JP5673567B2 - Manufacturing process efficiency prediction method, apparatus and program - Google Patents

Manufacturing process efficiency prediction method, apparatus and program Download PDF

Info

Publication number
JP5673567B2
JP5673567B2 JP2012006343A JP2012006343A JP5673567B2 JP 5673567 B2 JP5673567 B2 JP 5673567B2 JP 2012006343 A JP2012006343 A JP 2012006343A JP 2012006343 A JP2012006343 A JP 2012006343A JP 5673567 B2 JP5673567 B2 JP 5673567B2
Authority
JP
Japan
Prior art keywords
efficiency
product group
rolling
manufacturing process
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012006343A
Other languages
Japanese (ja)
Other versions
JP2013145521A (en
Inventor
水谷 泰
泰 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2012006343A priority Critical patent/JP5673567B2/en
Publication of JP2013145521A publication Critical patent/JP2013145521A/en
Application granted granted Critical
Publication of JP5673567B2 publication Critical patent/JP5673567B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Control Of Metal Rolling (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • General Factory Administration (AREA)
  • Metal Rolling (AREA)

Description

本発明は、処理能力が異なる直列、直結、多段の複数工程を有し、複数種の製品群を組み合せて製造する製造プロセスにおいて、製造プロセス全体の一貫能率を予測するのに利用して好適な製造プロセスの能率予測方法、装置及びプログラムに関する。   INDUSTRIAL APPLICABILITY The present invention is suitable for use in predicting the consistent efficiency of the entire manufacturing process in a manufacturing process having a plurality of processes of series, direct connection, and multiple stages having different processing capacities, and manufacturing by combining a plurality of types of product groups. The present invention relates to a manufacturing process efficiency prediction method, apparatus, and program.

鉄鋼業の代表的な製品である厚板の圧延プロセスは、スラブヤード工程、加熱工程、粗圧延工程、仕上圧延工程、加速冷却工程、剪断工程といった複数工程が直列、直結、多段に配されている。   The steel plate rolling process, which is a representative product of the steel industry, consists of a series of slab yard process, heating process, rough rolling process, finish rolling process, accelerated cooling process, shearing process in series, direct connection, and multiple stages. Yes.

その一方で、厚板は、厚、幅、長さのサイズ及び規格仕様が多岐にわたり、各工程のプロセス条件も不可避的に多様となる特徴を持つ。このため、圧延プロセスは、大規模でありながら、多品種少量の混流の生産でもあり、鋼片毎に一貫プロセス中の律速工程が逐次変動するため、圧延プロセス全体の一貫能率/生産性を高精度かつ簡易に予測することは、技術的に極めて難しい課題である。   On the other hand, thick plates have a variety of thickness, width, length size and standard specifications, and the process conditions of each process are inevitably varied. For this reason, the rolling process is a large-scale, but also multi-product, small-mix production, and the rate-limiting step in the consistent process varies sequentially for each piece of slab, increasing the efficiency and productivity of the entire rolling process. Predicting accurately and simply is a technically extremely difficult task.

特開2002−366219号公報JP 2002-366219 A 特開2006−48540号公報(特許第4660137号公報)JP 2006-48540 A (Patent No. 4660137) 特開2007−179519号公報JP 2007-179519 A 特開平3−49853号公報(特許第2802393号公報)JP-A-3-49853 (Patent No. 2802393) 特開2002−333911号公報(特許第4473467号公報)JP 2002-333911 A (Patent No. 4473467) 特開2003−162313号公報JP 2003-162313 A 特開平10−138102号公報JP-A-10-138102 特開2008−27150号公報(特許第4757729号公報)JP 2008-27150 A (Patent No. 47575729) 特開2010−128679号公報JP 2010-128679 A 特開2011−134283号公報JP 2011-134283 A 特表2000−511118号公報Special Table 2000-511118 特開2004−78273号公報(特許3976640号公報)JP 2004-78273 A (Patent No. 3976640) 特開平7−191735号公報(特許3203918号公報)JP 7-191735 A (Patent No. 3203918)

「生産マネジメント入門I」 藤本隆宏、日本経済新聞社、2001"Introduction to Production Management I" Takahiro Fujimoto, Nikkei Inc., 2001 「トヨタ生産方式に基づく『モノ』と『情報』の流れ図で現場の見方を変えよう」 マイク・ローザー&ジョン・シュック、日刊工業新聞社、2001“Let's change the view of the field with a flow diagram of“ things ”and“ information ”based on the Toyota production system” Mike Rosar & John Sook, Nikkan Kogyo Shimbun, 2001

この種の技術として、例えば特許文献1に開示されている技術は、コンピュータ上の仮想工場モデルを用いて、工場の実機器を模倣した仮想的な生産を行うシミュレーションにより生産計画の評価を行う手法に関するものである。しかしながら、様々な条件を仮定し、それぞれの条件に応じた個別の事象を逐次算定、積算し、その結果を評価関数により評価、比較して最適値をとる条件を選択する方案であるため、大規模かつ多品種少量の混流生産において、生産順列、すなわちシミュレーションの計算条件の組合せが膨大となる場合には、最近の計算機処理能力をもってしても、計算に長大な時間を要し、実用に適さない問題がある。   As this type of technology, for example, the technology disclosed in Patent Document 1 uses a virtual factory model on a computer to evaluate a production plan by simulation that performs virtual production imitating real equipment in a factory. It is about. However, it is a method that assumes various conditions, calculates and accumulates individual events according to each condition sequentially, evaluates and compares the results with an evaluation function, and selects the condition that takes the optimum value. In large-scale, low-mix mixed-flow production, if the number of combinations of production permutations, that is, simulation calculation conditions, is enormous, even with the latest computer processing capacity, it takes a long time to calculate and is suitable for practical use. There is no problem.

また、特許文献2に開示されている技術は、大規模かつ多品種少量の混流生産に関して、処理プロセスを離散事象モデルで表し、コンピュータシミュレーションを行うことにより生産計画の立案及び評価を行う手法に関するものである。しかしながら、主に複数工程経路で複数製品を処理するプロセスに関するものであり、直列多段のプロセスの一貫能率を算定するには適さない。さらに、生産順列の組合せが膨大となり、計算に長大な時間を要し、実用に適さない。   Further, the technology disclosed in Patent Document 2 relates to a method for producing and evaluating a production plan by representing a processing process as a discrete event model and performing a computer simulation for large-scale, multi-mix, small-mix production. It is. However, it mainly relates to a process for processing a plurality of products through a plurality of process paths, and is not suitable for calculating the consistency efficiency of a serial multi-stage process. Furthermore, the number of combinations of production permutations becomes enormous, and it takes a long time for calculation and is not suitable for practical use.

また、特許文献3に開示されている技術は、鉄鋼業における製鋼プロセス(精錬−連続鋳造)を対象とし、ガントチャートを用いて、比較的多品種の製品を複数工程で製造する際の生産計画立案に関するものである。しかしながら、より多品種少量であり生産順列の組合せが膨大となる厚板の圧延プロセスに適用しようとした場合、計算に長大な時間を要し、実用に適さない。   The technique disclosed in Patent Document 3 targets a steelmaking process (refining-continuous casting) in the iron and steel industry, and uses Gantt charts to produce a production plan for producing a relatively wide variety of products in a plurality of processes. Concerning planning. However, if it is intended to be applied to a rolling process of thick plates with a large variety of small quantities and a large number of combinations of production permutations, the calculation takes a long time and is not suitable for practical use.

また、特許文献4に開示されている技術は、製造順序と各工程の所要時間が定まった製造プロセスに関するものである。しかしながら、製品毎に工程処理時間が変動する厚板の圧延プロセスのような大規模かつ多品種少量の混流生産には適用できない。   The technique disclosed in Patent Document 4 relates to a manufacturing process in which the manufacturing order and the time required for each process are determined. However, this method is not applicable to large-scale, multi-product, small-volume mixed flow production such as a thick plate rolling process in which the processing time varies for each product.

また、特許文献5に開示されている技術は、多品種の製品を複数工程で製造する際の大規模な生産計画立案に関するものである。しかしながら、鉄鋼業における製鋼〜圧延にわたる広範囲のプロセスを対象とし、日毎の生産量を大まかに算定・予測する用途を想定したものであり、厚板圧延のような直列、直結、多段の製造プロセスの一貫生産性(能率)を高精度に算定する用途には適用できない。   Further, the technique disclosed in Patent Document 5 relates to a large-scale production plan when a variety of products are manufactured in a plurality of processes. However, it is intended for a wide range of processes ranging from steelmaking to rolling in the steel industry, and is intended for rough calculation and prediction of daily production volume. It cannot be applied to applications that calculate integrated productivity (efficiency) with high accuracy.

また、特許文献6に開示されている技術は、多品種少量の製品を複数工程で生産するプロセスの生産計画立案を支援する方法に関し、滞留時間の平均値が最大である工程をボトルネック工程として評価基準値を算定し、生産ラインモデルを用いたシミュレーションを行うものである。しかしながら、多品種少量であり生産順列の組合せが膨大となる厚板圧延のような製造プロセスに適用しようとした場合、最近の計算機処理能力をもってしても、計算に長大な時間を要し、実用に適さない。   In addition, the technique disclosed in Patent Document 6 relates to a method for supporting production planning of a process for producing a small amount of various products in a plurality of processes, and the process having the maximum residence time is defined as a bottleneck process. An evaluation standard value is calculated and a simulation using a production line model is performed. However, when trying to apply to a manufacturing process such as thick plate rolling, where the combination of production permutations is enormous and the number of combinations of production permutations is enormous, even with the latest computer processing capacity, it takes a long time to calculate and is practical. Not suitable for.

例えば、非特許文献1、2では、多品種少量生産の加工、組み立てラインにおいて、部品や製品の属性やプロセスの同一性あるいは類似性を基準として、多品種の部品、製品をいくつかのグループ(パーツファミリー、製品ファミリー等とも呼ばれる)に分類し、生産の最適化を図る技術がグループ・テクノロジーとして紹介されている。   For example, in Non-Patent Documents 1 and 2, in the processing and assembly line for high-mix low-volume production, various types of parts and products are grouped into groups (based on the identity or similarity of the attributes and processes of parts and products). Group technologies are also introduced to optimize production by classifying them into parts families and product families.

グループ・テクノロジーの適用例として、特許文献7では、多品種少量生産の組み立て加工ラインにおいて製品の部品構成又は製造ラインに対する負荷が類似する品種群を同一品種のグループとして取扱い、製造ラインの負荷を平準化する方案が提案されている。しかしながら、本方案では製造プロセスに関する知見から大まかな品種のグループに分類しているため、製造負荷を予測する精度が必ずしも十分ではなかった。   As an example of the application of group technology, in Patent Document 7, in an assembly processing line for high-mix low-volume production, product groups having similar product components or load on the production line are handled as a group of the same product, and the load on the production line is leveled. There are proposals to make it easier. However, since this method categorizes into groups of broad varieties based on knowledge about the manufacturing process, the accuracy of predicting the manufacturing load is not always sufficient.

また、特許文献8、9、10では、決定木作成ロジックを用いて作成した品種分類ロジックに基づいて品種グループを作成し、品種毎に製造負荷を予測する方法が提案されている。しかしながら、これらの技術は、複数工程の直列直結のラインを適用対象とするものではない。   Patent Documents 8, 9, and 10 propose a method of creating a product group based on a product type classification logic created using a decision tree creation logic and predicting a manufacturing load for each product type. However, these techniques do not apply to a series of directly connected lines of a plurality of steps.

また、特許文献11、12、13では、複数製品を、複数工程を有するラインで製造する場合に、ボトルネック工程を特定する方案が提案されている。しかしながら、これらの技術は、複数工程の直列直結のラインを適用対象とするものではない。   Patent Documents 11, 12, and 13 propose a method for specifying a bottleneck process when a plurality of products are manufactured on a line having a plurality of processes. However, these techniques do not apply to a series of directly connected lines of a plurality of steps.

上記のように、既存の生産、製造、処理計画立案は、シミュレーターを用いる等により、様々な条件を仮定し、それぞれの条件に応じた個別の事象を逐次算定、積算し、その結果を評価関数により評価、比較して最適値をとる条件を選択する方案が大半であり、大規模かつ多品種少量の混流生産において、生産順列、すなわちシミュレーションの計算条件の組合せが膨大となる場合、計算機の負荷が増大/過大となり、実用に適さない問題がある。   As described above, existing production, manufacturing, and processing plans are assumed to have various conditions, such as by using a simulator, and individual events according to each condition are calculated and integrated sequentially, and the results are evaluated functions. In most cases, the conditions for selecting the conditions to obtain the optimum value by evaluating and comparing are calculated, and in large-scale, multi-mix, small-mix production, the number of combinations of production permutations, i.e., simulation conditions, becomes enormous. Increases / excesses, which is not suitable for practical use.

処理能力が異なる直列、直結、多段の複数工程を有し、複数種の製品群を組み合せて製造する製造プロセスにおいては、材料毎に各工程の負荷が変動し、その結果として材料毎に一貫プロセス中の律速工程が逐次変動するため、プロセス全体の一貫能率/生産性を高精度に予測することは、技術的に極めて難しく重要な課題であり、これらを計算機負荷が軽微かつ簡易に算定可能な方案はこれまでには提案されていない。   In a manufacturing process that has multiple processes of series, direct connection, and multiple stages with different processing capacities and manufactures by combining multiple types of product groups, the load of each process fluctuates for each material, resulting in an integrated process for each material. Because the rate-limiting process in the inside varies sequentially, it is extremely difficult and important to technically predict the consistent efficiency / productivity of the entire process, and these can be calculated easily with a light computer load. No plan has been proposed so far.

本発明は、上記のような点に鑑みてなされたものであり、処理能力が異なる直列、直結、多段の複数工程を有し、複数種の製品群を組み合せて製造する製造プロセスにおいて、製造プロセス全体の一貫能率を高精度かつ簡易に算定できるようにすることを目的とする。   The present invention has been made in view of the above points, and is a manufacturing process in which a plurality of series of steps having different processing capabilities, series, direct connection, and multiple stages are combined and manufactured by combining a plurality of types of product groups. The purpose is to be able to calculate the overall consistency efficiency with high accuracy and simplicity.

本発明の製造プロセスの能率予測方法は、処理能力が異なる直列、直結、多段の複数工程を有し、複数種の製品群を組み合せて製造する製造プロセスの能率予測方法であって、各工程の処理能率に影響を与えるパラメータを抽出するとともに、製品群に分類して、製品群毎に前記直列、直結、多段の複数工程中の律速工程を特定して、製品群毎の固有の一貫能率を求めるステップと、前記製品群毎の固有の一貫能率を用いて、製品群の構成比に応じて製造プロセス全体の一貫能率を算出するステップとを有することを特徴とする。
また、本発明の製造プロセスの能率予測方法の他の特徴とするところは、前記製造プロセスは、スラブヤード工程、スラブを再加熱する加熱工程、再加熱されたスラブを所定の幅まで幅出し圧延を行う粗圧延工程、幅出し後の鋼片を所定の厚み、長さを造り込むとともに、所定の温度で圧延する制御圧延により材質を造り込む仕上圧延工程、仕上圧延後の鋼片を大水量の冷却水により冷却し、焼入れ組織を造り込む加速冷却工程、圧延、冷却後の鋼片を所定の幅、長さの複数の鋼板に剪断する剪断工程といった複数工程が直列、直結、多段に配された厚板の圧延プロセスである点にある。この場合に、製品群は、鋼種、HCR(Hot Charged Rolling)であるかCCR(Cold Charged Rolling)であるか、耳付であるか切断であるかの順に分類され、さらにサイズで細分化して分類されるようにしてもよい。また、サイズは、スラブ厚、狙い厚、圧延幅の順に分類されるようにしてもよい。
本発明の製造プロセスの能率予測装置は、処理能力が異なる直列、直結、多段の複数工程を有し、複数種の製品群を組み合せて製造する製造プロセスの能率予測装置であって、各工程の処理能率に影響を与えるパラメータを抽出するとともに、製品群に分類して、製品群毎に前記直列、直結、多段の複数工程中の律速工程を特定して求められた、製品群毎の固有の一貫能率を記憶する記憶手段と、前記製品群毎の固有の一貫能率を用いて、製品群の構成比に応じて製造プロセス全体の一貫能率を算出する演算手段とを備えたことを特徴とする。
本発明のプログラムは、処理能力が異なる直列、直結、多段の複数工程を有し、複数種の製品群を組み合せて製造する製造プロセスの能率予測のためのプログラムであって、各工程の処理能率に影響を与えるパラメータを抽出するとともに、製品群に分類して、製品群毎に前記直列、直結、多段の複数工程中の律速工程を特定して求められた、製品群毎の固有の一貫能率を記憶する記憶手段と、前記製品群毎の固有の一貫能率を用いて、製品群の構成比に応じて製造プロセス全体の一貫能率を算出する演算手段としてコンピュータを機能させる。
The method for predicting the efficiency of a manufacturing process according to the present invention is a method for predicting the efficiency of a manufacturing process having a plurality of series, direct connection, and multi-stage processes having different processing capacities, and manufacturing by combining a plurality of types of product groups. Extract parameters that affect processing efficiency, classify them into product groups, identify the rate-limiting process in the series, direct connection, and multi-stage multiple processes for each product group, and obtain the inherent consistency efficiency for each product group. And a step of calculating a consistent efficiency of the entire manufacturing process in accordance with a composition ratio of the product group using a unique consistent efficiency for each product group.
Further, the manufacturing process efficiency prediction method according to the present invention is characterized in that the manufacturing process includes a slab yard process, a heating process for reheating the slab, and a reheated slab being rolled out to a predetermined width. The rough rolling process to perform, the finished steel slab to a predetermined thickness and length, and the finish rolling process to create the material by controlled rolling to roll at a predetermined temperature, the steel slab after finish rolling has a large water volume Multiple processes, such as an accelerated cooling process that cools with the cooling water and rolling process, and a shearing process that shears the cooled steel slab into a plurality of steel sheets of a predetermined width and length, are arranged in series, directly connected, and in multiple stages. It is the point which is the rolling process of the made thick board. In this case, the product group is classified in the order of steel grade, HCR (Hot Charged Rolling), CCR (Cold Charged Rolling), earring or cutting, and further subdivided by size. You may be made to do. Moreover, you may make it classify | categorize a size in order of slab thickness, aim thickness, and rolling width.
The production process efficiency prediction apparatus of the present invention is a production process efficiency prediction apparatus that has a plurality of series, direct connection, and multistage processes with different processing capacities, and is manufactured by combining a plurality of types of product groups. In addition to extracting parameters that affect processing efficiency and classifying into product groups, each product group is identified by determining the rate-limiting process in the series, direct connection, and multiple stages, and is unique to each product group. A storage means for storing a consistent efficiency, and an arithmetic means for calculating a consistent efficiency of the entire manufacturing process according to a composition ratio of the product group using a unique consistent efficiency for each product group. .
The program of the present invention is a program for predicting the efficiency of a manufacturing process having a plurality of processes of series, direct connection, and multiple stages with different processing capacities, and manufacturing by combining a plurality of types of product groups. Specific consistency efficiency for each product group, which is obtained by extracting parameters that affect the product, classifying the product group, and specifying the rate-limiting process in the series, direct connection, and multiple stages of each product group The computer is caused to function as a computing means for calculating the consistent efficiency of the entire manufacturing process in accordance with the composition ratio of the product group, using the storage means for storing the data and the consistent efficiency specific to each product group.

本発明によれば、製品群毎に直列、直結、多段の複数工程中の律速工程を特定して、製品群毎の固有の一貫能率を求めておくことにより、期間毎に変動する製品群の構成比に応じて、製造プロセス全体の一貫能率を高精度かつ簡易に算定することができる。   According to the present invention, by specifying the rate-limiting process among a plurality of processes in series, direct connection, and multiple stages for each product group, and obtaining the inherent consistency efficiency for each product group, the product group that varies from period to period can be obtained. Depending on the composition ratio, the consistent efficiency of the entire manufacturing process can be easily calculated with high accuracy.

厚板の圧延プロセスの圧延ラインの例を示す図である。It is a figure which shows the example of the rolling line of the rolling process of a thick plate. 普通鋼(CCR、耳付)についてサイズで細分化し、パラメータを統計的に算出した結果を示す図である。It is a figure which shows the result of having subdivided by size about normal steel (CCR, with ears) and statistically calculating parameters. 鋼種別の律速工程の比率を示す図である。It is a figure which shows the ratio of the rate-limiting process of steel classification. 実施形態に係る製造プロセスの能率予測装置の構成を示す図である。It is a figure which shows the structure of the efficiency prediction apparatus of the manufacturing process which concerns on embodiment.

以下、添付図面を参照して、本発明の好適な実施形態について説明する。
本実施形態では、処理能力が異なる直列、直結、多段の複数工程を有し、複数種の製品群を組み合せて製造する製造プロセスとして、鉄鋼業の代表的な製品である厚板の圧延プロセスを対象とする。
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.
In this embodiment, a rolling process of a thick plate, which is a representative product of the steel industry, is a manufacturing process that has a plurality of processes of series, direct connection, and multiple stages with different processing capacities, and combines a plurality of types of product groups. set to target.

図1には、厚板の圧延プロセスの圧延ラインの例を示す。圧延ラインには、上流側からスラブヤード101、加熱炉102、リバース圧延機である粗圧延機103、リバース圧延機である仕上圧延機104、矯正機105、水冷装置106、冷却床107、剪断機108といった設備が配置され、図中の矢印方向に製品が流れる。   FIG. 1 shows an example of a rolling line in a thick plate rolling process. In the rolling line, from the upstream side, a slab yard 101, a heating furnace 102, a rough rolling mill 103 as a reverse rolling mill, a finishing mill 104 as a reverse rolling mill, a straightening machine 105, a water cooling device 106, a cooling bed 107, a shearing machine. Equipment such as 108 is arranged, and the product flows in the direction of the arrow in the figure.

すなわち、厚板の圧延プロセスでは、スラブを加熱炉102に供給する、スラブヤード101による「スラブヤード(SY)工程」、スラブを再加熱する、加熱炉102による「加熱工程」、再加熱されたスラブを所定の幅まで幅出し圧延を行う、粗圧延機103による「粗圧延工程」、幅出し後の鋼片を所定の厚み、長さを造り込むとともに、所定の温度で圧延する制御圧延により材質を造り込む、仕上圧延機104による「仕上圧延工程」、仕上圧延後の鋼片を大水量の冷却水により冷却し、ベイナイトやマルテンサイトといった焼入れ組織を造り込む、水冷装置106による「加速冷却(CLC)工程」、圧延、冷却後の鋼片を所定の幅、長さの複数の鋼板に剪断する、剪断機108による「剪断(DSS)工程」といった複数工程が直列、直結、多段に配される。   That is, in the thick plate rolling process, the slab was supplied to the heating furnace 102, the “slab yard (SY) process” by the slab yard 101, the slab was reheated, the “heating process” by the heating furnace 102, and reheated. “Rough rolling process” by a roughing mill 103 that performs rolling out to a predetermined width of the slab, and by controlled rolling in which a steel piece after the widening is built to a predetermined thickness and length and rolled at a predetermined temperature “Finish rolling process” by finishing mill 104 that builds the material, steel strip after finishing rolling is cooled with a large amount of cooling water, and quenching structure such as bainite and martensite is built, and “accelerated cooling” by water cooling device 106 (CLC) process ”, multiple processes such as“ shear (DSS) process ”by the shearing machine 108, which shears the rolled and cooled steel pieces into a plurality of steel plates having a predetermined width and length. Column, direct connection, are arranged in multiple stages.

かかる厚板の圧延プロセスでは、各工程において、それぞれの処理能率を阻害する因子が存在する。例えば「スラブヤード工程」では、スラブ切断速度、スラブ単重、ノロ取り頻度、材料事情等が挙げられる。また、「加熱工程」では、装入温度、昇温能力、加熱条件等が挙げられる。また、「粗圧延工程」では、圧延速度、スケジューリング時間、ターン時間、ダミーパス、CR温度、反り修正、加熱とのピッチバランス、スラブ単重等が挙げられる。また、「仕上圧延工程」では、圧延速度、スケジューリング時間、ターン時間、CR温度、温度待ち、ワークロール交換、反り修正、仕上とのピッチバランス、スラブ単重等が挙げられる。「剪断工程」では、切断速度、切断能力、搬送能力、切断精度等が挙げられる。   In such a thick plate rolling process, there are factors that inhibit the processing efficiency in each step. For example, in the “slab yard process”, slab cutting speed, slab unit weight, cutting frequency, material circumstances, and the like can be mentioned. In addition, in the “heating step”, a charging temperature, a temperature raising capability, a heating condition, and the like can be given. In the “rough rolling process”, rolling speed, scheduling time, turn time, dummy pass, CR temperature, warp correction, pitch balance with heating, slab unit weight, and the like can be given. In the “finish rolling process”, rolling speed, scheduling time, turn time, CR temperature, temperature waiting, work roll replacement, warpage correction, pitch balance with finishing, slab unit weight, and the like can be mentioned. In the “shearing process”, cutting speed, cutting ability, conveying ability, cutting accuracy and the like can be mentioned.

本実施形態では、各工程の処理能率、すなわち単位時間でどれだけの処理を行うことができるかに影響を与えるパラメータ(パス回数、圧延温度、温度待ちパス間時間等)を抽出するとともに、これらのパラメータが有意な差異を持つ製品群に分類し、製品群毎に及び処理能率を統計的に算出する。例えば製品群毎のパラメータの平均が10%ずつ異なるようなパラメータ毎に分類するとともに、処理能率を算出する。そして、製品群毎に各工程の処理能率を比較することにより、製品群毎に直列、直結、多段の複数工程中の律速(ネック)工程を特定して、製品群毎の固有の一貫能率を求める。   In the present embodiment, the processing efficiency of each process, that is, parameters that affect how much processing can be performed in a unit time (number of passes, rolling temperature, temperature waiting time, etc.) are extracted, and these Are classified into product groups having significant differences, and the processing efficiency is statistically calculated for each product group. For example, classification is performed for each parameter such that the average of the parameters for each product group differs by 10%, and the processing efficiency is calculated. Then, by comparing the processing efficiency of each process for each product group, it is possible to identify the rate-limiting (neck) process in a plurality of processes in series, direct connection, and multiple stages for each product group, and to obtain the inherent consistency efficiency for each product group. Ask.

以下、具体的に説明すると、まず各工程の処理能率に影響を与えるパラメータを抽出する。本実施形態では、図2の縦の項目に示すように、「スラブヤード工程」の処理能率に影響を与えるパラメータとして、HCR比率、切断温度、幅長入替率、ピッチ、T/H(Ton/hour)、オフT/H、ピッチ(+オフ)、T/H(+オフ)を抽出している。また、「加熱工程」の処理能率に影響を与えるパラメータとして、加熱条件、管理時間、在炉時間、ピッチ、T/Hを抽出している。また、「粗圧延工程」の処理能率に影響を与えるパラメータとして、幅出比、調厚パス数、幅出パス数、移送パス数、パス回数、インターバル、圧延時間、総TIM(Time in Metal:噛み込み時間)、総TOM(Time off Metal:パス間時間)、ターン(ターン1、2)、各パスTIM、各パスTOM、ピッチ(インターバル+圧延時間)、T/Hを抽出している。また、「仕上圧延工程」の処理能率に影響を与えるパラメータとして、移送厚、噛込温度、仕上温度、パス回数、インターバル、圧延時間、総TIM、総TOM、各パスTIM、各パスTOM、ピッチ(インターバル+圧延時間)、T/Hを抽出している。また、「加速冷却工程」の処理能率に影響を与えるパラメータとして、開始待時間、冷却時間、ピッチ、T/Hを抽出している。また、「剪断工程」の処理能率に影響を与えるパラメータとして、耳付/切断、剪断速度、アライニング、インターバル、ピッチ、T/Hを抽出している。   More specifically, parameters that affect the processing efficiency of each process are first extracted. In the present embodiment, as shown in the vertical item of FIG. 2, parameters affecting the processing efficiency of the “slab yard process” include HCR ratio, cutting temperature, width length replacement rate, pitch, T / H (Ton / hour), off T / H, pitch (+ off), and T / H (+ off). Further, heating conditions, management time, in-furnace time, pitch, and T / H are extracted as parameters that affect the processing efficiency of the “heating step”. Further, as parameters affecting the processing efficiency of the “rough rolling process”, the tenacity ratio, the number of thickness adjusting passes, the number of tentering passes, the number of transfer passes, the number of passes, the interval, the rolling time, the total TIM (Time in Metal: Biting time), total TOM (Time off Metal: time between passes), turn (turns 1 and 2), each pass TIM, each pass TOM, pitch (interval + rolling time), and T / H are extracted. Parameters affecting the processing efficiency of the “finish rolling process” include transfer thickness, biting temperature, finishing temperature, number of passes, interval, rolling time, total TIM, total TOM, each pass TIM, each pass TOM, pitch (Interval + rolling time), T / H is extracted. In addition, start waiting time, cooling time, pitch, and T / H are extracted as parameters that affect the processing efficiency of the “accelerated cooling process”. In addition, as parameters affecting the processing efficiency of the “shearing process”, earring / cutting, shear rate, aligning, interval, pitch, and T / H are extracted.

また、パラメータが有意な差異を持つ製品群に分類する。本実施形態では、鋼種、HCR(Hot Charged Rolling)であるかCCR(Cold Charged Rolling)であるか、耳付であるか切断であるかの順に分類し、さらにサイズで細分化して分類している。鋼種としては、普通鋼、CR材、CLC材に分類する。なお、CR材、CLC材では、強度や使途(造船、建築、橋梁、自動車・・・等)でさらに分類するようにしてもよい。そして、それぞれの鋼種において、HCR(Hot Charged Rolling)であるかCCR(Cold Charged Rolling)であるかに分類し、さらに耳付であるか切断であるかに分類する。その上で、サイズで細分化して分類する。図2は、普通鋼(CCR、耳付)についてサイズで細分化し、パラメータを統計的に算出した結果を示す図である。図2の横の項目はサイズを表わす。本実施形態では、スラブ厚に分類して、それぞれのスラブ厚において、複数の狙い厚である板厚に分類し、さらに複数の圧延幅に分類する。それぞれに分類された製品群毎にパラメータ及び処理能率の平均値及び標準偏差を算出する。分類された製品群のパラメータの標準偏差が全体の標準偏差に対して有意に小さくないと検定された場合は分類の閾値を調整する等の手段により分類の修正を行う。   Moreover, it classify | categorizes into the product group in which a parameter has a significant difference. In this embodiment, it classifies in the order of steel type, HCR (Hot Charged Rolling) or CCR (Cold Charged Rolling), ear-attached or cut, and further subdivides by size. . The steel types are classified into ordinary steel, CR material, and CLC material. In addition, in CR material and CLC material, you may make it further classify | categorize according to intensity | strength and use (shipbuilding, construction, a bridge, a motor vehicle ... etc.). Each steel type is classified as HCR (Hot Charged Rolling) or CCR (Cold Charged Rolling), and further classified as ear-attached or cut. Then, subdivide and classify by size. FIG. 2 is a diagram showing the results of statistical calculation of parameters after subdividing the size of ordinary steel (CCR, with ears). The horizontal item in FIG. 2 represents the size. In this embodiment, it classify | categorizes into slab thickness, classifies into each plate thickness which is several target thickness in each slab thickness, and classify | categorizes into several rolling width further. The average value and standard deviation of parameters and processing efficiency are calculated for each product group classified. If it is determined that the standard deviation of the parameters of the classified product group is not significantly smaller than the overall standard deviation, the classification is corrected by means such as adjusting the classification threshold.

なお、図2において、縦の項目の上部にある「圧延の厚、幅、長」、「スラブの厚、幅、長、単重」は、対象とする圧延ラインで取り扱う製品についての平均値である。例えばスラブ厚<1500、板厚<8、圧延幅<2000のクラスでは、対象の圧延ラインで取り扱う製品について、圧延の平均厚6.4(mm)、平均幅1724(mm)、平均長33237(mm)、スラブの平均厚144(mm)、平均幅1169(mm)、平均長2345(mm)、単重3.08(T)である。   In FIG. 2, “rolling thickness, width, length” and “slab thickness, width, length, single weight” above the vertical items are average values for products handled in the target rolling line. is there. For example, in a class of slab thickness <1500, plate thickness <8, and rolling width <2000, the average thickness of rolling 6.4 (mm), average width 1724 (mm), average length 33237 ( mm), an average slab thickness of 144 (mm), an average width of 1169 (mm), an average length of 2345 (mm), and a single weight of 3.08 (T).

以上のようにして各工程の処理能率に影響を与えるパラメータを抽出するとともに、製品群に分類したならば、製品群毎にパラメータを統計的に算出する。すなわち、図2に示すように、各欄の数値をそれぞれの工程での設備能力に基づいて統計的に算出する。なお、図2では普通鋼(CCR、耳付)の一部のサイズについてのみ図示化したが、全ての製品群、すなわち普通鋼(CCR、切断)の各サイズ、普通鋼(HCR、耳付)の各サイズ、普通鋼(HCR、切断)の各サイズ、CR材(CCR、耳付)の各サイズ、CR材(CCR、切断)の各サイズ、CR材(HCR、耳付)の各サイズ、CR材(HCR、切断)の各サイズ、CLC材(CCR、耳付)の各サイズ、CLC材(CCR、切断)の各サイズ、CLC材(HCR、耳付)の各サイズ、CLC材(HCR、切断)の各サイズについても、同様にパラメータを統計的に算出する。   As described above, parameters that affect the processing efficiency of each process are extracted, and if the parameters are classified into product groups, the parameters are statistically calculated for each product group. That is, as shown in FIG. 2, the numerical value of each column is statistically calculated based on the facility capacity in each process. In FIG. 2, only some sizes of ordinary steel (CCR, with ears) are illustrated, but all product groups, that is, each size of ordinary steel (CCR, with cutting), ordinary steel (HCR, with ears) , Each size of ordinary steel (HCR, cutting), each size of CR material (CCR, with ears), each size of CR material (CCR, cutting), each size of CR material (HCR, with ears), Each size of CR material (HCR, cutting), each size of CLC material (CCR, with ears), each size of CLC material (CCR, cutting), each size of CLC material (HCR, with ears), CLC material (HCR) Similarly, the parameters are statistically calculated for each size.

そして、製品群毎に各工程の処理能率を比較することにより、製品群毎に直列、直結、多段の複数工程中の律速工程を特定して、製品群毎の固有の一貫能率を求める。図2の例、すなわち普通鋼(CCR、耳付)のスラブ厚<1500、板厚<8、圧延幅<2000のクラスの製品群では、スラブヤードオフを含む場合、「粗圧延工程」の処理能率であるT/Hが112と最小であるので、「粗圧延工程」が律速工程で、固有の一貫能率は112(T/H)となる。これは、普通鋼(CCR、耳付)のスラブ厚<1500、板厚<8、圧延幅<2000のクラスの製品群だけを、スラブヤードオフを含むように製造するとした場合、「スラブヤード工程」〜「剪断工程」までの一貫プロセスで112(T/H)の能率で製造することができることを意味する。なお、スラブヤードオンのみの場合は、「スラブヤード工程」の処理能率であるT/Hが106と最小であるので、「スラブヤード工程」が律速工程で、固有の一貫能率は106(T/H)となる。   Then, by comparing the processing efficiency of each process for each product group, a rate-limiting process among a plurality of processes in series, direct connection, and multiple stages is specified for each product group, and a unique consistent efficiency for each product group is obtained. In the example of FIG. 2, that is, a product group of slab thickness <1500, sheet thickness <8, and rolling width <2000 of ordinary steel (CCR, with ears), when the slab yard off is included, processing of “rough rolling process” Since the efficiency T / H is 112 and the minimum, the “rough rolling process” is the rate-limiting process, and the inherent consistency efficiency is 112 (T / H). This is because when only a product group of the class of plain steel (CCR, with ears) slab thickness <1500, sheet thickness <8, rolling width <2000 is included to include slab yard off, It means that it can be produced at an efficiency of 112 (T / H) by an integrated process from “to the shearing step”. When only the slab yard is on, the T / H, which is the processing efficiency of the “slab yard process”, is the smallest 106, so the “slab yard process” is the rate-limiting process, and the inherent consistency efficiency is 106 (T / H).

本実施形態で対象とする圧延ラインでは、図3に示すように、普通鋼では「粗圧延工程」が律速工程となるケースが多い一方で、CR材では「仕上延工程」が律速工程となるケースが多かった。   As shown in FIG. 3, in the rolling line targeted in the present embodiment, the “rough rolling process” is often the rate-limiting process in ordinary steel, while the “finishing process” is the rate-limiting process in the CR material. There were many cases.

以上のようにして製品群毎の固有の一貫能率を求めたならば、その製品群毎の固有の一貫能率を用いて、予測したい期間での製品群の構成比に応じて、製造プロセス全体の一貫能率を算出、予測する。例えば製品群が1〜Nに分類されているとして、予測したい期間で、製品群nをXn(T)(nは製品群を表わす1〜Nの数字)を製造するものとする。製品群nの固有の一貫能率がYn(T/H)であるとすると、製造プロセス全体の一貫能率は、
製造プロセスの一貫能率=ΣXn/Σ(Xn/Yn
として算出される。なお、Σはn=1〜Nまでの総和を意味する。
Once the inherent efficiency of each product group is determined as described above, the overall efficiency of the entire manufacturing process can be determined using the inherent efficiency of each product group according to the composition ratio of the product group in the period to be predicted. Calculate and predict consistent efficiency. For example, assuming that the product group is classified into 1 to N, X n (T) (n is a number from 1 to N representing the product group) is manufactured for the product group n in a period to be predicted. If the inherent consistency efficiency of product group n is Y n (T / H), the consistency efficiency of the entire manufacturing process is
Manufacturing process consistent efficiency = ΣX n / Σ (X n / Y n )
Is calculated as Note that Σ means the sum of n = 1 to N.

簡単な例で説明すると、例えば現時点から1週間で、普通鋼(CCR、耳付)のスラブ厚<1500、板厚<8、圧延幅<2000のクラスの製品群(以下、製品群Aという)を50(T)と、普通鋼(CCR、耳付)のスラブ厚<1500、板厚<15、圧延幅<3000のクラスの製品群(以下、製品群Bという)を100(T)とを、それぞれスラブヤードオフを含むように製造することを計画しているとする。製品群Aの固有の一貫能率は112(T/H)、製品群Bの固有の一貫能率は151(T/H)であるので、製造プロセス全体の一貫能率は、(50(T)+100(T))/{(50(T)/112(T/H))+(100(T)/151(T/H))}=約135(T/H)として算出される。   To explain with a simple example, for example, in one week from the present time, a product group of slab thickness <1500, sheet thickness <8, rolling width <2000 of ordinary steel (CCR, with ears) (hereinafter referred to as product group A) 50 (T), and slab thickness <1500 for normal steel (CCR, with ears), plate thickness <15, and a product group of the class of rolling width <3000 (hereinafter referred to as product group B) is 100 (T). Suppose you plan to manufacture each slab yard off. Since the inherent consistency efficiency of the product group A is 112 (T / H) and the inherent consistency efficiency of the product group B is 151 (T / H), the consistency efficiency of the entire manufacturing process is (50 (T) +100 ( T)) / {(50 (T) / 112 (T / H)) + (100 (T) / 151 (T / H))} = approximately 135 (T / H).

ここで、実際の生産において観測される一貫能率の実績値は、上記のようにして求めた製品群毎の固有の一貫能率とは異なるのが一般的である。これは、実際の生産では、複数種の製品群を組み合せて製造するため、律速工程が逐次変化し、当該製品群の固有の律速工程とは異なる律速状況が頻繁に発生するためである。したがって、実際の生産で観測される一貫能率の実績値は、同一製品群を連続して製造する場合の固有の一貫能率とは異なり、すなわち誤差を含み、期間毎に変動する生産順列の組み合わせを影響に受けるため、実績を集計した期間毎に不可避的に変動することとなる。このため、ある期間の製品群毎の一貫能率を算出し、期間毎に変動する製品群の構成比に応じた製造プロセス全体の一貫能率を算出しようとする場合、固有の一貫能率との誤差及び生産順列の変動に起因して、高精度な予測は困難であることが理解される。   Here, the actual value of the consistent efficiency observed in actual production is generally different from the inherent efficiency of each product group obtained as described above. This is because, in actual production, since a plurality of types of product groups are combined and manufactured, the rate-limiting process changes sequentially, and a rate-limiting situation different from the inherent rate-limiting process of the product group frequently occurs. Therefore, the actual value of consistent efficiency observed in actual production is different from the inherent consistent efficiency when the same product group is manufactured continuously, that is, it includes a combination of production permutations that include errors and fluctuate over time. In order to be affected, it will inevitably fluctuate from period to period when results are tabulated. For this reason, when calculating the consistent efficiency for each product group for a certain period and calculating the consistent efficiency of the entire manufacturing process according to the composition ratio of the product group, which varies from period to period, an error from the inherent consistent efficiency and It is understood that high-precision prediction is difficult due to fluctuations in production permutation.

そこで、本発明者は、製品群毎の固有の一貫能率と実際の生産において観測される一貫能率の実績値に及ぼす製品群毎の律速工程の影響を定量的に精査し、考察を重ねたところ、各工程の処理能率に影響を与えるパラメータを適正に抽出するとともに、これらのパラメータが有意な差異を持つ製品群を適正に定義することにより、製品群毎の固有の一貫能率を高精度に算出する方案を考案するとともに、このようにして算出された製品群毎の固有の一貫能率を、実際の生産において観測される製品群毎の一貫能率の実績値と比較すると、後者は前者を中央値として一定の範囲でばらつくこと、すなわち、実際の生産において、ある製品群が他の製品群と組み合わされて製造される場合、固有の一貫能率を基準として、誤差/ばらつきが発生すること、さらに、製造プロセス全体では、生産順列に関わらず、一貫能率の実績値と製品群の固有の一貫能率の誤差は相殺/キャンセルされ、製造プロセス全体の一貫能率は、製造群毎の固有の一貫能率を用いて、製品群の構成比に応じて高精度かつ簡易に算定できることを見出した。   Therefore, the present inventor quantitatively scrutinized the effects of the rate-determining process for each product group on the inherent consistency efficiency for each product group and the actual efficiency value observed in actual production, and repeated investigations. In addition to properly extracting parameters that affect the processing efficiency of each process and properly defining product groups that have significant differences in these parameters, the inherent consistency efficiency of each product group can be calculated with high accuracy. When comparing the inherent efficiency of each product group calculated in this way with the actual value of the consistency efficiency of each product group observed in actual production, the latter Variation in a certain range, that is, in the actual production, when one product group is manufactured in combination with another product group, an error / variation occurs based on the inherent consistency efficiency. Furthermore, in the entire manufacturing process, regardless of the production permutation, the error in the actual value of the consistent efficiency and the inherent consistency error of the product group are offset / cancelled, and the consistent efficiency of the entire manufacturing process is Using consistent efficiency, we found that it was possible to calculate with high accuracy and simplicity according to the composition ratio of the product group.

以上のように、処理能力が異なる直列、直結、多段の複数工程を有し、複数種の製品群を組み合せて製造する製造プロセスにおいて、各工程の処理能率に影響を与えるパラメータを適正に抽出するとともに、これらのパラメータが有意な差異を有する製品群を適正に定義して分類して、製品群毎の固有の一貫能率を求めることにより、製品群の構成比に応じて製造プロセス全体の一貫能率を高精度かつ簡易に算出、予測することが可能となる。   As described above, parameters that affect the processing efficiency of each process are appropriately extracted in a manufacturing process that combines multiple types of product groups with series, direct connection, and multiple stages with different processing capabilities. At the same time, by properly defining and classifying product groups with significant differences in these parameters and obtaining unique consistency efficiency for each product group, the consistency efficiency of the entire manufacturing process according to the composition ratio of the product group Can be calculated and predicted with high accuracy and simplicity.

(製造プロセスの能率予測装置)
以下、上述したように製品群毎の固有の一貫能率を用いて、製造プロセス全体の一貫能率を算出、予測する装置について説明する。図4は、実施形態に係る製造プロセスの能率予測装置100の構成を示す。
(Production process efficiency prediction device)
Hereinafter, an apparatus for calculating and predicting the consistent efficiency of the entire manufacturing process using the consistent efficiency specific to each product group as described above will be described. FIG. 4 shows a configuration of the efficiency prediction apparatus 100 for the manufacturing process according to the embodiment.

101は記憶部であり、上述したようにして各工程の処理能率に影響を与えるパラメータを抽出するとともに、製品群に分類して、製品群毎に前記直列、直結、多段の複数工程中の律速工程を特定して求められた、製品群毎の固有の一貫能率を記憶する。なお、各工程において設備能力がアップする等の変更があったときは、あらためて製品群毎の固有の一貫能率を求め、記憶部101に記憶する製品群毎の固有の一貫能率を更新する。   Reference numeral 101 denotes a storage unit that extracts parameters that affect the processing efficiency of each process as described above, classifies the product into product groups, and controls the rate in the series, direct connection, and multistage processes for each product group. The unique consistency efficiency for each product group obtained by specifying the process is stored. When there is a change such as an increase in equipment capacity in each process, the inherent consistency efficiency for each product group is obtained again, and the inherent consistency efficiency for each product group stored in the storage unit 101 is updated.

102は入力部であり、予測したい期間での製品群の情報を入力する。上述した例でいえば、例えば現時点から1週間で、製品群Aを50(T)と、製品群Bを100(T)とを、それぞれスラブヤードオフを含むように製造するとして、その情報を入力する。   Reference numeral 102 denotes an input unit for inputting information on a product group in a period to be predicted. In the example described above, for example, in one week from the present time, product group A is manufactured as 50 (T) and product group B as 100 (T) so as to include the slab yard off. input.

103は演算部であり、記憶部101に記憶された製品群毎の固有の一貫能率を用いて、入力部102から入力された製品群の情報から得られる構成比に応じて製造プロセス全体の一貫能率を算出、予測する。上述した例でいえば、製品群Aの固有の一貫能率は112(T/H)、製品群Bの固有の一貫能率は151(T/H)であり、製造プロセス全体の一貫能率は、(50(T)+100(T))/{(50(T)/112(T/H))+(100(T)/151(T/H))}=約135(T/H)として算出される。   Reference numeral 103 denotes an arithmetic unit, which uses the consistent efficiency specific to each product group stored in the storage unit 101 and uses the consistency of the entire manufacturing process according to the composition ratio obtained from the product group information input from the input unit 102. Calculate and predict efficiency. In the above example, the inherent consistency efficiency of product group A is 112 (T / H), the inherent consistency efficiency of product group B is 151 (T / H), and the consistency efficiency of the entire manufacturing process is ( 50 (T) +100 (T)) / {(50 (T) / 112 (T / H)) + (100 (T) / 151 (T / H))} = approximately 135 (T / H) The

104は出力部であり、演算部103での演算結果である製造プロセス全体の一貫能率を不図示の表示装置に表示する。オペレータは、この製造プロセス全体の一貫能率を参照して、前後工程の処理量や稼働率の調整(前工程である製鋼工程からの鋼片受け入れ量を調整、後工程である厚板精整の各工程の稼働率/処理能力の調整等)したり、必要に応じてネックとなる工程の設備能力を高めるような処置を行ったりする。   Reference numeral 104 denotes an output unit that displays a consistent efficiency of the entire manufacturing process, which is a calculation result of the calculation unit 103, on a display device (not shown). The operator refers to the consistent efficiency of the entire manufacturing process and adjusts the throughput and operating rate of the front and rear processes (adjusts the amount of steel slabs received from the steelmaking process, which is the previous process, Adjustment of the operation rate / processing capacity of each process, etc.) and, if necessary, measures are taken to increase the facility capacity of the process that becomes a bottleneck.

本発明の製造プロセスの能率予測装置は、具体的にはCPU、ROM、RAM等を備えたコンピュータシステムにより構成することができ、CPUがプログラムを実行することによって実現される。本発明の製造プロセスの能率予測装置は、一つの装置から構成されても、複数の機器から構成されてもよい。   The manufacturing process efficiency prediction apparatus of the present invention can be specifically configured by a computer system including a CPU, a ROM, a RAM, and the like, and is realized by the CPU executing a program. The manufacturing process efficiency prediction apparatus of the present invention may be composed of a single device or a plurality of devices.

また、本発明の目的は、上述した製造プロセスの能率予測機能を実現するソフトウェアのプログラムコードを記録した記憶媒体を、システム或いは装置に供給することによっても達成される。この場合、記憶媒体から読み出されたプログラムコード自体が上述した実施形態の機能を実現することになり、プログラムコード自体及びそのプログラムコードを記憶した記憶媒体は本発明を構成することになる。プログラムコードを供給するための記憶媒体としては、例えば、フレキシブルディスク、ハードディスク、光ディスク、光磁気ディスク、CD−ROM、CD−R、磁気テープ、不揮発性のメモリカード、ROM等を用いることができる。   The object of the present invention can also be achieved by supplying a storage medium storing a program code of software that realizes the efficiency prediction function of the manufacturing process described above to a system or apparatus. In this case, the program code itself read from the storage medium realizes the functions of the above-described embodiments, and the program code itself and the storage medium storing the program code constitute the present invention. As a storage medium for supplying the program code, for example, a flexible disk, a hard disk, an optical disk, a magneto-optical disk, a CD-ROM, a CD-R, a magnetic tape, a nonvolatile memory card, a ROM, or the like can be used.

101:記憶部、102:入力部、103:演算部、104:出力部   101: storage unit, 102: input unit, 103: calculation unit, 104: output unit

Claims (6)

処理能力が異なる直列、直結、多段の複数工程を有し、複数種の製品群を組み合せて製造する製造プロセスの能率予測方法であって、
各工程の処理能率に影響を与えるパラメータを抽出するとともに、製品群に分類して、製品群毎に前記直列、直結、多段の複数工程中の律速工程を特定して、製品群毎の固有の一貫能率を求めるステップと、
前記製品群毎の固有の一貫能率を用いて、製品群の構成比に応じて製造プロセス全体の一貫能率を算出するステップとを有することを特徴とする製造プロセスの能率予測方法。
A method for predicting the efficiency of a manufacturing process that has a plurality of processes in series, direct connection, and multiple stages with different processing capacities, and is manufactured by combining a plurality of types of product groups,
In addition to extracting parameters that affect the processing efficiency of each process, classify them into product groups, identify the rate-limiting process among the series, direct connection, and multiple stages in each product group, The steps to find consistency efficiency,
A method for predicting the efficiency of a manufacturing process, comprising: calculating a consistent efficiency of the entire manufacturing process according to a composition ratio of the product group using a consistent efficiency specific to each product group.
前記製造プロセスは、スラブヤード工程、スラブを再加熱する加熱工程、再加熱されたスラブを所定の幅まで幅出し圧延を行う粗圧延工程、幅出し後の鋼片を所定の厚み、長さを造り込むとともに、所定の温度で圧延する制御圧延により材質を造り込む仕上圧延工程、仕上圧延後の鋼片を大水量の冷却水により冷却し、焼入れ組織を造り込む加速冷却工程、圧延、冷却後の鋼片を所定の幅、長さの複数の鋼板に剪断する剪断工程といった複数工程が直列、直結、多段に配された厚板の圧延プロセスであることを特徴とする請求項1に記載の製造プロセスの能率予測方法。   The manufacturing process includes a slab yard process, a heating process for reheating the slab, a rough rolling process in which the reheated slab is widened to a predetermined width, and a steel slab after the widening has a predetermined thickness and length. Finished rolling process that builds up the material by controlled rolling that rolls at a predetermined temperature, cooled steel slab after finishing rolling with a large amount of cooling water, accelerated cooling process that builds a quenched structure, after rolling and cooling A plurality of steps such as a shearing step of shearing a steel piece into a plurality of steel plates having a predetermined width and length are rolling processes for thick plates arranged in series, directly connected, and in multiple stages. A method for predicting the efficiency of manufacturing processes. 製品群は、鋼種、HCR(Hot Charged Rolling)であるかCCR(Cold Charged Rolling)であるか、耳付であるか切断であるかの順に分類され、さらにサイズで細分化して分類されることを特徴とする請求項2に記載の製造プロセスの能率予測方法。   The product group is classified in the order of steel grade, HCR (Hot Charged Rolling) or CCR (Cold Charged Rolling), with ears or with cutting, and further divided into sizes. The method for predicting the efficiency of a manufacturing process according to claim 2, wherein: サイズは、スラブ厚、狙い厚、圧延幅の順に分類されることを特徴とする請求項3に記載の製造プロセスの能率予測方法。   The method according to claim 3, wherein the sizes are classified in the order of slab thickness, target thickness, and rolling width. 処理能力が異なる直列、直結、多段の複数工程を有し、複数種の製品群を組み合せて製造する製造プロセスの能率予測装置であって、
各工程の処理能率に影響を与えるパラメータを抽出するとともに、製品群に分類して、製品群毎に前記直列、直結、多段の複数工程中の律速工程を特定して求められた、製品群毎の固有の一貫能率を記憶する記憶手段と、
前記製品群毎の固有の一貫能率を用いて、製品群の構成比に応じて製造プロセス全体の一貫能率を算出する演算手段とを備えたことを特徴とする製造プロセスの能率予測装置。
A process for predicting the efficiency of a manufacturing process having a plurality of processes of series, direct connection, and multiple stages with different processing capacities, and combining a plurality of types of product groups,
For each product group, parameters that affect the processing efficiency of each process are extracted and classified into product groups, and the rate-limiting process in the series, direct connection, and multiple stages is specified for each product group. Storage means for storing the inherent consistency efficiency of
A manufacturing process efficiency predicting apparatus, comprising: a calculation means for calculating a consistent efficiency of the entire manufacturing process according to a composition ratio of the product group using a consistent efficiency specific to each product group.
処理能力が異なる直列、直結、多段の複数工程を有し、複数種の製品群を組み合せて製造する製造プロセスの能率予測のためのプログラムであって、
各工程の処理能率に影響を与えるパラメータを抽出するとともに、製品群に分類して、製品群毎に前記直列、直結、多段の複数工程中の律速工程を特定して求められた、製品群毎の固有の一貫能率を記憶する記憶手段と、
前記製品群毎の固有の一貫能率を用いて、製品群の構成比に応じて製造プロセス全体の一貫能率を算出する演算手段としてコンピュータを機能させるためのプログラム。


A program for predicting the efficiency of a manufacturing process that has a plurality of processes of series, direct connection, and multiple stages with different processing capacities, and that combines a plurality of types of product groups.
For each product group, parameters that affect the processing efficiency of each process are extracted and classified into product groups, and the rate-limiting process in the series, direct connection, and multiple stages is specified for each product group. Storage means for storing the inherent consistency efficiency of
A program for causing a computer to function as a calculation means for calculating a consistent efficiency of the entire manufacturing process according to a composition ratio of a product group using a consistent efficiency specific to each product group.


JP2012006343A 2012-01-16 2012-01-16 Manufacturing process efficiency prediction method, apparatus and program Active JP5673567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012006343A JP5673567B2 (en) 2012-01-16 2012-01-16 Manufacturing process efficiency prediction method, apparatus and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012006343A JP5673567B2 (en) 2012-01-16 2012-01-16 Manufacturing process efficiency prediction method, apparatus and program

Publications (2)

Publication Number Publication Date
JP2013145521A JP2013145521A (en) 2013-07-25
JP5673567B2 true JP5673567B2 (en) 2015-02-18

Family

ID=49041268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012006343A Active JP5673567B2 (en) 2012-01-16 2012-01-16 Manufacturing process efficiency prediction method, apparatus and program

Country Status (1)

Country Link
JP (1) JP5673567B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6822390B2 (en) * 2017-12-18 2021-01-27 Jfeスチール株式会社 Rough rolling time calculation method for thick steel sheets, rough rolling time calculation device for thick steel sheets, and manufacturing method for thick steel sheets
DE102019217839A1 (en) * 2019-11-19 2021-05-20 Sms Group Gmbh Method for operating a plant in the metallurgical industry
WO2022195825A1 (en) * 2021-03-18 2022-09-22 三菱電機株式会社 Operation improvement support program, operation improvement support device, and operation improvement support method
CN113617842B (en) * 2021-08-04 2023-06-06 北京佰能盈天科技股份有限公司 Flying shear high-precision blackhead cutting method and system
JP7509321B2 (en) 2022-05-12 2024-07-02 株式会社Tmeic Rolling productivity improvement support device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0520333A (en) * 1991-07-15 1993-01-29 Hitachi Ltd Equipment capability calculating system and its equipment capability calculating method
JP2004348379A (en) * 2003-05-21 2004-12-09 Toshiba Corp System, program, and method for computing absolute reserve capacity of process resource
JP2005292885A (en) * 2004-03-31 2005-10-20 Jfe Steel Kk Cost price analysis device
JP4648067B2 (en) * 2005-04-26 2011-03-09 株式会社神戸製鋼所 Operation mode determination method, operation mode determination device, and program
JP2006351003A (en) * 2005-05-19 2006-12-28 Jfe Steel Kk Production simulation device and method
JP5047929B2 (en) * 2008-11-19 2012-10-10 新日本製鐵株式会社 Production planning support device, method, program, and computer-readable storage medium
JPWO2010064281A1 (en) * 2008-12-05 2012-04-26 株式会社日立製作所 Production plan creation system and production plan creation method
JP5402621B2 (en) * 2009-12-25 2014-01-29 新日鐵住金株式会社 Manufacturing load prediction apparatus, method, computer program, and computer-readable storage medium

Also Published As

Publication number Publication date
JP2013145521A (en) 2013-07-25

Similar Documents

Publication Publication Date Title
JP5673567B2 (en) Manufacturing process efficiency prediction method, apparatus and program
JP5012660B2 (en) Product quality prediction and control method
CN104517162B (en) A kind of continuous annealing product hardness Online integration learns forecasting procedure
CN108787749B (en) Hot rolling production plan early warning method
Poursina et al. Application of genetic algorithms to optimization of rolling schedules based on damage mechanics
CN111062571B (en) Ingot selection and batch-to-batch integration optimization method for aluminum industry
JP2017073935A (en) Power consumption prediction method, device, and program
Wang et al. Research on high‐precision transverse thickness difference control strategy based on data mining in 6‐high tandem cold rolling mills
CN107900114A (en) A kind of method and device evaluated cold-rolled strip steel shape quality
JP2020157327A (en) Control method for outlet side temperature of finished steel sheet, control device therefor and production method for steel sheet
JP6652095B2 (en) Method of rolling steel sheet and method of manufacturing steel sheet
JPH11272748A (en) Operation plan generator
Vorel et al. Material-technological modelling of controlled cooling of closed die forgings from finish forging temperature
CN107256317B (en) A kind of hot rolling scheduling method for the production of the close-coupled torrid zone
Thakur et al. Application of machine learning methods for the prediction of roll force and torque during plate rolling of micro-alloyed steel
JP5577946B2 (en) Manufacturing process evaluation method, its evaluation apparatus, and its program
JP2984182B2 (en) Rolling mill logistics scheduling method
JP2010235972A (en) Manufacturing controller and manufacturing method for high tension steel sheet
JP5007630B2 (en) Product quality control method and control device
Mitra et al. Unveiling salient operating principles for reducing meniscus level fluctuation in an industrial thin slab caster using evolutionary multicriteria pareto optimization
JP6822390B2 (en) Rough rolling time calculation method for thick steel sheets, rough rolling time calculation device for thick steel sheets, and manufacturing method for thick steel sheets
CN104766123A (en) Combining method for sheet specifications and types
JP2004178572A (en) Allocation method of actual article to order in manufacturing process of steel product
Mesa Fernández et al. Methodology for the selection of key performance indicators for sustainable steel production through an intelligent control system use
JP2013003959A (en) Operation rule creation method and production distribution plan creation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141215

R151 Written notification of patent or utility model registration

Ref document number: 5673567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350