JP5673218B2 - High-tensile hot-dip galvanized steel sheet with excellent formability - Google Patents
High-tensile hot-dip galvanized steel sheet with excellent formability Download PDFInfo
- Publication number
- JP5673218B2 JP5673218B2 JP2011045446A JP2011045446A JP5673218B2 JP 5673218 B2 JP5673218 B2 JP 5673218B2 JP 2011045446 A JP2011045446 A JP 2011045446A JP 2011045446 A JP2011045446 A JP 2011045446A JP 5673218 B2 JP5673218 B2 JP 5673218B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel sheet
- hot
- dip galvanized
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、自動車の構造部材に使用される成形加工性に優れた高張力溶融亜鉛めっき鋼板及びその製造方法に関するものである。 The present invention relates to a high-tensile hot-dip galvanized steel sheet excellent in forming processability used for structural members of automobiles and a method for producing the same.
自動車の車体重量軽量化による燃費向上と、衝突安全性の両立の観点から、自動車部材の高強度化が進んでいる。しかし、鋼板が高強度化すると、延性などで表わされる成形加工性は低下するので、高い引張強度と高い成形加工性を両立する鋼材の開発が求められている。 From the viewpoint of improving fuel efficiency by reducing the weight and weight of automobiles and achieving both collision safety and safety, the strength of automobile members is increasing. However, when the strength of the steel sheet is increased, the formability represented by ductility and the like is lowered. Therefore, development of a steel material having both high tensile strength and high formability is required.
鋼板の組織が、軟質なフェライトと硬質なマルテンサイトからなる2相組織であると、高強度化しても延性劣化が小さいという特徴がある。このような2相組織鋼を製造するには、フェライト−オーステナイトの2相共存域の温度まで加熱し、保持した後に冷却して、オーステナイトをマルテンサイトに変態させる必要がある。 If the structure of the steel sheet is a two-phase structure composed of soft ferrite and hard martensite, there is a feature that ductility deterioration is small even when the strength is increased. In order to produce such a two-phase structure steel, it is necessary to heat it to a temperature in the ferrite-austenite two-phase coexistence region, hold it, and then cool it to transform austenite into martensite.
しかし、オーステナイトをマルテンサイトに変態させるには、2相共存域の温度からの冷却中に、マルテンサイト変態よりも高温で起こるフェライト変態及びパーライト変態を抑制し、マルテンサイトに変態するオーステナイトを残す必要がある。そのため、フェライト変態及びパーライト変態を抑制するMn、Cr、Moなどの合金元素を添加する方法があるが、製造コストが大きく上昇してしまう。 However, in order to transform austenite to martensite, it is necessary to suppress the ferrite and pearlite transformations that occur at higher temperatures than the martensite transformation and leave austenite that transforms to martensite during cooling from the temperature of the two-phase coexistence region. There is. Therefore, there is a method of adding an alloy element such as Mn, Cr, or Mo that suppresses ferrite transformation and pearlite transformation, but the production cost is greatly increased.
このような観点から、低コストでフェライト変態を抑制するため、ホウ素(B)を添加することが行われつつあるが、Bは、固溶Bが粒界に偏析した状態でなければ、フェライト変態抑制に効果がないので、Bの析出を抑制しなければならないという問題がある。特に、B(質量%)≦11/14N(質量%)なる化学組成を有する鋼においては、BNの析出により焼入れ性が低下する。 From this point of view, boron (B) is being added in order to suppress ferrite transformation at a low cost. However, if B is not in a state where solute B is segregated at the grain boundary, ferrite transformation is performed. Since there is no effect in suppression, there exists a problem that the precipitation of B must be suppressed. In particular, in a steel having a chemical composition of B (mass%) ≦ 11 / 14N (mass%), the hardenability decreases due to precipitation of BN.
このような課題に対し、Bよりも強力な窒化物生成元素を添加することで、Nを窒化物として固着し、BNの析出を抑制する方法が知られている。 In order to solve such a problem, a method is known in which N is fixed as a nitride and a precipitation of BN is suppressed by adding a nitride-forming element stronger than B.
例えば、特許文献1には、Alを0.01〜0.2質量%添加することで、AlNを生成してNを固着して、BNの生成を抑制し、Bによる焼入れ性向上効果を確保する方法が開示されている。特許文献2には、Tiを0.0005〜0.1質量%添加してTiNを析出させ、Bと結びつくNを減らして、BN析出を抑制する方法が開示されている。 For example, in Patent Document 1, by adding 0.01 to 0.2% by mass of Al, AlN is generated and N is fixed, thereby suppressing the generation of BN and ensuring the effect of improving hardenability by B. A method is disclosed. Patent Document 2 discloses a method in which 0.0005 to 0.1% by mass of Ti is added to precipitate TiN, and N associated with B is reduced to suppress BN precipitation.
特許文献3には、TiとZrを、Ti:0.08質量%以下、Zr:0.10質量%以下で、かつ、Ti(質量%)+(48/91)Zr(質量%):0.02〜0.08質量%、及び、Ti(質量%)+(48/91)Zr(質量%)−(48/14)N(質量%)≧0.02質量%なる組成範囲で複合添加して、Nを、TiN、ZrNとして固着する方法が開示されている。 Patent Document 3 discloses that Ti and Zr are Ti: 0.08 mass% or less, Zr: 0.10 mass% or less, and Ti (mass%) + (48/91) Zr (mass%): 0. 0.02-0.08% by mass, and Ti (% by mass) + (48/91) Zr (% by mass) − (48/14) N (% by mass) ≧ 0.02% by mass in a composite range Thus, a method for fixing N as TiN or ZrN is disclosed.
しかし、Nを窒化物として固着する方法では、介在物であるAl2O3の量が増加して、表面疵の発生頻度を高めたり、窒化物形成後の余剰なTiやZrが固溶状態で存在して再結晶を遅らせ、溶融亜鉛めっき鋼板における強度のばらつきをもたらしたりする。 However, in the method of fixing N as a nitride, the amount of inclusions Al 2 O 3 is increased to increase the occurrence frequency of surface defects, or excessive Ti and Zr after the formation of nitride are in a solid solution state. In the galvanized steel sheet, causing a variation in strength in the hot dip galvanized steel sheet.
本発明は、上記現状に鑑み、Bが添加された高張力溶融亜鉛めっき鋼板において、窒化物形成元素を意図的に添加することなく、安定した強度・延性バランスが得られる高張力溶融亜鉛めっき鋼板と、その製造方法を提供することを目的とする。 In view of the above situation, the present invention provides a high-tensile hot-dip galvanized steel sheet to which stable strength and ductility balance can be obtained without intentionally adding a nitride-forming element in a high-tensile hot-dip galvanized steel sheet to which B is added. And it aims at providing the manufacturing method.
本発明者らは、上記目的を達成すべく、鋭意、実験と検討を重ねた結果、熱間圧延工程の条件により、熱延板において、“100nm以下のサイズのMnSをコアとしてBNが析出した複合析出物”の個数密度を制御できることを見出し、Ti等の窒化物生成元素を添加することなく、固溶Bを確保でき、冷延板の焼鈍時に、高い焼入れ性を確保できるという知見を得るに至った。 In order to achieve the above object, the present inventors diligently conducted experiments and examinations. As a result, BN was precipitated in the hot rolled sheet using MnS having a size of 100 nm or less as a core in the hot rolled sheet. Finding that the number density of “composite precipitates” can be controlled, and finding that solid solution B can be secured without adding nitride-forming elements such as Ti, and that high hardenability can be secured during cold-rolled sheet annealing. It came to.
熱延板中の100nm以下のサイズのMnSをコアとしてBNが析出した複合析出物の個数密度を制御するには、熱間圧延後の冷却速度を、Mn量及び/又はS量に応じて制御し、巻取り温度を、Mn量及び/又はS量に応じて制御することが重要である。これにより、複合析出物の核であるMnSの析出を抑制し、続くBNの析出を抑制することが可能となる。 In order to control the number density of the composite precipitate in which BN is precipitated with MnS of 100 nm or less in the hot-rolled sheet as the core, the cooling rate after hot rolling is controlled according to the amount of Mn and / or S. However, it is important to control the winding temperature in accordance with the amount of Mn and / or the amount of S. Thereby, precipitation of MnS which is the nucleus of a composite precipitate can be suppressed, and subsequent precipitation of BN can be suppressed.
本発明は、これらの知見を基にして完成されたものであり、その要旨は、以下の通りである。 The present invention has been completed based on these findings, and the gist thereof is as follows.
(1)質量%で、C:0.05〜0.12%、Si:0.1〜0.7%、Mn:1.4〜2.2%、P:0.05%以下、S:0.01%以下、Al:0.01〜0.1%、B:0.0005〜0.0050%、N:0.0060%以下を含有し、残部がFe及び不可避的不純物からなり、かつ、焼鈍前の熱延鋼板において、100nm以下のサイズのMnSをコアとしてBNが析出した複合析出物の析出個数密度が1500個/cm2以下である鋼板の上に溶融亜鉛めっき層を有することを特徴とする成形加工性に優れる高張力溶融亜鉛めっき鋼板。 (1) By mass%, C: 0.05 to 0.12%, Si: 0.1 to 0.7%, Mn: 1.4 to 2.2%, P: 0.05% or less, S: 0.01% or less, Al: 0.01-0.1%, B: 0.0005-0.0050%, N: 0.0060% or less, with the balance being Fe and inevitable impurities, and The hot-rolled steel sheet before annealing has a hot-dip galvanized layer on the steel sheet having a precipitation number density of 1500 / cm 2 or less of a composite precipitate in which BN is precipitated with MnS having a size of 100 nm or less as a core. A high-tensile hot-dip galvanized steel sheet with excellent forming processability.
(2)前記複合析出物の析出個数密度が1500個/cm2以下である鋼板が、さらに、質量%で、Ti及びZrの1種又は2種を、合計で0.0050%以下含有することを特徴とする上記(1)に記載の成形加工性に優れる高張力溶融亜鉛めっき鋼板。 (2) The steel sheet in which the number density of the composite precipitates is 1500 pieces / cm 2 or less further contains, in mass%, one or two of Ti and Zr in a total amount of 0.0050% or less. A high-tensile hot-dip galvanized steel sheet having excellent forming processability as described in (1) above.
(3)前記複合析出物の析出個数密度が1000個/cm2以下であることを特徴とする前記(1)に記載の成形加工性に優れる高張力溶融亜鉛めっき鋼板。 (3) The high tensile strength hot-dip galvanized steel sheet having excellent formability as described in (1) above, wherein the number density of the composite precipitates is 1000 / cm 2 or less.
本発明によれば、成分元素とその含有量、及び、熱間圧延工程の条件を適正に設定することで、熱延板において、“100nm以下のサイズのMnSをコアとしてBNが析出した複合析出物”の析出を抑制し、高強度でかつ成形加工性に優れる溶融亜鉛めっき鋼板を安定して得ることができる。 According to the present invention, by appropriately setting the constituent elements and their contents, and the conditions of the hot rolling process, in the hot rolled sheet, “the composite precipitation in which BN is precipitated with MnS having a size of 100 nm or less as a core. It is possible to stably obtain a hot-dip galvanized steel sheet that suppresses the precipitation of the object "and has high strength and excellent formability.
本発明の実施の形態について詳細に説明する。まず、本発明において、各成分の範囲を限定した理由について説明する。なお、本発明において、%は、特に明記しない限り、質量%を意味する。 Embodiments of the present invention will be described in detail. First, the reason why the range of each component is limited in the present invention will be described. In the present invention,% means mass% unless otherwise specified.
鋼素材及び鋼板の成分組成;
C:
Cは、鋼の焼入れ性を向上させ、マルテンサイト形成を促進して、鋼の強度を高める作用をなす元素である。本発明では、上記作用を利用して鋼の強度を高めるために、Cを0.05%以上添加する。一方、多量に添加すると鋼の強度が高くなり過ぎて、成形性が損なわれるので、Cは0.12%以下とする。好ましくは、0.07〜0.10%である。
Composition of steel material and steel plate;
C:
C is an element that improves the hardenability of the steel, promotes martensite formation, and increases the strength of the steel. In the present invention, 0.05% or more of C is added in order to increase the strength of the steel by utilizing the above-described action. On the other hand, if added in a large amount, the strength of the steel becomes too high and the formability is impaired, so C is made 0.12% or less. Preferably, it is 0.07 to 0.10%.
Si:
Siは、フェライトを固溶強化して鋼の強度を高くする作用をなす元素である。また、Siは、第2相(マルテンサイト)との間の硬度差を低減して疲労特性を高める作用もなす元素である。これらの添加効果を得るため、0.1%以上添加するが、過度にSiを添加すると、めっきの濡れ性が低下して不めっきが発生するうえ、合金化処理性が悪くなり、生産性を損なうので、上限は0.70%とする。好ましい上限は0.50%で、より好ましい上限は0.30%である。
Si:
Si is an element that acts to increase the strength of steel by solid solution strengthening of ferrite. Si is an element that also acts to reduce the hardness difference from the second phase (martensite) and enhance fatigue properties. In order to obtain these addition effects, 0.1% or more is added. However, if Si is added excessively, the wettability of the plating is lowered and non-plating occurs, and the alloying processability is deteriorated, and the productivity is reduced. The upper limit is made 0.70%. A preferable upper limit is 0.50%, and a more preferable upper limit is 0.30%.
Mn:
本発明においては、高張力鋼板でありながら、良好な延性を備える鋼板とするために、鋼の組織を、軟質なフェライトと硬質なマルテンサイトからなる2相組織とすることが極めて重要である。
Mn:
In the present invention, in order to obtain a steel sheet having good ductility while being a high-tensile steel sheet, it is extremely important that the steel structure is a two-phase structure composed of soft ferrite and hard martensite.
Mnを添加すると、鋼のAc3点が低下して、焼鈍均熱中のオーステナイトの確保が容易となるので、パーライトの析出抑制とMs点(マルテンサイト変態開始温度)低下の効果を得ることができる。さらに、フェライトに固溶させてフェライトを硬化させ、鋼の強度を高める効果も得ることができる。これらの添加効果を確保するため、Mnは1.4%以上添加する。 When Mn is added, the Ac 3 point of the steel is lowered, and it becomes easy to secure austenite during annealing soaking, so that the effect of suppressing precipitation of pearlite and lowering the Ms point (martensitic transformation start temperature) can be obtained. . Furthermore, the effect of increasing the strength of the steel can be obtained by dissolving the ferrite in the ferrite and hardening the ferrite. In order to secure these addition effects, Mn is added by 1.4% or more.
しかし、2.2%を超えて添加すると、鋼板表面の酸化物が増し、めっき性が劣化して、不めっきなどが発生する恐れがあるうえ、製造コストが上昇するので、Mnは2.2%以下とする。好ましくは、1.6〜2.0%である。 However, if added over 2.2%, the oxide on the surface of the steel sheet increases, the plating property deteriorates, and there is a possibility that non-plating may occur, and the manufacturing cost increases, so Mn is 2.2. % Or less. Preferably, it is 1.6 to 2.0%.
P:
Pは、0.05%を超えると、溶接性及び熱延時の生産性に悪影響を与えるので、0.05%以下とする。好ましくは0.02%以下である。
P:
If P exceeds 0.05%, it adversely affects weldability and productivity during hot rolling, so 0.05% or less. Preferably it is 0.02% or less.
S:
Sは、0.01%を超えると、溶接性及び熱延時の生産性に悪影響を与えるので、0.01%以下とする。好ましくは0.006%以下である。
S:
If S exceeds 0.01%, the weldability and productivity during hot rolling are adversely affected, so 0.01% or less. Preferably it is 0.006% or less.
Al:
Alは、脱酸剤として用いる元素である。脱酸効果を得るため、0.01%以上添加するが、過剰に添加すると、Ac3点が上昇し、高温加熱が必要となる他、Al2O3などの介在物が増加して表面疵の発生頻度が高まるので、上限を0.1%とする。好ましくは、0.04〜0.08%である。
Al:
Al is an element used as a deoxidizer. In order to obtain a deoxidation effect, 0.01% or more is added. However, if excessively added, the Ac3 point will rise and high temperature heating will be required, and inclusions such as Al 2 O 3 will increase and surface defects Since the frequency of occurrence increases, the upper limit is made 0.1%. Preferably, it is 0.04 to 0.08%.
B:
Bは、鋼のフェライト変態を抑制して、焼入れ性を高める作用をなす元素である。B添加で、冷却速度が比較的遅い場合でも、オーステナイトを低温域まで安定化できるので、硬質相のマルテンサイトを得ることができる。この添加効果を得るため、Bは0.0005%以上添加する。一方、0.0050%を超えると、鉄−ボロン化合物が析出し、鋼の延性を阻害するので、Bは0.0050%以下とする。好ましくは、0.0008〜0.0035%である。
B:
B is an element that functions to suppress the ferrite transformation of steel and enhance the hardenability. Even when B is added and the cooling rate is relatively slow, the austenite can be stabilized to a low temperature range, so that hard-phase martensite can be obtained. In order to obtain this effect, 0.0005% or more of B is added. On the other hand, if it exceeds 0.0050%, an iron-boron compound precipitates and hinders the ductility of steel, so B is made 0.0050% or less. Preferably, it is 0.0008 to 0.0035%.
N:
N量が多いと、BNの析出が促進されて、固溶Bが減少し、Bによる焼入れ性向上効果が低減するので、Nは0.0060%以下とする。好ましくは、0.0040%以下である。
N:
If the amount of N is large, the precipitation of BN is promoted, the solid solution B is reduced, and the effect of improving the hardenability by B is reduced. Therefore, N is made 0.0060% or less. Preferably, it is 0.0040% or less.
Ti:
Tiは、NをTiNとして固着し、BNの析出を抑制する作用をなす元素であるが、単独で0.0050%を超えると、過剰なTiが固溶し、再結晶を遅らせて、強度のばらつきの原因となるので、0.0050%以下とする。好ましくは、0.0030%以下である。
Ti:
Ti is an element that fixes N as TiN and suppresses the precipitation of BN. However, when it exceeds 0.0050% by itself, excessive Ti dissolves, recrystallization is delayed, and strength is increased. Since this causes variation, the content is set to 0.0050% or less. Preferably, it is 0.0030% or less.
Zr:
Zrは、NをZrNとして固着し、BNの析出を抑制する作用をなす元素であるが、単独で0.0050%を超えると、過剰なZrが固溶し、再結晶を遅らせて、強度のばらつきの原因となるので、0.0050%以下とする。好ましくは、0.0030%以下である。
Zr:
Zr is an element that fixes N as ZrN and suppresses the precipitation of BN. However, if it exceeds 0.0050% by itself, excess Zr is dissolved, delaying recrystallization, and increasing the strength. Since this causes variation, the content is set to 0.0050% or less. Preferably, it is 0.0030% or less.
Ti+Zr:
TiとZrを同時に添加する場合、過剰なTi、Zrが固溶し、再結晶を遅らせて、強度のばらつきの原因となるのを避けるため、合計でも0.0050%以下とする。好ましくは、0.0030%以下である。
Ti + Zr:
When Ti and Zr are added simultaneously, in order to avoid excessive Ti and Zr from forming a solid solution and delaying recrystallization and causing variations in strength, the total content is made 0.0050% or less. Preferably, it is 0.0030% or less.
次に、熱延板における析出物の存在条件について説明する。本発明の鋼板の母材は、上記化学組成に加えて、熱延板において、「“100nm以下のサイズのMnSをコアとしてBNが析出した複合析出物”の析出個数密度が1500個/cm2以下である」ことを特徴とする。 Next, conditions for the presence of precipitates in the hot-rolled sheet will be described. The base material of the steel sheet of the present invention, in addition to the above chemical composition, the hot rolled sheet, deposition number density of "" complex precipitates BN is precipitated 100nm of MnS of less size as the core "is 1500 / cm 2 or It is the following ”.
本発明において、熱延板における“100nm以下のサイズのMnSをコアとしてBNが析出した複合析出物”の析出個数密度は、冷延板の焼鈍時の焼入れ性を制御するうえで極めて重要な指標である。 In the present invention, the number density of precipitation of “composite precipitates in which BN is precipitated with MnS having a size of 100 nm or less as a core” in a hot-rolled sheet is an extremely important index for controlling the hardenability during annealing of a cold-rolled sheet. It is.
BNの析出形態として、“100nm以下のサイズのMnSをコアとしてBNが析出した複合析出物”の他に、“100nm超のサイズのMnSをコアとしてBNが析出した複合析出物”が観察されることがある。 In addition to “a composite precipitate in which BN is precipitated using MnS having a size of 100 nm or less as a core” as a precipitation form of BN, “a composite precipitate in which BN is precipitated using MnS having a size of more than 100 nm as a core” is observed. Sometimes.
しかし、100nm超のMnSは、鋳造時に晶出又は析出したものであるので、“100nm超のサイズのMnSをコアとしてBNが析出した複合析出物”の個数は、熱延工程の条件によって増加することはなく、冷延板の焼入れ性に影響を与えない。 However, since MnS of more than 100 nm is crystallized or precipitated at the time of casting, the number of “composite precipitates in which BN is precipitated using MnS of a size of more than 100 nm as a core” increases depending on the conditions of the hot rolling process. It does not affect the hardenability of the cold rolled sheet.
したがって、熱延工程で析出する“100nm以下のサイズのMnSをコアとしてBNが析出した複合析出物”の個数密度を制御することが重要である。 Therefore, it is important to control the number density of “composite precipitates in which BN is precipitated using MnS having a size of 100 nm or less as a core” precipitated in the hot rolling process.
“100nm以下のサイズのMnSをコアとしてBNが析出した複合析出物”の個数密度が1500個/cm2より多い場合には、固溶B量が低下し、再結晶焼鈍後の冷却中の焼入れ性が低下するので、高い強度を得ることができない。 When the number density of “composite precipitates in which BN is precipitated with MnS having a size of 100 nm or less as a core” is more than 1500 / cm 2 , the amount of dissolved B decreases, and quenching during cooling after recrystallization annealing. Since the properties are lowered, high strength cannot be obtained.
それ故、“100nm以下のサイズのMnSをコアとしてBNが析出した複合析出物”の析出個数密度は1500個/cm2以下とする。好ましくは1000個/cm2以下であり、より好ましくは750個/cm2以下である。下限はとくに設けないが、100個/cm2以上が好ましい。 Therefore, the precipitation number density of “a composite precipitate in which BN is precipitated using MnS having a size of 100 nm or less as a core” is set to 1500 pieces / cm 2 or less. Preferably it is 1000 pieces / cm < 2 > or less, More preferably, it is 750 pieces / cm < 2 > or less. A lower limit is not particularly provided, but 100 / cm 2 or more is preferable.
析出物の形態については、1/4板厚部から抽出レプリカ法により試料を作製し、ランダムに選んだ100μm×100μmのエリアの3か所について、TEMによって観察を行い、さらに、エネルギー分散型X線分光法(EDS)にて解析を行うことで、“MnSをコアとしてBNが析出した複合析出物”であることを確認する。 Regarding the form of the precipitate, a sample was prepared from the ¼ plate thickness portion by the extraction replica method, and the three randomly selected areas of 100 μm × 100 μm were observed by TEM. It is confirmed by analysis by line spectroscopy (EDS) that it is “a composite precipitate in which BN is precipitated with MnS as a core”.
MnSのサイズは、MnSのTEM観察像において最大となる値とする。複合析出物の個数密度は、前述のエリア内に存在する“100nm以下のMnSをコアとしてBNが析出しているという形態の複合析出物”を数え上げて平均値を取る。 The size of MnS is the maximum value in the TEM observation image of MnS. The number density of the composite precipitates is averaged by counting “composite precipitates in which BN is precipitated with MnS of 100 nm or less as a core” existing in the above-mentioned area.
次に、本発明の高強度溶融亜鉛めっき鋼板の製造方法について説明する。 Next, the manufacturing method of the high intensity | strength hot-dip galvanized steel plate of this invention is demonstrated.
本発明の成形加工性に優れた高張力溶融亜鉛めっき鋼板は、以下の方法で製造するのが好適である。 The high-tensile hot-dip galvanized steel sheet excellent in forming processability of the present invention is preferably produced by the following method.
即ち、上記成分組成を有する鋼素材を1100℃以上に加熱し、仕上げ圧延を900℃以上で行い、600〜仕上げ圧延温度(℃)の温度域において平均冷却速度30℃/s以上で冷却し、400〜600℃で巻き取った後、酸洗し、所定の厚みに冷間圧延し、次いで、通常の再結晶焼鈍を施し、その後、溶融亜鉛めっき槽に浸漬して公知の方法により溶融めっきする。溶融めっき後に、480〜580℃に加熱して合金化処理を施してもよい。 That is, the steel material having the above composition is heated to 1100 ° C. or higher, finish rolling is performed at 900 ° C. or higher, and is cooled at an average cooling rate of 30 ° C./s or higher in the temperature range of 600 to the finish rolling temperature (° C.). After winding at 400 to 600 ° C., pickling, cold rolling to a predetermined thickness, then subjecting to normal recrystallization annealing, and then dipping in a hot dip galvanizing bath to hot dip by a known method . After hot dipping, the alloying treatment may be performed by heating to 480 to 580 ° C.
熱延スラブ加熱温度は、鋳造時に析出したBNを再溶解するため、1100℃以上に加熱する。なお、1300℃より高温に加熱しようとすると、製造コストが高くなり過ぎるので、加熱温度は1300℃以下が好ましい。 The hot-rolled slab heating temperature is heated to 1100 ° C. or higher in order to redissolve BN precipitated during casting. In addition, since it will become high manufacturing cost if it tries to heat higher than 1300 degreeC, 1300 degreeC or less is preferable for heating temperature.
仕上げ圧延温度が900℃よりも低いと、圧延によって、MnSの析出サイトである転位が多数導入され、MnSの析出が促進され、さらには、MnSを核としてBNが析出するので、仕上げ圧延温度は900℃以上とする。なお、仕上げ圧延温度に、特に上限は設けないが、仕上げ圧延温度が高い場合には、それに伴いスラブ加熱温度も高くする必要があり、製造コストが高くなるので、仕上げ圧延温度は1000℃以下が好ましい。 When the finish rolling temperature is lower than 900 ° C., rolling introduces many dislocations that are MnS precipitation sites, promotes the precipitation of MnS, and further precipitates BN with MnS as a nucleus. Set to 900 ° C or higher. Although there is no particular upper limit to the finish rolling temperature, if the finish rolling temperature is high, the slab heating temperature needs to be increased accordingly, and the production cost increases, so the finish rolling temperature should be 1000 ° C. or less. preferable.
熱間圧延終了後は、BNの析出核であるMnSの析出を抑制するために、Mn及びSの含有量に応じて、巻取り温度CT[℃]〜仕上げ温度の温度域において、平均冷却速度CRmin[℃/s]以上で冷却する必要がある。 After the completion of hot rolling, in order to suppress the precipitation of MnS is precipitated nuclei of BN, in accordance with the contents of Mn and S, in a temperature range of coiling temperature CT [° C.] ~ finishing temperature, average cooling It is necessary to cool at a rate CR min [° C./s] or more .
定性的には、Mn及びSの添加量が多くなると、MnSの析出が短時間で起こるようになるため、析出時間がより長時間になるように巻取り温度を低温にする。しかし、400℃未満になると、硬質なベイナイト又はマルテンサイト組織が生成し、冷間圧延性が悪くなるため、下限を400℃とする。 The qualitative, the addition amount of Mn and S is increased, the precipitation of MnS is to occur in a short period of time, deposition time you the coiling temperature to a low temperature so that the longer. However, when the temperature is lower than 400 ° C., a hard bainite or martensite structure is generated and the cold rolling property is deteriorated, so the lower limit is set to 400 ° C.
また、定性的には、Mn及びSの添加量が多くなると、MnSの析出が短時間で起こるようになるため、冷却速度を速くして、より短時間で、巻取り温度までに到達するようにする必要がある。冷却速度を速くしても、複合析出物の析出を抑制するうえで、なんら問題はないが、過度に冷却速度を速くすることは、製造コストの上昇を招くので、上限を200℃/sとすることが好ましい。 Further, Qualitatively, the added amount of Mn and S is increased, the precipitation of MnS is to occur in a short time, and the cooling rate, in a shorter time, so as to reach up to the coiling temperature need to there Ru. Even if the cooling rate is increased, there is no problem in suppressing the precipitation of composite precipitates. However, excessively increasing the cooling rate causes an increase in manufacturing cost, so the upper limit is 200 ° C./s. It is preferable to do.
巻き取った熱延板を酸洗して脱スケールを行い、所定の厚みまで冷間圧延を施す。酸洗条件や冷間圧延条件は常法に従えばよいが、圧下率は、冷延後の焼鈍により再結晶させるために30%以上とするのが好ましい。 The wound hot rolled sheet is pickled, descaled, and cold-rolled to a predetermined thickness. Pickling conditions and cold rolling conditions may be in accordance with ordinary methods, but the rolling reduction is preferably 30% or more in order to recrystallize by annealing after cold rolling.
再結晶焼鈍及び溶融亜鉛めっきは公知の方法により行えばよいが、再結晶焼鈍温度が770℃より低いと、冷却開始時のオーステナイト相の体積分率が低くなり、最終的な鋼板の強度が低下してしまうので、再結晶焼鈍温度は770℃以上が好ましい。 Recrystallization annealing and hot dip galvanization may be performed by a known method. However, if the recrystallization annealing temperature is lower than 770 ° C., the volume fraction of the austenite phase at the start of cooling is lowered, and the strength of the final steel sheet is lowered. Therefore, the recrystallization annealing temperature is preferably 770 ° C. or higher.
一方、再結晶焼鈍温度が840℃を超えると、オーステナイト相が粗大化し、その後の冷却過程で生成するフェライト相の体積分率が減少し、伸び及び伸びフランジ性が低下するので、再結晶焼鈍温度は840℃以下が好ましい。 On the other hand, when the recrystallization annealing temperature exceeds 840 ° C., the austenite phase becomes coarse, the volume fraction of the ferrite phase generated in the subsequent cooling process decreases, and the elongation and stretch flangeability deteriorate. Is preferably 840 ° C. or lower.
次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。 Next, examples of the present invention will be described. The conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
(実施例)
表1に示す成分組成を有する鋼を溶製し、鋳造して鋼片を得た。なお、表1には、Mn及びSの含有量[質量%]から、計算して求めた、熱間圧延後の平均冷却速度の下限値CRmin[℃/s]、及び、巻取り温度の上限値CTmax[℃]を示した。
(Example)
Steel having the composition shown in Table 1 was melted and cast to obtain a steel slab. In Table 1, the content of Mn and S from the mass%] was determined by calculation, the lower limit value CR min of an average cooling rate after the hot rolling [° C. / s], and the coiling temperature The upper limit value CT max [° C.] was shown.
得られた鋼片を表2に示す条件で熱間圧延し、一部を、組織観察用に採取した。次いで、得られた熱延板を酸洗し、圧下率60%で冷間圧延を行った。その後、10℃/sの平均加熱速度で820℃まで加熱し、その温度で80秒間保持した。 The obtained steel slab was hot-rolled under the conditions shown in Table 2, and a part was collected for structure observation. Next, the obtained hot-rolled sheet was pickled and cold-rolled at a reduction rate of 60%. Then, it heated to 820 degreeC with the average heating rate of 10 degree-C / s, and hold | maintained at the temperature for 80 second.
上記保持後、3℃/sの平均冷却速度で650℃まで冷却し、次いで、8℃/sの平均冷却速度で460℃まで冷却して亜鉛めっき浴に浸漬した。その後、10℃/sの平均加熱速度で540℃に加熱し、5秒保持して合金化処理を施し、次いで、10℃/sの平均冷却速度で室温まで冷却して、合金化溶融亜鉛めっき鋼板を得た。 After the above holding, it was cooled to 650 ° C. at an average cooling rate of 3 ° C./s, then cooled to 460 ° C. at an average cooling rate of 8 ° C./s and immersed in a galvanizing bath. Thereafter, it is heated to 540 ° C. at an average heating rate of 10 ° C./s, held for 5 seconds, subjected to alloying treatment, then cooled to room temperature at an average cooling rate of 10 ° C./s, and alloyed hot dip galvanizing. A steel plate was obtained.
採取した熱延板を板厚方向に研磨し、板厚の1/4位置で抽出レプリカ法によりTEM観察のための試料を作成した。得られたTEM観察試料において、ランダムに選んだ100μm×100μmのエリアの3か所についてTEMを用いて観察及びEDS分析を行い、100nm以下のサイズのMnSをコアとしてBNが析出しているという形態に当てはまる複合析出物を数え上げて平均値を求めた。 The sampled hot-rolled plate was polished in the plate thickness direction, and a sample for TEM observation was prepared by the extraction replica method at a 1/4 position of the plate thickness. In the obtained TEM observation sample, observation and EDS analysis were performed using TEM on three randomly selected areas of 100 μm × 100 μm, and BN was precipitated with MnS having a size of 100 nm or less as a core. The composite precipitates that fall under (1) were counted and the average value was determined.
強度及び伸びは、合金化溶融亜鉛めっき鋼板より圧延方向に採取したJIS5号引張試験片による引張試験を行って測定した。引張試験結果から強度伸びバランスも計算した。 The strength and elongation were measured by performing a tensile test using a JIS No. 5 tensile specimen taken from the galvannealed steel sheet in the rolling direction. The strength / elongation balance was also calculated from the tensile test results.
成分組成及び製造条件が本発明の規定する範囲内であれば、600MPaを超える引張強度を持ち、かつ、強度延性バランスが引張強度と伸びの積で17000MPa・%以上の優れた成形性を備えるものとなることが解る。 If the component composition and manufacturing conditions are within the range specified by the present invention, the tensile strength exceeds 600 MPa, and the strength ductility balance has excellent formability of 17000 MPa ·% or more in the product of tensile strength and elongation. I understand that
これに対し、試番2、8、及び、14(比較例)は、冷却速度が遅いために複合析出物が多量に析出し、焼入れ性を確保できず、引張強度が低い例である。試番3及び11(比較例)は、仕上げ温度が低いために複合析出物が多量に析出し、焼入れ性を確保できず、引張強度が低い例である。試番5及び10(比較例)は、巻取り温度が高いため、複合析出物が多量に析出し、焼入れ性を確保できず、引張強度が低い例である。 On the other hand, trial numbers 2, 8, and 14 (comparative examples) are examples in which a large amount of composite precipitates are deposited due to a slow cooling rate, hardenability cannot be secured, and tensile strength is low. Trial Nos. 3 and 11 (comparative examples) are examples in which a complex precipitate is precipitated in a large amount because the finishing temperature is low, the hardenability cannot be ensured, and the tensile strength is low. Test Nos. 5 and 10 (comparative examples) are examples in which the coiling temperature is high, so a large amount of composite precipitates are deposited, the hardenability cannot be ensured, and the tensile strength is low.
試番16(比較例)は、Tiが過剰であり、強度−延性バランスが小さい例である。試番17(比較例)は、Bが少ないために、焼入れ性が低く、強度が小さい例である。試番18(比較例)は、Mnが少ないために、焼入れ性が小さく、強度が小さい例である。試番19(比較例)は、Nが過剰であり、複合析出物が多量に析出し、焼入れ性を確保できず、強度が小さい例である。 The trial number 16 (comparative example) is an example in which Ti is excessive and the strength-ductility balance is small. The trial number 17 (comparative example) is an example in which the hardenability is low and the strength is small because B is small. Test number 18 (comparative example) is an example in which the hardenability is small and the strength is small because Mn is small. Test No. 19 (Comparative Example) is an example in which N is excessive, a large amount of composite precipitates are deposited, hardenability cannot be ensured, and strength is small.
本発明は、引張強度600MPa以上で、かつ、優れた強度−延性バランスを備える極めて成形性の優れた鋼板を安価に提供するものである。本発明の鋼板は、例えば、複雑な形状に加工される自動車の構造部品などに好適であるから、自動車の軽量化に大きく貢献することが期待できる。よって、本発明は、産業上の効果が極めて高いものである。 The present invention provides a steel sheet having a tensile strength of 600 MPa or more and an extremely excellent formability provided with an excellent strength-ductility balance at a low cost. The steel sheet of the present invention is suitable for, for example, structural parts of automobiles that are processed into complicated shapes, and thus can be expected to greatly contribute to weight reduction of automobiles. Therefore, the present invention has a very high industrial effect.
Claims (3)
C :0.05〜0.12%、
Si:0.1〜0.7%、
Mn:1.4〜2.2%、
P :0.05%以下、
S :0.01%以下、
Al:0.01〜0.1%、
B :0.0005〜0.0050%、
N :0.0060%以下、
を含有し、残部がFe及び不可避的不純物からなり、かつ、焼鈍前の熱延鋼板において、
100nm以下のサイズのMnSをコアとしてBNが析出した複合析出物の析出個数密度が1500個/cm2以下である鋼板の上に溶融亜鉛めっき層を有することを特徴とする成形加工性に優れる高張力溶融亜鉛めっき鋼板。 % By mass
C: 0.05 to 0.12%,
Si: 0.1 to 0.7%,
Mn: 1.4-2.2%,
P: 0.05% or less,
S: 0.01% or less,
Al: 0.01 to 0.1%,
B: 0.0005 to 0.0050%,
N: 0.0060% or less,
In the hot-rolled steel sheet before the annealing, the balance consisting of Fe and inevitable impurities,
A composite deposit having a MnS size of 100 nm or less as a core and a BN-precipitated composite precipitate having a hot-dip galvanized layer on a steel sheet having a precipitation number density of 1500 pieces / cm 2 or less. Tensile hot dip galvanized steel sheet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011045446A JP5673218B2 (en) | 2011-03-02 | 2011-03-02 | High-tensile hot-dip galvanized steel sheet with excellent formability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011045446A JP5673218B2 (en) | 2011-03-02 | 2011-03-02 | High-tensile hot-dip galvanized steel sheet with excellent formability |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012180574A JP2012180574A (en) | 2012-09-20 |
JP5673218B2 true JP5673218B2 (en) | 2015-02-18 |
Family
ID=47012007
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011045446A Active JP5673218B2 (en) | 2011-03-02 | 2011-03-02 | High-tensile hot-dip galvanized steel sheet with excellent formability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5673218B2 (en) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3339343B2 (en) * | 1997-01-08 | 2002-10-28 | 日本鋼管株式会社 | Manufacturing method of high workability soft hot rolled steel sheet |
-
2011
- 2011-03-02 JP JP2011045446A patent/JP5673218B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012180574A (en) | 2012-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6443593B1 (en) | High strength steel sheet | |
JP6443592B1 (en) | High strength steel sheet | |
JP6052471B2 (en) | High-strength hot-dip galvanized steel sheet and manufacturing method thereof | |
JP6052472B2 (en) | High-strength hot-dip galvanized steel sheet and manufacturing method thereof | |
JP5870012B2 (en) | High yield ratio high strength steel plate with excellent workability | |
JP5402007B2 (en) | High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof | |
JP6846522B2 (en) | High-strength cold-rolled steel sheets with excellent yield strength, ductility, and hole expansion properties, hot-dip galvanized steel sheets, and methods for manufacturing these. | |
JP5487203B2 (en) | High-strength steel sheet and galvanized steel sheet for high processing with excellent surface characteristics and method for producing the same | |
JP2019506530A (en) | High strength steel plate having excellent formability and method of manufacturing the same | |
JP5310919B2 (en) | Method for producing high-strength cold-rolled steel sheets with excellent aging resistance and seizure curability | |
JP6586776B2 (en) | High strength steel plate with excellent formability and method for producing the same | |
WO2018073919A1 (en) | Plated steel sheet, method for manufacturing hot-dip galvanized steel sheet, and method for manufacturing alloyed hot-dip galvanized steel sheet | |
JP2012229466A (en) | High-strength hot-dip galvanized steel sheet excellent in formability and shape fixability, and method of manufacturing the same | |
JP2011153336A (en) | High strength cold rolled steel sheet having excellent formability, and method for producing the same | |
JP5846445B2 (en) | Cold rolled steel sheet and method for producing the same | |
JP2009263752A (en) | Manufacturing method of high-strength steel sheet excellent in balance of hole expandability and ductility, and manufacturing method of galvanized steel sheet | |
KR20210096595A (en) | Method for manufacturing high-strength steel strip with excellent deep drawability and high-strength steel produced thereby | |
JP2019044269A (en) | High intensity cold rolled thin steel sheet | |
JP2010001531A (en) | Method for manufacturing low-yield-ratio type high-strength galvannealed steel sheet | |
JP2010043360A (en) | High-strength and high-ductility hot-dip galvanized steel sheet superior in hole expandability, and manufacturing method therefor | |
JP2011523443A (en) | High-strength steel sheet, hot-dip galvanized steel sheet with excellent ductility and no cracks at the edge, and manufacturing method thereof | |
JP5853884B2 (en) | Hot-dip galvanized steel sheet and manufacturing method thereof | |
JP2004244665A (en) | High-strength and high-ductility steel plate and its manufacturing method | |
JP6694511B2 (en) | High-strength cold-rolled steel sheet excellent in ductility, hole workability, and surface treatment characteristics, hot-dip galvanized steel sheet, and methods for producing them | |
WO2017131052A1 (en) | High-strength steel sheet for warm working, and method for producing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130212 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140318 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140516 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140624 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140821 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141021 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141114 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141202 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141215 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5673218 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |