JP5676217B2 - Powder and particle feeder - Google Patents

Powder and particle feeder Download PDF

Info

Publication number
JP5676217B2
JP5676217B2 JP2010253194A JP2010253194A JP5676217B2 JP 5676217 B2 JP5676217 B2 JP 5676217B2 JP 2010253194 A JP2010253194 A JP 2010253194A JP 2010253194 A JP2010253194 A JP 2010253194A JP 5676217 B2 JP5676217 B2 JP 5676217B2
Authority
JP
Japan
Prior art keywords
feeding
granular material
amount
recess
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010253194A
Other languages
Japanese (ja)
Other versions
JP2012100609A (en
Inventor
中尾 康也
康也 中尾
牧原 邦充
邦充 牧原
喬士 尼崎
喬士 尼崎
宏信 西畠
宏信 西畠
有司 泉野
有司 泉野
浩史 三田
浩史 三田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2010253194A priority Critical patent/JP5676217B2/en
Publication of JP2012100609A publication Critical patent/JP2012100609A/en
Application granted granted Critical
Publication of JP5676217B2 publication Critical patent/JP5676217B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sowing (AREA)
  • Catching Or Destruction (AREA)
  • Fertilizing (AREA)

Description

本発明は、粉粒体タンクに貯留された粉粒体を繰出し凹部が設けられた駆動回転自在な繰出し回転体によって設定量ずつ間欠的に繰出して圃場に向けて落下させる粉粒体供給装置に関する。   TECHNICAL FIELD The present invention relates to a granular material supply device that intermittently feeds a granular material stored in a granular material tank by a set amount by means of a drive-rotating feeding rotator provided with a feeding recess and drops it toward a field. .

従来、粉粒体供給装置として、例えば特許文献1に記載されたものがあった。特許文献1に記載されたものでは、外周面に凹部が形成された繰出しロールを一定方向に回転させ、種子ホッパ内の種子を凹部が適数粒づつ保持して下方に繰出すように種子繰出部が構成され、種子繰出部から繰出される種子を第一案内管、第二案内管によって播種作溝器に案内される。この特許文献1に記載されたものでは、第一案内管に種子検出センサを設けられている。種子検出センサでは、種子通路を挟んで発光器と受光器が対向させて配置されている。   Conventionally, there existed what was described in patent document 1, for example as a granular material supply apparatus. In what is described in Patent Document 1, a feeding roll having a recess formed on the outer peripheral surface is rotated in a certain direction, and seeds are fed so that the seeds in the seed hopper are held by an appropriate number of recesses and fed downward. The portion is configured, and seeds fed from the seed feeding portion are guided to the sowing groover by the first guide tube and the second guide tube. In the device described in Patent Document 1, a seed detection sensor is provided in the first guide tube. In the seed detection sensor, a light emitter and a light receiver are arranged to face each other across a seed passage.

特開2003−116309号公報JP 2003-116309 A

上記した粉粒体供給装置において、繰出し回転体による繰出し量の変更調節を可能に構成するとともに、粉粒体供給装置による粉粒体の供給が行なわれているか否かを検出するよう繰出し回転体からの粉粒体の落下を検出するよう構成するのに、繰出し量を最多量にするよう繰出し量調節された状態における繰出し回転体から落下する粉粒体に対しても、繰出し量を最少量にするよう繰出し量調節された状態における繰出し回転体から落下する粉粒体に対しても検出作用するように検出センサを構成することにより、最少量から最多量に至る全調節範囲のいずれの繰出し量に調節された場合でも検出できるようにすると、検出センサの検出域が大になり、検出センサが大型になりがちであった。   In the above-mentioned powder and granular material supply apparatus, the feed rotary body is configured to be capable of changing and adjusting the amount of feed by the feed and rotating body, and to detect whether or not the powder and granular material is being supplied by the powder and granular material supply apparatus. In order to detect the fall of the granular material from the feed, even if the granular material falls from the feed rotating body in the state where the feed amount is adjusted so as to maximize the feed amount, the feed amount is minimized. By configuring the detection sensor to detect the powder particles falling from the feeding rotating body in the state where the feeding amount is adjusted so that the feeding amount is adjusted, any feeding in the entire adjusting range from the smallest amount to the largest amount is performed. If detection is possible even when the amount is adjusted, the detection area of the detection sensor becomes large, and the detection sensor tends to be large.

本発明の目的は、全調節範囲のいずれの繰出し量に調節された場合でも繰出し回転体からの粉粒体の落下を検出できるものでありながら、検出センサを小型に済ませることができる粉粒体供給装置を提供することにある。   The object of the present invention is to detect the fall of the granular material from the feeding rotating body even when adjusted to any feeding amount in the entire adjustment range, while allowing the detection sensor to be miniaturized. It is to provide a supply device.

本第1発明は、粉粒体タンクに貯留された粉粒体を繰出し凹部が設けられた駆動回転自在な繰出し回転体によって設定量ずつ間欠的に繰出して圃場に向けて落下させる粉粒体供給装置において、
前記繰出し凹部の開口面積を変更することによって、前記繰出し回転体の前記繰出し凹部による繰出し量を変更するように構成し、
前記繰出し回転体からの粉粒体を圃場に向けて落下させる落下供給路における粉粒体の落下を検出する検出センサを設け、
前記検出センサの前記落下供給路を横断する方向での検出域が、前記落下供給路のうちの前記繰出し凹部による繰出し量を最多量にするように繰出し量調節された状態における前記繰出し回転体からの粉粒体が落下する部位よりも小の部位であって、前記繰出し凹部による繰出し量を最少量にするように繰出し量調節された状態における前記繰出し回転体からの粉粒体が落下する部位に位置するように、前記検出域を設定してある。
According to the first aspect of the present invention, there is provided a granular material supply in which the granular material stored in the granular material tank is intermittently fed out by a set amount by a driving rotary feeding rotary member provided with a feeding recess and dropped toward the field. In the device
By changing the opening area of the feeding recess, the feeding amount by the feeding recess of the feeding rotating body is changed,
A detection sensor is provided for detecting the fall of the powder in the drop supply path for dropping the powder from the feeding rotating body toward the field,
The detection area of the detection sensor in the direction crossing the drop supply path is from the feed rotating body in a state in which the feed amount is adjusted so as to maximize the feed amount by the feed recess in the drop supply path. The part where the granular material falls from the feeding rotating body in a state where the feeding amount is adjusted so as to minimize the feeding amount by the feeding recess, which is smaller than the part where the granular material falls. The detection area is set so as to be located in

本第1発明の構成によると、繰出し凹部による繰出し量を変更することができる。そして、繰出し凹部による繰出し量を最少量に変更調節すれば、繰出し凹部の開口面積が最小になり、繰出し凹部による繰出し量を最多量に変更調節すれば、繰出し凹部の開口面積が最大になり、繰出し量を最少量に変更調節した場合、落下供給路のうちの繰出し回転体からの粉粒体が落下する部位が狭くなり、繰出し量を最多量に変更調節した場合、落下供給路のうちの繰出し回転体からの粉粒体が落下する部位が広くなり、そして、繰出し量を最多量に変更調節した場合に粉粒体が落下する部位は、繰出し量を最少量に変更調節した場合に粉粒体が落下する部位を含んだ部位になる。検出域が繰出し量を最多量に調節された状態における粉粒体が落下する部位よりも小の部位であって、繰出し量を最少量に調節された状態における粉粒体が落下する部位に位置するものだから、繰出し量が最多量に調節された場合に粉粒体が落下する部位よりも小の部位を検出対象域とする小範囲の検出域を備えさせて検出センサを構成しても、最少量から最多量に至る全調節範囲のいずれの繰出し量に調節された場合であっても、繰出し回転体からの粉粒体の落下を検出することができる。   According to the configuration of the first aspect of the present invention, the feeding amount by the feeding recess can be changed. And, if the feed amount by the feed recess is changed and adjusted to the minimum amount, the opening area of the feed recess is minimized, and if the feed amount by the feed recess is changed and adjusted to the maximum amount, the opening area of the feed recess is maximized, When the feed amount is changed and adjusted to the minimum amount, the part of the fall supply path where the granular material falls from the feed rotating body is narrowed, and when the feed amount is changed and adjusted to the maximum amount, The part where the granular material falls from the feeding rotating body becomes wide, and when the feeding amount is changed and adjusted to the maximum amount, the part where the granular material falls is adjusted when the feeding amount is changed and adjusted to the minimum amount. It becomes the part including the part where the granule falls. The detection area is located in a part smaller than the part where the granular material falls in the state where the feeding amount is adjusted to the maximum amount, and is located in the part where the granular material falls in the state where the feeding amount is adjusted to the minimum amount. Therefore, even if the detection sensor is configured with a small detection area, the detection target area is smaller than the part where the granular material falls when the feeding amount is adjusted to the maximum amount, Even if it is a case where it is adjusted to any feed amount in the entire adjustment range from the minimum amount to the maximum amount, it is possible to detect the fall of the granular material from the feed rotating body.

従って、繰出し量の調節が行なえるとともに落下供給路における粉粒体の落下を検出するものでありながら、繰出し量が全調節範囲のいずれの繰出し量に調節された場合であっても、粉粒体の落下を検出域が小さい小型の検出センサによって検出して、粉粒体が供給されているか否かの報知などを安価に行なうことができる。   Accordingly, the feed amount can be adjusted and the fall of the granular material in the drop supply path can be detected, and even if the feed amount is adjusted to any feed amount in the entire adjustment range, The fall of the body can be detected by a small detection sensor having a small detection area, so that notification of whether or not the powder particles are supplied can be made at low cost.

本第2発明は、前記繰出し回転体を、前記繰出し凹部を備える回転体本体と前記繰出し凹部に係入する容量設定部を備える容量調節体とを備えて構成して、前記容量調節体が前記回転体本体に対して摺動調節されることにより、前記繰出し凹部における前記容量設定部の係入量が変化し、前記繰出し凹部の容量及び開口面積が変化して前記繰出し凹部による繰出し量が変化するように構成し、
前記検出センサを、前記回転体本体に対して前記容量調節体が摺動調節される方向と異なる方向に前記落下供給路を挟んで位置する投光部と受光部を備えて構成してある。
In the second aspect of the present invention, the feeding rotating body includes a rotating body main body including the feeding recess and a capacity adjusting body including a capacity setting unit engaged with the feeding recess, and the capacity adjusting body is the By adjusting sliding relative to the rotating body, the amount of engagement of the capacity setting portion in the feeding recess changes, the capacity and opening area of the feeding recess changes, and the feeding amount by the feeding recess changes. Configured to
The detection sensor includes a light projecting unit and a light receiving unit that are positioned with the drop supply path in a direction different from a direction in which the capacity adjusting body is slid and adjusted with respect to the rotating body.

本第2発明の構成によると、容量調節体が摺動調節される方向での投光幅や受光幅を有した投光素子や受光素子を備えさせて検出センサを構成することになる。従って、繰出し量調節が行なわれると、落下供給路のうちの粉粒体が落下する部位の大きさが、粉粒体及び繰出し回転体の性状や構造などに起因して容量調節体の摺動方向に主として変化する場合において、投光幅や受光幅が小である投光素子や受光素子を備えた小型なものに検出センサを構成しながら、繰出し回転体からの粉粒体の落下を粉粒体に対する非接触状態で検出することができる。   According to the configuration of the second aspect of the invention, the detection sensor is configured by including the light projecting element and the light receiving element having the light projecting width and the light receiving width in the direction in which the capacity adjusting body is slidably adjusted. Therefore, when the feed amount adjustment is performed, the size of the part of the drop supply path where the powder particles fall is caused by the property and structure of the powder particles and the feed rotating body, so that the capacity adjuster slides. In the case of mainly changing in the direction, the detection sensor is configured to be a small one having a light projecting element or a light receiving element having a small light projecting width or light receiving width, and the fall of the granular material from the feeding rotating body is pulverized. It can detect in the non-contact state with respect to a granular material.

従って、落下供給路における粉粒体の落下を検出するものでありながら、粉粒体に対する非接触状態でかつ小型の検出センサで検出して、優れた点播精度を現出させながら所定の検出が行なえるものを安価に得ることができる。   Therefore, while detecting the fall of the granular material in the drop supply path, it is detected in a non-contact state with respect to the granular material with a small detection sensor, and the predetermined detection is performed while providing excellent spotting accuracy. You can get what you can afford.

本第3発明は、前記繰出し回転体が回転軸芯より下方に位置する箇所において前記受光部が位置する側から前記投光部が位置する側に向かって移動するように構成してある。   According to the third aspect of the present invention, the feeding rotating body is configured to move from the side where the light receiving unit is located toward the side where the light projecting unit is located at a location where the feeding rotary body is located below the rotational axis.

本第3発明の構成によると、繰出し回転体の回転によって粉粒体の破砕片などの塵埃が飛散しても、受光部に付着しにくくできる。   According to the configuration of the third aspect of the invention, even if dust such as crushed pieces of powder particles are scattered by the rotation of the feeding rotating body, it is difficult to adhere to the light receiving unit.

従って、塵埃の飛散にかかわらず、受光部の塵埃による汚れが発生しにくくて、検出を精度よく行なわせることができる。   Therefore, regardless of the scattering of dust, the light receiving portion is hardly contaminated by dust, and detection can be performed with high accuracy.

本第4発明は、粉粒体タンクに貯留された粉粒体を繰出し凹部が設けられた駆動回転自在な繰出し回転体によって設定量ずつ間欠的に繰出して圃場に向けて落下させる粉粒体供給装置であって、
前記繰出し回転体を、前記繰出し凹部を備える回転体本体と前記繰出し凹部に係入する容量設定部を備える容量調節体とを備えて構成して、前記容量調節体が前記回転体本体に対して摺動調節されることにより、前記繰出し凹部における前記容量設定部の係入量が変化し、前記繰出し凹部の容量及び開口面積が変化して前記繰出し凹部による繰出し量が変化するように構成し、
前記繰出し回転体からの粉粒体を圃場に向けて落下させる落下供給路における粉粒体の落下を検出する検出センサを設け、
前記検出センサを、前記回転体本体に対して前記容量調節体が摺動調節される方向に沿う方向に前記落下供給路を挟んで位置する投光部と受光部を備えて構成し、
前記検出センサの検出域を、前記落下供給路のうち、前記繰出し凹部による繰出し量を最少量にするように繰出し量調節された状態における前記繰出し回転体からの粉粒体が落下する部位に設定してある
According to the fourth aspect of the present invention, there is provided a granular material supply in which the granular material stored in the granular material tank is intermittently fed out by a set amount by a drive-rotating feeding rotary body provided with a feeding recess and dropped toward the field. A device,
The feeding rotary body includes a rotary body main body including the feeding recess and a capacity adjusting body including a capacity setting unit that engages with the feeding recess, and the capacity adjusting body is configured with respect to the rotary body main body. By adjusting the sliding, the amount of engagement of the capacity setting portion in the feeding recess changes, the capacity and opening area of the feeding recess changes, and the feeding amount by the feeding recess changes.
A detection sensor is provided for detecting the fall of the powder in the drop supply path for dropping the powder from the feeding rotating body toward the field,
The detection sensor includes a light projecting unit and a light receiving unit that are positioned with the drop supply path in a direction along a direction in which the capacity adjusting body is slid and adjusted with respect to the rotating body main body ,
The detection area of the detection sensor is set to a part of the drop supply path where the granular material from the feeding rotating body falls in a state where the feeding amount is adjusted so that the feeding amount by the feeding recess is minimized. It is .

本第4発明の構成によると、平面視で容量調節体が摺動調節される方向と交差する方向での投光幅や受光幅を有した投光素子や受光素子を備えさせて検出センサを構成することになる。従って、繰出し量調節が行なわれると、落下供給路のうちの粉粒体が落下する部位の大きさが、粉粒体及び繰出し回転体の性状や構造などに起因して容量調節体の摺動方向と交差する方向に主として変化する場合において、投光幅や受光幅が小である投光素子や受光素子を備えた小型なものに検出センサを構成しながら、繰出し回転体からの粉粒体の落下を粉粒体に対する非接触状態で検出することができる。   According to the configuration of the fourth invention, the detection sensor is provided with a light projecting element or a light receiving element having a light projecting width or a light receiving width in a direction crossing a direction in which the capacity adjusting body is slid and adjusted in a plan view. Will be composed. Therefore, when the feed amount adjustment is performed, the size of the part of the drop supply path where the powder particles fall is caused by the property and structure of the powder particles and the feed rotating body, so that the capacity adjuster slides. In the case of mainly changing in the direction crossing the direction, the powder from the feeding rotating body while constituting the detection sensor in a small one having a light projecting element or a light receiving element having a small light projecting width or light receiving width Can be detected in a non-contact state with respect to the granular material.

従って、落下供給路における粉粒体の落下を検出するものでありながら、粉粒体に対する非接触状態でかつ小型の検出センサで検出して、優れた点播精度を現出させながら所定の検出が行なえるものを安価に得ることができる。   Therefore, while detecting the fall of the granular material in the drop supply path, it is detected in a non-contact state with respect to the granular material with a small detection sensor, and the predetermined detection is performed while providing excellent spotting accuracy. You can get what you can afford.

本第5発明は、前記検出センサの検出域が前記繰出し回転体の粉粒体排出箇所を通る鉛直線と前記繰出し回転体の粉粒体排出箇所における接線との間に位置するように、前記検出域を設定してある。   In the fifth invention, the detection area of the detection sensor is positioned between a vertical line passing through the granular material discharge location of the feeding rotary body and a tangent line at the granular material discharge location of the feeding rotary body. The detection area is set.

繰出し回転体からの粉粒体は、繰出し回転体の回転力を受けながら排出され、繰出し回転体の粉粒体排出箇所を通る鉛直線と繰出し回転体の粉粒体排出箇所における接線との間に位置する箇所に落下する。本第5発明の構成によると、検出センサの検出域が繰出し回転体の粉粒体排出箇所を通る鉛直線と繰出し回転体の粉粒体排出箇所における接線との間に位置するものだから、繰出し回転体の粉粒体排出箇所を通る鉛直線と繰出し回転体の粉粒体排出箇所における接線との間に位置するだけの小範囲の検出域を備えて検出センサを構成すれば、繰出し回転体からの粉粒体の落下の検出を精度よく行なわせることができる。   The granular material from the feeding rotator is discharged while receiving the rotational force of the feeding rotator, and is between the vertical line passing through the powder discharging portion of the feeding rotator and the tangent line at the powder discharging portion of the feeding rotator. It falls to the place located at. According to the configuration of the fifth aspect of the invention, since the detection area of the detection sensor is located between the vertical line passing through the powder discharge part of the feeding rotary body and the tangent line at the powder discharge part of the feeding rotary body, If the detection sensor is configured with a small detection area located between the vertical line passing through the granular material discharge location of the rotating body and the tangent line at the granular material discharge location of the feeding rotary body, the feeding rotary body Therefore, it is possible to accurately detect the fall of the powder and granular material.

従って、落下供給路における粉粒体の落下を検出するものでありながら、粉粒体の落下を検出域が小さい小型の検出センサによって検出して、粉粒体が供給されているか否かの報知などを安価に行なうことができる。   Therefore, while detecting the fall of the granular material in the fall supply channel, the fall of the granular material is detected by a small detection sensor with a small detection area, and notification whether the granular material is supplied or not. Etc. can be performed at low cost.

本第6発明は、前記繰出し回転体を収容する繰出しケースに点検用開口を、前記繰出し回転体の回転軸芯に対して前記受光部が位置する側に配置して設けてある。   According to the sixth aspect of the present invention, an inspection opening is disposed on a side where the light receiving portion is located with respect to a rotation axis of the feeding rotary body in a feeding case that houses the feeding rotary body.

本第6発明の構成によると、点検用開口から受光部に手や清掃具が届きやすくできる。   According to the configuration of the sixth aspect of the invention, the hand and the cleaning tool can easily reach the light receiving unit from the inspection opening.

従って、受光部が塵埃などで汚れても、点検用開口から容易に清掃して所定の検出精度を確保することができる。   Therefore, even if the light receiving unit is contaminated with dust or the like, it can be easily cleaned from the inspection opening to ensure a predetermined detection accuracy.

水田作業機の全体を示す側面図である。It is a side view which shows the whole paddy field machine. 作業部の全体を示す後面図である。It is a rear view which shows the whole working part. 作業部の全体を示す平面図である。It is a top view which shows the whole working part. 作業部の一部を示す側面図である。It is a side view which shows a part of working part. 作業部の一部を示す後面図である。It is a rear view which shows a part of working part. 粉粒体供給装置を示す縦断側面図である。It is a vertical side view which shows a granular material supply apparatus. 粉粒体供給装置の一部を示す縦断後面図である。It is a vertical rear view which shows a part of granular material supply apparatus. 繰出しケースのメンテナンス要領を示す説明図である。It is explanatory drawing which shows the maintenance point of a feeding case. 筒状体及び光学式センサの取り外し状態を示す縦断側面図である。It is a vertical side view which shows the removal state of a cylindrical body and an optical sensor. (a)は、繰出し量が最少量に調節された状態で種籾が落下する部位と光学式センサの検出域との関係を示す説明図、(b)は、繰出し量が最多量に調節された状態で種籾が落下する部位と光学式センサの検出域との関係を示す説明図である。(A) is explanatory drawing which shows the relationship between the site | part where a seed drop falls in the state where the amount of feeding was adjusted to the minimum amount, and the detection area of an optical sensor, (b) was the amount of feeding adjusted to the maximum amount It is explanatory drawing which shows the relationship between the site | part where a seed sow falls in a state, and the detection area of an optical sensor. センサ支持体、投光部及び受光部の全体を示す斜視図である。It is a perspective view which shows the whole sensor support body, a light projection part, and a light-receiving part. 報知装置の制御系を示すブロック図である。It is a block diagram which shows the control system of an alerting | reporting apparatus. 受光部の受光構造を構成する条件を示す説明図である。It is explanatory drawing which shows the conditions which comprise the light reception structure of a light-receiving part. 第2実施構造を備えた粉粒体供給装置を示す縦断側面図である。It is a vertical side view which shows the granular material supply apparatus provided with 2nd implementation structure. 第3実施構造を備えた粉粒体供給装置を示す縦断側面図である。It is a vertical side view which shows the granular material supply apparatus provided with 3rd implementation structure. 第3実施構造を備えた粉粒体供給装置を示す縦断後面図である。It is a vertical rear view which shows the granular material supply apparatus provided with 3rd implementation structure. (a)は、第3実施構造を備えた粉粒体供給装置において繰出し量が最少量に調節された状態で種籾が落下する部位と光学式センサの検出作用との関係を示す説明図、(b)は、第3実施構造を備えた粉粒体供給装置において繰出し量が最多量に調節された状態で種籾が落下する部位と光学式センサの検出作用との関係を示す説明図である。(A) is explanatory drawing which shows the relationship between the site | part which a seed | vessel falls and the detection effect | action of an optical sensor in the state which the feeding amount was adjusted to the minimum amount in the granular material supply apparatus provided with 3rd Embodiment structure, (b) is explanatory drawing which shows the relationship between the site | part to which a seed drop falls, and the detection effect | action of an optical sensor in the state by which feeding amount was adjusted to the maximum amount in the granular material supply apparatus provided with 3rd Embodiment structure. 第3実施構造を備えた粉粒体供給装置における光学式センサの検出域と繰出し回転体の位置関係を示す説明図である。It is explanatory drawing which shows the positional relationship of the detection area of an optical sensor in a granular material supply apparatus provided with 3rd Embodiment structure, and a delivery rotary body.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

〔第1実施例〕
図1は、本発明の実施形態に係る粉粒体供給装置Aが装備された水田作業機の全体を示す側面図である。この図に示すように、水田作業機は、左右一対の操向操作及び駆動自在な前車輪1,1と左右一対の駆動自在な後車輪2,2とによって自走する自走車と、この自走車の車体フレーム3の後部にリンク機構Lを介して連結された作業部Sと、自走車の車体後部に配置された肥料タンク71を有する施肥装置Cとを備えて構成してある。
[First embodiment]
FIG. 1 is a side view showing an entire paddy field working machine equipped with a granular material supply device A according to an embodiment of the present invention. As shown in this figure, a paddy field work machine includes a self-propelled vehicle that is self-propelled by a pair of left and right steering operations and driveable front wheels 1 and 1 and a pair of left and right driveable rear wheels 2 and 2, The working unit S is connected to the rear part of the body frame 3 of the self-propelled vehicle via a link mechanism L, and the fertilizer application device C has a fertilizer tank 71 arranged at the rear part of the self-propelled vehicle body. .

自走車は、車体前部に設けたエンジン5を備え、このエンジン5が出力する駆動力を車体前部に位置するミッションケース6に入力し、このミッションケース6に入力した駆動力をミッションケース6の内部に位置する走行ミッションから前輪駆動ケース7に伝達して左右一対の前車輪1,1を駆動し、ミッションケース6に入力したエンジン5からの駆動力を前記走行ミッションから回転軸8を介して車体後部に位置する後輪駆動ケース9に伝達して左右一対の後車輪2,2を駆動する。自走車は、車体後部に位置する運転座席4aを有した運転部4を備え、この運転部4に搭乗して運転するように乗用型になっている。自走車は、前記ミッションケース6に入力したエンジン5からの駆動力を、ミッションケース6の内部に位置する作業ミッションから車体フレーム3の下方に位置する回転軸11と、この回転軸11の後端部から車体後方向きに延出する伝動軸12とを介して作業部Sの駆動機構Dの入力軸42(図4参照)に伝達する。   The self-propelled vehicle includes an engine 5 provided at the front part of the vehicle body. The driving force output from the engine 5 is input to a transmission case 6 located at the front part of the vehicle body. The driving force input to the transmission case 6 is input to the transmission case. 6 is transmitted to the front wheel drive case 7 from the traveling mission located inside the vehicle 6 to drive the pair of left and right front wheels 1, 1, and the driving force from the engine 5 input to the mission case 6 is transmitted from the traveling mission to the rotating shaft 8. To the rear wheel drive case 9 located at the rear of the vehicle body to drive the pair of left and right rear wheels 2 and 2. The self-propelled vehicle includes a driving unit 4 having a driving seat 4a located at the rear of the vehicle body, and is a riding type so as to ride on the driving unit 4 for driving. The self-propelled vehicle receives the driving force from the engine 5 input to the mission case 6 from the work mission located inside the mission case 6 to the rotary shaft 11 located below the body frame 3 and the rear of the rotary shaft 11. The power is transmitted to the input shaft 42 (see FIG. 4) of the drive mechanism D of the working unit S via the transmission shaft 12 extending from the end portion toward the rear of the vehicle body.

図2は、作業部Sの全体を示す後面図である。図3は、作業部Sの全体を示す平面図である。図4は、作業部Sの一部を示す側面図である。図5は、作業部Sの一部を示す後面図である。これらの図及び図1に示すように、作業部Sは、リンク機構Lにおける後部リンク17の下端部に前端部が連結された作業部フレーム25と、作業部フレーム25の下部に車体横方向に並べて取り付けられた4つの接地フロート20と、作業部フレーム25が備える支持フレーム26に車体横方向に並べて取り付けられた6つの粉粒体供給装置Aと、作業部フレーム25が備える支柱66に取り付けられた薬剤散布装置Bと、作業部フレーム25の前部に装着された左右一対の作溝体F,Fとを備えている。   FIG. 2 is a rear view showing the entire working unit S. FIG. 3 is a plan view showing the entire working unit S. FIG. FIG. 4 is a side view showing a part of the working unit S. FIG. 5 is a rear view showing a part of the working unit S. As shown in these drawings and FIG. 1, the working unit S includes a working unit frame 25 having a front end connected to a lower end of the rear link 17 in the link mechanism L, and a lower part of the working unit frame 25 in the vehicle body lateral direction. It is attached to four grounding floats 20 that are mounted side by side, six powder supply devices A that are mounted side by side on the support frame 26 provided in the working unit frame 25, and a column 66 that is provided to the working unit frame 25. And a pair of left and right groove forming bodies F, F attached to the front portion of the working unit frame 25.

リンク機構Lは、車体フレーム3の後部から後方向きに上下揺動自在に延出する上部リンク15及び下部リンク16と、上部リンク15と下部リンク16の後端部に連結された後部リンク17を備えている。後部リンク17には、作業部フレーム25が連結されており、リンク機構Lは、車体フレーム3と後部リンク17に亘って連結された油圧シリンダ13によって車体フレーム3に対して上下に揺動操作されて、作業部Sを、4つの接地フロート20が圃場に接地した下降作業位置と各接地フロート20が圃場から上昇した上昇非作業位置とに昇降操作する。   The link mechanism L includes an upper link 15 and a lower link 16 extending from the rear portion of the vehicle body frame 3 so as to be swingable rearward and a rear link 17 connected to rear ends of the upper link 15 and the lower link 16. I have. A working unit frame 25 is connected to the rear link 17, and the link mechanism L is swung up and down with respect to the vehicle body frame 3 by a hydraulic cylinder 13 connected across the vehicle body frame 3 and the rear link 17. Then, the working unit S is moved up and down to the lowering work position where the four grounding floats 20 are in contact with the field and the ascending non-working position where each grounding float 20 is lifted from the field.

水田作業機は、作業部Sを下降作業位置に下降させて自走車を走行させると、6つの粉粒体供給装置Aによって稲の種籾であって、鉄コーティング処理が施された鉄コーティング種籾a(以下、単に種籾aと呼称する)を6条供給で圃場に供給する播種作業と、施肥装置Cによって6条の種籾aに対する肥料供給を行なう施肥作業と、薬剤散布装置Bによって雑草防止などの薬剤を圃場に散布する薬剤散布作業と、左右一対の作溝体F,Fによって圃場に排水溝を形成する作溝作業とを行なう。各粉粒体供給装置Aによって供給される種籾aは、接地フロート20の通過によって整地された箇所に供給される。   When the paddy field work machine lowers the working part S to the lowering work position and runs the self-propelled vehicle, it is the rice seed seeds that have been subjected to the iron coating process by the six powder supply devices A. Seeding work to supply a (hereinafter simply referred to as seed pod a) to the field with six-row supply, fertilization work to supply fertilizer to the six-row seed pod a by the fertilizer application apparatus C, weed prevention by the chemical spraying apparatus B, etc. The chemical spraying operation for spraying the chemical in the field and the groove forming operation for forming the drainage groove in the field by the pair of left and right groove forming bodies F and F are performed. The seed pod a supplied by each powder and granular material supply device A is supplied to a place leveled by passing through the ground float 20.

作業部フレーム25は、後部リンク17に車体前後向きのローリング軸芯Xまわりにローリング自在に連結されており、作業部Sは、自走車が左右に傾斜しても、接地フロート20の接地によって自走車に対してローリング軸芯Xまわりに自然にローリング(自由ローリング)して、車体横方向で水平又はほぼ水平な姿勢を維持する。   The working unit frame 25 is connected to the rear link 17 so as to be able to roll around the rolling axis X facing the vehicle front-rear direction. Even if the self-propelled vehicle is tilted left and right, the working unit S It rolls naturally around the rolling axis X with respect to the self-propelled vehicle (free rolling) to maintain a horizontal or almost horizontal posture in the lateral direction of the vehicle body.

作業部Sは、自走車に対してローリングした際、後部リンク17に設けたバネ支持部17aと作業部フレーム25に設けた左右一対のバネ掛け支柱27とに亘って連結された復元バネ28を伸長側に弾性変形させ、復元バネ28によって水平姿勢に復帰付勢される。   When the working unit S rolls with respect to the self-propelled vehicle, a restoring spring 28 connected across a spring support 17a provided on the rear link 17 and a pair of left and right spring hanging columns 27 provided on the working unit frame 25. Is elastically deformed to the extension side, and is returned to the horizontal posture by the restoring spring 28.

施肥装置Cについて説明する。
図1〜5に示すように、施肥装置Cは、前記肥料タンク71を備える他、この肥料タンク71の下部に連設された肥料繰出し機構73、この肥料繰出し機構73の肥料排出部に送風管76を介して接続された電動ブロワ75を備えて構成してある。肥料繰出し機構73は、車体横方向に並んだ6つの肥料排出口(図示せず)を備えている。肥料繰出し機構73の各肥料排出口は、作業部Sの下部に車体横方向に並べて設けた6つの作溝施肥器77に各別に肥料供給ホース74を介して接続されている。肥料繰出し機構73は、走行トランスミッションからの駆動力を入力軸78によって入力して駆動される。
The fertilizer applicator C will be described.
As shown in FIGS. 1 to 5, the fertilizer application apparatus C includes the fertilizer tank 71, a fertilizer feeding mechanism 73 connected to a lower portion of the fertilizer tank 71, and a blower pipe at a fertilizer discharge portion of the fertilizer feeding mechanism 73. The electric blower 75 is connected via the 76. The fertilizer feeding mechanism 73 includes six fertilizer discharge ports (not shown) arranged in the lateral direction of the vehicle body. Each fertilizer discharge port of the fertilizer feeding mechanism 73 is connected to each of six groove-growing fertilizers 77 arranged in the lower part of the working unit S in the lateral direction of the vehicle body via a fertilizer supply hose 74. The fertilizer feeding mechanism 73 is driven by inputting a driving force from the traveling transmission through the input shaft 78.

施肥装置Cは、肥料タンク71に貯留された粒状の肥料を肥料繰出し機構73によって肥料タンク71から各肥料排出口に繰出し、各肥料排出口に繰出した肥料を電動ブロワ75によって供給される搬送風によって肥料供給ホース74を介して作溝施肥器77に供給する。6つの作溝施肥器77は、各粉粒体供給装置Aが備える筒状体56のやや横側でかつやや前側に一つずつ位置するように配置してある。各作溝施肥器77は、粉粒体供給装置Aが筒状体56から圃場に供給する種籾aの横側近くで圃場に溝を形成し、形成した溝に肥料供給ホース74からの肥料を供給する。   The fertilizer application device C feeds the granular fertilizer stored in the fertilizer tank 71 from the fertilizer tank 71 to each fertilizer discharge port by the fertilizer feed mechanism 73, and feeds the fertilizer fed to each fertilizer discharge port by the electric blower 75. Is supplied to the grooving fertilizer 77 via the fertilizer supply hose 74. The six groove fertilizer fertilizers 77 are arranged so as to be located one by one on the slightly lateral side and slightly on the front side of the cylindrical body 56 provided in each powder and granular material supply device A. Each ditch fertilizer applicator 77 forms a groove in the field near the side of the seed pod a supplied from the cylindrical body 56 to the field by the granular material supply device A, and fertilizer from the fertilizer supply hose 74 is formed in the formed groove. Supply.

薬剤散布装置Bについて説明する。
図1,2に示すように、薬剤散布装置Bは、前記支柱66の上端部に散布機ケースが連結された電動散布機62と、電動散布機62の上部に取付けられた薬剤タンク61とを備えて構成してある。電動散布機62は、散布機ケースの内部に駆動回転自在に設けられた繰出し皿63及び回転散布体64を備え、薬剤タンク61に貯留された薬剤を、繰出し皿63及び回転散布体64によって散布機ケースの外部に飛散させて、各粉粒体供給装置Aによって種籾aが供給された後の圃場に散布する。
The medicine spraying device B will be described.
As shown in FIGS. 1 and 2, the medicine spreader B includes an electric spreader 62 having a spreader case connected to the upper end of the column 66, and a drug tank 61 attached to the upper part of the electric spreader 62. It is prepared. The electric sprayer 62 includes a feeding tray 63 and a rotating sprayer 64 that are rotatably driven inside the sprayer case. The medicine stored in the medicine tank 61 is sprayed by the feeding tray 63 and the rotary sprayer 64. It is scattered outside the machine case and sprayed onto the field after the seed meal a is supplied by each powder and granular material supply device A.

粉粒体供給装置Aについて説明する。
6つの粉粒体供給装置Aは、同じ構造を備えるよう構成されている。図1,2,4,5に示すように、粉粒体供給装置Aは、種子タンク32の底部に形成されたロート部32aに上端部が連結された繰出しケース51、及び繰出しケース51の下端部に装着された筒状体56を備えて構成してある。作業部左側の3つの粉粒体供給装置Aのための種子タンク32及び作業部右側の3つの粉粒体供給装置Aのための種子タンク32のそれぞれは、対応する3つの粉粒体供給装置Aに共用の一つのタンクに構成されている。
The granular material supply apparatus A will be described.
The six granular material supply devices A are configured to have the same structure. As shown in FIGS. 1, 2, 4, and 5, the powder supply device A includes a feeding case 51 having an upper end connected to a funnel portion 32 a formed at the bottom of the seed tank 32, and a lower end of the feeding case 51. A cylindrical body 56 attached to the part is provided. Each of the seed tank 32 for the three powder supply devices A on the left side of the working unit and the seed tank 32 for the three powder supply devices A on the right side of the working unit has three corresponding powder supply devices. A tank is shared by A.

図6は、粉粒体供給装置Aを示す縦断側面図である。図7は、粉粒体供給装置Aを示す縦断後面図である。これらの図及び図4,5に示すように、繰出しケース51は、作業部フレーム25における支持フレーム26に連結ボルト21によって脱着自在に連結された連結部51dを有した前壁部51aと、点検用開口108を有した後壁部51bと、回転体支持部51eを有した左右一対の横壁部51c,51cとを樹脂素材で一体成形した状態で備えて構成してあり、樹脂製の上下向きの筒状になっており、上側で粉粒体タンク32のロート部32aに連通し、下側で筒状体56に連通している。点検用開口108は、蓋体107の脱着によって開閉される。   FIG. 6 is a longitudinal side view showing the powder body supply apparatus A. FIG. FIG. 7 is a longitudinal rear view showing the granular material supply apparatus A. FIG. As shown in FIGS. 4 and 5, the feeding case 51 includes a front wall portion 51 a having a connecting portion 51 d detachably connected to the support frame 26 in the working portion frame 25 by a connecting bolt 21, and an inspection. The rear wall portion 51b having the opening 108 for use and the pair of left and right lateral wall portions 51c and 51c having the rotating body support portion 51e are integrally formed of a resin material. The upper part communicates with the funnel part 32a of the powder tank 32, and the lower part communicates with the cylindrical body 56. The inspection opening 108 is opened and closed by attaching and detaching the lid 107.

図6,7に示すように、繰出しケース51の内部に、点検用開口108と同じ配置高さに位置する繰出しロール形の繰出し回転体52、繰出し回転体52の上側に繰出し回転体52の周方向に分散させて配置した一対の摺り切り体53,54、一対の摺り切り体53,54のうちの繰出し回転体回転方向下手側に位置する下手側の摺り切り体54のブラシ部54aに対して繰出し回転体回転方向下手側に位置する箇所に繰出し回転体52の周面52sに沿わせた配置した繰出しガイド80、繰出し回転体52の上方に配置した流下案内板57を設けてある。   As shown in FIGS. 6 and 7, inside the feeding case 51, a feeding roll-shaped feeding rotary body 52 located at the same arrangement height as the inspection opening 108, and the circumference of the feeding rotary body 52 above the feeding rotary body 52. The brush portion 54a of the lower-side scraper 54 located on the lower side in the rotation direction of the feeding rotating body of the pair of scrapers 53, 54 and the pair of scrapers 53, 54 arranged in a distributed manner. A feeding guide 80 arranged along the peripheral surface 52s of the feeding rotating body 52 and a flow guide plate 57 arranged above the feeding rotating body 52 are provided at a position located on the lower side in the feeding rotating body rotation direction.

繰出し回転体52は、圃場に対して極力近い箇所から種籾aを落下させるように、ローリング軸芯Xの配置高さにほぼ等しい配置高さに配置した状態で、回転支軸59、及び回転支軸59と左右一対の横壁部51c,51cの回転体支持部51eの間に介装されたボス部材51fを介して左右一対の横壁部51c,51cに回転自在に支持されている。繰出し回転体52は、回転支軸59の車体横向き軸芯で成る回転軸芯Pまわりに回転支軸59によって回転方向F(図6参照)に回転駆動される。繰出し回転体52の周面52sに、4つの繰出し凹部58を繰出し回転体52の回転方向Fに所定間隔を隔てて並ぶ配置で設けてある。   The feeding rotary body 52 is arranged in a state where it is arranged at an arrangement height substantially equal to the arrangement height of the rolling shaft core X so that the seed pod a is dropped from a place as close as possible to the field, and the rotation support shaft 59 and the rotation support The shaft 59 and a pair of left and right lateral wall portions 51c and 51c are rotatably supported by the pair of left and right lateral wall portions 51c and 51c via a boss member 51f interposed between the rotating body support portions 51e. The feeding rotary body 52 is rotationally driven in the rotation direction F (see FIG. 6) by the rotation support shaft 59 around the rotation shaft core P that is a vehicle body lateral axis of the rotation support shaft 59. Four feeding recesses 58 are provided on the peripheral surface 52 s of the feeding rotary body 52 so as to be arranged at a predetermined interval in the rotation direction F of the feeding rotary body 52.

一対の摺り切り体53,54のうちの繰出し回転体回転方向上手側に位置する上手側の摺り切り体53と繰出しケース51の内側に一体成形した壁体51gとにより、繰出し回転体52の繰出し凹部58に対する種籾供給を行なう供給スペース50を繰出し回転体52の上端側の上方に繰出し回転体52の周面52sに臨ませた状態で形成してある。   The feeding rotary body 52 is fed out by the upper side sliding body 53 located on the upper side of the feeding rotating body rotation direction of the pair of grinding bodies 53 and 54 and the wall body 51g integrally formed inside the feeding case 51. A supply space 50 for supplying seeds to the recess 58 is formed above the upper end side of the feeding rotary body 52 so as to face the peripheral surface 52 s of the feeding rotary body 52.

流下案内板57は、傾斜姿勢の案内面57aを備え、種子タンク32に貯留され、ロート部32aの底部内に装着された格子体45の種子流通孔から流下した種籾aを、案内面57aによって一対の摺り切り体53,54の間には流下しないで供給スペース50に流下するように案内する。   The flow down guide plate 57 includes a guide surface 57a in an inclined posture, and the seed pod a stored in the seed tank 32 and flowed down from the seed circulation holes of the lattice body 45 mounted in the bottom of the funnel portion 32a is guided by the guide surface 57a. Guidance is made so as to flow down into the supply space 50 without flowing down between the pair of scrapers 53 and 54.

繰出しガイド80は、繰出し回転体52の周面52sに沿って位置する案内部81及び案内部81の下端側に連なる連結部82を備え、下流側の摺り切り体54のブラシ支持部54bから下方向きに延出された支持体70の下端部に連結部82で支持されている。繰出しガイド80は、繰出し回転体52の繰出し凹部58に入り込んで繰出し回転体52の下端側に設置してある排出箇所Zに移動する種籾aに対して案内部81によって案内作用する。すなわち、繰出しガイド80は、繰出し凹部58が下手側の摺り切り体54のブラシ部54aを通過してから排出箇所Zに至るまでは、繰出し凹部58が横向きや下向きになっても種籾aが繰出し凹部58からこぼれ出ないで繰出し凹部58に滞留し、繰出し凹部58が排出箇所Zに到達して下向きになると、種籾aが繰出し凹部58から落下して排出されるように種籾aに対して案内作用する。   The feeding guide 80 includes a guide portion 81 positioned along the peripheral surface 52 s of the feeding rotary body 52 and a connecting portion 82 connected to the lower end side of the guide portion 81, and extends downward from the brush support portion 54 b of the slide-off body 54 on the downstream side. It is supported by a connecting portion 82 on the lower end portion of the support body 70 extending in the direction. The feeding guide 80 is guided by the guide portion 81 to the seed pod a that enters the feeding recess 58 of the feeding rotating body 52 and moves to the discharge point Z installed on the lower end side of the feeding rotating body 52. In other words, the feeding guide 80 allows the seed pod a to be fed from the feeding recess 58 passing through the brush portion 54a of the lower-side scraped body 54 to the discharge point Z even if the feeding recess 58 is turned sideways or downward. It stays in the feeding recess 58 without spilling from the recess 58, and when the feeding recess 58 reaches the discharge point Z and faces downward, the seed soot a is guided to the seed soot a so as to fall and be discharged from the feeding recess 58. Works.

図6に示すように、上流側の摺り切り体53は、流下案内板57の下端部に支持されたブラシ支持部53bと、このブラシ支持部53bに植設されたブラシ部53aとを備えて構成してある。下流側の摺り切り体54は、繰出しケース51に回転支軸72を介して支持されるブラシ支持部54bと、このブラシ支持部54bに植設されたブラシ部54aとを備えて構成してある。一対の摺り切り体53,54は、繰出し回転体52の繰出し凹部58に入り込んだ種籾aに対してブラシ部53a,54aによって摺り切り作用する。   As shown in FIG. 6, the scraper 53 on the upstream side includes a brush support portion 53b supported by the lower end portion of the flow guide plate 57, and a brush portion 53a implanted in the brush support portion 53b. It is configured. The downstream scraper 54 includes a brush support portion 54b supported by the feeding case 51 via a rotation support shaft 72, and a brush portion 54a implanted in the brush support portion 54b. . The pair of slicing bodies 53, 54 is sliced by the brush parts 53 a, 54 a against the seed pod a that has entered the feeding recess 58 of the feeding rotator 52.

従って、粉粒体供給装置Aは、回転支軸59の一端部に一体回転自在に設けた駆動ギヤ86に駆動機構Dによって動力伝達されて回転支軸59が回転駆動されることにより、繰出し回転体52を回転支軸59によって回転方向Fに駆動し、種子タンク32に貯留された種籾aを回転する繰出し回転体52によって供給スペース50を介して、繰出し凹部58の容積によって設定される設定量ずつ間欠的に繰出し、繰出し回転体52が繰出した種籾aを圃場に落下させて点播供給の形態で供給する。   Accordingly, the powder and granular material supply device A is fed and rotated by the power transmitted by the drive mechanism D to the drive gear 86 provided to be rotatable integrally with one end portion of the rotation support shaft 59 so that the rotation support shaft 59 is rotationally driven. The set amount set by the volume of the feeding recess 58 through the supply space 50 by the feeding rotary body 52 that drives the body 52 in the rotation direction F by the rotation support shaft 59 and rotates the seed pod a stored in the seed tank 32. It is fed out intermittently, and the seed pod a fed out by the feeding rotary body 52 is dropped onto the field and supplied in the form of spot sowing supply.

つまり、種子タンク32に貯留され、ロート部32aに装着された格子体45の種子流通孔から流下した種籾aを、流下案内板57による流下案内によって供給スペース50に流下させて滞留させる。繰出し回転体52を回転方向Fに駆動することにより、各繰出し凹部58が供給スペース50と排出箇所Zの間を移動する。繰出し凹部58は、供給スペース50に位置すると、供給スペース50の種籾aを流入させて収容する。種籾aを収容した繰出し凹部58は、上手側及び下手側の摺り切り体53,54のブラシ部53a,54aを通ってブラシ部53a,54aによる摺り切り作用を受け、この後、繰出しガイド80が位置する移動経路を下降移動する。このとき、繰出し凹部58が横向きや下向きになっても、繰出しガイド80の案内部81による種籾aに対する案内作用によって種籾aが繰出し凹部58からこぼれ出ない。繰出し凹部58が排出箇所Zに至ると、繰出し凹部68が下向きになるとともに繰出しガイド80の案内部81による案内作用が解除され、繰出し凹部58に収容されていた種籾aが繰出し凹部58から筒状体56の内部に落下する。繰出し凹部58から落下した種籾aは、筒状体56が形成している落下供給路88を、風を受けて分散しないように筒状体56によって防風されながら落下して、作溝施肥器77よりもやや後側でかつやや横側で圃場に落下する。   That is, the seed pod a stored in the seed tank 32 and flowing down from the seed circulation holes of the lattice body 45 attached to the funnel portion 32 a is caused to flow down and stay in the supply space 50 by the flow-down guide by the flow-down guide plate 57. By driving the feeding rotary body 52 in the rotation direction F, each feeding recess 58 moves between the supply space 50 and the discharge point Z. When the feeding recess 58 is located in the supply space 50, the seed pod a of the supply space 50 is introduced and accommodated. The feeding recess 58 containing the seed pod a passes through the brush portions 53a and 54a of the upper and lower side scraped bodies 53 and 54 and is subjected to the scraping action by the brush portions 53a and 54a. Move down the moving path. At this time, even if the feeding recess 58 is turned sideways or downward, the seed pod a does not spill out from the feeding recess 58 due to the guiding action of the feeding guide 80 on the seed potato a. When the feeding recess 58 reaches the discharge point Z, the feeding recess 68 is directed downward, and the guiding action of the feeding guide 80 by the guide portion 81 is released, so that the seeds a stored in the feeding recess 58 are cylindrical from the feeding recess 58. It falls into the body 56. The seed pod a dropped from the feeding recess 58 falls on the drop supply path 88 formed by the cylindrical body 56 while being wind-shielded by the cylindrical body 56 so as not to be dispersed by receiving the wind. It falls to the field slightly behind and slightly to the side.

下流側の摺り切り体54は、回転支軸72を介して繰出しケース51に揺動操作自在に支持されている。図8は、繰出しケース51の内部のメンテナンス要領を示す説明図である。この図に示すように、繰出しケース51の外部に配置して回転支軸72の端部に取り付けてある開閉レバー100によって回転支軸72を回転操作することにより、摺り切り体54及び繰出しガイド80を開放姿勢に切換えることができ、繰出し回転体52の外周側に排出経路101を形成したり、繰出し回転体52の周面52sを点検用開口108に向けて開放できる。繰出し回転体52の外周側に排出経路101を形成すれば、粉粒体タンク32に残留した種籾aを、排出経路101を介して筒状体56の内部に排出することができる。   The downstream scraper 54 is supported by the feeding case 51 via a rotation support shaft 72 so as to be swingable. FIG. 8 is an explanatory diagram showing a maintenance procedure inside the feeding case 51. As shown in this figure, the rotary support shaft 72 is rotated by an opening / closing lever 100 disposed outside the supply case 51 and attached to the end of the rotation support shaft 72, whereby the scraped body 54 and the supply guide 80 are provided. Can be switched to the open posture, and the discharge path 101 can be formed on the outer peripheral side of the feeding rotary body 52, or the peripheral surface 52 s of the feeding rotary body 52 can be opened toward the inspection opening 108. If the discharge path 101 is formed on the outer peripheral side of the feeding rotary body 52, the seed soot a remaining in the powder tank 32 can be discharged into the cylindrical body 56 through the discharge path 101.

図7に示すように、繰出し回転体52は、4つの繰出し凹部58が設けられた繰出し回転体本体52aと、4つの繰出し凹部58に各別に係入する4つのバー形の容量調節部58aが設けられた容量調整体52bとを備えて構成してある。容量調整体52bの内周側に設けてある操作ネジ部が、回転支軸59に相対回転自在に外嵌している調整筒軸59aの外周側に設けた送りネジ部59bに係合している。容量調整体52bは、繰出しケース51の外部に配置して調整筒軸59aの端部に一体回転自在に設けてある調節ダイヤル59cによって調節筒軸59aが回転操作されることにより、送りネジ部59bによる送り作用によって繰出し回転体本体52aに対して繰出し回転体52の回転軸芯Pに沿う方向に摺動調節されて各容量調節部58aを繰出し凹部58に対して出退させ、各繰出し凹部58に対する容量調節部58aの係入量を変更する。これにより、繰出し回転体52の各繰出し凹部58の容量及び開口面積が変更され、繰出し回転体52の各繰出し凹部58による種籾aの繰出し量を変更できる。   As shown in FIG. 7, the feeding rotary body 52 includes a feeding rotary body main body 52 a provided with four feeding recesses 58, and four bar-shaped capacity adjusting portions 58 a respectively engaged with the four feeding recesses 58. And a capacity adjusting body 52b provided. The operating screw portion provided on the inner peripheral side of the capacity adjusting body 52b is engaged with the feed screw portion 59b provided on the outer peripheral side of the adjusting cylinder shaft 59a that is externally fitted to the rotation support shaft 59 so as to be relatively rotatable. Yes. The capacity adjustment body 52b is arranged outside the feeding case 51 and is rotated by an adjustment dial 59c provided integrally with an end of the adjustment cylinder shaft 59a so that the adjustment screw shaft 59a is rotated. By the feeding action of the above, the sliding rotary body 52a is slidably adjusted in the direction along the rotation axis P of the feeding rotary body 52 to move the capacity adjusting portions 58a with respect to the feeding concave portions 58, and each feeding concave portion 58. The amount of engagement of the capacity adjustment unit 58a is changed. Thereby, the capacity | capacitance and opening area of each feeding recessed part 58 of the feeding rotary body 52 are changed, and the feeding amount of the seed soot a by each feeding recessed part 58 of the feeding rotary body 52 can be changed.

図5,6,7に示すように、6つの粉粒体供給装置Aのそれぞれの筒状体56の内側に、筒状体56によって形成されている落下供給路88における種籾aの落下を検出する光学式センサ90を取り付けてある。図12に示すように、各粉粒体供給装置Aに設けた光学式センサ90を制御装置110に連係させるとともに、この制御装置110を報知装置111に連係させてある。報知装置111は、運転部4の運転パネルに設置してある。   As shown in FIGS. 5, 6, and 7, the fall of the seed pod a in the drop supply path 88 formed by the cylindrical body 56 is detected inside the cylindrical body 56 of each of the six granular material supply devices A. An optical sensor 90 is attached. As shown in FIG. 12, the optical sensor 90 provided in each granular material supply device A is linked to the control device 110, and the control device 110 is linked to the notification device 111. The notification device 111 is installed on the operation panel of the operation unit 4.

制御装置110は、マイクロコンピュータを利用して構成してあり、報知制御手段112を備えている。報知制御手段112は、6つの光学式センサ90による検出情報を基に、6つの粉粒体供給装置Aのそれぞれが播種状態であるか否かを判断し、判断結果を基に報知装置111を作動させる制御を実行する。報知制御手段112は、光学式センサ90が検出状態になった後に非検出状態に切り換っても、検出状態になってから所定時間内に次の検出状態になった場合、所定時間を継ぎ足して報知装置111を作動させるように、検出時間が短くても、マイクロコンピュータの処理ルーチン内に検出できるようにしてある。   The control device 110 is configured using a microcomputer, and includes notification control means 112. The notification control unit 112 determines whether each of the six powder supply devices A is in a seeding state based on the detection information from the six optical sensors 90, and determines the notification device 111 based on the determination result. Execute the control to be activated. The notification control unit 112 adds the predetermined time if the optical sensor 90 switches to the non-detection state after the detection state, and if the detection state is changed to the next detection state within the predetermined time after the detection state. Thus, even if the detection time is short, the notification device 111 can be detected in the processing routine of the microcomputer.

報知装置111は、6つの粉粒体供給装置Aのそれぞれに設けてある光学式センサ90による検出情報に基づく報知制御手段112による作動制御によって作動し、6つの粉粒体供給装置Aのそれぞれが播種の実行状態と停止状態のいずれにあるかを報知して作業者に認知を促す。   The notification device 111 is operated by the operation control by the notification control means 112 based on the detection information by the optical sensor 90 provided in each of the six powder supply devices A, and each of the six powder supply devices A. The operator is notified of whether the sowing is in an execution state or a stop state, and the worker is recognized.

粉粒体供給装置Aの繰出し部としての繰出し回転体52が駆動されていない検出と、粉粒体存否センサとしての光学式センサ90の検出が同時検出状態であると、光学式センサ90の投受光部91,95が汚れていると判断し、作業者に報知するよう構成すると、光学式センサ90の適切なメンテナンス時期を知ることができる。   If the detection that the feeding rotary body 52 serving as the feeding section of the powder supply unit A is not driven and the detection of the optical sensor 90 serving as the powder presence / absence sensor are in the simultaneous detection state, the projection of the optical sensor 90 is performed. If it is determined that the light receiving units 91 and 95 are dirty and the operator is notified, it is possible to know an appropriate maintenance time for the optical sensor 90.

光学式センサ90について説明する。
6つの粉粒体供給装置Aに設けた光学式センサ90は、同じ構造を備えて構成してある。図6,7に示すように、光学式センサ90は、落下供給路88を挟む配置で筒状体56の上端部の内側に支持させた投光部91と受光部95を備えて構成してある。
The optical sensor 90 will be described.
The optical sensors 90 provided in the six granular material supply devices A have the same structure. As shown in FIGS. 6 and 7, the optical sensor 90 includes a light projecting portion 91 and a light receiving portion 95 that are supported on the inner side of the upper end portion of the cylindrical body 56 so as to sandwich the drop supply path 88. is there.

投光部91及び受光部95は、筒状体56の上端部の内側に取り付けた一つのセンサ支持体120の両端側に振り分けて取り付けてある。   The light projecting unit 91 and the light receiving unit 95 are attached to both ends of one sensor support 120 attached to the inside of the upper end of the cylindrical body 56.

投光部91は、落下供給路88及び繰出し回転体52に対して点検用開口108が位置する側に配置してある。受光部95は、点検用開口108から繰出しケース内のメンテナンス作業が行なわれる際に触れられることを防止するように、落下供給路88及び繰出し回転体52に対して点検用開口108が位置する側とは反対側に配置してある。   The light projecting portion 91 is arranged on the side where the inspection opening 108 is located with respect to the drop supply path 88 and the feeding rotary body 52. The light receiving unit 95 is located on the side where the inspection opening 108 is located with respect to the drop supply path 88 and the feeding rotary body 52 so as to prevent the light receiving unit 95 from being touched when the maintenance work in the feeding case is performed from the inspection opening 108. It is arranged on the opposite side.

図11は、センサ支持体120、投光部91及び受光部95を示す斜視図である。この図及び図6に示すように、投光部91は、センサ支持体120が備える一対のセンサケース部121,121の一方に収容される矩形の制御基板92と、この制御基板92の表面側に繰出し回転体52の回転軸芯Pに沿う方向に並べて設けた3個の投光素子93とを備えて構成してある。受光部95は、一対のセンサケース部121,121の他方に収容される矩形の制御基板96と、この制御基板96の表面側に繰出し回転体52の回転軸芯Pに沿う方向に並べて設けた3個の受光素子97とを備えて構成してある。3個の投光素子93と3個の受光素子97は、3個の投光素子93によって照射される3本の検出光が3個の受光素子97に各別に向かう配置関係になっている。   FIG. 11 is a perspective view showing the sensor support 120, the light projecting unit 91, and the light receiving unit 95. As shown in FIG. 6 and FIG. 6, the light projecting unit 91 includes a rectangular control board 92 housed in one of a pair of sensor case parts 121, 121 included in the sensor support 120, and the surface side of the control board 92. And three light projecting elements 93 arranged side by side in the direction along the rotation axis P of the feeding rotating body 52. The light receiving unit 95 is provided in a rectangular control board 96 accommodated in the other of the pair of sensor case parts 121 and 121, and arranged side by side in the direction along the rotational axis P of the feeding rotary body 52 on the surface side of the control board 96. Three light receiving elements 97 are provided. The three light projecting elements 93 and the three light receiving elements 97 are in an arrangement relationship in which the three detection lights irradiated by the three light projecting elements 93 are directed to the three light receiving elements 97 respectively.

センサ支持体120は、落下供給路88を挟んで位置する一対のセンサケース部121,121と、落下供給路88を挟んで位置する状態で一対のセンサケース部121,121を連結する一対の板状の連結部122,122とを樹脂材によって一体成形した状態で備えて構成してある。センサ支持体120は、樹脂製になり、かつ落下供給路88を全周に亘って囲う環状形状になっている。   The sensor support 120 includes a pair of sensor case portions 121 and 121 positioned with the drop supply path 88 interposed therebetween, and a pair of plates that connect the pair of sensor case portions 121 and 121 with the drop supply path 88 positioned therebetween. The connecting portions 122 and 122 are formed in a state of being integrally formed of a resin material. The sensor support 120 is made of resin and has an annular shape surrounding the fall supply path 88 over the entire circumference.

一対のセンサケース部121,121のそれぞれは、落下供給路88に向かう前壁123と、連結部122が連結している左右一対の横壁124,124と、前壁123及び各横壁124の上端に連なる上壁125と、前壁123及び各横壁1124の下端に連なる下壁126とを備えて構成してある。各センサケース部121は、投光部91、受光部95の出し入れを行なう開口の両側に分かれて位置する一対の係止爪127,127を備え、一対の係止爪127,127によって制御基板92,96を脱着自在に係止する。投光部91を収容するセンサケース部121の前壁123に投光孔128を形成し、受光部95を収容するセンサケース部121の前壁123に受光孔129を形成してある。図8に示すように、各センサケース部121は、投光孔128や受光孔129を覆って投光素子93や受光素子97を保護する透明の保護プレート130、及び、前壁123と制御基板92,96の間に介装されたスペーサ131を収容している。   Each of the pair of sensor case parts 121, 121 is provided at the front wall 123 toward the drop supply path 88, the pair of left and right side walls 124, 124 connected to the connection part 122, and the upper end of the front wall 123 and each side wall 124. The upper wall 125 is connected to the front wall 123 and the lower wall 126 is connected to the lower end of each lateral wall 1124. Each sensor case unit 121 includes a pair of locking claws 127 and 127 that are separately located on both sides of an opening through which the light projecting unit 91 and the light receiving unit 95 are inserted and removed, and the control board 92 is formed by the pair of locking claws 127 and 127. 96 are detachably locked. A light projecting hole 128 is formed in the front wall 123 of the sensor case part 121 that houses the light projecting part 91, and a light receiving hole 129 is formed in the front wall 123 of the sensor case part 121 that houses the light receiving part 95. As shown in FIG. 8, each sensor case 121 includes a transparent protective plate 130 that covers the light projecting hole 128 and the light receiving hole 129 and protects the light projecting element 93 and the light receiving element 97, and the front wall 123 and the control board. A spacer 131 interposed between 92 and 96 is accommodated.

従って、光学式センサ90は、落下供給路88における種籾aの落下を次の如く検出する。
投光部91が制御基板92による投光制御によって3個の投光素子93のそれぞれから1本の検出光を、合計3本の検出光を、平面視で繰出し回転体52の回転軸芯Pに対して直交する方向で落下供給路88を横断するように照射する。投光部91からの検出光が落下供給路88を落下する種籾aに当たると、受光素子97が種籾aによる遮光によって投光部91からの検出光を受けず、非受光状態になる。投光部91からの検出光が種籾aに当たらなければ、あるいは、投光部91からの検出光が種籾aに当たっても、検出光が当たる種籾aの範囲が狭ければ、受光素子97が投光部91からの検出光を受けて、受光状態になる。受光部95が制御基板96による検出制御によって3個の受光素子97のそれぞれが非受光状態にあるか否かを判断し、3個の受光素子97のうちの少なくとも1つの受光素子97が非受光状態にあると判断した場合、光学式センサ90は、落下供給路88を種籾aが落下しているとの検出状態としての種籾存在の検出状態になる。受光部95が3個の受光素子97の全てが非受光状態ではないと判断した場合、光学式センサ90は、非検出状態になる。
Accordingly, the optical sensor 90 detects the fall of the seed pod a in the drop supply path 88 as follows.
The light projecting portion 91 delivers one detection light from each of the three light projecting elements 93 and a total of three detection lights in a plan view by light projection control by the control board 92, and the rotational axis P of the rotating body 52. Irradiation is performed so as to cross the drop supply path 88 in a direction orthogonal to the above. When the detection light from the light projecting unit 91 hits the seed pod a falling through the drop supply path 88, the light receiving element 97 does not receive the detection light from the light projecting unit 91 due to light shielding by the seed pod a, and enters a non-light receiving state. If the detection light from the light projecting unit 91 does not hit the seed soot a, or if the detection light from the light projecting unit 91 hits the seed soot a and the range of the seed soot a hit by the detection light is narrow, the light receiving element 97 projects the light. Upon receiving the detection light from the light unit 91, the light receiving state is entered. The light receiving unit 95 determines whether or not each of the three light receiving elements 97 is in a non-light receiving state by detection control by the control board 96, and at least one of the three light receiving elements 97 is not receiving light. When it is determined that the state is in a state, the optical sensor 90 enters a detection state of the presence of seed soot as a detection state that the seed soot a is falling on the drop supply path 88. When the light receiving unit 95 determines that all of the three light receiving elements 97 are not in the non-light receiving state, the optical sensor 90 is in the non-detecting state.

投光部91を収容するセンサケース部121の前壁123に、投光孔128の下方に配置した貫通孔129aを形成し、受光部95を収容するセンサケース部121の前壁123に、受光孔129の下方に配置した貫通孔128aを形成してあり、各センサケース部121,121を投光部用と受光部用に兼用できる。   A through hole 129a disposed below the light projection hole 128 is formed in the front wall 123 of the sensor case part 121 that accommodates the light projecting part 91, and light is received by the front wall 123 of the sensor case part 121 that accommodates the light receiving part 95. A through-hole 128a disposed below the hole 129 is formed, and the sensor case portions 121 and 121 can be used for both the light projecting portion and the light receiving portion.

つまり、投光部91を収容するセンサケース部121は、投光素子93が制御基板92の上部に位置する取付け姿勢で投光部91を収容する。投光部91を収容するセンサケース部121に受光部95を収容する場合、受光素子97が制御基板96の下部に位置する取付け姿勢で受光部95を装着する。すると、投光部91を収容するセンサケース部121の貫通孔129aと受光素子97が合致し、貫通孔129aが受光孔になる。
受光部95を収容するセンサケース部121は、受光素子97が制御基板96の上部に位置する取付け姿勢で受光部95を収容する。受光部95を収容するセンサケース部121に投光部91を収容する場合、投光素子93が制御基板92の下部に位置する取付け姿勢で投光部91を装着する。すると、受光部95を収容するセンサケース部121の貫通孔128aと投光素子93が合致し、貫通孔128aが投光孔になる。
すなわち、繰出し回転体52に対して点検用開口108が位置する側に受光部95を配置する場合、貫通孔129aを受光孔として使用し、貫通孔128aを投光孔として使用する。
That is, the sensor case unit 121 that accommodates the light projecting unit 91 accommodates the light projecting unit 91 in a mounting posture in which the light projecting element 93 is positioned above the control board 92. When the light receiving unit 95 is accommodated in the sensor case unit 121 that accommodates the light projecting unit 91, the light receiving unit 95 is mounted in an attachment posture in which the light receiving element 97 is positioned below the control board 96. Then, the through hole 129a of the sensor case part 121 that accommodates the light projecting part 91 and the light receiving element 97 match, and the through hole 129a becomes a light receiving hole.
The sensor case unit 121 that houses the light receiving unit 95 houses the light receiving unit 95 in a mounting posture in which the light receiving element 97 is positioned above the control board 96. When the light projecting unit 91 is accommodated in the sensor case unit 121 that accommodates the light receiving unit 95, the light projecting unit 91 is mounted in a mounting posture in which the light projecting element 93 is positioned below the control board 92. Then, the through hole 128a of the sensor case unit 121 that accommodates the light receiving unit 95 and the light projecting element 93 are matched, and the through hole 128a becomes a light projecting hole.
That is, when the light receiving portion 95 is arranged on the side where the inspection opening 108 is located with respect to the feeding rotary body 52, the through hole 129a is used as the light receiving hole, and the through hole 128a is used as the light projecting hole.

繰出し回転体52に対して点検用開口108が位置する側とは反対側に受光部95を配置する場合において、投光素子93及び受光素子97をセンサケース部121の下部に配置するよう構成して実施してもよい。また、繰出し回転体52に対して点検用開口108が位置する側に受光部95を配置する場合において、投光素子93及び受光素子97がセンサケース部121の上部に配置するよう構成して実施してもよい。   In the case where the light receiving unit 95 is disposed on the side opposite to the side where the inspection opening 108 is located with respect to the feeding rotary body 52, the light projecting element 93 and the light receiving element 97 are configured to be disposed below the sensor case unit 121. May be implemented. Further, when the light receiving portion 95 is disposed on the side where the inspection opening 108 is located with respect to the feeding rotary body 52, the light projecting element 93 and the light receiving element 97 are configured to be disposed above the sensor case portion 121. May be.

光学式センサ90(粉粒体存否センサ)は、連結部材としてのセンサ支持体120によって投光部91と受光部95が連結されてユニット化されている。光学式センサ90をケース部材としての筒状体56に対してユニット状態で組み付けることができる。投光部91と受光部95の相対位置決めが容易である。センサ支持体120を遮光部材として活用し、外乱光による誤検出を防ぐことができ、筒状体56を透明にすることができる。センサ支持体120に配線溝を設けると、センサ支持体120をハーネスの取付け部材として兼用できる。   The optical sensor 90 (powder particle presence / absence sensor) is unitized by connecting a light projecting unit 91 and a light receiving unit 95 by a sensor support 120 as a connecting member. The optical sensor 90 can be assembled in a unit state to the cylindrical body 56 as a case member. Relative positioning of the light projecting unit 91 and the light receiving unit 95 is easy. The sensor support 120 can be used as a light shielding member to prevent erroneous detection due to ambient light, and the cylindrical body 56 can be made transparent. If a wiring groove is provided in the sensor support 120, the sensor support 120 can also be used as a harness attachment member.

非接触粉粒体存否センサとしての光学式センサ90を、スポット検出タイプの複数のセンサ素子(投光素子93及び受光素子97)を備えて構成するので、比較的低コストで、広いエリアをカバーできる。   Since the optical sensor 90 as a non-contact particulate matter presence / absence sensor includes a plurality of spot detection type sensor elements (light projecting element 93 and light receiving element 97), it covers a wide area at a relatively low cost. it can.

落下供給路88には、点播形態で播種するように種籾aが間欠的に通るのであり、正常時であっても落下供給路88に種籾aの落下途切れが発生する。報知制御手段112は、落下供給路88に発生する落下途切れの時間を設定経過時間として設定し、光学式センサ90が検出状態になると、光学式センサ90が検出状態になってから設定経過時間が経過するまでの間、光学式センサ90が検出状態にあると見なす信号処理の形態で光学式センサ90が検出状態にあるか否かを判断する。   The seed pods a intermittently pass through the drop supply path 88 so as to sow in a spot sowing manner, and the seed pod a drops off in the drop supply path 88 even during normal operation. The notification control unit 112 sets the drop interruption time generated in the drop supply path 88 as a set elapsed time, and when the optical sensor 90 enters the detection state, the set elapsed time after the optical sensor 90 enters the detection state. Until the time elapses, it is determined whether or not the optical sensor 90 is in the detection state in the form of signal processing in which the optical sensor 90 is considered to be in the detection state.

図10(a)は、各繰出し凹部58による繰出し量が最少量に調節された状態において繰出し回転体52からの種籾aが落下する落下供給路88の部位と、光学式センサ90の検出域90Wとの関係を示す説明図である。図10(b)は、各繰出し凹部58による繰出し量が最多量に調節された状態において繰出し回転体52からの種籾aが落下する部位と、光学式センサ90の検出域90Wとの関係を示す説明図である。これらの図に示すように、各繰出し凹部58による繰出し量が最少量に調節された状態では、落下供給路88のうち、繰出し回転体52の回転軸芯Pに沿う方向(繰出し凹部58の容積を変更するよう容量調節体52bを摺動調節する方向)に落下供給路88を横断した方向での一部の部位であって、繰出し量が最多量に調節された場合よりも狭い部位88Bにおいて種籾aが落下する。各繰出し凹部58による繰出し量が最多量に調節された状態では、落下供給路88のうち、繰出し回転体52の回転軸芯Pに沿う方向(繰出し凹部58の容積を変更するよう容量調節体52bを摺動調節する方向)に落下供給路88を横断した方向での一部の部位であって、繰出し量が最少量に調節された場合よりも広く、かつ繰出し量が最少量に調節された場合の部位88Bを含んだ部位88Aにおいて種籾aが落下する。図10(a)、(b)に示す光学式センサ90の検出域90Wは、繰出し回転体52の回転軸芯Pに沿う方向(繰出し凹部58の容積を変更するよう容量調節体52bを摺動調節する方向)に落下供給路88を横断する方向での光学式センサ90の検出域である。   FIG. 10A shows a portion of the drop supply path 88 where the seed soup a from the feeding rotating body 52 falls in a state where the feeding amount by each feeding recess 58 is adjusted to the minimum amount, and a detection area 90W of the optical sensor 90. It is explanatory drawing which shows the relationship. FIG. 10B shows the relationship between the part where the seed soup a from the feeding rotary body 52 falls in a state where the feeding amount by each feeding recess 58 is adjusted to the maximum amount, and the detection area 90W of the optical sensor 90. It is explanatory drawing. As shown in these drawings, in a state where the feeding amount by each feeding recess 58 is adjusted to the minimum amount, the direction along the rotational axis P of the feeding rotor 52 in the drop supply path 88 (the volume of the feeding recess 58). In a portion traversing the drop supply path 88 in the direction in which the capacity adjusting body 52b is slid and adjusted so that the feed amount is changed, and in a portion 88B narrower than the case where the feeding amount is adjusted to the maximum amount. The seed pod a falls. In a state in which the feeding amount by each feeding recess 58 is adjusted to the maximum amount, the capacity adjusting body 52b in the drop supply path 88 along the rotational axis P of the feeding rotor 52 (the volume adjusting body 52b is changed so as to change the volume of the feeding recess 58). In a direction crossing the drop supply path 88 in the direction of sliding adjustment), and the feed amount is wider than when the feed amount is adjusted to the minimum amount, and the feed amount is adjusted to the minimum amount. The seed pod a falls in the part 88A including the part 88B of the case. The detection area 90W of the optical sensor 90 shown in FIGS. 10A and 10B slides along the capacity adjusting body 52b so as to change the volume of the feeding recess 58 along the rotational axis P of the feeding rotating body 52. This is the detection area of the optical sensor 90 in the direction crossing the drop supply path 88 in the adjustment direction.

図7は、繰出し凹部58による繰出し量が最少量に調節された状態での繰出し回転体52を示している。図7、図10(a)、(b)に示すように、繰出し回転体52の回転軸芯Pに沿う方向(繰出し凹部58の容積を変更するよう容量調節体52bを摺動調節する方向)に落下供給路88を横断する方向での光学式センサ90の検出域90Wを、繰出し凹部58による繰出し量が最多量に調節された状態において種籾aが落下する落下供給路88の繰出し回転体52の回転軸芯Pに沿う方向での部位88Aよりも小の部位であって、繰出し凹部58による繰出し量が最少量に調節された状態において種籾aが落下する落下供給路88の繰出し回転体52の回転軸芯Pに沿う方向での部位88Bに位置するよう設定するべく、投光素子93及び受光素子97を落下供給路88の繰出し回転体52の回転軸芯Pに沿う方向(繰出し凹部58の容積を変更するよう容量調節体52bを摺動調節する方向)での中心88Cに対して容量調節部58aが位置する側とは反対側に偏倚させてある。   FIG. 7 shows the feeding rotary body 52 in a state where the feeding amount by the feeding recess 58 is adjusted to the minimum amount. As shown in FIGS. 7, 10A and 10B, the direction along the rotational axis P of the feeding rotary body 52 (the direction in which the capacity adjusting body 52b is slid and adjusted so as to change the volume of the feeding recess 58). In the direction in which the optical sensor 90 in the direction crossing the drop supply path 88 is set, the feeding rotator 52 of the drop supply path 88 in which the seed pod a falls in a state where the feeding amount by the feeding recess 58 is adjusted to the maximum amount. The feeding rotating body 52 of the drop supply path 88 in which the seed pod a falls in a state where the feeding amount by the feeding recess 58 is adjusted to the minimum amount, which is a portion smaller than the portion 88A in the direction along the rotation axis P. In order to set the light projecting element 93 and the light receiving element 97 along the rotational axis P of the feeding rotary body 52 of the drop supply path 88 (feeding recess 58) The volume of To the side where the volume adjustment unit 58a is positioned relative to the center 88C of the volume adjustment member 52b in the direction) that slides adjusted to further are biases the opposite side.

従って、光学式センサ90の検出域90Wを、落下供給路88のうちの繰出し量が最多量に調節された場合に種籾aが落下する部位88Aの全体に亘って位置するよう設定するに比して投光素子93及び受光素子97の数が少ない簡素な光学式センサ90を採用しながら、繰出し凹部58による繰出し量が最少量から最多量の全調節範囲のいずれの量に変更調節されても、繰出し回転体52から落下する種籾aに検出光を作用させて光学式センサ90による検出を確実に行なわせることができる。平面視で繰出し量調節方向と交差する方向きに投受光部93,97をレイアウトしたので、種籾aに遠心力が作用しても検出域90wに種籾aが入りやすい。   Therefore, the detection area 90W of the optical sensor 90 is set so as to be positioned over the entire portion 88A where the seed pod a falls when the feeding amount of the drop supply path 88 is adjusted to the maximum amount. Even if the simple optical sensor 90 having a small number of light projecting elements 93 and light receiving elements 97 is adopted, the feeding amount by the feeding recess 58 is changed and adjusted from any of the minimum amount to the maximum amount of the entire adjustment range. The detection light can be applied to the seed pod a falling from the feeding rotary body 52 so that the detection by the optical sensor 90 can be performed reliably. Since the light projecting / receiving units 93 and 97 are laid out in a direction crossing the feeding amount adjustment direction in plan view, the seed pod a is likely to enter the detection area 90w even if a centrifugal force acts on the seed pod a.

図13は、受光部95の受光構造を構成する条件を示す説明図である。この図に示すWは、検出域90Wの幅(以下、検出幅Wと称する。)であり、Daは、種子(種籾a)の径(以下、種子径Daと称する。)であり、97Dは、受光素子97の受光幅であり、97Pは、受光素子97の配列ピッチである。受光素子97の受光窓の1/3程度が種子によってふさがれると検知可能であると設定すると、
97D(受光幅)×1/3=97K(受光素子97のふさがれる幅)
97D(受光幅)+[Da(種子径)−97K(受光素子のふさがれる幅)]=97P(配列ピッチ)
検出幅Wをカバーするための最少の受光素子数をYとすると、
W(検出幅)<97P(配列ピッチ)×Y(受光素子数) となる。
FIG. 13 is an explanatory diagram showing conditions that constitute the light receiving structure of the light receiving unit 95. W shown in this figure is the width of the detection area 90W (hereinafter referred to as detection width W), Da is the diameter of seed (seed pod a) (hereinafter referred to as seed diameter Da), and 97D is , The light receiving width of the light receiving element 97, and 97P is the arrangement pitch of the light receiving elements 97. If it is set that it can be detected that about 1/3 of the light receiving window of the light receiving element 97 is blocked by seeds,
97D (light receiving width) × 1/3 = 97K (width that the light receiving element 97 is blocked)
97D (light receiving width) + [Da (seed diameter) −97K (width covered by the light receiving element)] = 97P (arrangement pitch)
If the minimum number of light receiving elements for covering the detection width W is Y,
W (detection width) <97P (arrangement pitch) × Y (number of light receiving elements).

図7,8に示すように、筒状体56は、繰出しケース51の両横外側に振り分けて設けた一対の筒体連結手段135によって繰出しケース51に脱着自在に取り付けるようになっている。   As shown in FIGS. 7 and 8, the cylindrical body 56 is detachably attached to the feeding case 51 by a pair of cylindrical body connecting means 135 provided separately on both lateral outer sides of the feeding case 51.

一対の筒体連結手段135のそれぞれは、筒状体56の上端部から横外側に向けて突設した連結突起136と、この連結突起136に対してフック部137a(図9参照)で係脱するように構成した状態で繰出しケース51の横外側に揺動操作自在に取り付けた連結アーム137とを備えて構成してある。   Each of the pair of cylindrical body connecting means 135 is engaged with and disengaged from the upper end portion of the cylindrical body 56 toward the lateral outer side by a connecting projection 136 and a hook portion 137a (see FIG. 9) with respect to the connecting projection 136. In this state, the connecting case 137 is provided on the laterally outer side of the feeding case 51 so as to be swingable.

図6,7,11に示すように、センサ支持体120は、センサ支持体120の外周側に設けられた一対の連結突起140と、筒状体56の上端部に上向きに開口するよう形成して設けられた一対の係止凹部141,141(図9参照)とを備えて構成したセンサ連結手段142によって筒状体56に取り付けられるようになっている。   As shown in FIGS. 6, 7, and 11, the sensor support 120 is formed so as to open upward at a pair of connection protrusions 140 provided on the outer peripheral side of the sensor support 120 and the upper end portion of the cylindrical body 56. It is attached to the cylindrical body 56 by a sensor connecting means 142 configured to include a pair of locking recesses 141 and 141 (see FIG. 9).

すなわち、一対の連結突起140,140が筒状体56の上方から係止凹部141に係入されることによってセンサ連結手段142が連結状態になり、一対のセンサケース部121,121の下端側及び一対の連結部122,122が筒状体56に内側に入り込むとともに入り込み量が設定量になるように一対の係止凹部141,141によって受け止め支持されて、センサ支持体120が筒状体56に対する所定の取り付け状態になり、光学式センサ90が筒状体56に取り付けられた状態になる。   That is, when the pair of connection protrusions 140 and 140 are engaged with the locking recess 141 from above the cylindrical body 56, the sensor connection means 142 is connected, and the lower end side of the pair of sensor case portions 121 and 121 and The pair of connecting portions 122 and 122 enter the inside of the cylindrical body 56 and are received and supported by the pair of locking recesses 141 and 141 so that the entering amount becomes a set amount, so that the sensor support 120 is attached to the cylindrical body 56. A predetermined attachment state is reached, and the optical sensor 90 is attached to the cylindrical body 56.

図9は、筒状体56及び光学式センサ90の取り外し状態を示す縦断側面図である。この図に示すように、筒状体56を、筒体連結手段135による繰出しケース51に対する連結が解除された状態にして下げ操作すると、筒状体56の上端側が繰出しケース51の連結筒部51hから抜け外れて、筒状体56が繰出しケース51から外れる。筒状体56が繰出しケース51から外れても、センサ連結手段142が連結状態になっていてセンサ支持体120が筒状体56と共に繰出しケース51から外れ、光学式センサ90が繰出しケース51から外れる。繰出しケース51から外れた状態の筒状体56からセンサ支持体120を引き上げ操作すると、センサ支持体120の一対の連結突起140,140が筒状体56の係止凹部141から抜け外れてセンサ連結手段142が解除状態になり、光学式センサ90を筒状体56から取り出すことができる。   FIG. 9 is a longitudinal side view showing a removed state of the cylindrical body 56 and the optical sensor 90. As shown in this figure, when the cylindrical body 56 is lowered and operated in a state where the connection to the feeding case 51 by the cylindrical body connecting means 135 is released, the upper end side of the cylindrical body 56 is connected to the connecting cylindrical portion 51h of the feeding case 51. The cylindrical body 56 is detached from the feeding case 51. Even if the cylindrical body 56 is detached from the feeding case 51, the sensor connecting means 142 is in a connected state, the sensor support 120 is detached from the feeding case 51 together with the cylindrical body 56, and the optical sensor 90 is detached from the feeding case 51. . When the sensor support body 120 is pulled up from the cylindrical body 56 that is detached from the feeding case 51, the pair of connection projections 140, 140 of the sensor support body 120 come out of the locking recess 141 of the cylindrical body 56, and the sensor connection. The means 142 is released, and the optical sensor 90 can be taken out from the cylindrical body 56.

図8に示すように、繰出し回転体52に対して点検用開口108が位置する側とは反対側に位置するセンサ支持体120のセンサケース部121における上部121Uを、上細り形状に形成して繰出し回転体52の周面52sと繰出しケース51の前壁部51aとの間に入り込ませてある。上部121Uの繰出し回転体52に向かう面を、繰出し回転体52の周面52sに沿った傾斜面121aに形成してある。
従って、繰出し凹部58に収容された種籾aが排出箇所Zで繰出し凹部58から出ないでセンサケース部121の上方に付いて上がってから落下することがあり、落下した種籾aが上部121Uに落ちても上部121Uの傾斜面121aに沿って上部121Uと繰出し回転体52の周面52sの隙間を下降して上部121Uに堆積しない。また、光学式センサ90を繰出し回転体52に近付けて、繰出し回転体52から落下して離れた距離が小である種籾aに検出光が作用するように検出エリアを限定できる。また、受光素子97と受光孔129の隔離距離を大にして、外乱光の入射を防ぐことができる。
As shown in FIG. 8, the upper part 121U of the sensor case part 121 of the sensor support 120 located on the opposite side to the side where the inspection opening 108 is located with respect to the feeding rotary body 52 is formed in a thin shape. It is inserted between the peripheral surface 52 s of the feeding rotary body 52 and the front wall portion 51 a of the feeding case 51. A surface of the upper part 121U facing the feeding rotary body 52 is formed on an inclined surface 121a along the peripheral surface 52s of the feeding rotary body 52.
Therefore, the seed pod a accommodated in the feeding recess 58 may not fall out of the feeding recess 58 at the discharge point Z, but may fall after being attached to the upper side of the sensor case portion 121, and the dropped seed potato a falls to the upper portion 121U. However, the gap between the upper part 121U and the peripheral surface 52s of the feeding rotary body 52 is lowered along the inclined surface 121a of the upper part 121U and does not accumulate on the upper part 121U. Further, the detection area can be limited so that the optical sensor 90 is brought close to the feeding rotary body 52 and the detection light acts on the seed pod a having a small distance from the feeding rotary body 52 after falling. Further, the separation distance between the light receiving element 97 and the light receiving hole 129 can be increased to prevent the incidence of disturbance light.

投光部90を支持するセンサ支持体120のセンサケース部121の上部を、点検用開口108から落下供給路88に向かう光に対する遮光部121bになるように点検用開口108の下部に臨ませて、点検用開口108を開けても、繰出しケース51の外部の光が点検用開口108から受光部95の受光素子97に到達することが遮光部121bによって防止されるようにしてある。繰出し回転体52に対して点検用開口108と反対側に位置するセンサ支持体120の上部121Uが繰出し回転体52の周面52sと繰出しケース51の前壁部51aとの間に入り込んでいることにより、点検用開口108から入射する光を繰出し回転体52が遮光して、どの方向から光が入射しても常に受光部95が影になる。従って、点検用開口108を開けて試運転するなどの場合、光学式センサ90が外乱光を受けなくて誤作動しない。   The upper part of the sensor case part 121 of the sensor support 120 that supports the light projecting part 90 faces the lower part of the inspection opening 108 so as to be a light shielding part 121b for light traveling from the inspection opening 108 toward the drop supply path 88. Even if the inspection opening 108 is opened, the light shielding portion 121b prevents light outside the feeding case 51 from reaching the light receiving element 97 of the light receiving portion 95 from the inspection opening 108. The upper portion 121U of the sensor support 120 located on the opposite side of the inspection opening 108 with respect to the feeding rotary body 52 is inserted between the peripheral surface 52s of the feeding rotary body 52 and the front wall portion 51a of the feeding case 51. Thus, the light that enters from the inspection opening 108 is fed out and the rotating body 52 blocks the light, and the light receiving unit 95 always becomes a shadow no matter which direction the light enters. Therefore, when the inspection opening 108 is opened and a test operation is performed, the optical sensor 90 does not receive disturbance light and does not malfunction.

〔第2実施例〕
図14は、第2実施構造を備えた粉粒体供給装置Aを示す縦断側面図である。第2実施構造を備えた粉粒体供給装置Aでは、投光部91を繰出し回転体52及び落下供給路88に対して点検用開口108が位置する側とは反対側に配置してある。
[Second Embodiment]
FIG. 14 is a longitudinal sectional side view showing the granular material supply apparatus A having the second embodiment structure. In the granular material supply apparatus A having the second embodiment structure, the light projecting portion 91 is disposed on the opposite side to the side where the inspection opening 108 is located with respect to the feeding rotary body 52 and the drop supply path 88.

受光部95を繰出し回転体52の回転軸芯P及び落下供給路88に対して点検用開口208が位置する側に配置してあり、点検用開口108の蓋体107が内部目視のために透明又は半透明であっても、点検用開口108からの外乱光が受光部95に当らず、誤検出を防止できる。受光部95を点検用開口108の付近に配置してあり、点検用開口108から受光部95を清掃しやすい。受光部95を繰出し回転体52の回転方向上手側に配置してあり、繰出し回転体52の回転によって発生する埃が受光部95に付き難い。受光部95を繰出しガイド80の背面側に配置してあり、受光素子97及び投光素子93を繰出しガイド80の終端に極力接近させることができる。   The light receiving unit 95 is arranged on the side where the inspection opening 208 is located with respect to the rotation axis P of the feeding rotary body 52 and the drop supply path 88, and the lid 107 of the inspection opening 108 is transparent for visual inspection inside. Or even if it is translucent, the disturbance light from the inspection opening 108 does not strike the light receiving portion 95, and erroneous detection can be prevented. The light receiving unit 95 is disposed in the vicinity of the inspection opening 108, and the light receiving unit 95 can be easily cleaned from the inspection opening 108. The light receiving unit 95 is arranged on the upper side in the rotation direction of the feeding rotary body 52, and dust generated by the rotation of the feeding rotary body 52 is difficult to adhere to the light receiving unit 95. The light receiving unit 95 is disposed on the back side of the feeding guide 80, and the light receiving element 97 and the light projecting element 93 can be brought as close as possible to the end of the feeding guide 80.

第2実施構造を備えた種子供給装置Aでは、センサケース部121における投光孔及び受光孔の配置の点において第1実施例に示した種子供給装置Aに設けたセンサ支持体120とは異なる構造を備えたセンサ支持体120を設けている。   The seed supply device A having the second embodiment structure is different from the sensor support 120 provided in the seed supply device A shown in the first embodiment in the arrangement of the light projecting holes and the light receiving holes in the sensor case portion 121. A sensor support 120 having a structure is provided.

第2実施構造を備えた種子供給装置Aにおいて、投光素子93及び受光素子97をセンサケース部121の下部に配置するよう構成して実施してもよい。   In the seed supply apparatus A having the second embodiment structure, the light projecting element 93 and the light receiving element 97 may be configured to be arranged below the sensor case part 121.

〔第3実施例〕
図15は、第3実施構造を備えた粉粒体供給装置Aを示す縦断側面図である。図16は、第3実施構造を備えた粉粒体供給装置Aを示す縦断後面図である。これらの図に示すように、第3実施構造を備えた粉粒体供給装置Aでは、光学式センサ90及び点検用開口108の配置以外の点では、第1実施例の粉粒体供給装置Aと同じ構成を備えている。次に、第3実施構造を備えた粉粒体供給装置Aの光学式センサ90について説明する。
[Third embodiment]
FIG. 15 is a vertical cross-sectional side view showing the granular material supply apparatus A having the third embodiment structure. FIG. 16 is a longitudinal rear view showing the granular material supply apparatus A having the third embodiment structure. As shown in these drawings, in the granular material supply apparatus A provided with the third embodiment structure, the granular material supply apparatus A of the first embodiment except for the arrangement of the optical sensor 90 and the inspection opening 108. Has the same configuration. Next, the optical sensor 90 of the granular material supply apparatus A provided with the third embodiment structure will be described.

第3実施構造を備えた粉粒体供給装置Aの光学式センサ90は、繰出し回転体52の回転軸芯Pに沿う方向(繰出し凹部58の容積を変更するよう容量調節体52bを摺動調節する方向)で落下供給路88を挟むように配置した投光部91と受光部95を備えて構成してある。   The optical sensor 90 of the granular material supply apparatus A having the third embodiment structure is configured to slide the volume adjusting body 52b so as to change the volume of the feeding recess 58 in the direction along the rotation axis P of the feeding rotating body 52. The light projecting unit 91 and the light receiving unit 95 are arranged so as to sandwich the drop supply path 88 in the direction of

第3実施構造を備えた粉粒体供給装置Aは、第1実施例に示した粉粒体供給装置Aに設けたセンサ支持体120と同様の構造を有したセンサ支持体120を備え、センサ支持体120に落下供給路88を挟む状態で設けた一対のセンサケース部121,121に投光部91と受光部95を振り分けて収容している。   The granular material supply apparatus A provided with the third embodiment structure includes a sensor support body 120 having the same structure as the sensor support body 120 provided in the granular material supply apparatus A shown in the first embodiment. The light projecting portion 91 and the light receiving portion 95 are distributed and accommodated in a pair of sensor case portions 121 and 121 provided with the drop supply path 88 sandwiched between the support 120.

従って、光学式センサ90は、落下供給路88における種籾aの落下を次の如く検出する。
投光部91が制御基板92による投光制御によって3個の投光素子93のそれぞれから1本の検出光を、合計3本の検出光を、繰出し回転体52の回転軸芯Pに沿う方向で落下供給路88を横断するように照射する。投光部91からの検出光が落下供給路88を落下する種籾aに当たると、受光素子97が種籾aによる遮光によって投光部91からの検出光を受けず、非受光状態になる。投光部91からの検出光が種籾aに当たらなければ、あるいは、投光部91からの検出光が種籾aにあたっても、検出光が当たる種籾aの範囲が狭ければ、受光素子97が投光部91からの検出光を受けて、受光状態になる。受光部95が制御基板96による検出制御によって3個の受光素子97のそれぞれが非受光状態にあるか否かを判断し、3個の受光素子97のうちの少なくとも1つの受光素子97が非受光状態にあると判断した場合、光学式センサ90は、落下供給路88を種籾aが落下しているとの検出状態としての種籾存在の検出状態になる。受光部95が3個の受光素子97の全てが非受光状態ではないと判断した場合、光学式センサ90は、非検出状態になる。
Accordingly, the optical sensor 90 detects the fall of the seed pod a in the drop supply path 88 as follows.
A direction along the rotational axis P of the rotating rotator 52, where the light projecting unit 91 delivers one detection light from each of the three light projecting elements 93 and a total of three detection lights by light projection control by the control board 92. Then, irradiation is performed so as to cross the drop supply path 88. When the detection light from the light projecting unit 91 hits the seed pod a falling through the drop supply path 88, the light receiving element 97 does not receive the detection light from the light projecting unit 91 due to light shielding by the seed pod a, and enters a non-light receiving state. If the detection light from the light projecting unit 91 does not hit the seed pod a, or the detection light from the light projecting unit 91 hits the seed pod a, the light receiving element 97 projects the light if the range of the seed pod a to which the detection light hits is narrow. Upon receiving the detection light from the light unit 91, the light receiving state is entered. The light receiving unit 95 determines whether or not each of the three light receiving elements 97 is in a non-light receiving state by detection control by the control board 96, and at least one of the three light receiving elements 97 is not receiving light. When it is determined that the state is in a state, the optical sensor 90 enters a detection state of the presence of seed soot as a detection state that the seed soot a is falling on the drop supply path 88. When the light receiving unit 95 determines that all of the three light receiving elements 97 are not in the non-light receiving state, the optical sensor 90 is in the non-detecting state.

図17(a)は、各繰出し凹部58による繰出し量が最少量に調節された状態で種籾aが落下する落下供給路88の部位88Bと光学式センサ90の検出作用との関係を示す説明図である。図17(b)は、各繰出し凹部58による繰出し量が最多量に調節された状態で種籾aが落下する落下供給路88の部位88Aと光学式センサ90の検出作用との関係を示す説明図である。   FIG. 17A is an explanatory diagram showing the relationship between the detection action of the optical sensor 90 and the portion 88B of the drop supply path 88 where the seed pod a falls while the feeding amount by each feeding recess 58 is adjusted to the minimum amount. It is. FIG. 17B is an explanatory diagram showing the relationship between the detection action of the optical sensor 90 and the part 88A of the drop supply path 88 where the seed pod a falls in a state where the feeding amount by each feeding recess 58 is adjusted to the maximum amount. It is.

これらの図に示すように、繰出し凹部58による繰出し量を最少量に変更調節すれば、繰出し凹部58の開口面積が最小になり、繰出し凹部58による繰出し量を最多量に変更調節すれば、繰出し凹部58の開口面積が最大になる。繰出し量を最少量に変更調節した場合、繰出し回転体52からの種籾aが落下供給路88の部位88Bを落下し、この部位88Bの容量調節体52bの摺動方向での広さが狭くなる。繰出し量を最多量に変更調節した場合、繰出し回転体52からの種籾aが落下供給路88の部位88Aを落下し、この部位88Aの容量調節体52bの摺動方向での広さが広くなる。繰出し量を最少量に変更調節した場合に種籾aが落下する落下供給路88の部位88Bと、繰出し量を最多量に変更調節した場合に種籾aが落下する落下供給路88の部位88Aとは、容量調節体52bの摺動方向に沿う方向で重合する。繰出し量を最少量に変更調節した場合に種籾aが落下する落下供給路88の部位88Bの容量調節体52bの摺動方向と交差する方向での大きさは、種籾aなどの粉粒体の性状により、繰出し量を最多量に変更調節した場合に種籾aが落下する落下供給路88の部位88Aの容量調節体52bの摺動方向と交差する方向での大きさよりも小になる。光学式センサ90は、容量調節体52bの摺動方向に沿う方向視で繰出し量が最少量に調節された場合に種籾aが落下する部位88Bに位置し、かつ平面視で容量調節体52bの摺動方向に交差する方向での検出域90W(図18参照)を備えた小型のものでありながら、最少量から最多量に至る全調節範囲のいずれの繰出し量に調節された場合であっても、繰出し回転体52からの種籾aの落下を検出する。   As shown in these drawings, if the feeding amount by the feeding recess 58 is changed and adjusted to the minimum amount, the opening area of the feeding recess 58 is minimized, and if the feeding amount by the feeding recess 58 is changed and adjusted to the maximum amount, the feeding amount is increased. The opening area of the recess 58 is maximized. When the feeding amount is changed and adjusted to the minimum amount, the seed soup a from the feeding rotary body 52 falls on the part 88B of the drop supply path 88, and the area of the part 88B in the sliding direction of the capacity adjusting body 52b becomes narrow. . When the feeding amount is changed and adjusted to the maximum amount, the seed soot a from the feeding rotary body 52 falls on the part 88A of the drop supply path 88, and the area of the part 88A in the sliding direction of the capacity adjusting body 52b becomes wide. . The part 88B of the drop supply path 88 where the seed pod a falls when the feed amount is changed and adjusted to the minimum amount, and the part 88A of the drop supply path 88 where the seed potato a falls when the feed amount is changed and adjusted to the maximum amount Polymerization is performed in a direction along the sliding direction of the capacity adjusting body 52b. When the feed amount is changed and adjusted to the minimum amount, the size in the direction intersecting the sliding direction of the capacity adjusting body 52b of the portion 88B of the drop supply path 88 where the seed pod a falls is the size of the powdery body such as the seed pod a. Depending on the property, when the feeding amount is changed and adjusted to the maximum amount, the size becomes smaller than the size in the direction intersecting the sliding direction of the capacity adjusting body 52b of the portion 88A of the drop supply path 88 where the seed pod a falls. The optical sensor 90 is located at a portion 88B where the seed pod a falls when the feeding amount is adjusted to the minimum when viewed in the direction along the sliding direction of the capacity adjusting body 52b, and the optical sensor 90 of the capacity adjusting body 52b is seen in plan view. Although it is a small one having a detection area 90W (see FIG. 18) in the direction crossing the sliding direction, it is adjusted to any feeding amount in the entire adjustment range from the minimum amount to the maximum amount. Also, the fall of the seed pod a from the feeding rotary body 52 is detected.

図18は、平面視で繰出し回転体58の回転軸芯Pに対して交差する方向での光学式センサ90の検出域90Wと繰出し回転体58の位置関係を示す説明図である。この図に示すように、光学式センサ90の検出域90Wが繰出し回転体58の排出箇所Zを通る鉛直線Z1と繰出し回転体58の排出箇所Zにおける接線Z2との間に位置するように検出域Wを設定するべく、光学式センサ90の投光素子93及び受光素子97を配置してある。   FIG. 18 is an explanatory diagram showing the positional relationship between the detection area 90W of the optical sensor 90 and the feeding rotary body 58 in a direction intersecting the rotational axis P of the feeding rotary body 58 in plan view. As shown in this figure, the detection area 90W of the optical sensor 90 is detected so as to be positioned between the vertical line Z1 passing through the discharge point Z of the feeding rotary body 58 and the tangent line Z2 at the discharge point Z of the feeding rotary body 58. In order to set the area W, the light projecting element 93 and the light receiving element 97 of the optical sensor 90 are arranged.

つまり、排出箇所Zの付近では、繰出し凹部58から排出される種籾aは、繰出し回転体52の回転力を受けながら排出されて鉛直線Z1と接線Z2の間の箇所に排出されるから、種籾aに遠心力が作用しても、光学式センサ90を繰出し回転体52に近づけても、繰出し回転体52からの種籾aが光学式センサ90の検出域90Wに入りやすい。従って、光学式センサ90は、鉛直線Z1と接線Z2の間に位置するだけの小範囲の検出域90Wを備える小型のものでありながら、繰出し回転体52から落下する種籾aに精度よく検出作用する。受光部97が繰出し回転体52に近づくことで、検出が確実となる。   That is, in the vicinity of the discharge point Z, the seed soot a discharged from the feeding recess 58 is discharged while receiving the rotational force of the feeding rotary body 52, and is discharged to a place between the vertical line Z1 and the tangent Z2. Even if a centrifugal force acts on a, or even if the optical sensor 90 is brought close to the feeding rotary body 52, the seeds a from the feeding rotary body 52 tend to enter the detection area 90W of the optical sensor 90. Therefore, the optical sensor 90 is a small sensor having a small detection area 90W located between the vertical line Z1 and the tangent line Z2, but accurately detects the seed pod a falling from the feeding rotary body 52. To do. Detection is ensured when the light receiving unit 97 approaches the feeding rotary body 52.

図15に示すように、繰出しケース51に設けた点検用開口108を、繰出し回転体52の回転軸芯Pに対して投光部91及び受光部95が位置する側に配置し、受光部95の受光素子97に点検用開口108から手を届きやすくしてある。   As shown in FIG. 15, the inspection opening 108 provided in the feeding case 51 is arranged on the side where the light projecting unit 91 and the light receiving unit 95 are located with respect to the rotational axis P of the feeding rotating body 52, and the light receiving unit 95. The light receiving element 97 can be easily reached from the inspection opening 108.

〔別の実施形態〕
(1)上記した実施例では、光学式センサ90を採用した例を示したが、種籾aに対して検出片を接触作用させる接触式の検出センサを採用して実施してもよい。
[Another embodiment]
(1) Although the example which employ | adopted the optical sensor 90 was shown in the above-mentioned Example, you may implement by employ | adopting the contact-type detection sensor which makes a detection piece contact-act with the seed potato | acupuncture a.

(2)上記した実施例では、平面視で繰出し回転体52の回転軸芯Pに対して直交する方向に検出光を照射する例を示したが、回転軸芯Pに対して直交するのではなく、回転軸芯Pに対して交差する方向に検出光を照射するように構成して実施してもよい。   (2) In the above-described embodiment, the example in which the detection light is irradiated in a direction orthogonal to the rotational axis P of the feeding rotary body 52 in a plan view is shown. Alternatively, the detection light may be irradiated in a direction intersecting the rotation axis P.

(3)上記した実施例では、投光部91及び受光部95を繰出しケース51及び筒状体56に対して脱着自在に構成した例を示したが、投光部91及び受光部95を繰出しケース51や筒状体56に一体形成して実施してもよい。この場合、投光部91と受光部95の相対位置決めが容易となる。   (3) In the above-described embodiment, the example in which the light projecting unit 91 and the light receiving unit 95 are configured to be detachable from the feeding case 51 and the cylindrical body 56 has been shown. You may implement by integrally forming in the case 51 and the cylindrical body 56. FIG. In this case, relative positioning of the light projecting unit 91 and the light receiving unit 95 is facilitated.

(4)上記した実施例では、ロール形の繰出し回転体52を採用した例を示したが、上下向き軸芯まわりで回転駆動されるとともに回転軸芯に沿う方向きの貫通孔で成る繰出し凹部を備えた目皿形の繰出し回転体を採用して実施してもよい。   (4) In the above-described embodiment, an example in which the roll-shaped feeding rotary body 52 is adopted has been shown. However, the feeding recess is formed by a through hole extending in the direction along the rotation axis while being driven to rotate around the vertical axis. It may be carried out by adopting a pan-shaped feeding rotary body provided with

(5)上記した実施例では、3本の検出光を照射する例を示したが、4本など、3本以外の検出光を照射するよう構成して実施してもよい。   (5) In the above-described embodiment, the example in which the three detection lights are irradiated has been described. However, the detection light may be configured to be irradiated with the detection light other than three such as four.

(6)上記した実施例では、走行機体に対して作業部Sが自由ローリングする例を示したが、走行機体の左右傾斜を検出する傾斜検出センサ、及び作業部Sをローリング操作する駆動機構を備え、傾斜検出センサによる検出結果を基に作業部Sがローリング制御されるよう構成して実施してもよい。   (6) In the above-described embodiment, an example in which the working unit S freely rolls with respect to the traveling machine body is shown. However, an inclination detection sensor that detects the right and left inclination of the traveling machine body and a drive mechanism that performs the rolling operation of the working unit S are provided. The working unit S may be configured to be subjected to rolling control based on the detection result of the tilt detection sensor.

(7)上記した実施例では、6条供給の形態で種籾aの供給を行なう例を示したが、4条供給や8条供給など、6条以外の条数での供給形態で種籾aを供給するように構成して実施してもよい。   (7) In the above-described embodiment, an example in which seed potato a is supplied in the form of 6-row supply is shown. However, seed potato a is supplied in a supply form other than 6 such as 4-row supply and 8-row supply. You may comprise and implement so that it may supply.

(8)上記した実施例では、鉄コーティング処理が施された種籾aの供給を行なうよう構成した例を示したが、カルパーコーティング処理が施された種籾、鉄コーティング処理やカルパーコーティング処理が施されていない種籾の供給を行なうように構成して実施してもよい。この場合、粉粒体供給装置Aからの種籾が溝に供給されるように圃場に溝を形成する作溝器、及び供給された種籾に対する覆土を行なう覆土器を設けて実施するとよい。   (8) In the above-described embodiment, an example is shown in which the seed pod a subjected to the iron coating process is supplied. However, the seed pod subjected to the calper coating process, the iron coating process, and the calper coating process are performed. You may comprise and implement so that the seeds which have not been supplied may be supplied. In this case, it is advisable to provide a grooving device that forms a groove in the field so that the seed pod from the powder and granular material supply device A is supplied to the grooving, and a soil covering device that covers the supplied seed potato.

本発明は、種籾などの種子の他、肥料、薬剤など、種子以外の粉粒体を供給する粉粒体供給装置を有する作業部を備えた水田作業機にも利用できる。   INDUSTRIAL APPLICABILITY The present invention can also be used in a paddy field work machine including a working part having a powder body supply device for supplying powder particles other than seeds, such as fertilizers and drugs, in addition to seeds such as seed pods.

32 粉粒体タンク
51 繰出しケース
52 繰出し回転体
52a 回転体本体
52b 容量調節体
52s 繰出し回転体の周面
58 繰出し凹部
58a 容量設定部
88 落下供給路
88A 繰出し量が最少量において種子が落下する部位
88B 繰出し量が最多量において種子が落下する部位
90 検出センサ
90W 検出域
91 投光部
95 受光部
108 点検用開口
a 粉粒体
P 繰出し回転体の回転軸芯
Z 粉粒体排出箇所
Z1 鉛直線
Z2 接線
32 Powder body tank 51 Feeding case 52 Feeding rotator 52a Rotating body main body 52b Capacity adjusting body 52s Circumferential surface of feeding rotator 58 Feeding recess 58a Capacity setting part 88 Drop supply path 88A Site where seed drops when feeding amount is minimum 88B Site where seed is dropped when feeding amount is maximum 90 detection sensor 90W detection area 91 light projecting unit 95 light receiving unit 108 inspection opening a granular material P rotational axis of feeding rotary body Z granular material discharge location Z1 vertical line Z2 Tangent

Claims (6)

粉粒体タンクに貯留された粉粒体を繰出し凹部が設けられた駆動回転自在な繰出し回転体によって設定量ずつ間欠的に繰出して圃場に向けて落下させる粉粒体供給装置であって、
前記繰出し凹部の開口面積を変更することによって、前記繰出し回転体の前記繰出し凹部による繰出し量を変更するように構成し、
前記繰出し回転体からの粉粒体を圃場に向けて落下させる落下供給路における粉粒体の落下を検出する検出センサを設け、
前記検出センサの前記落下供給路を横断する方向での検出域が、前記落下供給路のうちの前記繰出し凹部による繰出し量を最多量にするように繰出し量調節された状態における前記繰出し回転体からの粉粒体が落下する部位よりも小の部位であって、前記繰出し凹部による繰出し量を最少量にするように繰出し量調節された状態における前記繰出し回転体からの粉粒体が落下する部位に位置するように、前記検出域を設定してある粉粒体供給装置。
A granular material supply device that intermittently feeds a granular material stored in a granular material tank by a set amount by a driving rotary member provided with a feeding recess and is dropped toward a farm field.
By changing the opening area of the feeding recess, the feeding amount by the feeding recess of the feeding rotating body is changed,
A detection sensor is provided for detecting the fall of the powder in the drop supply path for dropping the powder from the feeding rotating body toward the field,
The detection area of the detection sensor in the direction crossing the drop supply path is from the feed rotating body in a state in which the feed amount is adjusted so as to maximize the feed amount by the feed recess in the drop supply path. The part where the granular material falls from the feeding rotating body in a state where the feeding amount is adjusted so as to minimize the feeding amount by the feeding recess, which is smaller than the part where the granular material falls. The granular material supply apparatus which has set the said detection area so that it may be located in.
前記繰出し回転体を、前記繰出し凹部を備える回転体本体と前記繰出し凹部に係入する容量設定部を備える容量調節体とを備えて構成して、前記容量調節体が前記回転体本体に対して摺動調節されることにより、前記繰出し凹部における前記容量設定部の係入量が変化し、前記繰出し凹部の容量及び開口面積が変化して前記繰出し凹部による繰出し量が変化するように構成し、
前記検出センサを、前記回転体本体に対して前記容量調節体が摺動調節される方向と異なる方向に前記落下供給路を挟んで位置する投光部と受光部を備えて構成してある請求項1記載の粉粒体供給装置。
The feeding rotary body includes a rotary body main body including the feeding recess and a capacity adjusting body including a capacity setting unit that engages with the feeding recess, and the capacity adjusting body is configured with respect to the rotary body main body. By adjusting the sliding, the amount of engagement of the capacity setting portion in the feeding recess changes, the capacity and opening area of the feeding recess changes, and the feeding amount by the feeding recess changes.
The detection sensor includes a light projecting unit and a light receiving unit that are positioned with the drop supply path in a direction different from a direction in which the capacity adjusting body is slid and adjusted with respect to the rotating body main body. Item 2. The powder and granular material supply apparatus according to Item 1.
前記繰出し回転体が回転軸芯より下方に位置する箇所において前記受光部が位置する側から前記投光部が位置する側に向かって移動するように構成してある請求項2記載の粉粒体供給装置。   The granular material according to claim 2, wherein the feeding rotary member is configured to move from a side where the light receiving unit is located toward a side where the light projecting unit is located at a location where the feeding rotary member is located below the rotation axis. Feeding device. 粉粒体タンクに貯留された粉粒体を繰出し凹部が設けられた駆動回転自在な繰出し回転体によって設定量ずつ間欠的に繰出して圃場に向けて落下させる粉粒体供給装置であって、
前記繰出し回転体を、前記繰出し凹部を備える回転体本体と前記繰出し凹部に係入する容量設定部を備える容量調節体とを備えて構成して、前記容量調節体が前記回転体本体に対して摺動調節されることにより、前記繰出し凹部における前記容量設定部の係入量が変化し、前記繰出し凹部の容量及び開口面積が変化して前記繰出し凹部による繰出し量が変化するように構成し、
前記繰出し回転体からの粉粒体を圃場に向けて落下させる落下供給路における粉粒体の落下を検出する検出センサを設け、
前記検出センサを、前記回転体本体に対して前記容量調節体が摺動調節される方向に沿う方向に前記落下供給路を挟んで位置する投光部と受光部を備えて構成し、
前記検出センサの検出域を、前記落下供給路のうち、前記繰出し凹部による繰出し量を最少量にするように繰出し量調節された状態における前記繰出し回転体からの粉粒体が落下する部位に設定してある粉粒体供給装置。
A granular material supply device that intermittently feeds a granular material stored in a granular material tank by a set amount by a driving rotary member provided with a feeding recess and is dropped toward a farm field.
The feeding rotary body includes a rotary body main body including the feeding recess and a capacity adjusting body including a capacity setting unit that engages with the feeding recess, and the capacity adjusting body is configured with respect to the rotary body main body. By adjusting the sliding, the amount of engagement of the capacity setting portion in the feeding recess changes, the capacity and opening area of the feeding recess changes, and the feeding amount by the feeding recess changes.
A detection sensor is provided for detecting the fall of the powder in the drop supply path for dropping the powder from the feeding rotating body toward the field,
The detection sensor includes a light projecting unit and a light receiving unit that are positioned with the drop supply path in a direction along a direction in which the capacity adjusting body is slid and adjusted with respect to the rotating body main body ,
The detection area of the detection sensor is set to a part of the drop supply path where the granular material from the feeding rotating body falls in a state where the feeding amount is adjusted so that the feeding amount by the feeding recess is minimized. A granular material supply device.
前記検出センサの検出域が前記繰出し回転体の粉粒体排出箇所を通る鉛直線と前記繰出し回転体の粉粒体排出箇所における接線との間に位置するように、前記検出域を設定してある請求項4記載の粉粒体供給装置。   The detection area is set so that the detection area of the detection sensor is located between a vertical line passing through the powder discharge part of the feeding rotary body and a tangent line at the powder discharge part of the feeding rotary body. The granular material supply apparatus according to claim 4. 前記繰出し回転体を収容する繰出しケースに点検用開口を、前記繰出し回転体の回転軸芯に対して前記受光部が位置する側に配置して設けてある請求項2又は3記載の粉粒体供給装置。   The granular material according to claim 2 or 3, wherein an opening for inspection is provided on a side where the light receiving part is located with respect to a rotation axis of the feeding rotary body in a feeding case that houses the feeding rotary body. Feeding device.
JP2010253194A 2010-11-11 2010-11-11 Powder and particle feeder Expired - Fee Related JP5676217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010253194A JP5676217B2 (en) 2010-11-11 2010-11-11 Powder and particle feeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010253194A JP5676217B2 (en) 2010-11-11 2010-11-11 Powder and particle feeder

Publications (2)

Publication Number Publication Date
JP2012100609A JP2012100609A (en) 2012-05-31
JP5676217B2 true JP5676217B2 (en) 2015-02-25

Family

ID=46391843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010253194A Expired - Fee Related JP5676217B2 (en) 2010-11-11 2010-11-11 Powder and particle feeder

Country Status (1)

Country Link
JP (1) JP5676217B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6373631B2 (en) * 2014-04-28 2018-08-15 ヤンマー株式会社 Granular material spraying device and spraying vehicle equipped with the same
CN105580541A (en) * 2014-10-21 2016-05-18 四川农业大学 Adjustable seed grasping apparatus for hill planter

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2948928B2 (en) * 1991-03-04 1999-09-13 株式会社クボタ Paddy field machine fertilizer
JP2949032B2 (en) * 1994-07-27 1999-09-13 株式会社クボタ Fertilizer application equipment
JP3380719B2 (en) * 1997-09-25 2003-02-24 株式会社クボタ Powder supply unit
JP2002204608A (en) * 2001-01-10 2002-07-23 Iseki & Co Ltd Powder and granule sending apparatus
JP2003210004A (en) * 2002-01-18 2003-07-29 Iseki & Co Ltd Granular material-discharging machine
JP2004065097A (en) * 2002-08-06 2004-03-04 Iseki & Co Ltd Granule feeder with broken powder sensor

Also Published As

Publication number Publication date
JP2012100609A (en) 2012-05-31

Similar Documents

Publication Publication Date Title
EP3777504B1 (en) Seed skip compensation system
US11297759B2 (en) Seed level detection in a seed meter
CA2966526C (en) Seed planting apparatus, systems and methods
US6598548B2 (en) Seed metering device
JP5632642B2 (en) Powder and particle feeder
JP5676217B2 (en) Powder and particle feeder
JP5930578B2 (en) Powder and particle feeder
JP5513140B2 (en) Powder and particle feeder
JP2011142875A (en) Granule feeder
JP5724425B2 (en) Seeding machine
JP2011142875A5 (en)
JP2012100608A (en) Paddy field working machine
JP2013201919A (en) Granule feeder
CA2379078C (en) Seed metering device
JP2005333979A (en) Sower
JP5537381B2 (en) Working machine
JP3383626B2 (en) Seedling plant with feeding device
JP2004065097A (en) Granule feeder with broken powder sensor
JP3383627B2 (en) Seedling plant with feeding device
JP7209286B2 (en) Agricultural material supply device
JP6510266B2 (en) Powder and granular material feeder
JP2019103522A (en) Powder feeder
JP2010193742A (en) Seeding machine
KR102646310B1 (en) Paddy field working machine
JP2003210004A (en) Granular material-discharging machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141225

R150 Certificate of patent or registration of utility model

Ref document number: 5676217

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees