなわち、音速算出部24は、管状部材Pの内径φを時間差ΔTで除算することにより管内音速Vを算出する(V=φ/ΔT)。音速算出部24は、算出された管内音速Vの情報を流体判定部25に出力する。   More specifically, a clock pulse is generated by a clock pulse generation circuit or the like in the control device 20, and the sound velocity calculation unit 24 receives the ultrasonic wave from the transmission probe 12 and then receives the probe. By counting the number of clock pulses until it is detected at 14 that the transmitted propagation wave Wt is received, the time difference ΔT between them is measured. The sound speed calculation unit 24 calculates the in-tube sound speed V based on the information of the measured time difference ΔT and the information of the known inner diameter φ of the tubular member P (see FIG. 2). That is, the sound velocity calculation unit 24 calculates the in-tube sound velocity V by dividing the inner diameter φ of the tubular member P by the time difference ΔT (V = φ / ΔT). The sound speed calculation unit 24 outputs information on the calculated in-pipe sound speed V to the fluid determination unit 25.

流体判定部25は、算出された管内音速Vに基づいて管状部材Pの内部に存在するガスGの種別を判定する機能部である。超音波の音速は、媒質となる流体の種別に応じて異なる。本実施形態では、流体の種別(例えば、水、油、空気、メタンガス等)に応じた超音波の音速(理論上の音速)の情報が、音速データ31としてRAMやROM等の記録装置30に予め記録されている。なお、超音波の実際の音速は媒質の状態によっても変化し得るため、音速データ31として、媒質の温度、密度、及び圧力の1つ以上に応じて更に細分化された音速の情報が記録されている構成とすると好適である。流体判定部25は、算出された管内音速Vと音速データ31とを比較して、算出された管内音速Vに一致する(完全に一致するものがない場合には最も近い)音速に対応付けられた流体の情報を音速データ31から読み出す。流体判定部25により、本発明における「流体判定ステップ」が実行される。   The fluid determination unit 25 is a functional unit that determines the type of the gas G present in the tubular member P based on the calculated in-tube sound velocity V. The speed of sound of ultrasonic waves varies depending on the type of fluid that is a medium. In the present embodiment, information on the ultrasonic sound velocity (theoretical sound velocity) corresponding to the type of fluid (for example, water, oil, air, methane gas, etc.) is stored as sound velocity data 31 in a recording device 30 such as a RAM or a ROM. Pre-recorded. In addition, since the actual sound speed of the ultrasonic wave can change depending on the state of the medium, the sound speed data 31 is recorded as information on the sound speed further subdivided according to one or more of the temperature, density, and pressure of the medium. It is preferable to adopt the configuration. The fluid determination unit 25 compares the calculated in-tube sound speed V with the sound speed data 31 and associates the calculated sound speed with the sound speed that matches the calculated in-tube sound speed V (closest when there is no complete match). The fluid information is read from the sound speed data 31. The “fluid determination step” in the present invention is executed by the fluid determination unit 25.

以上のようにして、流体識別装置1は、管状部材Pの内部に存在するガスGの種別を非破壊的に判定することができる。図3には、受信用探触子14での受信波形の一例を示している。この図3から理解できるように、透過伝搬波Wtによる受信信号(透過波シグナル)は、大きな振幅のノイズに重畳されている。このノイズは、主として、管状部材Pの本体部内を伝搬して複数周に亘って周回する本体内伝搬波Wbに起因するものである。このように、透過波シグナルが大きな振幅のノイズに重畳された状態では、S/N比(シグナル・ノイズ比)が小さくなり、受信用探触子14で透過伝搬波Wtが受信された時点の検出精度が低下する可能性がある。その結果、管内音速Vの算出が不正確となり、管状部材Pの内部に存在するガスGの種別の判定も不正確となる可能性がある。   As described above, the fluid identification device 1 can nondestructively determine the type of the gas G existing inside the tubular member P. FIG. 3 shows an example of a received waveform at the receiving probe 14. As can be understood from FIG. 3, the received signal (transmitted wave signal) by the transmitted propagation wave Wt is superimposed on noise having a large amplitude. This noise is mainly caused by the in-body propagating wave Wb that propagates in the main body of the tubular member P and circulates over a plurality of rounds. As described above, in a state where the transmitted wave signal is superimposed on noise having a large amplitude, the S / N ratio (signal / noise ratio) is reduced, and the transmission probe wave Wt is received at the reception probe 14. The detection accuracy may be reduced. As a result, the calculation of the in-pipe sound velocity V may be inaccurate, and the determination of the type of the gas G present in the tubular member P may be inaccurate.

上記のような不都合を回避するべく、本実施形態に係る流体識別装置1は、上述したキャンセル用探触子18を備えていると共に、第二発信制御部22を制御装置20に備えている。第二発信制御部22は、キャンセル用探触子18からの超音波(キャンセル波Wc)の送信(キャンセル波発信)を制御する機能部である。ここで、キャンセル波Wcは、管状部材Pの本体部内を伝搬する本体内伝搬波Wbを打ち消す超音波である。本実施形態では、4つの探触子12,14,18a,18bが管状部材Pの外周面に周方向に均等に分散して配置されるという前提下での到達時間データ32と波形データ33とが、記録装置30に予め記録されている。   In order to avoid the inconveniences as described above, the fluid identification device 1 according to the present embodiment includes the above-described canceling probe 18 and the second transmission control unit 22 in the control device 20. The second transmission control unit 22 is a functional unit that controls transmission (cancellation wave transmission) of an ultrasonic wave (cancellation wave Wc) from the canceling probe 18. Here, the cancel wave Wc is an ultrasonic wave that cancels the in-body propagating wave Wb propagating in the main body of the tubular member P. In the present embodiment, arrival time data 32 and waveform data 33 on the premise that the four probes 12, 14, 18 a, 18 b are uniformly distributed on the outer peripheral surface of the tubular member P in the circumferential direction. Is recorded in advance in the recording device 30.

ここで、到達時間データ32は、送信用探触子12で送信された本体内伝搬波Wbがキャンセル用探触子18の位置に到達するまでの到達時間(遅延時間)を表すデータである。波形データ33は、キャンセル用探触子18の位置に受信用探触子14を配置すると仮定した場合における本体内伝搬波Wbの受信波形を表すデータである。すなわち、キャンセル用探触子18の位置を伝搬する本体内伝搬波Wbの、振幅及び周波数に関する情報が波形データ33に含まれ、位相に関する情報が到達時間データ32に含まれている。本実施形態では、これらの到達時間データ32及び波形データ33は、キャンセル用探触子18の位置に受信用探触子14を配置して、その位置において受信用探触子14により実際に本体内伝搬波Wbが受信されるまでの時間、及びその際の受信波形を実測した実測データとして予め整備されている。また、送信用探触子12で送信された本体内伝搬波Wbがキャンセル用探触子18の位置に到達するまでの到達時間やその際の受信波形は、管状部材Pの材質や管径、管厚等に応じて異なり得る。そのため、本実施形態では、到達時間データ32及び波形データ33は、管状部材Pの材質や管径、管厚の少なくとも1つに応じて細分化されて予め記録されている。ここで、「管径」には、内径及び外形の一方又は双方が含まれる。   Here, the arrival time data 32 is data representing the arrival time (delay time) until the in-body propagating wave Wb transmitted by the transmission probe 12 reaches the position of the canceling probe 18. The waveform data 33 is data representing the received waveform of the in-body propagating wave Wb when it is assumed that the receiving probe 14 is disposed at the position of the canceling probe 18. That is, the waveform data 33 includes information on the amplitude and frequency of the in-body propagation wave Wb propagating through the position of the canceling probe 18, and the arrival time data 32 includes information on the phase. In the present embodiment, the arrival time data 32 and the waveform data 33 are actually stored in the main body by the receiving probe 14 at the position where the receiving probe 14 is arranged at the position of the canceling probe 18. It is prepared in advance as measured data obtained by actually measuring the time until the inner propagation wave Wb is received and the received waveform at that time. In addition, the arrival time until the in-body propagating wave Wb transmitted by the transmitting probe 12 reaches the position of the canceling probe 18 and the received waveform at that time are expressed by the material of the tubular member P, the tube diameter, It may vary depending on the tube thickness. Therefore, in the present embodiment, the arrival time data 32 and the waveform data 33 are subdivided according to at least one of the material, tube diameter, and tube thickness of the tubular member P and recorded in advance. Here, the “tube diameter” includes one or both of an inner diameter and an outer shape.

第二発信制御部22は、到達時間データ32と波形データ33とに基づいて、キャンセル用探触子18の位置に到達する時点における本体内伝搬波Wbと、振幅及び周波数が等しく且つ逆位相となる(位相がπだけずれている)波形を有する逆位相波を算出する。第二発信制御部22は、この算出された逆位相波に対応する電気信号(電圧信号)を生成する。生成した電気信号は、キャンセル用探触子18に送られる。キャンセル用探触子18は、受け取った電気信号を超音波(キャンセル波Wc)に変換して、管状部材Pに向けてそのキャンセル波Wcを送信する。本実施形態では、上記のような到達時間データ32及び波形データ33が記録装置30に予め記録されているので、これらに基づいて本体内伝搬波Wbを有効に打ち消し得るキャンセル波Wcを簡易且つ適切に送信することができる。第二発信制御部22により、本発明における「キャンセル波送信ステップ」が実行される。   Based on the arrival time data 32 and the waveform data 33, the second transmission control unit 22 has the same amplitude and frequency as the in-body propagating wave Wb when reaching the position of the canceling probe 18, and has an opposite phase. An anti-phase wave having a waveform (the phase is shifted by π) is calculated. The second transmission control unit 22 generates an electric signal (voltage signal) corresponding to the calculated antiphase wave. The generated electrical signal is sent to the canceling probe 18. The canceling probe 18 converts the received electrical signal into an ultrasonic wave (cancellation wave Wc), and transmits the cancellation wave Wc toward the tubular member P. In the present embodiment, since the arrival time data 32 and the waveform data 33 as described above are recorded in advance in the recording device 30, a cancel wave Wc that can effectively cancel the propagation wave Wb in the main body based on them is simply and appropriately applied. Can be sent to. The “canceling wave transmission step” in the present invention is executed by the second transmission control unit 22.

このようにして、キャンセル用探触子18からは、本体内伝搬波Wbと振幅及び周波数が等しく且つ逆位相となる波形を有する逆位相波が、キャンセル波Wcとして送信される。このキャンセル波Wcは、透過伝搬波Wtによる受信信号(透過波シグナル)の検出の際にノイズとなる本体内伝搬波Wbと干渉して、当該ノイズとしての本体内伝搬波Wbを打ち消すように作用する。これにより、透過波シグナルの周辺でのノイズの振幅を小さくしてS/N比を向上させることができる。よって、受信用探触子14で透過伝搬波Wtが受信されるまでの時間差ΔT、及びその時間差ΔTに基づく管内音速Vを精度良く算出することができる。従って、本実施形態に係る流体識別装置1によれば、管状部材Pの内部に存在するガスGの種別を精度良く判定することができる。   In this way, from the canceling probe 18, an antiphase wave having a waveform having the same amplitude and frequency as the in-body propagating wave Wb and having an opposite phase is transmitted as the canceling wave Wc. The cancel wave Wc acts to interfere with the in-body propagating wave Wb that becomes noise when detecting the reception signal (transmitted wave signal) by the transmitted propagating wave Wt, and cancels out the in-body propagating wave Wb as the noise. To do. Thereby, the amplitude of the noise around the transmitted wave signal can be reduced and the S / N ratio can be improved. Therefore, the time difference ΔT until the transmission probe Wt is received by the receiving probe 14 and the in-tube sound velocity V based on the time difference ΔT can be accurately calculated. Therefore, according to the fluid identification device 1 according to the present embodiment, the type of the gas G existing inside the tubular member P can be accurately determined.

ところで、一般に超音波は、それぞれその伝搬状態で特定タイミング及び特定位置における状態を一意的に特定できるものではなく、管状部材Pの材質や形状、或いは外部環境等に応じて様々となる。また、送信用探触子12から送信される超音波やキャンセル用探触子18から送信されるキャンセル波Wcは、それぞれ必ずしも狙い通りの周波数及び位相を有するとは限らず、実際には多少のずれが生じる場合がある。更に、本体内伝搬波Wbは、管状部材Pの本体部内を伝搬する際にはある程度減衰する場合がある。そのため、例えば理論上は本体内伝搬波Wbを打ち消し得るキャンセル波Wcがキャンセル用探触子18から送信されたとしても、S/N比の向上効果が比較的小さく抑えられる可能性がある。そこで、本実施形態に係る流体識別装置1は、波形調整部26を制御装置20に更に備えている。   By the way, in general, an ultrasonic wave cannot be uniquely specified at a specific timing and at a specific position in its propagation state, but varies depending on the material and shape of the tubular member P, the external environment, or the like. Further, the ultrasonic wave transmitted from the transmission probe 12 and the cancellation wave Wc transmitted from the cancellation probe 18 do not necessarily have the intended frequency and phase, respectively. Deviation may occur. Further, the propagation wave Wb in the main body may be attenuated to some extent when propagating in the main body portion of the tubular member P. Therefore, for example, even if a cancel wave Wc that can cancel the propagation wave Wb in the main body is theoretically transmitted from the canceling probe 18, the effect of improving the S / N ratio may be suppressed to be relatively small. Therefore, the fluid identification device 1 according to the present embodiment further includes the waveform adjustment unit 26 in the control device 20.

波形調整部26は、キャンセル波Wcの位相、振幅、及び周波数を調整してキャンセル波Wcの波形を調整する機能部である。波形調整部26は、受信用探触子14で受信される超音波の受信波形に応じて、本体内伝搬波Wbとキャンセル波Wcとの合成波Wsの振幅が全体として透過伝搬波Wtよりも小さくなるように、キャンセル波Wcの位相、振幅、及び周波数を調整する。本例では、波形調整部26は、キャンセル波Wcの位相、振幅、及び周波数を調整するための調整指令を第二発信制御部22に出力する。第二発信制御部22は、受け取った調整指令に応じた電気信号をキャンセル用探触子18に出力する。これにより、キャンセル波Wcの波形が調整される。波形調整部26と第二発信制御部22とが協働することにより、本発明における「波形調整ステップ」が実行される。本実施形態では、このような波形調整ステップは、例えば表示装置40に表示された受信信号を確認しながら、オペレータの手を介して手動で実行される。   The waveform adjustment unit 26 is a functional unit that adjusts the waveform of the cancellation wave Wc by adjusting the phase, amplitude, and frequency of the cancellation wave Wc. The waveform adjustment unit 26 has an amplitude of the combined wave Ws of the in-body propagation wave Wb and the cancellation wave Wc as a whole in comparison with the transmitted propagation wave Wt in accordance with the received waveform of the ultrasonic wave received by the receiving probe 14. The phase, amplitude, and frequency of the cancellation wave Wc are adjusted so as to decrease. In this example, the waveform adjustment unit 26 outputs an adjustment command for adjusting the phase, amplitude, and frequency of the cancellation wave Wc to the second transmission control unit 22. The second transmission control unit 22 outputs an electrical signal corresponding to the received adjustment command to the canceling probe 18. Thereby, the waveform of the cancellation wave Wc is adjusted. The “waveform adjustment step” in the present invention is executed by the cooperation of the waveform adjustment unit 26 and the second transmission control unit 22. In the present embodiment, such a waveform adjustment step is executed manually through the operator's hand while confirming the received signal displayed on the display device 40, for example.

例えば波形データ33に基づいて算出されるキャンセル波Wcがキャンセル用探触子18から送信されたとしても、そのキャンセル波Wcの周波数が本体内伝搬波Wbの周波数と完全に一致しているとは限らない。同様に、到達時間データ32に基づいて算出されるキャンセル波Wcがキャンセル用探触子18から送信されたとしても、キャンセル波Wcの位相が本体内伝搬波Wbの位相に対して完全に逆位相となっているとは限らない。そのため、キャンセル波Wcの周波数を調整して本体内伝搬波Wbの周波数に一致させ、更にキャンセル波Wcの位相を調整して本体内伝搬波Wbの位相に対して逆位相とすることで、キャンセル波Wcによる本体内伝搬波Wbの打ち消し効果を向上させることができる。   For example, even if a cancel wave Wc calculated based on the waveform data 33 is transmitted from the canceling probe 18, the frequency of the cancel wave Wc completely matches the frequency of the in-body propagating wave Wb. Not exclusively. Similarly, even if the cancellation wave Wc calculated based on the arrival time data 32 is transmitted from the cancellation probe 18, the phase of the cancellation wave Wc is completely opposite to the phase of the in-body propagation wave Wb. It is not always the case. Therefore, the frequency of the cancellation wave Wc is adjusted to match the frequency of the propagation wave Wb in the main body, and the phase of the cancellation wave Wc is adjusted to be opposite to the phase of the propagation wave Wb in the main body, thereby canceling. The effect of canceling the in-body propagating wave Wb by the wave Wc can be improved.

また、本体内伝搬波Wbは、管状部材Pの本体部内を伝搬する際にはある程度減衰するので、キャンセル波Wcの周波数及び位相を上記のように調整したとしても、本体内伝搬波Wbの減衰の程度に応じて合成波Wsの振幅がある程度の大きさで残る可能性がある。そのため、更にキャンセル波Wcの振幅を調整することで、キャンセル波Wcにより本体内伝搬波Wbを極力打ち消すことができる。   Further, since the propagation wave Wb in the main body is attenuated to some extent when propagating in the main body portion of the tubular member P, the attenuation of the propagation wave Wb in the main body even if the frequency and phase of the cancellation wave Wc are adjusted as described above. There is a possibility that the amplitude of the synthesized wave Ws remains at a certain level depending on the degree of. Therefore, by further adjusting the amplitude of the cancellation wave Wc, the propagation wave Wb in the main body can be canceled as much as possible by the cancellation wave Wc.

なお実際には、本体内伝搬波Wbには縦波や横波、更には表面波等の複数のモードの波が含まれており、その他にも様々な要因が複雑に絡み合って合成波Wsが生成する。そのため、送信用探触子12で超音波が送信されてから受信用探触子14で透過伝搬波Wtが受信されるまでの全期間(図4において、「本体内伝搬波受信時間域」と表示)に亘って合成波Wsの振幅を完全にゼロとすることは一般に困難である。それでも、上記のような波形調整ステップを実行することで、測定時の実情に応じて合成波Wsの振幅を大幅に低減させることができ、透過波シグナルを受信する際のS/N比を大きく向上させることができる。   Actually, the propagation wave Wb in the main body includes a plurality of modes such as a longitudinal wave, a transverse wave, and a surface wave. In addition, various factors are complicatedly intertwined to generate a synthesized wave Ws. To do. For this reason, the entire period from when an ultrasonic wave is transmitted by the transmission probe 12 to when the transmission propagation wave Wt is received by the reception probe 14 (in FIG. 4, “internal propagation wave reception time range”). In general, it is difficult to make the amplitude of the synthesized wave Ws completely zero over the display. Nevertheless, by executing the waveform adjustment step as described above, the amplitude of the synthesized wave Ws can be greatly reduced according to the actual situation at the time of measurement, and the S / N ratio when receiving the transmitted wave signal is increased. Can be improved.

また、本実施形態では特に、透過伝搬波Wtが受信用探触子14で受信される時点を含む、その時点以前の所定期間(これを「対象期間B」と称する;図4を参照)を対象として、上記の波形調整ステップが実行される。この場合における「所定期間」は、送信用探触子12で超音波が送信されてから透過伝搬波Wtが受信用探触子14で受信されるまでの全期間を基準として、例えばその1/10〜1/2の長さの期間、或いは1/5〜1/3の長さの期間等とすることができる。図4には、送信用探触子12で超音波が送信されてから透過伝搬波Wtが受信用探触子14で受信されるまでの全期間の1/4の長さの期間が対象期間Bとされている場合の例が示されている。このように、透過伝搬波Wtが受信用探触子14で受信されるまでの全期間ではなく対象期間Bのみを波形調整の対象とすることで、波形調整ステップの簡易性及び実効性の双方を確保することができる。   In the present embodiment, in particular, a predetermined period (referred to as “target period B”; see FIG. 4) including the time point at which the transmitted propagation wave Wt is received by the receiving probe 14. As an object, the above-described waveform adjustment step is executed. The “predetermined period” in this case is, for example, 1/2 of the entire period from when the ultrasonic wave is transmitted by the transmitting probe 12 until the transmitted propagation wave Wt is received by the receiving probe 14. The period can be 10 to 1/2, or the period can be 1/5 to 1/3. In FIG. 4, a period that is ¼ of the entire period from when the ultrasonic wave is transmitted by the transmission probe 12 to when the transmitted propagation wave Wt is received by the reception probe 14 is the target period. An example in the case of B is shown. In this way, by setting only the target period B instead of the entire period until the transmitted propagation wave Wt is received by the receiving probe 14 as the target of waveform adjustment, both the simplicity and effectiveness of the waveform adjustment step are achieved. Can be secured.

これまで説明してきたような第二発信制御部22及び波形調整部26を備えていることに関連して、本実施形態に係る流体識別装置1は、波形調整部26及び第二発信制御部22が有する機能により位相、振幅、及び周波数が調整されたキャンセル波Wcがキャンセル用探触子18から送信されている状態で、流体判定ステップまでの各ステップが実行される。すなわち、合成波Wsの振幅を大幅に低減させることができるように測定時の実情に応じて調整された波形のキャンセル波Wcがキャンセル用探触子18から送信されている状態で、受信用探触子14で透過伝搬波Wtが受信され、受信信号処理部23により受信信号が処理され、音速算出部24により管内音速Vが算出され、流体判定部25により管状部材Pの内部に存在するガスGの種別が判定される。   In relation to the provision of the second transmission control unit 22 and the waveform adjustment unit 26 as described above, the fluid identification device 1 according to this embodiment includes the waveform adjustment unit 26 and the second transmission control unit 22. Each step up to the fluid determination step is executed in a state in which the cancel wave Wc whose phase, amplitude, and frequency are adjusted by the function of the is transmitted from the canceling probe 18. That is, in the state where the cancellation wave Wc having a waveform adjusted according to the actual situation at the time of measurement is transmitted from the cancellation probe 18 so that the amplitude of the synthesized wave Ws can be significantly reduced, the reception probe is detected. The transmitted propagation wave Wt is received by the touch element 14, the received signal is processed by the received signal processing unit 23, the in-pipe sound speed V is calculated by the sound speed calculation unit 24, and the gas present inside the tubular member P by the fluid determination unit 25. The type of G is determined.

この場合における受信用探触子14での受信波形の一例を、図4に示している。この図4と先に示した図3とを比較して良く理解できるように、キャンセル波送信ステップ及び波形調整ステップを伴うことで、本体内伝搬波Wbに起因するノイズのみが大幅に低減し、そのようなノイズに対して透過伝搬波Wtによる受信信号(透過波シグナル)が優位な状態となっている。これにより、本体内伝搬波Wbに対して透過伝搬波Wtを明確に識別することが可能となっている。すなわち、透過波シグナルを検出する際のS/N比を大幅に向上させることが可能となっている。従って、音速算出部24により、上記時間差ΔT及びこれに基づく管内音速Vを精度良く算出することができ、更には流体判定部25により、管状部材Pの内部に存在するガスGの種別を精度良く判定することが可能となっている。   An example of the received waveform at the receiving probe 14 in this case is shown in FIG. As can be understood by comparing FIG. 4 with FIG. 3 described above, only the noise caused by the propagation wave Wb in the main body is significantly reduced by including the cancellation wave transmission step and the waveform adjustment step. The reception signal (transmitted wave signal) by the transmitted propagation wave Wt is in a dominant state against such noise. This makes it possible to clearly identify the transmitted propagation wave Wt with respect to the in-body propagation wave Wb. That is, it is possible to greatly improve the S / N ratio when detecting a transmitted wave signal. Therefore, the sound speed calculation unit 24 can accurately calculate the time difference ΔT and the in-tube sound speed V based on the time difference, and the fluid determination unit 25 can accurately determine the type of the gas G existing inside the tubular member P. Judgment is possible.

また、本実施形態では、個別に設けられる送信用探触子12と受信用探触子14とが、管状部材Pを径方向に挟むように対向して配置される。そのため、送信用探触子12から送信された透過伝搬波Wtの減衰が比較的少ない状態で、これを受信用探触子14により受信することができる。また、管状部材Pの軸線Lを通り送信用探触子12と受信用探触子14とが配置される仮想平面Zに対して、二つのキャンセル用探触子18a,18bが面対称状に配置される。そのため、送信用探触子12から管状部材Pの周方向の一方側に向かって伝搬する本体内伝搬波Wbと、周方向の他方側に向かって伝搬する本体内伝搬波Wbとを、二つのキャンセル用探触子18a,18bからのキャンセル波Wcにより同様の態様で打ち消すことができる。すなわち、1つの第二発信制御部22で二つのキャンセル用探触子18a,18bを同様の態様で制御することができるので、制御装置20の構成を簡素化することが可能となっている。   Further, in the present embodiment, the transmission probe 12 and the reception probe 14 that are individually provided are arranged to face each other so as to sandwich the tubular member P in the radial direction. For this reason, the reception probe 14 can receive the transmitted propagation wave Wt transmitted from the transmission probe 12 with relatively little attenuation. The two canceling probes 18a and 18b are symmetrical with respect to a virtual plane Z on which the transmitting probe 12 and the receiving probe 14 are arranged through the axis L of the tubular member P. Be placed. Therefore, the in-body propagating wave Wb propagating from the transmitting probe 12 toward one side in the circumferential direction of the tubular member P and the in-body propagating wave Wb propagating toward the other side in the circumferential direction are divided into two. The canceling wave Wc from the canceling probes 18a and 18b can be canceled in the same manner. In other words, since the two cancellation probes 18a and 18b can be controlled in the same manner by one second transmission control unit 22, the configuration of the control device 20 can be simplified.

以上説明したように、本実施形態に係る流体識別装置1によれば、管状部材Pの内部に存在するガスGの種別を特段の制約なく簡易に、しかも精度良く識別することが可能である。   As described above, according to the fluid identification device 1 according to the present embodiment, the type of the gas G existing in the tubular member P can be easily and accurately identified without any particular restriction.

3.その他の実施形態
最後に、本発明に係る流体識別装置の、その他の実施形態について説明する。なお、以下のそれぞれの実施形態で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することも可能である。
3. Other Embodiments Finally, other embodiments of the fluid identification device according to the present invention will be described. Note that the configurations disclosed in the following embodiments can be applied in combination with the configurations disclosed in other embodiments as long as no contradiction arises.

(1)上記の実施形態においては、送信用探触子12と受信用探触子14とがそれぞれ1つずつ、個別に設けられている場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、上記の実施形態における送信用探触子12及び受信用探触子14の双方の機能を兼ね備えた送受信用探触子16が1つだけ設けられた構成(図5を参照)とすることも、本発明の好適な実施形態の一つである。管状部材Pの内部に存在するガスGと管状部材Pの本体部を構成する材料とでは音響インピーダンスが大きく異なるので、透過伝搬波Wtの一部は管状部材Pの内周面で反射して反射波Wrとなる。反射波Wrは、管状部材Pの内部を、反射前の透過伝搬波Wtとは反対方向に伝搬して送受信用探触子16で受信される。この場合、音速算出部24は、送受信用探触子16で超音波が送信されてから、最終的に反射波Wrが送受信用探触子16で受信されるまでの時間差ΔTに基づいて、管内音速Vを算出することができる。なお、キャンセル用探触子18として二つのキャンセル用探触子18a,18bを備えている点や、第一発信制御部21、第二発信制御部22、受信信号処理部23、流体判定部25、及び波形調整部26の機能等に関しては、上記の実施形態と同様である。 (1) In the above-described embodiment, the case where one transmission probe 12 and one reception probe 14 are provided individually has been described as an example. However, the embodiment of the present invention is not limited to this. That is, a configuration in which only one transmission / reception probe 16 having both functions of the transmission probe 12 and the reception probe 14 in the above-described embodiment is provided (see FIG. 5). Is also one preferred embodiment of the present invention. Since the acoustic impedance differs greatly between the gas G present inside the tubular member P and the material constituting the main body of the tubular member P, a part of the transmitted propagation wave Wt is reflected and reflected by the inner peripheral surface of the tubular member P. Wave Wr. The reflected wave Wr propagates in the tubular member P in the direction opposite to the transmitted propagation wave Wt before reflection, and is received by the transmission / reception probe 16. In this case, the sound velocity calculation unit 24 determines whether the ultrasonic wave is transmitted from the transmitter / receiver probe 16 until the reflected wave Wr is finally received by the transmitter / receiver probe 16 based on the time difference ΔT. The speed of sound V can be calculated. Note that two canceling probes 18 a and 18 b are provided as the canceling probe 18, the first transmission control unit 21, the second transmission control unit 22, the received signal processing unit 23, and the fluid determination unit 25. The function of the waveform adjusting unit 26 and the like are the same as in the above embodiment.

この場合、図5に示すように、二つのキャンセル用探触子18a,18bは、管状部材Pの軸線Lと送受信用探触子16とが配置される仮想平面Zに対して面対称状に配置されていると好適である。図示の例では、二つのキャンセル用探触子18a,18bは、更に送受信用探触子16と管状部材Pの同じ軸線方向位置において、管状部材Pを径方向に挟むように対向して配置されている。   In this case, as shown in FIG. 5, the two canceling probes 18a and 18b are symmetrical with respect to a virtual plane Z on which the axis L of the tubular member P and the transmitting / receiving probe 16 are arranged. It is preferable that they are arranged. In the example shown in the figure, the two canceling probes 18a and 18b are arranged opposite to each other so as to sandwich the tubular member P in the radial direction at the same axial position of the transmitting / receiving probe 16 and the tubular member P. ing.

このような構成では、超音波(透過伝搬波Wt、反射波Wr、及び本体内伝搬波Wbを含む)の送信と受信とを共通の送受信用探触子16を用いて行うので、それらを個別の超音波探触子を用いて行う場合と比較して低コスト化を図ることができる。また、例えば判定対象となる管状部材Pが地中に埋設されている場合等であっても、少なくとも送受信用探触子16及びキャンセル用探触子18a,18bを配置できる程度に地中から管状部材Pを露出させれば良いので、判定作業を簡易化することができる。なお、透過伝搬波Wtの一部が反射して反射波Wrとなる際には減衰して反射波Wrによる受信信号(反射波シグナル)の強度は小さくなるが、キャンセル用探触子18からキャンセル波Wcが送信さることにより、本体内伝搬波Wbに起因するノイズが大幅に低減するので、特に問題はない。   In such a configuration, transmission and reception of ultrasonic waves (including the transmitted propagation wave Wt, the reflected wave Wr, and the in-body propagation wave Wb) are performed using the common transmission / reception probe 16, so that they are individually transmitted. The cost can be reduced as compared with the case where the ultrasonic probe is used. In addition, for example, even when the tubular member P to be determined is buried in the ground, the tubular member P is formed from the ground so that at least the transmitting / receiving probe 16 and the canceling probes 18a and 18b can be arranged. Since it is sufficient to expose the member P, the determination work can be simplified. Note that when a part of the transmitted propagation wave Wt is reflected to become the reflected wave Wr, the intensity of the received signal (reflected wave signal) by the reflected wave Wr is attenuated to be reduced, but the canceling probe 18 cancels it. Since the wave Wc is transmitted, noise caused by the in-body propagating wave Wb is significantly reduced, and there is no particular problem.

(2)上記の実施形態においては、波形調整部26がキャンセル波Wcの位相、振幅、及び周波数の全てを調整する場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、波形調整部26は、キャンセル波Wcの位相、振幅、及び周波数のうちの1つ又は2つを調整する構成とすることも、本発明の好適な実施形態の一つである。 (2) In the above embodiment, the case where the waveform adjustment unit 26 adjusts all of the phase, amplitude, and frequency of the cancellation wave Wc has been described as an example. However, the embodiment of the present invention is not limited to this. That is, it is also one of the preferred embodiments of the present invention that the waveform adjusting unit 26 is configured to adjust one or two of the phase, amplitude, and frequency of the cancel wave Wc.

(3)上記の実施形態においては、波形調整ステップが、表示装置40に表示された受信信号を確認しながらオペレータにより手動で実行される場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、例えば所定のアルゴリズムに基づいて、波形調整部26により自動的に波形調整ステップが実行される構成とすることも、本発明の好適な実施形態の一つである。 (3) In the above embodiment, the case where the waveform adjustment step is manually executed by the operator while confirming the reception signal displayed on the display device 40 has been described as an example. However, the embodiment of the present invention is not limited to this. That is, for example, a configuration in which the waveform adjustment step is automatically executed by the waveform adjustment unit 26 based on a predetermined algorithm is also one preferred embodiment of the present invention.

(4)上記の実施形態においては、透過伝搬波Wtが受信用探触子14で受信される時点以前の期間であって、送信用探触子12で超音波が送信されてから透過伝搬波Wtが受信用探触子14で受信されるまでの全期間のうちの一部の期間のみが対象期間Bとされている場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、例えば送信用探触子12で超音波が送信されてから透過伝搬波Wtが受信用探触子14で受信されるまでの全期間が対象期間Bとされた構成とすることも、本発明の好適な実施形態の一つである。また、透過伝搬波Wtが受信用探触子14で受信される時点を含むその前後の所定期間が対象期間Bとされた構成とすることも、本発明の好適な実施形態の一つである。 (4) In the above-described embodiment, the transmission propagation wave is a period before the time when the transmission propagation wave Wt is received by the reception probe 14 and after the ultrasonic wave is transmitted by the transmission probe 12. The case where only a part of the whole period until Wt is received by the receiving probe 14 is the target period B has been described as an example. However, the embodiment of the present invention is not limited to this. That is, for example, the entire period from when an ultrasonic wave is transmitted by the transmitting probe 12 until the transmitted propagation wave Wt is received by the receiving probe 14 may be the target period B. It is one of the preferred embodiments of the invention. It is also one of preferred embodiments of the present invention that a predetermined period before and after the time point when the transmitted propagation wave Wt is received by the receiving probe 14 is the target period B. .

(5)上記の実施形態においては、記録装置30に予め記録された到達時間データ32及び波形データ33に基づいてキャンセル波Wcの波形が決定される場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、例えば受信用探触子14での本体内伝搬波Wbの受信をトリガーとして、その実際に受信される本体内伝搬波Wbに基づいてキャンセル波Wcの波形が決定される構成とすることも、本発明の好適な実施形態の一つである。この場合における基本概念を図6に模式的に示している。この図に示すように、受信用探触子14で本体内伝搬波Wbが実際に受信されるまでの時間(「受信時間」と表示)及びその際の受信波形に関する実測データから、本体内伝搬波Wbがキャンセル用探触子18の位置に到達するまでの時間(「遅延時間」と表示)及びその位置における波形が推定され、その推定遅延時間と推定波形とに基づいてキャンセル波Wcの波形が決定される構成とすることができる。
或いは、予め設定された一律の位相及び波形を有するキャンセル波Wcが送信される構成とすることも、本発明の好適な実施形態の一つである。この場合、波形調整ステップが高い重要性を有することになる。
(5) In the above embodiment, the case where the waveform of the cancel wave Wc is determined based on the arrival time data 32 and the waveform data 33 recorded in advance in the recording device 30 has been described as an example. However, the embodiment of the present invention is not limited to this. That is, for example, the reception probe 14 receives the propagation wave Wb in the main body as a trigger, and the cancel wave Wc may be determined based on the actually received body propagation wave Wb. This is one of the preferred embodiments of the present invention. The basic concept in this case is schematically shown in FIG. As shown in this figure, the propagation time in the main body is calculated from the time (indicated as “reception time”) until the propagation wave Wb in the main body is actually received by the receiving probe 14 and the measured data on the received waveform at that time. The time until the wave Wb reaches the position of the canceling probe 18 (displayed as “delay time”) and the waveform at the position are estimated, and the waveform of the cancel wave Wc is based on the estimated delay time and the estimated waveform. May be determined.
Alternatively, a configuration in which a cancel wave Wc having a preset uniform phase and waveform is transmitted is also a preferred embodiment of the present invention. In this case, the waveform adjustment step has high importance.

(6)上記の実施形態においては、流体識別装置1が波形調整部26を備えている場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、例えばキャンセル用探触子18が本体内伝搬波Wbを完全に打ち消すことができるキャンセル波Wcを当初から送信することができる場合等には、波形調整部26を備えず、波形調整ステップが実行されない構成とすることも、本発明の好適な実施形態の一つである。 (6) In the above embodiment, the case where the fluid identification device 1 includes the waveform adjustment unit 26 has been described as an example. However, the embodiment of the present invention is not limited to this. That is, for example, when the canceling probe 18 can transmit the cancellation wave Wc that can completely cancel the in-body propagation wave Wb from the beginning, the waveform adjustment step is not provided and the waveform adjustment step is performed. It is also one of preferred embodiments of the present invention that the configuration is not executed.

(7)上記の実施形態においては、4つの探触子12,14,18a,18bが管状部材Pの同じ軸線方向位置において周方向に均等に分散して配置されている場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、少なくとも二つのキャンセル用探触子18a,18bが仮想平面Zに対して面対称状に配置されていると好適であり、二つのキャンセル用探触子18a,18bが送信用探触子12と受信用探触子14との中間地点ではなくいずれかに近接する位置に配置された構成とすることも、本発明の好適な実施形態の一つである。或いは、二つのキャンセル用探触子18a,18bが仮想平面Zに対して面対称状とはならない位置に配置された構成とすることも可能である。 (7) In the above embodiment, the case where the four probes 12, 14, 18a, and 18b are equally distributed in the circumferential direction at the same axial position of the tubular member P has been described as an example. . However, the embodiment of the present invention is not limited to this. That is, it is preferable that at least two canceling probes 18a and 18b are arranged in plane symmetry with respect to the virtual plane Z, and the two canceling probes 18a and 18b are suitable for the transmitting probe 12. It is also one of preferred embodiments of the present invention to have a configuration in which it is arranged at a position close to one of the receiving probe 14 instead of an intermediate point. Alternatively, the two canceling probes 18a and 18b may be arranged at positions that are not plane-symmetric with respect to the virtual plane Z.

(8)上記の実施形態においては、流体識別装置1を管状部材Pの内部に存在するガスGの種別を判定するためのガス種識別装置に適用した場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、例えば水、アルコール、油等の液体も、流体識別装置1による流体種別の判定対象とすることができる。 (8) In the above embodiment, the case where the fluid identification device 1 is applied to a gas type identification device for determining the type of the gas G present inside the tubular member P has been described as an example. However, the embodiment of the present invention is not limited to this. That is, for example, a liquid such as water, alcohol, oil, or the like can also be a determination target of the fluid type by the fluid identification device 1.

(9)その他の構成に関しても、本明細書において開示された実施形態は全ての点で例示であって、本発明の実施形態はこれに限定されない。すなわち、本願の特許請求の範囲に記載されていない構成に関しては、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。 (9) Regarding other configurations as well, the embodiments disclosed herein are illustrative in all respects, and embodiments of the present invention are not limited thereto. In other words, configurations that are not described in the claims of the present application can be modified as appropriate without departing from the object of the present invention.

本発明は、管状部材の内部に存在する流体の種別を識別するための流体識別装置及び流体識別方法に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used for a fluid identification device and a fluid identification method for identifying the type of fluid existing inside a tubular member.

1 流体識別装置
12 送信用探触子
14 受信用探触子
16 送受信用探触子
18 キャンセル用探触子
24 音速算出部
25 流体判定部
26 波形調整部
30 記録装置
32 到達時間データ
33 波形データ
P 管状部材
L 軸線
G ガス(流体)
Wt 透過伝搬波
Wb 本体内伝搬波
Wc キャンセル波
Ws 合成波
ΔT 時間差
V 音速
Z 仮想平面
DESCRIPTION OF SYMBOLS 1 Fluid identification device 12 Transmitting probe 14 Receiving probe 16 Transmission / reception probe 18 Canceling probe 24 Sound velocity calculation unit 25 Fluid determination unit 26 Waveform adjustment unit 30 Recording device 32 Arrival time data 33 Waveform data P Tubular member L Axis G Gas (fluid)
Wt Transmission propagation wave Wb Body propagation wave Wc Cancellation wave Ws Composite wave ΔT Time difference V Sound speed Z Virtual plane

Claims (5)

管状部材の外周面に配置された送信用探触子から超音波を送信する送信ステップと、
前記管状部材の外周面に配置された受信用探触子により、前記送信用探触子から送信される超音波のうち前記管状部材を透過して管内を伝搬する透過伝搬波、及び前記送信用探触子から送信される超音波のうち前記管状部材の本体部内を伝搬する本体内伝搬波、を受信する受信ステップと、
前記送信用探触子及び前記受信用探触子とは別に前記管状部材の外周面に配置されるキャンセル用探触子を用いて、前記本体内伝搬波を打ち消すキャンセル波を送信するキャンセル波送信ステップと、
前記受信ステップにおいて少なくとも前記透過伝搬波が前記受信用探触子で受信される時点以前の所定期間を対象として、前記受信用探触子で受信される超音波の受信波形に応じて、前記本体内伝搬波と前記キャンセル波との合成波の振幅が全体として前記透過伝搬波よりも小さくなるように、前記キャンセル波の位相、振幅、及び周波数の少なくとも1つを調整する波形調整ステップと、
前記送信用探触子で超音波が送信されてから前記受信用探触子で前記透過伝搬波が受信されるまでの時間差に基づいて前記管状部材の内部での超音波の伝搬速度を算出する音速算出ステップと、
前記音速算出ステップで算出された伝搬速度に基づいて前記管状部材の内部に存在する流体の種別を判定する流体判定ステップと、を備え
前記波形調整ステップで調整されたキャンセル波を前記キャンセル用探触子から送信している状態で、前記受信用探触子で当該透過伝搬波を受信し、前記音速算出ステップ及び前記流体判定ステップを実行する流体識別方法。
A transmission step of transmitting ultrasonic waves from a transmission probe disposed on the outer peripheral surface of the tubular member;
Of the ultrasonic waves transmitted from the transmission probe, the transmission wave transmitted through the tubular member and propagated in the tube by the reception probe disposed on the outer peripheral surface of the tubular member, and the transmission A reception step of receiving a propagation wave in the main body that propagates in the main body of the tubular member among the ultrasonic waves transmitted from the probe;
A cancel wave transmission that transmits a cancel wave that cancels the propagation wave in the main body using a cancel probe disposed on the outer peripheral surface of the tubular member separately from the transmission probe and the reception probe. Steps,
In the reception step, at least the transmission propagation wave is received by the reception probe, and the main body according to the reception waveform of the ultrasonic wave received by the reception probe for a predetermined period before the time point A waveform adjustment step of adjusting at least one of the phase, amplitude, and frequency of the cancellation wave so that the amplitude of the combined wave of the inner propagation wave and the cancellation wave is smaller than the transmitted propagation wave as a whole;
The propagation speed of the ultrasonic wave inside the tubular member is calculated based on the time difference from when the ultrasonic wave is transmitted by the transmitting probe to when the transmitted propagation wave is received by the receiving probe. A sound speed calculation step;
A fluid determination step of determining the type of fluid present in the tubular member based on the propagation velocity calculated in the sound speed calculation step ,
In a state where the cancellation wave adjusted in the waveform adjustment step is transmitted from the canceling probe, the transmission probe receives the transmitted propagation wave, and the sound velocity calculation step and the fluid determination step are performed. Fluid identification method to be executed .
管状部材の外周面に配置され、超音波を送信する送信用探触子と、
前記管状部材の外周面に配置され、前記送信用探触子から送信される超音波のうち前記管状部材を透過して管内を伝搬する透過伝搬波、及び前記送信用探触子から送信される超音波のうち前記管状部材の本体部内を伝搬する本体内伝搬波、を受信する受信用探触子と、
前記送信用探触子及び前記受信用探触子とは別に前記管状部材の外周面に配置され、前記本体内伝搬波を打ち消すキャンセル波を送信するキャンセル用探触子と、
少なくとも前記透過伝搬波が前記受信用探触子で受信される時点以前の所定期間を対象として、前記受信用探触子で受信される超音波の受信波形に応じて、前記本体内伝搬波と前記キャンセル波との合成波の振幅が全体として前記透過伝搬波よりも小さくなるように、前記キャンセル波の位相、振幅、及び周波数の少なくとも1つを調整する波形調整部と、
前記波形調整部で調整された前記キャンセル波を前記キャンセル用探触子から送信している状態で、前記受信用探触子で前記透過伝搬波を受信し、前記送信用探触子で超音波が送信されてから前記受信用探触子で前記透過伝搬波が受信されるまでの時間差に基づいて前記管状部材の内部での超音波の伝搬速度を算出する音速算出部と、
前記音速算出部により算出された伝搬速度に基づいて前記管状部材の内部に存在する流体の種別を判定する流体判定部と、を備える流体識別装置。
A transmitting probe that is disposed on the outer peripheral surface of the tubular member and transmits ultrasonic waves;
Of the ultrasonic waves transmitted from the transmission probe, transmitted through the tubular member and propagating through the tube, and transmitted from the transmission probe, arranged on the outer peripheral surface of the tubular member A receiving probe for receiving a propagating wave in the main body that propagates in the main body of the tubular member of the ultrasonic wave; and
A canceling probe that is arranged on the outer peripheral surface of the tubular member separately from the transmitting probe and the receiving probe, and transmits a canceling wave that cancels the propagation wave in the main body,
For at least a predetermined period before the time when the transmitted propagation wave is received by the receiving probe, according to the received waveform of the ultrasonic wave received by the receiving probe, A waveform adjustment unit that adjusts at least one of the phase, amplitude, and frequency of the cancellation wave so that the amplitude of the combined wave with the cancellation wave is smaller than the transmitted propagation wave as a whole;
In a state where the cancel wave adjusted by the waveform adjusting unit is transmitted from the canceling probe, the transmission probe receives the transmitted propagation wave, and the transmitting probe transmits ultrasonic waves. A sound speed calculation unit that calculates a propagation speed of ultrasonic waves inside the tubular member based on a time difference from when the transmitted propagation wave is received by the reception probe after the transmission of
A fluid identification device, comprising: a fluid determination unit that determines a type of fluid existing inside the tubular member based on the propagation velocity calculated by the sound velocity calculation unit.
前記送信用探触子からの前記本体内伝搬波が前記キャンセル用探触子に到達するまでの到達時間を表す到達時間データと、前記本体内伝搬波の波形を表す波形データとを、前記管状部材の材質、管径、及び管厚の少なくとも1つに応じて予め記録した記録装置を更に備え、
前記キャンセル用探触子は、前記到達時間データと前記波形データとに基づいて算出される、前記本体内伝搬波とは逆位相となる波形を有する逆位相波を、前記キャンセル波として送信する請求項2に記載の流体識別装置。
The arrival time data indicating the arrival time until the propagation wave in the main body from the transmission probe reaches the canceling probe, and the waveform data indicating the waveform of the propagation wave in the main body, the tubular A recording device prerecorded according to at least one of the material of the member, the pipe diameter, and the pipe thickness;
The canceling probe transmits, as the canceling wave, an antiphase wave having a waveform which is calculated based on the arrival time data and the waveform data and has a phase opposite to the propagation wave in the main body. Item 3. The fluid identification device according to Item 2 .
前記管状部材の軸線と前記受信用探触子とが配置される仮想平面に対して面対称状に配置される、二つの前記キャンセル用探触子を備える請求項2又は3に記載の流体識別装置。 The fluid identification according to claim 2 or 3 , comprising two canceling probes arranged in plane symmetry with respect to a virtual plane on which the axis of the tubular member and the receiving probe are arranged. apparatus. 個別に設けられる前記送信用探触子と前記受信用探触子とが、前記仮想平面上において前記管状部材を径方向に挟むように対向して配置されている請求項に記載の流体識別装置。 5. The fluid identification according to claim 4 , wherein the transmitting probe and the receiving probe that are individually provided are opposed to each other so as to sandwich the tubular member in the radial direction on the virtual plane. apparatus.
JP2011049315A 2011-03-07 2011-03-07 Fluid identification device and fluid identification method Expired - Fee Related JP5676315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011049315A JP5676315B2 (en) 2011-03-07 2011-03-07 Fluid identification device and fluid identification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011049315A JP5676315B2 (en) 2011-03-07 2011-03-07 Fluid identification device and fluid identification method

Publications (2)

Publication Number Publication Date
JP2012185083A JP2012185083A (en) 2012-09-27
JP5676315B2 true JP5676315B2 (en) 2015-02-25

Family

ID=47015284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011049315A Expired - Fee Related JP5676315B2 (en) 2011-03-07 2011-03-07 Fluid identification device and fluid identification method

Country Status (1)

Country Link
JP (1) JP5676315B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6221624B2 (en) * 2013-10-23 2017-11-01 富士電機株式会社 Fluid type discrimination device and fluid type discrimination method
WO2020077627A1 (en) * 2018-10-19 2020-04-23 中国科学院深圳先进技术研究院 Acoustic fluid sensor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2533699B2 (en) * 1991-06-25 1996-09-11 株式会社日立製作所 Acoustic leak detector
JP2002082098A (en) * 2000-09-07 2002-03-22 Yokogawa Electric Corp Fluid kind judgment device and flowmeter
JP4387987B2 (en) * 2004-06-11 2009-12-24 株式会社オクテック Microstructure inspection apparatus, microstructure inspection method, and microstructure inspection program

Also Published As

Publication number Publication date
JP2012185083A (en) 2012-09-27

Similar Documents

Publication Publication Date Title
CA2949040C (en) An apparatus and method for measuring the pressure inside a pipe or container
JP5477051B2 (en) Ultrasonic flow meter
JP4851936B2 (en) Ultrasonic flow meter
CN111060600B (en) Sound beam focusing time delay control method for ultrasonic phased array imaging in pipeline
EP2545345B1 (en) Apparatus and method for sensing fluid flow in a pipe with variable wall thickness
US20150107371A1 (en) Method and system for determining characteristics of an acoustic signal
US20170328751A1 (en) Method for detection of pipeline vibrations and measuring instrument
JP2006322902A5 (en)
JP5902980B2 (en) Ultrasonic plate thickness measuring apparatus and ultrasonic plate thickness measuring method
JP2007292667A (en) Device for measuring acoustic characteristics
JP5676315B2 (en) Fluid identification device and fluid identification method
JP5193720B2 (en) Non-contact aerial ultrasonic tube ultrasonic inspection apparatus and method
JP5142350B2 (en) Flow measuring device
US20210333238A1 (en) Scale and corrosion monitoring system using ultrasonic guided waves
Wu et al. Defect detection in pipe structures using stochastic resonance of Duffing oscillator and ultrasonic guided waves
CN111220709B (en) Sound beam deflection time delay control method for ultrasonic phased array imaging in pipeline
JP4951296B2 (en) Water leakage determination device, water leakage determination method
WO2007083713A1 (en) Doppler type ultrasonic flow meter, flow metering method, and computer program
JP2019194541A (en) Elastic wave information acquisition method
JP7151344B2 (en) Pressure measuring device
JP6366313B2 (en) Fluid identification device and fluid identification method
US20210341350A1 (en) Method for generating an exciter signal and for acoustic measuring in technical hollow spaces
RU2620023C1 (en) Method of determining the place of the flow in the pipeline and the device for its implementation
JP6458167B2 (en) Pipe thickness measuring apparatus and method using ultrasonic waves
JP2010286330A (en) Method for inspecting thickness reduction of pipe, and inspection device used in the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141225

R150 Certificate of patent or registration of utility model

Ref document number: 5676315

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees