JP5672200B2 - Dielectric property measurement method using atomic force microscope - Google Patents

Dielectric property measurement method using atomic force microscope Download PDF

Info

Publication number
JP5672200B2
JP5672200B2 JP2011190981A JP2011190981A JP5672200B2 JP 5672200 B2 JP5672200 B2 JP 5672200B2 JP 2011190981 A JP2011190981 A JP 2011190981A JP 2011190981 A JP2011190981 A JP 2011190981A JP 5672200 B2 JP5672200 B2 JP 5672200B2
Authority
JP
Japan
Prior art keywords
frequency
sample
cantilever
probe
electrostatic force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011190981A
Other languages
Japanese (ja)
Other versions
JP2013053878A (en
Inventor
良平 粉川
良平 粉川
大田 昌弘
昌弘 大田
健一 梅田
健一 梅田
圭 小林
圭 小林
啓文 山田
啓文 山田
松重 和美
和美 松重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2011190981A priority Critical patent/JP5672200B2/en
Publication of JP2013053878A publication Critical patent/JP2013053878A/en
Application granted granted Critical
Publication of JP5672200B2 publication Critical patent/JP5672200B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、原子間力顕微鏡を用いて物質の誘電率等の誘電特性を測定する誘電特性測定方法に関し、特に、試料上の局所的な、即ち微小領域における誘電緩和特性の測定に好適な測定方法に関する。   The present invention relates to a dielectric property measurement method for measuring a dielectric property such as a dielectric constant of a substance using an atomic force microscope, and in particular, a measurement suitable for measuring a dielectric relaxation property locally on a sample, that is, in a minute region. Regarding the method.

物質の動的特性を解析する手法の一つとして従来から行われているのが、誘電緩和スペクトロスコピーによる誘電緩和特性の測定である。一般に知られている誘電緩和スペクトロスコピー法では、小型の液体セル中に一対の対向電極を挿入して、その電極間の電気的なインピーダンスの周波数特性をインピーダンスアナライザを用いて測定し、そのインピーダンス周波数特性から誘電緩和特性を算出する。こうした方法では、バルク液の全体的な誘電緩和特性を求めることは可能であるものの、例えば電極表面に存在する分子や電気二重層などの誘電緩和特性を測定することはできない。   One of the conventional methods for analyzing the dynamic characteristics of materials is the measurement of dielectric relaxation characteristics by dielectric relaxation spectroscopy. In the generally known dielectric relaxation spectroscopy method, a pair of counter electrodes are inserted into a small liquid cell, the frequency characteristics of the electrical impedance between the electrodes are measured using an impedance analyzer, and the impedance frequency is measured. Dielectric relaxation characteristics are calculated from the characteristics. With such a method, it is possible to determine the overall dielectric relaxation characteristics of the bulk liquid, but it is not possible to measure the dielectric relaxation characteristics of, for example, molecules present on the electrode surface or the electric double layer.

ところで、近年、各種疾病・疾患の原因究明や医薬品の開発などを目的として、タンパク質やDNAといった生体分子の生体機能発現メカニズムの解明が各所で盛んに進められている。そのためには、まず生体分子の構造を把握することが必要であり、構造把握のための様々な計測手法が開発されている。原子間力顕微鏡(AFM=Atomic Force Microscope)の分野においても、近年の急速な技術の進展により、超高真空雰囲気中だけでなく液体中や生理学的環境下におけるタンパク質やDNAなどの生体分子の分子スケールでの構造解析が行えるようになってきている。   By the way, in recent years, elucidation of biological function expression mechanisms of biomolecules such as proteins and DNA has been actively promoted in various places for the purpose of investigating the causes of various diseases and diseases and developing pharmaceuticals. For that purpose, it is first necessary to grasp the structure of the biomolecule, and various measurement methods for grasping the structure have been developed. In the field of Atomic Force Microscope (AFM) as well, due to the recent rapid progress in technology, molecules of biomolecules such as proteins and DNA not only in ultra-high vacuum atmosphere but also in liquid and physiological environments It is now possible to perform structural analysis on a scale.

生体分子の生体機能発現メカニズム解析のためには、生体分子の構造把握だけでなく生体分子の様々な物性を併せて計測することが必要不可欠である。例えば、生体分子の活動を調べる上で生体分子における局所的な誘電緩和特性を知ることは重要であるが、従来の原子間力顕微鏡ではそういった要求に応えることはできない。そのため、上述したような誘電緩和スペクトロスコピー法を用いる、即ち、測定対象の試料を液体に溶解した上でその溶液全体のインピーダンスを測定して誘電緩和特性を求めざるをえないのが実状である。   In order to analyze the biological function expression mechanism of a biomolecule, it is indispensable to measure not only the structure of the biomolecule but also various physical properties of the biomolecule. For example, it is important to know the local dielectric relaxation characteristics of biomolecules in examining the activity of biomolecules, but conventional atomic force microscopes cannot meet such requirements. Therefore, the dielectric relaxation spectroscopy method as described above is used, that is, the dielectric relaxation characteristics must be obtained by measuring the impedance of the entire solution after dissolving the sample to be measured in the liquid. .

これに対し、本願発明者らは、近年、ナノメートルスケールでの構造計測及び物性評価が可能である原子間力顕微鏡を用い、試料上の局所的な誘電緩和特性を測定する研究を進めている。これは、原子間力顕微鏡で一般に用いられるカンチレバーに作用する静電気力に基づいて、試料表面の局所的な誘電的特性を評価するという手法である。具体的には、例えば非特許文献1、2では、液体中で導電性のカンチレバーとそれに対向する導電性基板との間に交流電圧を印加したときにカンチレバーに誘起される振動成分の探針−試料間距離依存性を調べた結果として、交流電圧の周波数が高い場合に、カンチレバー表面と液体との間の界面張力の作用が弱まって静電気力による振動が支配的になり、その静電気力が探針−試料間距離依存性を持つことを明らかにしている。   In contrast, the inventors of the present application have recently been conducting research to measure local dielectric relaxation characteristics on a sample using an atomic force microscope capable of structural measurement and physical property evaluation on a nanometer scale. . This is a technique for evaluating local dielectric characteristics of the sample surface based on electrostatic force acting on a cantilever generally used in an atomic force microscope. Specifically, in Non-Patent Documents 1 and 2, for example, a probe of a vibration component induced in a cantilever when an AC voltage is applied between the conductive cantilever in the liquid and the conductive substrate opposed thereto— As a result of examining the inter-sample distance dependency, when the frequency of the AC voltage is high, the action of the interfacial tension between the cantilever surface and the liquid is weakened, and the vibration due to the electrostatic force becomes dominant, and the electrostatic force is detected. It is clarified that the distance between the needle and the sample is dependent.

上記現象を図8を用いて説明する。図8は、分析用液体中にカンチレバーが浸漬されている場合における、カンチレバーの導電性表面と分析用液体との界面、つまり固液界面における電気的な等価回路である。図8に示すように、固液界面における等価回路は、界面溶液要素とバルク溶液要素との直列接続回路となる。界面溶液要素とは、電荷移動による抵抗と拡散によるワールブルグインピーダンスとの直列接続回路と、電気二重層容量との並列回路である。他方、バルク溶液要素とは、バルク溶液抵抗とバルク溶液容量との並列回路である。カンチレバーと試料との間に印加される交流電圧の周波数が電気二重層容量の誘電緩和周波数より低い場合には、界面溶液要素に電圧が印加され、界面張力が発生する。一方、上記交流電圧の周波数が電気二重層容量の誘電緩和周波数よりも高い場合には、界面溶液要素に印加される電圧成分は殆ど無視することができ、バルク溶液要素に印加される電圧成分のみを考慮すればよい。そのため、そうした周波数領域では、バルク溶液容量に印加される電圧成分に起因する静電気力、換言すればマックスウェル応力がカンチレバーの変位を支配することになる。   The above phenomenon will be described with reference to FIG. FIG. 8 is an electrical equivalent circuit at the interface between the conductive surface of the cantilever and the analysis liquid, that is, the solid-liquid interface, when the cantilever is immersed in the analysis liquid. As shown in FIG. 8, the equivalent circuit at the solid-liquid interface is a series connection circuit of the interface solution element and the bulk solution element. The interface solution element is a parallel circuit of a series connection circuit of resistance due to charge transfer and Warburg impedance due to diffusion and an electric double layer capacitance. On the other hand, a bulk solution element is a parallel circuit of bulk solution resistance and bulk solution capacity. When the frequency of the alternating voltage applied between the cantilever and the sample is lower than the dielectric relaxation frequency of the electric double layer capacitance, a voltage is applied to the interface solution element, and interfacial tension is generated. On the other hand, when the frequency of the AC voltage is higher than the dielectric relaxation frequency of the electric double layer capacitance, the voltage component applied to the interface solution element can be almost ignored, and only the voltage component applied to the bulk solution element. Should be considered. Therefore, in such a frequency region, electrostatic force due to the voltage component applied to the bulk solution capacity, in other words, Maxwell stress dominates the cantilever displacement.

しかしながら、本願発明者の検討によれば、カンチレバーと試料との間に例えば正弦波状の交流電圧を印加し、その交流電圧の周波数で以てカンチレバーを直接的に振動させる励振方法では、カンチレバーの共振周波数よりも高い周波数領域における検出信号の減衰が著しい。そのため、そうした信号から周波数シフトや変位に関する情報を抽出するのは困難である。カンチレバーの共振周波数はカンチレバーのサイズや材質などに依存するが、一般的には100〜200kHz程度である。そのため、上記励振方法では、こうした周波数よりも高い周波数領域において振動成分の探針−試料間距離依存性を調べることができず、そうした情報に基づいた誘電緩和特性の測定も行えない。   However, according to the study of the present inventor, in the excitation method in which, for example, a sinusoidal AC voltage is applied between the cantilever and the sample and the cantilever is directly vibrated at the frequency of the AC voltage, the resonance of the cantilever The detection signal is significantly attenuated in a frequency region higher than the frequency. Therefore, it is difficult to extract information on frequency shift and displacement from such a signal. The resonance frequency of the cantilever depends on the size and material of the cantilever, but is generally about 100 to 200 kHz. Therefore, in the above excitation method, the dependency of the vibration component on the probe-sample distance cannot be examined in a frequency region higher than such a frequency, and the dielectric relaxation characteristics cannot be measured based on such information.

梅田、ほか5名、「静電気力励振を用いた液中FM-AFM観察」、第57回応用物理学関係連合講演会講演予稿集、2010年3月、社団法人応用物理学会Umeda and 5 others, “FM-AFM observation in liquid using electrostatic force excitation”, Proceedings of the 57th Joint Conference on Applied Physics, March 2010, Japan Society of Applied Physics 梅田、ほか5名、「固液界面における局所電荷分布計測へ向けた静電気力の探針−試料間距離依存性に関する研究」、第71回応用物理学会学術講演会講演予稿集、2010年9月、社団法人応用物理学会Umeda and 5 others, “Study on the dependence of electrostatic force on the measurement of local electric charge distribution at the solid-liquid interface-distance between samples”, Proceedings of the 71st JSAP Conference, September 2010 , Japan Society of Applied Physics ヨコヤマ(Hiroshi Yokoyama)、ほか1名、「イメージング・ハイ・フリクエンシー・ダイエレクトリック・ディスパージョン・オブ・サーフェシズ・アンド・シン・フィルムズ・バイ・ヘテロダイン・フォース−デテクテッド・スキャンニング・マックスウェル−ストレス・マイクロスコピー(Imaging high frequency dielectric dispersion of surfaces and thin films by heterodyne force-detected scanning Maxwell-stress microscopy)」、コロイズ・アンド・サーフェシズ・エー:フィジコケミカル・アンド・エンジニアリング・アスペクツ(Colloids and Surfaces A: Physicochemical and Engineering Aspects)、Vol.93、1994年、p.359-373Hiroshi Yokoyama and one other member, “Imaging High Frequency Dielectric Dispersion of Surfaces and Thin Films by Heterodyne Force-Detected Scanning Maxwell-Stress Micro Scopy (Imaging high frequency dielectric dispersion of surfaces and thin films by heterodyne force-detected scanning Maxwell-stress microscopy), Colloids and Surfaces A: Colloids and Surfaces A: Physicochemical and Engineering Aspects), Vol.93, 1994, p.359-373 ウィトパル(V. Wittpahl)、ほか3名、「クゥオンタティブ・ハイ・フリクエンシー−エレクトリック・フォース・マイクロスコープ・テスティング・オブ・モノリシック・マイクロウェイブ・インテグレイテッド・サーキッツ・アット・20 GHz (Quantitative high frequency-electric force microscope testing of monolithic microwave integrated circuits at 20 GHz)」、マイクロエレクトロニクス・リライアビリティ(Microelectronics Reliability)、Vol.39、1999年、p.951-956W. Wittpahl and three others, “Quantitative high frequency-electric force microscope testing of monolithic microwave integrated circuits at 20 GHz (Quantitative high frequency-electric force microscope testing of monolithic microwave integrated circuits at 20 GHz), Microelectronics Reliability, Vol.39, 1999, p.951-956 ギーシブル(F. Giessibl)、「アドバンシズ・イン・アトミック・フォース・マイクロスコピー(Advances in atomic force microscopy)」、レビュー・オブ・モダン・フィジックス(Review of Modern Physics)、Vol.75、2003年、p.949-983F. Giessibl, "Advances in atomic force microscopy", Review of Modern Physics, Vol. 75, 2003, p. 949-983

本発明は上記課題を解決するために成されたものであり、カンチレバーの共振周波数を超えた高い周波数領域におけるカンチレバーの振動の検出を可能とし、それによって探針−試料間に作用する交流静電気力の探針−試料間距離依存性を測定することで、幅広い周波数範囲に亘る試料上の局所的な誘電緩和特性などの誘電特性を測定することを可能とした誘電特性測定方法を提供することにある。   The present invention has been made to solve the above-described problems, and enables detection of vibration of a cantilever in a high frequency region exceeding the resonance frequency of the cantilever, and thereby AC electrostatic force acting between the probe and the sample. To provide a dielectric property measurement method capable of measuring dielectric characteristics such as local dielectric relaxation characteristics on a sample over a wide frequency range by measuring the probe-sample distance dependency of is there.

上述したように、液体中でカンチレバーを交流的に励振したときにカンチレバーに作用する力には主として静電気力と界面張力効果とがあるが、振動の周波数が高い領域ではカンチレバーに作用する力は静電気力が支配的になる。静電気力は印加される電圧の2乗に比例することから、静電気力を検出する静電気力顕微鏡(EFM)などでは、周波数の異なる2つの交流電圧を探針−試料間に印加し、その2つの交流電圧の周波数差でもって探針を励振する手法(非特許文献3)や、振幅変調した高周波電圧を探針−試料間に印加し、その変調信号の周波数で探針を励振する手法(非特許文献4)が知られている。   As described above, there are mainly electrostatic force and interfacial tension effect in the force acting on the cantilever when alternatingly exciting the cantilever in the liquid, but in the region where the vibration frequency is high, the force acting on the cantilever is static electricity. Power becomes dominant. Since the electrostatic force is proportional to the square of the applied voltage, in an electrostatic force microscope (EFM) that detects electrostatic force, two AC voltages having different frequencies are applied between the probe and the sample. A method of exciting the probe with a frequency difference of AC voltage (Non-patent Document 3) or a method of applying an amplitude-modulated high-frequency voltage between the probe and the sample and exciting the probe at the frequency of the modulation signal (non-patent document 3) Patent document 4) is known.

これら従来の手法はいずれも大気中での励振であって液体中のような界面張力効果の影響が殆どない環境下ではあるものの、本願発明者は、このような場合に静電気力が印加電圧の2乗に比例する点に着目し、液体中でのカンチレバーの励振に振幅変調した高周波交流電圧や2つの異なる周波数の交流電圧を利用することに想到した。また、実験及びシミュレーション計算により、探針−試料間に振幅変調した高周波交流電圧を印加したとき、搬送波電圧の周波数を或る程度以上高くしておけば、カンチレバーに作用する静電気力と探針−試料間距離との関係が強い搬送波周波数依存性を有することを見いだした。カンチレバーに作用する静電気力は、試料表面及びカンチレバー表面に形成された電気二重層容量及びバルク溶液容量の誘電特性に影響を受ける。そのため、カンチレバーに印加する振幅変調交流電圧の搬送波周波数を変えることにより、それらの誘電的分散関係に関する情報を得ることができる。   Although all of these conventional methods are excitations in the atmosphere and there is almost no influence of the interfacial tension effect as in liquids, the inventor of the present application has applied the electrostatic force to the applied voltage in such a case. Focusing on the fact that it is proportional to the square, the inventors have come up with the idea of using a high-frequency AC voltage that has been amplitude-modulated or an AC voltage of two different frequencies for exciting a cantilever in a liquid. Also, by applying experiments and simulation calculations, when applying a high-frequency AC voltage with amplitude modulation between the probe and the sample, the electrostatic force acting on the cantilever and the probe can be reduced if the carrier voltage frequency is increased to a certain extent. It was found that the relationship with the distance between samples has a strong carrier frequency dependency. The electrostatic force acting on the cantilever is affected by the dielectric properties of the electric double layer capacitance and the bulk solution capacitance formed on the sample surface and the cantilever surface. Therefore, by changing the carrier frequency of the amplitude-modulated AC voltage applied to the cantilever, it is possible to obtain information regarding the dielectric dispersion relationship.

本発明は上記のような従来にない着想と実験等により得られた知見に基づいてなされたものであり、その第1の態様は、カンチレバーの先端に設けられた探針を液体中に浸漬された導電性の試料の表面に近接させ、該カンチレバーをその共振周波数で振動させたときに前記探針と前記試料との間に働く相互作用を検出するダイナミックモード原子間力顕微鏡を用い、前記試料の誘電特性を測定する測定方法であって、
前記カンチレバーにあって前記探針が位置する面又はその背面の少なくともいずれかに形成された導電体部と、間に液体を挟んで前記導電体部に対向する前記試料との間に、前記カンチレバーの共振周波数よりも高い周波数の搬送波をそれよりも低い周波数の変調波で振幅変調して生成した交流電圧を印加することによって、前記カンチレバーを静電気力により変調周波数で以て振動させ、
その振動成分に基づいて、探針−試料間に作用する静電気力と探針−試料間距離との関係の搬送波周波数依存性を求め、その周波数と静電気力との関係から試料の誘電特性に関する情報を得ることを特徴としている。
The present invention has been made on the basis of the above-mentioned ideas and experiments obtained through experiments and the like, and the first aspect is that a probe provided at the tip of a cantilever is immersed in a liquid. Using a dynamic mode atomic force microscope that detects the interaction between the probe and the sample when the cantilever is vibrated at the resonance frequency close to the surface of the conductive sample. A measurement method for measuring the dielectric properties of
The cantilever between the conductor portion formed on at least one of the surface where the probe is located or the back surface thereof in the cantilever and the sample facing the conductor portion with a liquid interposed therebetween By applying an alternating voltage generated by amplitude-modulating a carrier wave having a frequency higher than the resonance frequency of the carrier wave with a modulation wave having a frequency lower than that, the cantilever is vibrated at a modulation frequency by electrostatic force,
Based on the vibration component, the carrier frequency dependency of the relationship between the electrostatic force acting between the probe and the sample and the distance between the probe and the sample is obtained, and information on the dielectric characteristics of the sample is obtained from the relationship between the frequency and the electrostatic force. It is characterized by obtaining.

また本発明の第2の態様は上記第1の態様と同様に、カンチレバーの先端に設けられた探針を液体中に浸漬された導電性の試料の表面に近接させ、該カンチレバーをその共振周波数で振動させたときに前記探針と前記試料との間に働く相互作用を検出するダイナミックモード原子間力顕微鏡を用い、前記試料の誘電特性を測定する測定方法であって、
前記カンチレバーにあって前記探針が位置する面又はその背面の少なくともいずれかに形成された導電体部と、間に液体を挟んで前記導電体部に対向する前記試料との間に、前記カンチレバーの共振周波数よりも高い第1周波数の交流電圧とそれよりも所定周波数だけ高い又は低い第2周波数の交流電圧とを加算して生成した励振電圧を印加することによって、前記カンチレバーを静電気力により前記第1周波数と第2周波数との差の周波数で以て振動させ、
その振動成分に基づいて、探針−試料間に作用する静電気力と探針−試料間距離との関係について第1周波数・第2周波数の差を一定に保ちつつ第1周波数又は第2周波数への依存性を求め、その周波数と静電気力との関係から試料の誘電特性に関する情報を得ることを特徴としている。
Further, in the second aspect of the present invention, similarly to the first aspect, the probe provided at the tip of the cantilever is brought close to the surface of the conductive sample immersed in the liquid, and the cantilever has its resonance frequency. Using a dynamic mode atomic force microscope that detects the interaction between the probe and the sample when vibrated at a measuring method for measuring the dielectric properties of the sample,
The cantilever between the conductor portion formed on at least one of the surface where the probe is located or the back surface thereof in the cantilever and the sample facing the conductor portion with a liquid interposed therebetween By applying an excitation voltage generated by adding an alternating voltage having a first frequency higher than the resonance frequency of the first frequency and an alternating voltage having a second frequency higher or lower by a predetermined frequency than the first resonant frequency, Vibrate at a frequency that is the difference between the first frequency and the second frequency,
Based on the vibration component, the first frequency or the second frequency is maintained while the difference between the first frequency and the second frequency is kept constant with respect to the relationship between the electrostatic force acting between the probe and the sample and the distance between the probe and the sample. It is characterized by obtaining information on the dielectric characteristics of the sample from the relationship between the frequency and the electrostatic force.

なお、本発明に係る誘電特性測定方法では、導電性の試料が載置された導電性基板と上記導電体部との間に励振電圧を印加することで、試料と導電体部との間に励振電圧を印加することができる。   In the dielectric property measurement method according to the present invention, an excitation voltage is applied between the conductive substrate on which the conductive sample is placed and the conductive portion, so that the conductive portion is placed between the sample and the conductive portion. An excitation voltage can be applied.

また本発明に係る誘電特性測定方法では、振幅変調された搬送波電圧である励振電圧の印加に応じて振動する、又は、周波数の異なる2つの交流電圧が加算された励振電圧の印加に応じて振動するカンチレバーの変位を検出し、その変位の振幅及び/又は位相から静電気力の探針−試料間距離依存性を求めるようにすることができる。この場合、カンチレバーの変位検出方法は特に問わないが、例えば、カンチレバーの背面にレーザ光を照射し、その反射光を受光面が複数に分割された光検出器で検出して到達光の位置を割り出す光てこ方式を利用すればよい。   Further, in the dielectric characteristic measuring method according to the present invention, it vibrates in response to application of an excitation voltage that is an amplitude-modulated carrier voltage, or vibrates in response to application of an excitation voltage in which two alternating voltages having different frequencies are added. The displacement of the cantilever to be detected can be detected, and the probe-sample distance dependency of the electrostatic force can be obtained from the amplitude and / or phase of the displacement. In this case, the method for detecting the displacement of the cantilever is not particularly limited. For example, the back surface of the cantilever is irradiated with laser light, and the reflected light is detected by a photodetector in which the light receiving surface is divided into a plurality of positions to determine the position of the reaching light. What is necessary is just to use the optical lever system to be determined.

本発明の第1の態様に係る誘電特性測定方法では、カンチレバーの共振周波数よりも高い周波数の搬送波をそれよりも低い周波数の変調波で振幅変調して生成した励振電圧をカンチレバー(探針)と試料との間に印加する。この印加電圧の周波数、つまり搬送波の周波数を変化させたとき、該周波数が界面の電気二重層の誘電緩和周波数より高くなると、界面溶液要素の分圧比と比べてバルク溶液要素の分圧比が大きくなり、界面張力効果による力は小さくなっていく。一方、カンチレバーに作用する静電気力は電圧の2乗に比例するため、変調波の周波数成分の静電気力が発生し、カンチレバーの振動が誘起される。これにより、静電気力は界面張力効果による力に比べて支配的となる。搬送波の周波数は変調波の周波数(つまりはカンチレバーの共振周波数)と無関係に設定することができ、カンチレバーに作用する静電気力は印加電圧の2乗に比例するため、搬送波の周波数をカンチレバーの共振周波数よりもかなり高い周波数とした場合でも振動検出に十分な振動振幅を得ることができる。   In the dielectric characteristic measurement method according to the first aspect of the present invention, an excitation voltage generated by amplitude-modulating a carrier wave having a frequency higher than the resonance frequency of the cantilever with a modulation wave having a frequency lower than that is used as a cantilever (probe). Apply between sample. When the frequency of the applied voltage, that is, the frequency of the carrier wave is changed, if the frequency becomes higher than the dielectric relaxation frequency of the electric double layer at the interface, the partial pressure ratio of the bulk solution element becomes larger than the partial pressure ratio of the interface solution element. The force due to the interfacial tension effect decreases. On the other hand, since the electrostatic force acting on the cantilever is proportional to the square of the voltage, the electrostatic force of the frequency component of the modulated wave is generated, and the vibration of the cantilever is induced. Thereby, the electrostatic force becomes dominant as compared with the force due to the interfacial tension effect. The frequency of the carrier wave can be set independently of the frequency of the modulation wave (that is, the resonance frequency of the cantilever), and the electrostatic force acting on the cantilever is proportional to the square of the applied voltage. Even when the frequency is considerably higher than that, vibration amplitude sufficient for vibration detection can be obtained.

一方、本発明の第2の態様に係る誘電特性測定方法では、カンチレバーの共振周波数よりも高い第1周波数の交流電圧とそれよりも所定周波数だけ高い又は低い第2周波数の交流電圧とを加算して生成した励振電圧をカンチレバー(探針)と試料との間に印加する。この場合には、第1周波数と第2周波数との差の周波数成分の静電気力が発生し、カンチレバーの振動が誘起される。例えば、周波数差を一定に保ちつつ第1周波数及び第2周波数を変化させたとき、それら周波数が界面の電気二重層の誘電緩和周波数より高くなると、界面溶液要素の分圧比と比べてバルク溶液要素の分圧比が大きくなり、界面張力効果による力は小さくなってゆき、カンチレバーに作用する力は静電気力が支配的になる。第1、第2周波数はカンチレバーの共振周波数と無関係に設定することができ、カンチレバーに作用する静電気力は印加電圧の2乗に比例するため、この第2の態様でも第1の態様と同様に、第1、第2周波数をカンチレバーの共振周波数よりもかなり高い周波数とした場合でも振動検出に十分な振動振幅を得ることができる。   On the other hand, in the dielectric characteristic measuring method according to the second aspect of the present invention, an AC voltage having a first frequency higher than the resonant frequency of the cantilever and an AC voltage having a second frequency higher or lower by a predetermined frequency than the first frequency are added. The excitation voltage generated in this way is applied between the cantilever (probe) and the sample. In this case, an electrostatic force having a frequency component corresponding to the difference between the first frequency and the second frequency is generated, and cantilever vibration is induced. For example, when the first frequency and the second frequency are changed while keeping the frequency difference constant, if these frequencies become higher than the dielectric relaxation frequency of the electric double layer at the interface, the bulk solution element is compared with the partial pressure ratio of the interface solution element. The force due to the interfacial tension effect decreases, and the force acting on the cantilever is dominated by electrostatic force. The first and second frequencies can be set regardless of the resonance frequency of the cantilever, and the electrostatic force acting on the cantilever is proportional to the square of the applied voltage. Therefore, the second mode is the same as the first mode. Even when the first and second frequencies are considerably higher than the resonance frequency of the cantilever, a vibration amplitude sufficient for vibration detection can be obtained.

また後で詳述するように、本願発明者らの実験によれば、上記のようにカンチレバーを励振させた状態で探針−試料間距離を変化させると、カンチレバーに作用する静電気力は変化し、さらにその静電気力と探針−試料間距離との関係は搬送波周波数(又は第1周波数や第2周波数)に依存する。つまり、静電気力と探針−試料間距離との関係は周波数分散を示す。したがって、この周波数依存性に基づいて誘電緩和特性等の誘電特性を求めることができる。   As will be described in detail later, according to the experiments by the present inventors, when the distance between the probe and the sample is changed with the cantilever excited as described above, the electrostatic force acting on the cantilever changes. Further, the relationship between the electrostatic force and the probe-sample distance depends on the carrier frequency (or the first frequency or the second frequency). That is, the relationship between the electrostatic force and the probe-sample distance indicates frequency dispersion. Therefore, dielectric characteristics such as dielectric relaxation characteristics can be obtained based on this frequency dependence.

上記の本発明に係る誘電特性測定方法によれば、高周波数領域において界面張力の影響を抑え、液体中であっても試料と探針との間に作用する静電気力を検出し、これに基づいて試料の誘電特性を得ることができる。ただ、本願発明者の検討によると、探針を試料表面の極近傍にまで接近させた場合、バルク溶液容量が大きくなるため、電気二重層の中のヘルムホルツ層における静電容量が相対的に小さくなって、インピーダンスの上では後者が支配的になる。交流電圧印加によって探針に誘起される静電気力はバルク溶液容量に依存するため、ヘルムホルツ層のインピーダンスが相対的に増加することで、印加された交流電圧成分の大部分がヘルムホルツ層に印加されてしまうことになると、探針先端に静電気力が誘起されなくなり、検出される静電気力の局所性が低下するということが判明した。そこで、試料上の局所的な静電気力をより高い感度で測定したい場合には、カンチレバーを自励発振させ、カンチレバーに働く静電気力の作用によって自励発振の周波数がシフトする量を検出する周波数変調(FM)検出法を組み合わせるとよい。   According to the above dielectric property measurement method according to the present invention, the influence of the interfacial tension is suppressed in the high frequency region, and the electrostatic force acting between the sample and the probe is detected even in the liquid. Thus, the dielectric properties of the sample can be obtained. However, according to the study by the present inventor, when the probe is brought close to the vicinity of the sample surface, the bulk solution capacity increases, so that the capacitance in the Helmholtz layer in the electric double layer is relatively small. Therefore, the latter becomes dominant on the impedance. Since the electrostatic force induced in the probe by the AC voltage application depends on the bulk solution capacity, the impedance of the Helmholtz layer increases relatively, so that most of the applied AC voltage component is applied to the Helmholtz layer. In other words, it was found that the electrostatic force is no longer induced at the tip of the probe, and the locality of the detected electrostatic force is reduced. Therefore, if you want to measure the local electrostatic force on the sample with higher sensitivity, the frequency modulation that detects the amount of self-excited oscillation frequency shift by the action of the electrostatic force acting on the cantilever. (FM) A detection method may be combined.

即ち、本発明に係る原子間力顕微鏡を用いた誘電特性測定方法においては、カンチレバーの導電体部と試料との間に励振電圧を印加するとともに、さらに該カンチレバーをその共振周波数で自励発振させ、該カンチレバーに作用する静電気力による共振周波数の周波数シフトを検出し、その周波数シフトにおける前記励振電圧に対する振動成分から探針−試料間に作用する静電気力の探針−試料間距離依存性を求めるようにしてもよい。カンチレバーをその共振周波数で自励発振させるためには既存の方法、例えば光熱励振法などを用いればよい。また、周波数シフトを検出する方法も既存の方法、例えば位相同期ループ回路(PLL)による周波数検出方法などを用いればよい。   That is, in the dielectric property measurement method using the atomic force microscope according to the present invention, an excitation voltage is applied between the conductor portion of the cantilever and the sample, and the cantilever is further self-oscillated at its resonance frequency. The frequency shift of the resonance frequency due to the electrostatic force acting on the cantilever is detected, and the probe-sample distance dependency of the electrostatic force acting between the probe and the sample is obtained from the vibration component with respect to the excitation voltage in the frequency shift. You may do it. In order to cause the cantilever to self-oscillate at its resonance frequency, an existing method such as a photothermal excitation method may be used. As a method for detecting the frequency shift, an existing method such as a frequency detection method using a phase locked loop circuit (PLL) may be used.

上記のFM検出法を組み合わせた誘電特性測定方法では、励振電圧における変調周波数(又は2周波の差周波数)がカンチレバーの共振周波数に一致していない場合でも、検出信号は共振周波数の変調として捉えられるために高い感度ゲインが得られる。また、上述した直接検出法では、カンチレバーに働く静電気力によって振動が誘起され、その振動振幅の大きさはカンチレバーの振動中心位置における静電気力によって決定されるのに対し、FM検出法を用いた場合には、カンチレバーは機械的に加振されており、カンチレバーに働く静電気力によって共振周波数シフトが誘起され、その共振周波数シフトの大きさはカンチレバーがカンチレバー振動周期のうち試料表面に最も近接したときの位置における静電気力によってほぼ決定される(非特許文献5参照)。カンチレバーが試料表面に近接するに伴って、カンチレバーや探針全体に働く静電気力よりも探針先端に働く静電気力が著しく大きくなるため、FM検出法では上述した直接検出法と比べて探針先端に働く静電気力を選択的に検出することができ、試料の誘電特性をより局所的に測定することが可能となる。   In the dielectric property measurement method combined with the above-described FM detection method, even when the modulation frequency (or the difference frequency between the two frequencies) in the excitation voltage does not match the resonance frequency of the cantilever, the detection signal is captured as modulation of the resonance frequency. Therefore, a high sensitivity gain can be obtained. In the direct detection method described above, vibration is induced by the electrostatic force acting on the cantilever, and the magnitude of the vibration amplitude is determined by the electrostatic force at the vibration center position of the cantilever, whereas when the FM detection method is used. The cantilever is mechanically vibrated, and a resonance frequency shift is induced by the electrostatic force acting on the cantilever, and the magnitude of the resonance frequency shift is that when the cantilever is closest to the sample surface in the cantilever vibration period. It is almost determined by the electrostatic force at the position (see Non-Patent Document 5). As the cantilever approaches the sample surface, the electrostatic force acting on the tip of the probe becomes significantly larger than the electrostatic force acting on the cantilever and the entire probe. Therefore, in the FM detection method, the tip of the probe is compared with the direct detection method described above. Thus, the electrostatic force acting on the sample can be selectively detected, and the dielectric properties of the sample can be measured more locally.

本発明に係る原子間力顕微鏡を用いた誘電特性測定方法によれば、従来は困難であった、液体中に浸漬された状態である試料の局所的な誘電緩和特性などの誘電特性を測定することが可能となる。また、特にこの誘電特性測定方法はナノメートルスケールでの構造計測が可能な原子間力顕微鏡を用いているため、試料表面の高分解能構造観察と2次元的な誘電特性測定とを並行して行うことができる。   According to the dielectric property measurement method using an atomic force microscope according to the present invention, it is difficult to measure dielectric properties such as local dielectric relaxation properties of a sample immersed in a liquid. It becomes possible. In particular, since this dielectric property measurement method uses an atomic force microscope capable of nanometer-scale structure measurement, high-resolution structural observation of the sample surface and two-dimensional dielectric property measurement are performed in parallel. be able to.

本発明に係る誘電特性測定方法を実施するための一実施例である原子間力顕微鏡のカンチレバー励振部の概略構成図。The schematic block diagram of the cantilever excitation part of the atomic force microscope which is one Example for implementing the dielectric property measuring method which concerns on this invention. 本実施例の原子間力顕微鏡の要部の概略構成図。The schematic block diagram of the principal part of the atomic force microscope of a present Example. 図1の構成において搬送波周波数を変化させたときの探針−試料間に作用する規格化交流静電気力と探針−試料間距離との関係を実測した結果を示す図であり、(a)は純水中、(b)は1-ヘプタノール中に置かれた試料の実測例。FIG. 2 is a diagram showing a result of actual measurement of a relationship between a normalized AC electrostatic force acting between a probe and a sample and a probe-sample distance when the carrier frequency is changed in the configuration of FIG. (B) is an actual measurement example of a sample placed in 1-heptanol in pure water. 図3(b)の結果に基づく規格化交流静電気力の周波数依存性を示す図。The figure which shows the frequency dependence of the normalization alternating current electrostatic force based on the result of FIG.3 (b). 本発明に係る誘電特性測定方法を実施するための別の実施例である原子間力顕微鏡の要部の構成図。The block diagram of the principal part of the atomic force microscope which is another Example for enforcing the dielectric property measuring method which concerns on this invention. 図5に示した原子間力顕微鏡を用いて測定した探針−試料間距離と周波数シフト振動の振幅との関係の実測例を示す図。FIG. 6 is a diagram showing an actual measurement example of the relationship between the probe-sample distance and the amplitude of the frequency shift vibration measured using the atomic force microscope shown in FIG. 5. 本発明に係る誘電特性測定方法を実施するためのさらに別の実施例である原子間力顕微鏡のカンチレバー励振部の概略構成図。The schematic block diagram of the cantilever excitation part of the atomic force microscope which is another Example for enforcing the dielectric property measuring method which concerns on this invention. 液体に浸漬された状態のカンチレバーの導電性表面と液体との界面付近の等価回路図。The equivalent circuit schematic of the interface vicinity of the electroconductive surface of the cantilever in the state immersed in the liquid, and the liquid.

以下、本発明に係る誘電特性測定方法の一実施形態について、添付図面を参照して説明する。図2はこの誘電特性測定方法に用いられる原子間力顕微鏡の一実施例の要部の概略構成図、図1はその原子間力顕微鏡におけるカンチレバー励振部の概略構成図である。   Hereinafter, an embodiment of a dielectric property measuring method according to the present invention will be described with reference to the accompanying drawings. FIG. 2 is a schematic configuration diagram of a main part of an embodiment of an atomic force microscope used in this dielectric property measuring method, and FIG. 1 is a schematic configuration diagram of a cantilever excitation unit in the atomic force microscope.

図2に示すように、観察対象である試料3は略円筒形状であるスキャナ1の上に載置された試料ホルダ2の上に保持される。試料ホルダ2は金属等の導電体からなり、試料3自体も導電性を有する。スキャナ1は、試料3を互いに直交するX、Yの2軸方向に走査するXYスキャナとX軸及びY軸に対し直交するZ軸方向に微動させるZスキャナとを含み、それぞれ水平位置制御部33、垂直位置制御部32から印加される電圧によって変位を生じる圧電素子を駆動源としている。試料3の上方には先端に探針6を備えるカンチレバー5が配置され、このカンチレバー5はカンチレバーホルダ7を介して台座部4に固定されている。液中測定を行うために、この台座部4の一部は下面が平坦なガラス製の透明体4aとなっている。試料ホルダ2と台座部4との間の空隙は分析用液体8で満たされ、試料3はこの分析用液体8中に浸漬されている。分析用液体8の上面は台座部4(透明体4a)の下面に完全に密着しており、探針6が試料3の表面を走査する際にも分析用液体8の液面の揺らぎは生じない。   As shown in FIG. 2, the sample 3 to be observed is held on a sample holder 2 mounted on a scanner 1 having a substantially cylindrical shape. The sample holder 2 is made of a conductor such as metal, and the sample 3 itself has conductivity. The scanner 1 includes an XY scanner that scans the sample 3 in two X- and Y-axis directions orthogonal to each other, and a Z-scanner that finely moves the sample 3 in the Z-axis direction orthogonal to the X-axis and Y-axis. The drive source is a piezoelectric element that is displaced by a voltage applied from the vertical position control unit 32. A cantilever 5 having a probe 6 at the tip is disposed above the sample 3, and the cantilever 5 is fixed to the pedestal 4 via a cantilever holder 7. In order to perform in-liquid measurement, a part of the pedestal 4 is a glass transparent body 4a having a flat bottom surface. The gap between the sample holder 2 and the pedestal 4 is filled with the analysis liquid 8, and the sample 3 is immersed in the analysis liquid 8. The upper surface of the analysis liquid 8 is completely in close contact with the lower surface of the pedestal 4 (transparent body 4a), and the fluctuation of the liquid surface of the analysis liquid 8 occurs even when the probe 6 scans the surface of the sample 3. Absent.

カンチレバー5のZ軸方向の変位を検出するために、台座部4の上方には、レーザ光源11、ミラー12、13、及び光検出器14を含む光学的変位検出部10が設けられている。光学的変位検出部10においては、レーザ光源11から出射したレーザ光をミラー12で略垂直に反射させ、台座部4の透明体4aを通してカンチレバー5の背面先端付近に照射する。カンチレバー5はシリコン又は窒化シリコンなどから成るが、その前面(試料3との対向面)及び背面には金(Au)、アルミニウム(Al)、等の金属薄膜5aが蒸着等により形成されている。それにより、カンチレバー5の背面は鏡面となっており、上方から照射されたレーザ光は高い効率で反射し、再び透明体4aを通って台座部4の上方に抜ける。そして、このカンチレバー5による反射光はミラー13を介して光検出器14に導入される。光検出器14はカンチレバー5の変位方向(Z軸方向)に複数(通常2つ)に分割された受光面を有するか、或いは、Z軸方向及びY軸方向に4分割された受光面を有する。カンチレバー5が上下に変位すると複数の受光面に入射する光量の割合が変化するから、その複数の受光光量に応じた検出信号を演算処理することで、カンチレバー5のZ軸方向の変位量を算出することができる。この光検出器14による検出信号は増幅されて振幅位相検出部30に入力され、そこで得られたカンチレバー5の変位の振幅・位相に関する情報がデータ処理部31に与えられる。   In order to detect the displacement of the cantilever 5 in the Z-axis direction, an optical displacement detector 10 including a laser light source 11, mirrors 12 and 13, and a photodetector 14 is provided above the pedestal 4. In the optical displacement detection unit 10, the laser light emitted from the laser light source 11 is reflected substantially vertically by the mirror 12, and is irradiated to the vicinity of the rear end of the cantilever 5 through the transparent body 4 a of the pedestal unit 4. The cantilever 5 is made of silicon, silicon nitride, or the like, and a metal thin film 5a such as gold (Au) or aluminum (Al) is formed on the front surface (the surface facing the sample 3) and the back surface by vapor deposition or the like. As a result, the back surface of the cantilever 5 is a mirror surface, and the laser light irradiated from above is reflected with high efficiency and passes through the transparent body 4a again to the upper side of the pedestal portion 4. Then, the reflected light from the cantilever 5 is introduced into the photodetector 14 via the mirror 13. The photodetector 14 has a light receiving surface divided into a plurality (usually two) in the displacement direction (Z axis direction) of the cantilever 5, or has a light receiving surface divided into four in the Z axis direction and the Y axis direction. . When the cantilever 5 is displaced up and down, the ratio of the amount of light incident on the plurality of light receiving surfaces changes. Therefore, the amount of displacement of the cantilever 5 in the Z-axis direction is calculated by calculating the detection signal corresponding to the plurality of received light amounts. can do. The detection signal from the photodetector 14 is amplified and input to the amplitude / phase detection unit 30, and information regarding the amplitude / phase of displacement of the cantilever 5 obtained there is provided to the data processing unit 31.

導電性の試料ホルダ2は直流成分遮断用のコンデンサ25を介して励振電圧生成部21に接続され、一端がカンチレバー5の前面及び背面の金属薄膜5aと電気的に接続された導電性のリード部20の他端は本顕微鏡の接地電位(GND)に接続されている。励振電圧生成部21は、搬送波発生部22、変調波発生部23、振幅変調部24を含む。搬送波発生部22はカンチレバー5の共振周波数よりも高い所定の周波数範囲の中の周波数f0の正弦波電圧を発生するものである。一方、変調波発生部23は搬送波よりも低い周波数でカンチレバー5を励振させたい周波数fmの正弦波電圧を発生するものである。振幅変調部24は、搬送波の振幅を変調波波形に応じて変調する。したがって、振幅変調部24の出力、つまり試料ホルダ2に印加される励振電圧は周波数がf0でその包絡線は変調波波形に一致している。これにより、カンチレバー5前面の金属薄膜5aと、分析用液体8を間に挟んで対面する導電性の試料3との間に、励振電圧が印加される。なお、コンデンサ25は、励振電圧生成部21で生成される励振電圧が切り替えられるときに生じる大きな直流電圧を遮断するためのものである。 The conductive sample holder 2 is connected to the excitation voltage generation unit 21 via a DC component blocking capacitor 25, and one end of the conductive sample holder 2 is electrically connected to the metal thin film 5a on the front surface and back surface of the cantilever 5. The other end of 20 is connected to the ground potential (GND) of the microscope. The excitation voltage generator 21 includes a carrier wave generator 22, a modulated wave generator 23, and an amplitude modulator 24. The carrier wave generator 22 generates a sine wave voltage having a frequency f 0 within a predetermined frequency range higher than the resonance frequency of the cantilever 5. Meanwhile, the modulation wave generator 23 is for generating a sine wave voltage of frequency f m is desired to excite the cantilever 5 at a lower frequency than the carrier wave. The amplitude modulation unit 24 modulates the amplitude of the carrier wave according to the modulation wave waveform. Accordingly, the output of the amplitude modulation section 24, i.e. the excitation voltage applied to the sample holder 2 thereof envelope frequency at f 0 are matched to the modulated waveform. Thereby, an excitation voltage is applied between the metal thin film 5a on the front surface of the cantilever 5 and the conductive sample 3 facing each other with the analysis liquid 8 interposed therebetween. The capacitor 25 is for cutting off a large DC voltage generated when the excitation voltage generated by the excitation voltage generator 21 is switched.

また、励振電圧生成部21、垂直位置制御部32、水平位置制御部33は、主制御部34により制御され、該主制御部34には測定のために必要な条件やパラメータなどを設定するための操作部35や測定結果を表示するための表示部36なども接続されている。   Further, the excitation voltage generation unit 21, the vertical position control unit 32, and the horizontal position control unit 33 are controlled by the main control unit 34, in order to set conditions, parameters, and the like necessary for measurement in the main control unit 34. An operation unit 35 and a display unit 36 for displaying measurement results are also connected.

ここで、上記励振電圧がカンチレバー5前面の金属薄膜5aと試料3との間(以下「探針−試料間」と記す)に印加された場合における、カンチレバー5に作用する静電気力について説明する。
いま、或る電圧Vが探針−試料間に印加されたときに、探針−試料間の静電気力Fesfは次の(1)式となる。ここで、Ctsは探針−試料間の静電容量、zは探針−試料間距離である。

Figure 0005672200
探針−試料間に、直流電圧VDCと振幅変調信号(搬送波の角周波数ω0、変調波の角周波数ωm)とを印加する場合、印加電圧Vmodは次の(2)式で表される。
Figure 0005672200
したがって、探針−試料間に電圧Vmodを印加したときの探針−試料間の静電気力FAM esfは次の(3)式となる。
Figure 0005672200
(3)式に示すように、静電気力FAM esfは、直流成分を始めとする様々な周波数の成分を含むが、その1つとして変調波の角周波数ωmの成分が存在することが分かる。即ち、静電気力FAM esfによってカンチレバー5は変調波の角周波数ωmの成分を以て振動するから、例えばロックインアンプなどによりこの特定の周波数成分を検出することにより、角周波数ωm成分のみの静電気力を抽出することが可能である。 Here, the electrostatic force acting on the cantilever 5 when the excitation voltage is applied between the metal thin film 5a on the front surface of the cantilever 5 and the sample 3 (hereinafter referred to as "probe-to-sample") will be described.
Now, when a certain voltage V is applied between the probe and the sample, the electrostatic force F esf between the probe and the sample is expressed by the following equation (1). Here, C ts is the capacitance between the probe and the sample, and z is the distance between the probe and the sample.
Figure 0005672200
When a DC voltage VDC and an amplitude-modulated signal (carrier angular frequency ω 0 , modulated wave angular frequency ω m ) are applied between the probe and the sample, the applied voltage V mod is expressed by the following equation (2). Is done.
Figure 0005672200
Therefore, the electrostatic force F AM esf between the probe and the sample when the voltage V mod is applied between the probe and the sample is expressed by the following equation (3).
Figure 0005672200
As shown in equation (3), the electrostatic force F AM esf includes components of various frequencies including a direct current component, and one of them is a component of the angular frequency ω m of the modulated wave. . That is, the cantilever 5 vibrates with the component of the angular frequency ω m of the modulated wave due to the electrostatic force F AM esf . For example, by detecting this specific frequency component with a lock-in amplifier or the like, the static electricity of only the angular frequency ω m component is detected. It is possible to extract the force.

上述したように分析用液体8中で金属薄膜5aと試料3との間に励振電圧が印加されたとき、カンチレバー5に作用する静電気力はωm成分を含むが、実際に金属薄膜5aに印加される電圧の角周波数はω0の近傍である。この角周波数ω0は図8に示した等価回路において電気二重層容量の誘電緩和周波数よりも高いため、界面溶液要素に印加される電圧成分は無視することができ、変調角周波数ωmに拘わらずバルク溶液要素に印加される電圧成分に起因する静電気力が支配的となる。本発明に係る誘電特性測定方法では、バルク溶液要素に印加される電圧成分に起因する静電気力が支配的になるような搬送波の周波数範囲でカンチレバー5は励振される。 As described above, when an excitation voltage is applied between the metal thin film 5a and the sample 3 in the analysis liquid 8, the electrostatic force acting on the cantilever 5 includes the ω m component, but is actually applied to the metal thin film 5a. The angular frequency of the applied voltage is in the vicinity of ω 0 . Since this angular frequency ω 0 is higher than the dielectric relaxation frequency of the electric double layer capacitance in the equivalent circuit shown in FIG. 8, the voltage component applied to the interface solution element can be ignored, and is related to the modulation angular frequency ω m . The electrostatic force due to the voltage component applied to the bulk solution element is dominant. In the dielectric property measuring method according to the present invention, the cantilever 5 is excited in the frequency range of the carrier wave in which the electrostatic force due to the voltage component applied to the bulk solution element becomes dominant.

図2に示した構成の原子間力顕微鏡を用い、白金板を試料3とし、変調波周波数fmを2kHzに固定して搬送波周波数f0をカンチレバー5の共振周波数以上の範囲で変化させることにより、探針−試料間に作用する静電気力の探針−試料間距離依存性を実測により評価した。具体的には、水平位置制御部33により試料3上の測定位置(X−Y位置)を固定し、垂直位置制御部32によりスキャナ1を駆動して、探針−試料間距離を徐々に且つ段階的に変化させる。そして、搬送波周波数が或る1つに固定された状態で探針−試料間距離を所定範囲で走査しながら、各探針−試料間距離におけるカンチレバー5の変位の振幅・位相を光学的変位検出部10及び振幅位相検出部30により検出する。そして、データ処理部31においてその検出信号に基づいて静電気力を計算する。搬送波周波数を変化させる毎にこれを繰り返すことにより、図3に示したような、搬送波周波数をパラメータとした静電気力と探針−試料間距離との関係が求まる。もちろん、探針−試料間距離が固定された状態で搬送波周波数を徐々に変化させながら、カンチレバー5の変位を検出してもよい。図3(a)は純水(20℃)中、(b)は1-ヘプタノール(Heptanol)(3℃)中での実測結果である。 By using the atomic force microscope having the configuration shown in FIG. 2, using the platinum plate as the sample 3, fixing the modulation wave frequency f m to 2 kHz and changing the carrier frequency f 0 in a range equal to or higher than the resonance frequency of the cantilever 5. The dependence of the electrostatic force acting between the probe and the sample on the distance between the probe and the sample was evaluated by actual measurement. Specifically, the measurement position (XY position) on the sample 3 is fixed by the horizontal position control unit 33, and the scanner 1 is driven by the vertical position control unit 32 so that the probe-sample distance is gradually increased. Change in steps. Then, optical displacement detection of the amplitude and phase of the displacement of the cantilever 5 at each probe-sample distance is performed while scanning the probe-sample distance within a predetermined range with the carrier frequency fixed to a certain one. Detected by the unit 10 and the amplitude / phase detector 30. Then, the data processor 31 calculates the electrostatic force based on the detection signal. By repeating this every time the carrier frequency is changed, the relationship between the electrostatic force using the carrier frequency as a parameter and the probe-sample distance as shown in FIG. 3 is obtained. Of course, the displacement of the cantilever 5 may be detected while gradually changing the carrier frequency with the probe-sample distance fixed. FIG. 3 (a) shows the actual measurement results in pure water (20 ° C.), and FIG. 3 (b) shows the actual measurement results in 1-heptanol (3 ° C.).

図3(a)の結果を見ると、0.1MHz〜1.0MHzの周波数範囲では搬送波周波数f0によって探針−試料間距離依存性に明確な差異があり周波数分散がみられるのに対し、それ以上の周波数範囲においては探針−試料間距離依存性に差異が殆どないことが分かる。0.1MHz〜1.0MHzの周波数範囲における周波数分散は、振動に対する支配的な要素がバルク溶液要素の中のバルク溶液抵抗からバルク溶液容量に移ったことを示すものである。一方、1.0MHzを超える周波数範囲において周波数分散がみられないのは、この周波数範囲ではバルク溶液要素及び電気二重層容量に誘電緩和などの現象が生じないことを意味している。なお、図中の太い点線は、電気二重層の分圧効果を考慮し、探針及びカンチレバーに作用する静電気力を計算することで求めた理論曲線である。実測で得られた関係は理論曲線と極めてよい一致を示しており、この実測が理論に適合していることが明らかである。 Looking at the result of FIG. 3A, in the frequency range of 0.1 MHz to 1.0 MHz, there is a clear difference in the probe-sample distance dependency depending on the carrier frequency f 0 , whereas frequency dispersion is seen. It can be seen that there is almost no difference in the probe-sample distance dependency in the frequency range beyond that. A frequency dispersion in the frequency range of 0.1 MHz to 1.0 MHz indicates that the dominant factor for vibration has shifted from the bulk solution resistance in the bulk solution element to the bulk solution volume. On the other hand, the fact that no frequency dispersion is observed in a frequency range exceeding 1.0 MHz means that a phenomenon such as dielectric relaxation does not occur in the bulk solution element and the electric double layer capacitance in this frequency range. A thick dotted line in the figure is a theoretical curve obtained by calculating the electrostatic force acting on the probe and the cantilever in consideration of the partial pressure effect of the electric double layer. The relationship obtained by actual measurement shows a very good agreement with the theoretical curve, and it is clear that this actual measurement is in conformity with the theory.

一方、図3(b)の結果を見ると、0.1MHz〜10MHzの周波数範囲では探針−試料間距離依存性に差異が殆どないのに対し、30MHz以上の周波数範囲において探針−試料間距離依存性に明確な差異があり周波数分散がみられることが分かる。0℃における1-ヘプタノールの誘電緩和周波数は約42.5MHzであるから、30MHz以上の周波数範囲での周波数分散は1-ヘプタノールの誘電緩和現象に起因し、誘電緩和周波数より高い周波数領域ではバルク溶液容量が小さくなり、探針が近接したときでも、ヘルムホルツ容量に印加される交流電圧成分が減り探針先端に大きな静電気力が働いた結果であると推測できる。   On the other hand, in the result of FIG. 3B, there is almost no difference in the probe-sample distance dependency in the frequency range of 0.1 MHz to 10 MHz, whereas in the frequency range of 30 MHz or more, the distance between the probe and the sample. It can be seen that there is a clear difference in distance dependence and frequency dispersion is observed. Since the dielectric relaxation frequency of 1-heptanol at 0 ° C. is about 42.5 MHz, the frequency dispersion in the frequency range of 30 MHz or higher is caused by the dielectric relaxation phenomenon of 1-heptanol, and the bulk solution is higher in the frequency region than the dielectric relaxation frequency. Even when the capacitance is reduced and the probe is close, it can be assumed that the AC voltage component applied to the Helmholtz capacitance is reduced and a large electrostatic force acts on the tip of the probe.

図3(b)の実験結果の中で試料最近傍における規格化交流静電気力を搬送波周波数に対してプロットし直したのが図4である。この図4を見れば、10MHz以上の周波数範囲で静電気力の変化が確実に捉えられていることが分かる。この静電気力は探針6の先端とそれに対向する試料3上の特定の位置との間に作用する静電気力であり、該試料3上の特定位置の局所的な誘電特性を反映している。したがって、上述したように搬送波周波数を変化させたときの静電気力と探針−試料間距離との関係を原子間力顕微鏡により測定するという方法によって、数十MHz以上の周波数領域における誘電緩和現象をも明瞭に把握できることが確認できる。   FIG. 4 is a plot of the normalized AC electrostatic force in the vicinity of the sample in the experimental results of FIG. As can be seen from FIG. 4, the change in electrostatic force is reliably captured in the frequency range of 10 MHz or higher. This electrostatic force is an electrostatic force that acts between the tip of the probe 6 and a specific position on the sample 3 facing it, and reflects the local dielectric characteristics of the specific position on the sample 3. Therefore, the dielectric relaxation phenomenon in the frequency region of several tens of MHz or more can be obtained by measuring the relationship between the electrostatic force when the carrier frequency is changed and the distance between the probe and the sample with an atomic force microscope as described above. It can be confirmed that it can be clearly understood.

上記実施例では、金属薄膜5aと試料3(実際には試料ホルダ2)との間に、励振電圧生成部21から、搬送波を変調波により振幅変調することで生成した励振電圧を印加し、その変調波の周波数で以てカンチレバー5を振動させるようにしていたが、異なる2つの周波数の交流電圧を加算した励振電圧を印加し、その周波数の差で以て、つまり2つの周波数のうなり成分によってカンチレバー5を振動させるようにしてもよい。   In the above embodiment, an excitation voltage generated by amplitude-modulating a carrier wave with a modulated wave is applied from the excitation voltage generation unit 21 between the metal thin film 5a and the sample 3 (actually the sample holder 2). The cantilever 5 was vibrated with the frequency of the modulated wave, but an excitation voltage obtained by adding alternating voltages of two different frequencies was applied, and the difference between the frequencies, that is, depending on the beat component of the two frequencies. The cantilever 5 may be vibrated.

図7は、図1に示した実施例において励振電圧生成部の構成を変更した別の実施例の構成図である。励振電圧生成部210において、第1波発生部220はカンチレバー5の共振周波数よりも高い所定の角周波数ω0の正弦波電圧を発生し、第2波発生部230は角周波数ω0に対してカンチレバー5を励振させたい角周波数ωmだけ高い(又は低い)角周波数ω0+ωm(又はω0−ωm)の正弦波電圧を発生する。加算部240は、上記2周波の正弦波電圧を加算して出力する。 FIG. 7 is a configuration diagram of another embodiment in which the configuration of the excitation voltage generator is changed in the embodiment shown in FIG. In the excitation voltage generation unit 210, the first wave generation unit 220 generates a sine wave voltage having a predetermined angular frequency ω 0 that is higher than the resonance frequency of the cantilever 5, and the second wave generation unit 230 generates an angular frequency ω 0 . A sinusoidal voltage having an angular frequency ω 0 + ω m (or ω 0 −ω m ) that is higher (or lower) by the angular frequency ω m that the cantilever 5 is to be excited is generated. The adding unit 240 adds the two frequency sine wave voltages and outputs the result.

いま、探針−試料間に、直流電圧VDC、角周波数ω0である第1交流電圧、及び角周波数ω0+ωmである第2交流電圧を印加する場合、印加電圧Vmodは次の(4)式で表される。

Figure 0005672200
したがって、探針−試料間に電圧Vmodを印加したときの探針−試料間の静電気力Fbeat esfは次の(5)式となる。
Figure 0005672200
Now, the probe - between samples, the DC voltage V DC, the first alternating voltage is the angular frequency omega 0, and the case of applying the second AC voltage is the angular frequency ω 0 + ω m, the applied voltage V mod is the following It is expressed by equation (4).
Figure 0005672200
Therefore, the electrostatic force F beat esf between the probe and the sample when the voltage V mod is applied between the probe and the sample is expressed by the following equation (5).
Figure 0005672200

(3)式と同様に、(5)式に示される静電気力Fbeat esfは、直流成分を始めとする様々な周波数の成分を含むが、その1つとして第1交流電圧の角周波数と第2交流電圧の角周波数との差ωmの成分が存在することが分かる。即ち、静電気力Fbeat esfによってカンチレバー5は角周波数差ωmの成分を以て振動するから、例えばロックインアンプなどによりこの特定の周波数成分を検出することによって、角周波数ωm成分のみの静電気力を抽出することが可能である。したがって、このようなカンチレバー励振方法を用いた場合も、2周波の差周波数を変化させたときの静電気力と探針−試料間距離との関係を原子間力顕微鏡により測定するという方法によって、数十MHz以上の周波数領域における誘電緩和現象を把握することが可能である。 Similar to Equation (3), the electrostatic force F beat esf shown in Equation (5) includes components of various frequencies including a direct current component, one of which is the angular frequency of the first alternating voltage and the second. 2 It can be seen that there is a component of the difference ω m from the angular frequency of the AC voltage. That is, since the cantilever 5 vibrates with a component of the angular frequency difference ω m due to the electrostatic force F beat esf , the electrostatic force of only the angular frequency ω m component is detected by detecting this specific frequency component with a lock-in amplifier, for example. It is possible to extract. Therefore, even when such a cantilever excitation method is used, the relationship between the electrostatic force and the probe-sample distance when the difference frequency between the two frequencies is changed is measured by an atomic force microscope. It is possible to grasp the dielectric relaxation phenomenon in the frequency range above 10 MHz.

ところで、本願発明者の検討によれば、探針6を試料3の極近傍にきわめて接近させた場合に、電気二重層の中のヘルムホルツ層の静電容量が支配的になり、バルク溶液容量が支配的である場合に比べて静電気力の局所性が乏しくなることが分かった。そこで、静電気力の局所性を向上させるために、上述した振幅変調した交流電圧(又は2周波の交流電圧を加算した交流電圧)である励振電圧をカンチレバー5と試料3との間に印加する励振方法に、さらに既知のFM検出法を組み合わせるようにしてもよい。   By the way, according to the study of the present inventor, when the probe 6 is very close to the vicinity of the sample 3, the capacitance of the Helmholtz layer in the electric double layer becomes dominant, and the bulk solution capacity is reduced. It was found that the locality of the electrostatic force is poor compared to the dominant case. Therefore, in order to improve the locality of the electrostatic force, the excitation voltage that is the above-described amplitude-modulated AC voltage (or an AC voltage obtained by adding two-frequency AC voltages) is applied between the cantilever 5 and the sample 3. The method may be combined with a known FM detection method.

図5は、FM検出法を併用した場合における誘電特性測定方法を実施するための原子間力顕微鏡の一実施例の要部の構成図である。図2に示した実施例の構成と同一又は相当する構成要素には同じ符号を付してある。   FIG. 5 is a configuration diagram of a main part of an embodiment of an atomic force microscope for carrying out a dielectric property measurement method when the FM detection method is used in combination. Constituent elements which are the same as or correspond to those of the embodiment shown in FIG.

この実施例による原子間力顕微鏡は、カンチレバー5をその共振周波数付近で自励発振させるために、光熱励振駆動部41、該駆動部41により駆動される励振用レーザ光源42、及びミラー43を備える。光検出器14の手前には、励振用レーザの波長の光を遮断する光学フィルタ44が配置されている。また、光検出器14による検出信号は例えばPLLなどにより構成されるFM検出部40に入力され、FM検出部40は探針−試料間に働く静電気力に起因して変化するカンチレバー5の共振周波数のシフト量を検出する。このシフト量における、変調周波数(又は2周波の差)成分の周波数シフト振動の振幅及び位相は振幅位相検出部30によって検出され、その検出結果がデータ処理部31に入力される。また、カンチレバー5は、FM検出部40から出力される、カンチレバー5の変位信号と同じ周波数で一定の位相だけシフトした励振信号によって励振される。図5に示した実施例では、励振信号は光熱励振駆動部41において励振用レーザ光源42の駆動電流信号に変換され、そのパワーが変調されることによってカンチレバー5の振動が誘起される。   The atomic force microscope according to this embodiment includes a photothermal excitation drive unit 41, an excitation laser light source 42 driven by the drive unit 41, and a mirror 43 in order to cause the cantilever 5 to self-oscillate near its resonance frequency. . An optical filter 44 that blocks light having the wavelength of the excitation laser is disposed in front of the photodetector 14. Further, a detection signal from the photodetector 14 is input to an FM detection unit 40 configured by, for example, a PLL, and the FM detection unit 40 changes the resonance frequency of the cantilever 5 that changes due to electrostatic force acting between the probe and the sample. The shift amount of is detected. The amplitude and phase of the frequency shift vibration of the modulation frequency (or difference between the two frequencies) component in this shift amount are detected by the amplitude phase detector 30 and the detection result is input to the data processor 31. The cantilever 5 is excited by an excitation signal output from the FM detector 40 and shifted by a fixed phase at the same frequency as the displacement signal of the cantilever 5. In the embodiment shown in FIG. 5, the excitation signal is converted into the drive current signal of the excitation laser light source 42 in the photothermal excitation drive unit 41, and the vibration of the cantilever 5 is induced by modulating its power.

この構成では、変調波周波数fm(又は2周波ω0、ω0+ωmの差周波数ωm)そのものはカンチレバー5の共振周波数と一致していなくても、共振周波数のFM変調成分として検出されることになる。図6は、図5に示した構成においてカンチレバー5の共振周波数シフトにおける変調波周波数成分の周波数シフト振動の振幅と探針−試料間距離との関係を実測した図である。また、同図には、ヘルムホルツ層容量(=0.1F/m2)による分圧効果を考慮に入れて計算を行った理論曲線も示している。図6で分かるように実測は理論曲線によく一致しており、上記のようにFM検出を併用した場合でも、探針−試料間にはたらく静電気力の探針−試料間距離依存性が得られることが確認できる。したがって、この手法を用いてもFM検出法を併用しない直接検出法と同様に、試料の誘電特性の測定が可能である。 In this configuration, the modulation wave frequency f m (or 2-frequency omega 0, the difference frequency omega m of ω 0 + ω m) be itself is not consistent with the resonance frequency of the cantilever 5 is detected as a FM modulated component of the resonant frequency Will be. FIG. 6 is a diagram in which the relationship between the amplitude of the frequency shift vibration of the modulated wave frequency component in the resonance frequency shift of the cantilever 5 and the probe-sample distance is measured in the configuration shown in FIG. The figure also shows a theoretical curve calculated in consideration of the partial pressure effect due to Helmholtz layer capacitance (= 0.1 F / m 2 ). As can be seen from FIG. 6, the actual measurement agrees well with the theoretical curve, and even when FM detection is used together as described above, the dependence of the electrostatic force acting between the probe and the sample on the distance between the probe and the sample can be obtained. I can confirm that. Therefore, even if this method is used, the dielectric property of the sample can be measured as in the direct detection method in which the FM detection method is not used in combination.

なお、本発明は周波数変調検出方式のAFMのみならず、振幅検出方式、位相検出方式等のダイナミックモードAFM全般に広く用いることが可能である。   The present invention can be widely used not only for frequency modulation detection type AFM but also for dynamic mode AFM such as amplitude detection method and phase detection method.

また、上記実施例は本発明の一例にすぎず、本発明の趣旨の範囲で適宜、変形、修正、追加を行っても本願特許請求の範囲に包含されることは明らかである。   Moreover, the said Example is only an example of this invention, and it is clear that even if it changes suitably, amends, and is added in the range of the meaning of this invention, it is included by the claim of this application.

1…スキャナ
2…試料ホルダ
3…試料
4…台座部
4a…透明体
5…カンチレバー
5a…金属薄膜
6…探針
7…カンチレバーホルダ
8…分析用液体
10…光学的変位検出部
11…レーザ光源
12、13…ミラー
14…光検出器
20…リード部
21、210…励振電圧生成部
22…搬送波発生部
23…変調波発生部
24…振幅変調部
25…コンデンサ
220…第1波発生部
230…第2波発生部
240…加算部
30…振幅位相検出部
31…データ処理部
32…垂直位置制御部
33…水平位置制御部
34…主制御部
35…操作部
36…表示部
40…FM検出部
41…光熱励振駆動部
42…励振用レーザ光源
43…ミラー
44…光学フィルタ
DESCRIPTION OF SYMBOLS 1 ... Scanner 2 ... Sample holder 3 ... Sample 4 ... Base part 4a ... Transparent body 5 ... Cantilever 5a ... Metal thin film 6 ... Probe 7 ... Cantilever holder 8 ... Analytical liquid 10 ... Optical displacement detector 11 ... Laser light source 12 , 13, mirror 14, photodetector 20, lead unit 21, 210, excitation voltage generation unit 22, carrier wave generation unit 23, modulation wave generation unit 24, amplitude modulation unit 25, capacitor 220, first wave generation unit 230, first. 2-wave generator 240 ... adder 30 ... amplitude phase detector 31 ... data processor 32 ... vertical position controller 33 ... horizontal position controller 34 ... main controller 35 ... operation unit 36 ... display unit 40 ... FM detector 41 ... photothermal excitation drive unit 42 ... excitation laser light source 43 ... mirror 44 ... optical filter

Claims (5)

カンチレバーの先端に設けられた探針を液体中に浸漬された導電性の試料の表面に近接させ、該カンチレバーをその共振周波数で振動させたときに前記探針と前記試料との間に働く相互作用を検出するダイナミックモード原子間力顕微鏡を用い、前記試料の誘電特性を測定する測定方法であって、
前記カンチレバーにあって前記探針が位置する面又はその背面の少なくともいずれかに形成された導電体部と、間に液体を挟んで前記導電体部に対向する前記試料との間に、前記カンチレバーの共振周波数よりも高い周波数の搬送波をそれよりも低い周波数の変調波で振幅変調して生成した交流電圧を印加することによって、前記カンチレバーを静電気力により変調周波数で以て振動させ、
その振動成分に基づいて、探針−試料間に作用する静電気力と探針−試料間距離との関係の搬送波周波数依存性を求め、その周波数と静電気力との関係から試料の誘電特性に関する情報を得ることを特徴とする誘電特性測定方法。
The probe provided at the tip of the cantilever is brought close to the surface of the conductive sample immersed in the liquid, and the mutual action acting between the probe and the sample when the cantilever is vibrated at its resonance frequency. Using a dynamic mode atomic force microscope to detect the action, a measurement method for measuring the dielectric properties of the sample,
The cantilever between the conductor portion formed on at least one of the surface where the probe is located or the back surface thereof in the cantilever and the sample facing the conductor portion with a liquid interposed therebetween By applying an alternating voltage generated by amplitude-modulating a carrier wave having a frequency higher than the resonance frequency of the carrier wave with a modulation wave having a frequency lower than that, the cantilever is vibrated at a modulation frequency by electrostatic force,
Based on the vibration component, the carrier frequency dependency of the relationship between the electrostatic force acting between the probe and the sample and the distance between the probe and the sample is obtained, and information on the dielectric characteristics of the sample is obtained from the relationship between the frequency and the electrostatic force. A dielectric property measuring method characterized by:
カンチレバーの先端に設けられた探針を液体中に浸漬された導電性の試料の表面に近接させ、該カンチレバーをその共振周波数で振動させたときに前記探針と前記試料との間に働く相互作用を検出するダイナミックモード原子間力顕微鏡を用い、前記試料の誘電特性を測定する測定方法であって、
前記カンチレバーにあって前記探針が位置する面又はその背面の少なくともいずれかに形成された導電体部と、間に液体を挟んで前記導電体部に対向する前記試料との間に、前記カンチレバーの共振周波数よりも高い第1周波数の交流電圧とそれよりも所定周波数だけ高い又は低い第2周波数の交流電圧とを加算して生成した励振電圧を印加することによって、前記カンチレバーを静電気力により前記第1周波数と第2周波数との差の周波数で以て振動させ、
その振動成分に基づいて、探針−試料間に作用する静電気力と探針−試料間距離との関係について第1周波数と第2周波数との差を一定に保ちつつ第1周波数又は第2周波数への依存性を求め、その周波数と静電気力との関係から試料の誘電特性に関する情報を得ることを特徴とする誘電特性測定方法。
The probe provided at the tip of the cantilever is brought close to the surface of the conductive sample immersed in the liquid, and the mutual action acting between the probe and the sample when the cantilever is vibrated at its resonance frequency. Using a dynamic mode atomic force microscope to detect the action, a measurement method for measuring the dielectric properties of the sample,
The cantilever between the conductor portion formed on at least one of the surface where the probe is located or the back surface thereof in the cantilever and the sample facing the conductor portion with a liquid interposed therebetween By applying an excitation voltage generated by adding an alternating voltage having a first frequency higher than the resonance frequency of the first frequency and an alternating voltage having a second frequency higher or lower by a predetermined frequency than the first resonant frequency, Vibrate at a frequency that is the difference between the first frequency and the second frequency,
Based on the vibration component, the first frequency or the second frequency is maintained while the difference between the first frequency and the second frequency is kept constant with respect to the relationship between the electrostatic force acting between the probe and the sample and the distance between the probe and the sample. A dielectric property measurement method characterized by obtaining dependence on a sample and obtaining information on the dielectric property of a sample from the relationship between the frequency and electrostatic force.
請求項1に記載の原子間力顕微鏡を用いた誘電特性測定方法であって、
振幅変調された搬送波電圧である励振電圧の印加に応じて振動するカンチレバーの変位を検出し、その変位の振幅及び/又は位相から静電気力の探針−試料間距離依存性を求めることを特徴とする誘電特性測定方法。
A dielectric property measuring method using the atomic force microscope according to claim 1,
Detecting the displacement of a cantilever that oscillates in response to the application of an excitation voltage that is an amplitude-modulated carrier wave voltage, and determining the probe-sample distance dependence of electrostatic force from the amplitude and / or phase of the displacement. Dielectric property measurement method.
請求項2に記載の原子間力顕微鏡を用いた誘電特性測定方法であって、
第1周波数の交流電圧と第2周波数の交流電圧とが加算された励振電圧の印加に応じて振動するカンチレバーの変位を検出し、その変位の振幅及び/又は位相から静電気力の探針−試料間距離依存性を求めることを特徴とする誘電特性測定方法。
A dielectric property measurement method using the atomic force microscope according to claim 2,
The displacement of the cantilever that vibrates in response to the application of the excitation voltage in which the alternating voltage of the first frequency and the alternating voltage of the second frequency are added, and the electrostatic force probe-sample from the amplitude and / or phase of the displacement A method for measuring a dielectric property, characterized by determining distance dependency.
請求項1又は2に記載の原子間力顕微鏡を用いた誘電特性測定方法であって、
カンチレバーの導電体部と試料との間に励振電圧を印加するとともに、さらに該カンチレバーをその共振周波数で自励発振させ、該カンチレバーに作用する静電気力による共振周波数の周波数シフトを検出し、その周波数シフトにおける前記励振電圧に対する振動成分から探針−試料間に作用する静電気力の探針−試料間距離依存性を求めることを特徴とする誘電特性測定方法。
A dielectric property measuring method using the atomic force microscope according to claim 1 or 2,
An excitation voltage is applied between the conductor part of the cantilever and the sample, the self-oscillation of the cantilever is further performed at the resonance frequency, and a frequency shift of the resonance frequency due to the electrostatic force acting on the cantilever is detected. A dielectric characteristic measuring method, characterized in that the dependence of the electrostatic force acting between the probe and the sample on the distance between the probe and the sample is obtained from the vibration component with respect to the excitation voltage in the shift.
JP2011190981A 2011-09-01 2011-09-01 Dielectric property measurement method using atomic force microscope Active JP5672200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011190981A JP5672200B2 (en) 2011-09-01 2011-09-01 Dielectric property measurement method using atomic force microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011190981A JP5672200B2 (en) 2011-09-01 2011-09-01 Dielectric property measurement method using atomic force microscope

Publications (2)

Publication Number Publication Date
JP2013053878A JP2013053878A (en) 2013-03-21
JP5672200B2 true JP5672200B2 (en) 2015-02-18

Family

ID=48131007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011190981A Active JP5672200B2 (en) 2011-09-01 2011-09-01 Dielectric property measurement method using atomic force microscope

Country Status (1)

Country Link
JP (1) JP5672200B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021193799A1 (en) * 2020-03-26 2021-09-30
WO2022137543A1 (en) * 2020-12-25 2022-06-30 国立大学法人東北大学 High-frequency enhanced electrochemical strain microscope and high-frequency enhanced electrochemical strain microscopy using same
CN112748153B (en) * 2021-01-07 2023-01-10 中国人民大学 Method and device for measuring electrical characteristics by amplitude modulation electrostatic force microscopy
CN113237794B (en) * 2021-05-11 2022-07-01 西南石油大学 Method for evaluating influence of salinity on expansion viscoelasticity of foam liquid film

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05281276A (en) * 1991-07-31 1993-10-29 Toshiba Corp Device for detecting electrostatic power in liquid
JP2003028642A (en) * 2001-07-10 2003-01-29 Murata Mfg Co Ltd Vibrator driving method, vibrator driving circuit, vibration detection circuit for vibrator and angular velocity sensor having vibrator
JP2004156958A (en) * 2002-11-05 2004-06-03 Olympus Corp Scanning probe microscope
JP5269725B2 (en) * 2009-08-31 2013-08-21 Tdk株式会社 Liquid potential measurement method
JPWO2011040065A1 (en) * 2009-09-30 2013-02-21 国立大学法人京都大学 Scanning probe microscope

Also Published As

Publication number Publication date
JP2013053878A (en) 2013-03-21

Similar Documents

Publication Publication Date Title
Giessibl The qPlus sensor, a powerful core for the atomic force microscope
US5319977A (en) Near field acoustic ultrasonic microscope system and method
US20060231756A1 (en) Analytical scanning evanescent microwave microscope and control stage
JPH0626855A (en) Interatomic power microscope
JPH0627700B2 (en) Spectroscopic analyzer and method
US8839461B2 (en) Potential measurement device and atomic force microscope
JP5672200B2 (en) Dielectric property measurement method using atomic force microscope
JP5813966B2 (en) Displacement detection mechanism and scanning probe microscope using the same
JP5765146B2 (en) Cantilever excitation method and atomic force microscope in atomic force microscope
JP5594795B2 (en) Liquid potential measuring device and atomic force microscope
JP5958642B2 (en) Surface charge density measuring device using atomic force microscope
JP5418413B2 (en) Cantilever excitation method in atomic force microscope
JP2004294218A (en) Measuring method of physical property value and scanning probe microscope
Cheran et al. Work-function measurement by high-resolution scanning Kelvin nanoprobe
JP2005164544A (en) Probe apparatus, scanning probe microscope, and sample display method
US6305226B1 (en) Method and apparatus for imaging acoustic fields in high-frequency acoustic resonators
JP2000329680A (en) Scanning kelvin probe microscope
JP6287775B2 (en) Scanning probe microscope
JPWO2014006734A1 (en) Force probe microscope and height distribution measuring method
US9541576B2 (en) Electrochemical force microscopy
JP2004109052A (en) Probe for scanning probe microscope and scanning probe microscope using the same
CN114324981B (en) Scanning probe microscope
JP2005227139A (en) Cantilever for atomic force microscope
JP6001728B2 (en) Displacement detection mechanism and scanning probe microscope using the same
JP7444017B2 (en) scanning probe microscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141208

R151 Written notification of patent or utility model registration

Ref document number: 5672200

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151