JP5671802B2 - Oxygen-absorbing resin and oxygen-absorbing adhesive resin composition - Google Patents

Oxygen-absorbing resin and oxygen-absorbing adhesive resin composition Download PDF

Info

Publication number
JP5671802B2
JP5671802B2 JP2010006832A JP2010006832A JP5671802B2 JP 5671802 B2 JP5671802 B2 JP 5671802B2 JP 2010006832 A JP2010006832 A JP 2010006832A JP 2010006832 A JP2010006832 A JP 2010006832A JP 5671802 B2 JP5671802 B2 JP 5671802B2
Authority
JP
Japan
Prior art keywords
oxygen
acid
absorbing
acid component
methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010006832A
Other languages
Japanese (ja)
Other versions
JP2011144281A (en
Inventor
芳弘 太田
芳弘 太田
結衣 山口
結衣 山口
庸一 石▲崎▼
庸一 石▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2010006832A priority Critical patent/JP5671802B2/en
Priority to EP10748881.9A priority patent/EP2404948B1/en
Priority to CN2010800196784A priority patent/CN102414246B/en
Priority to US13/255,057 priority patent/US8673173B2/en
Priority to PCT/JP2010/053792 priority patent/WO2010101290A1/en
Priority to KR1020117023356A priority patent/KR101312669B1/en
Publication of JP2011144281A publication Critical patent/JP2011144281A/en
Application granted granted Critical
Publication of JP5671802B2 publication Critical patent/JP5671802B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Polyesters Or Polycarbonates (AREA)

Description

本発明は溶剤への溶解性、接着性及び酸素吸収性に優れた酸素吸収性樹脂及び酸素吸収性接着剤樹脂組成物に関する。   The present invention relates to an oxygen-absorbing resin and an oxygen-absorbing adhesive resin composition excellent in solubility in a solvent, adhesiveness and oxygen-absorbing property.

特許文献1には、ポリオールに酸素吸収性を有する無機酸化物を配合した酸素吸収性接着剤が提案されている。しかしながら、前記酸素吸収性接着剤は、不透明であり、酸素吸収性能が低く、酸素吸収性能の発現に水分が必要であり乾燥雰囲気では使用できないなどの問題があった。また、各種酸素吸収性樹脂が提案されている(例えば、特許文献2)が、包装用フィルムの積層用途として酸素吸収性と接着性を兼ね備えた酸素吸収性接着剤樹脂を実現した例はない。   Patent Document 1 proposes an oxygen-absorbing adhesive in which an inorganic oxide having oxygen-absorbing properties is blended with a polyol. However, the oxygen-absorbing adhesive has problems such as being opaque, having a low oxygen-absorbing performance, requiring water for expression of the oxygen-absorbing performance, and cannot be used in a dry atmosphere. Various oxygen-absorbing resins have been proposed (for example, Patent Document 2), but there is no example in which an oxygen-absorbing adhesive resin having both oxygen-absorbing properties and adhesive properties has been realized as a packaging film lamination application.

特開2006−131699号公報JP 2006-131699 A 国際公開第2006/080500号パンフレットInternational Publication No. 2006/080500 Pamphlet

したがって、本発明は酸素吸収性と接着性を兼ね備えた酸素吸収性樹脂及びそれを用いた酸素吸収性接着剤樹脂組成物を提供することを目的とする。   Therefore, an object of the present invention is to provide an oxygen-absorbing resin having both oxygen-absorbing properties and adhesive properties, and an oxygen-absorbing adhesive resin composition using the same.

本発明は、酸成分(A)、コハク酸及びエチレングリコールに由来する構造単位を含むポリエステルであって、酸成分(A)の全酸成分に対する割合が45〜75モル%であり、コハク酸の全酸成分に対する割合が25〜55モル%であり、ガラス転移温度が2〜15℃である、酸素吸収性樹脂:
酸成分(A):テトラヒドロフタル酸若しくはその誘導体又はテトラヒドロ無水フタル酸若しくはその誘導体
を提供する。
また、本発明は、前記酸素吸収性樹脂と、溶媒として酢酸エチルを含有する酸素吸収性接着剤樹脂組成物を提供する。
The present invention is a polyester comprising a structural unit derived from an acid component (A), succinic acid and ethylene glycol, wherein the ratio of the acid component (A) to the total acid component is 45 to 75 mol%, Oxygen-absorbing resin having a ratio to the total acid component of 25 to 55 mol% and a glass transition temperature of 2 to 15 ° C .:
Acid component (A): Tetrahydrophthalic acid or a derivative thereof or tetrahydrophthalic anhydride or a derivative thereof is provided.
The present invention also provides an oxygen-absorbing adhesive resin composition containing the oxygen-absorbing resin and ethyl acetate as a solvent.

本発明により、酸素吸収性と接着性を兼ね備えた酸素吸収性溶剤可溶型樹脂を提供することができる。   According to the present invention, an oxygen-absorbing solvent-soluble resin having both oxygen-absorbing property and adhesiveness can be provided.

本発明の酸素吸収性樹脂は、酸成分(A)、コハク酸及びエチレングリコールに由来する構造単位を含むポリエステルである。
本発明の酸素吸収性樹脂において、酸成分(A)は、テトラヒドロフタル酸若しくはその誘導体又はテトラヒドロ無水フタル酸若しくはその誘導体である。酸成分(A)は、好ましくはメチルテトラヒドロフタル酸又はメチルテトラヒドロ無水フタル酸である。
また、本発明の酸素吸収性樹脂において、酸成分(A)は、好ましくは(i)及び(ii)からなる群より選ばれる構造を有する酸成分を50〜100モル%、好ましくは60〜100モル%含有する:
(i)下記構造(a)及び(b)の両方の基に結合し、かつ、1個の水素原子と結合した炭素原子を有し、該炭素原子が脂環構造に含まれているジカルボン酸若しくはジカルボン酸無水物;
(a)炭素−炭素二重結合基、
(b)カルボニル基;及び
(ii)不飽和脂環構造内の炭素−炭素二重結合に隣接する炭素原子が電子供与性置換基及び水素原子と結合し、かつ、該炭素原子に隣接する別の炭素原子がカルボニル基と結合しており、該電子供与性置換基と該カルボニル基とがシス位に位置しているジカルボン酸若しくはジカルボン酸無水物。
The oxygen-absorbing resin of the present invention is a polyester containing a structural unit derived from an acid component (A), succinic acid and ethylene glycol.
In the oxygen-absorbing resin of the present invention, the acid component (A) is tetrahydrophthalic acid or a derivative thereof or tetrahydrophthalic anhydride or a derivative thereof. The acid component (A) is preferably methyltetrahydrophthalic acid or methyltetrahydrophthalic anhydride.
In the oxygen-absorbing resin of the present invention, the acid component (A) is preferably 50 to 100 mol%, preferably 60 to 100%, of an acid component having a structure selected from the group consisting of (i) and (ii). Contains mol%:
(I) a dicarboxylic acid bonded to both groups of the following structures (a) and (b) and having a carbon atom bonded to one hydrogen atom, the carbon atom being contained in the alicyclic structure Or a dicarboxylic acid anhydride;
(A) a carbon-carbon double bond group,
(B) a carbonyl group; and (ii) a carbon atom adjacent to the carbon-carbon double bond in the unsaturated alicyclic structure is bonded to an electron-donating substituent and a hydrogen atom, and is adjacent to the carbon atom. A dicarboxylic acid or dicarboxylic acid anhydride in which the carbon atom is bonded to a carbonyl group, and the electron-donating substituent and the carbonyl group are located in the cis position.

上述の構造(i)および(ii)におけるカルボニル基はテトラヒドロフタル酸およびテトラヒドロ無水フタル酸構造中のジカルボン酸およびジカルボン酸無水物にそれぞれ含まれるものを示す。   The carbonyl groups in the above structures (i) and (ii) are those contained in the dicarboxylic acid and dicarboxylic anhydride in the tetrahydrophthalic acid and tetrahydrophthalic anhydride structures, respectively.

(i)の構造を有する酸成分として、Δ2−テトラヒドロフタル酸誘導体、Δ3−テトラヒドロフタル酸誘導体、Δ2−テトラヒドロ無水フタル酸誘導体、Δ3−テトラヒドロ無水フタル酸誘導体を挙げることが出来る。好ましくは、Δ3−テトラヒドロフタル酸誘導体若しくはΔ3−テトラヒドロ無水フタル酸誘導体であり、特に好ましくは4−メチル−Δ3−テトラヒドロフタル酸若しくは4−メチル−Δ3−テトラヒドロ無水フタル酸である。
4−メチル−Δ3−テトラヒドロ無水フタル酸は、例えば、イソプレンを主成分とするナフサのC5留分を無水マレイン酸と反応させた、4−メチル−Δ4−テトラヒドロ無水フタル酸を含む異性体混合物を、構造異性化することにより得ることが出来、工業的に製造されている。
Examples of the acid component having the structure (i) include Δ 2 -tetrahydrophthalic acid derivatives, Δ 3 -tetrahydrophthalic acid derivatives, Δ 2 -tetrahydrophthalic anhydride derivatives, and Δ 3 -tetrahydrophthalic anhydride derivatives. Preferred are Δ 3 -tetrahydrophthalic acid derivatives or Δ 3 -tetrahydrophthalic anhydride derivatives, and particularly preferred is 4-methyl-Δ 3 -tetrahydrophthalic acid or 4-methyl-Δ 3 -tetrahydrophthalic anhydride.
For example, 4-methyl-Δ 3 -tetrahydrophthalic anhydride is an isomer containing 4-methyl-Δ 4 -tetrahydrophthalic anhydride obtained by reacting a C 5 fraction of naphtha containing isoprene as a main component with maleic anhydride. The body mixture can be obtained by structural isomerization and is industrially produced.

(ii)の構造を有する酸成分として、特に好ましくはcis−3−メチル−Δ4−テトラヒドロフタル酸若しくはcis−3−メチル−Δ4−テトラヒドロ無水フタル酸である。cis−3−メチル−Δ4−テトラヒドロ無水フタル酸は、例えば、トランス−ピペリレンを主成分とするナフサのC5留分を無水マレイン酸と反応させることにより得ることが出来、工業的に製造されている。 The acid component having the structure (ii) is particularly preferably cis-3-methyl-Δ 4 -tetrahydrophthalic acid or cis-3-methyl-Δ 4 -tetrahydrophthalic anhydride. Cis-3-methyl-Δ 4 -tetrahydrophthalic anhydride can be obtained, for example, by reacting a naphtha C 5 fraction mainly composed of trans-piperylene with maleic anhydride, and is produced industrially. ing.

テトラヒドロフタル酸若しくはその誘導体又はテトラヒドロ無水フタル酸若しくはその誘導体として、多くの化合物を挙げることが出来るが、その中でも前述の(i)の構造を有する酸成分及び(ii)の構造を有する酸成分は、酸素との反応性が非常に高いため、本発明の酸素吸収性樹脂の原料として好適に使用できる。これらの(i)の構造を有する酸成分及び(ii)の構造を有する酸成分は単独で使用することも出来るが、2種類以上を組み合わせて使用することも好ましい。前述の(i)の構造として好適な4−メチル−Δ3−テトラヒドロ無水フタル酸と(ii)の構造として好適なcis−3−メチル−Δ4−テトラヒドロ無水フタル酸の混合物は、トランス−ピペリレン及びイソプレンを主成分とするナフサのC5留分を無水マレイン酸と反応させた、cis−3−メチル−Δ4−テトラヒドロ無水フタル酸と4−メチル−Δ4−テトラヒドロ無水フタル酸の混合物を構造異性化することにより、工業品として低コストで容易に得ることが出来る。このように安価な異性体混合物を、本発明の酸素吸収性樹脂の原料として使用することは、産業応用を考えると特に好ましい。
テトラヒドロフタル酸若しくはその誘導体又はテトラヒドロ無水フタル酸若しくはその誘導体を原料として、本発明の酸素吸収性樹脂である酸素吸収性ポリエステルを重合する際、ジカルボン酸およびジカルボン酸無水物はメチルエステル等にエステル化されていてもよい。
また、テトラヒドロフタル酸若しくはその誘導体又はテトラヒドロ無水フタル酸若しくはその誘導体を含む原料を重合して得ることができる本発明の酸素吸収性樹脂には、酸素吸収反応を促進させるために酸素吸収反応触媒(酸化触媒)を添加しても良い。しかしながら、前述の(i)の構造を有する酸成分及び(ii)の構造を有する酸成分を含む原料を重合して得ることができる本発明の酸素吸収性樹脂は酸素との反応性が極めて高いことから、酸素吸収反応触媒の不在下において、実用的な酸素吸収性能を発現することができる。また、本発明の酸素吸収性樹脂を用いて接着剤の調製や接着剤を用いた加工をする際に、酸素吸収反応触媒が原因となる過度の樹脂劣化に起因するゲル化等を防止するためにも、触媒量の酸素吸収反応触媒を含まないことが望ましい。ここで、酸素吸収反応触媒としては、マンガン、鉄、コバルト、ニッケル、銅の遷移金属と有機酸からなる遷移金属塩が挙げられる。また、「触媒量の酸素吸収反応触媒を含まない」とは、一般に酸素吸収反応触媒が遷移金属量で10ppm未満であることを意味し、好ましくは1ppm未満である。
Examples of tetrahydrophthalic acid or derivatives thereof or tetrahydrophthalic anhydride or derivatives thereof include many compounds. Among them, the acid component having the structure (i) and the acid component having the structure (ii) Since the reactivity with oxygen is very high, it can be suitably used as a raw material for the oxygen-absorbing resin of the present invention. The acid component having the structure (i) and the acid component having the structure (ii) can be used alone, but it is also preferable to use two or more types in combination. A mixture of 4-methyl-Δ 3 -tetrahydrophthalic anhydride suitable as the structure of (i) and cis-3-methyl-Δ 4 -tetrahydrophthalic anhydride suitable as the structure of (ii) is trans-piperylene. And a mixture of cis-3-methyl-Δ 4 -tetrahydrophthalic anhydride and 4-methyl-Δ 4 -tetrahydrophthalic anhydride obtained by reacting a C 5 fraction of naphtha containing isoprene as a main component with maleic anhydride. By structural isomerization, it can be easily obtained as an industrial product at low cost. The use of such an inexpensive isomer mixture as a raw material for the oxygen-absorbing resin of the present invention is particularly preferable in view of industrial applications.
When polymerizing the oxygen-absorbing polyester, which is the oxygen-absorbing resin of the present invention, using tetrahydrophthalic acid or a derivative thereof or tetrahydrophthalic anhydride or a derivative thereof as a raw material, the dicarboxylic acid and the dicarboxylic anhydride are esterified to a methyl ester or the like. May be.
The oxygen-absorbing resin of the present invention obtained by polymerizing a raw material containing tetrahydrophthalic acid or a derivative thereof or tetrahydrophthalic anhydride or a derivative thereof includes an oxygen-absorbing reaction catalyst ( An oxidation catalyst) may be added. However, the oxygen-absorbing resin of the present invention obtained by polymerizing a raw material containing the acid component having the structure (i) and the acid component having the structure (ii) has a very high reactivity with oxygen. Therefore, practical oxygen absorption performance can be expressed in the absence of the oxygen absorption reaction catalyst. In addition, when preparing an adhesive using the oxygen-absorbing resin of the present invention or processing using an adhesive, in order to prevent gelation due to excessive resin degradation caused by an oxygen-absorbing reaction catalyst In addition, it is desirable not to include a catalytic amount of an oxygen absorption reaction catalyst. Here, examples of the oxygen absorption reaction catalyst include transition metal salts composed of a transition metal of manganese, iron, cobalt, nickel, and copper and an organic acid. Further, “not containing a catalytic amount of an oxygen-absorbing reaction catalyst” generally means that the oxygen-absorbing reaction catalyst is less than 10 ppm in terms of the amount of transition metal, and preferably less than 1 ppm.

本発明の酸素吸収性樹脂は、酸成分(A)とともに繰返し単位あたりの分子量が低いコハク酸及びエチレングリコールに由来する構造単位を含むことにより、樹脂重量あたりの酸成分(A)の比率が高くなり、酸素吸収性能が向上することから好ましい。これにより、塗布量(層厚)に制限のある接着剤層に適用した場合においても優れた性能を有する酸素吸収性容器を実現することができる。   The oxygen-absorbing resin of the present invention contains a structural unit derived from succinic acid and ethylene glycol having a low molecular weight per repeating unit together with the acid component (A), so that the ratio of the acid component (A) per resin weight is high. It is preferable because oxygen absorption performance is improved. Thereby, even when applied to an adhesive layer with a limited coating amount (layer thickness), an oxygen-absorbing container having excellent performance can be realized.

本発明の酸素吸収性樹脂において、酸成分(A)の全酸成分に対する割合は45〜75モル%であり、好ましくは50〜70モル%である。また、コハク酸の全酸成分に対する割合は25〜55モル%であり、好ましくは30〜50モル%である。このとき、樹脂のガラス転移温度(Tg)は2〜15℃であり、より好ましくは3〜14℃であり、さらに好ましくは5〜10℃である。Tgが上記の範囲より高い場合は、酸素吸収性能及びラミネート強度が低下してしまい、上記の範囲より低い場合は凝集力不足により耐クリープ性が低下することから接着剤として好ましくない。
樹脂の組成比及びTgが上記の範囲である場合には、酸素吸収性能および接着性に優れ、かつ有機溶剤への溶解性に優れた酸素吸収性樹脂を得ることが出来る。
In the oxygen-absorbing resin of the present invention, the ratio of the acid component (A) to the total acid component is 45 to 75 mol%, preferably 50 to 70 mol%. Moreover, the ratio with respect to the total acid component of a succinic acid is 25-55 mol%, Preferably it is 30-50 mol%. At this time, the glass transition temperature (Tg) of resin is 2-15 degreeC, More preferably, it is 3-14 degreeC, More preferably, it is 5-10 degreeC. When the Tg is higher than the above range, the oxygen absorption performance and the laminate strength are lowered. When the Tg is lower than the above range, the creep resistance is lowered due to insufficient cohesive force, which is not preferable as an adhesive.
When the resin composition ratio and Tg are in the above ranges, an oxygen-absorbing resin excellent in oxygen absorption performance and adhesiveness and excellent in solubility in organic solvents can be obtained.

本発明の酸素吸収性樹脂は、酸成分(A)、コハク酸又は無水コハク酸、エチレングリコールを原料としてポリエステルとして得ることができる。このとき、本発明の目的を損なわない範囲で必要に応じて、芳香族ジカルボン酸、コハク酸以外の脂肪族ジカルボン酸、芳香族ヒドロキシカルボン酸、脂肪族ヒドロキシカルボン酸、多価カルボン酸、エチレングリコール以外のグリコール、多価アルコール、又はそれらの誘導体等をその他のモノマーとして共重合することもできる。これらは、単独、又は、2種類以上を組み合わせて使用できる。前記その他の成分を共重合させることによって、得られる酸素吸収性樹脂のガラス転移温度を容易に制御することができ、酸素吸収性能を向上させることが出来る。さらには、有機溶剤への溶解性を制御することも出来る。また、多価アルコールおよび多価カルボン酸の導入で樹脂の分岐構造を制御することにより、溶媒に溶解した酸素吸収性接着剤組成物の粘度特性を調整できる。   The oxygen-absorbing resin of the present invention can be obtained as a polyester using the acid component (A), succinic acid or succinic anhydride, and ethylene glycol as raw materials. At this time, aromatic dicarboxylic acid, aliphatic dicarboxylic acid other than succinic acid, aromatic hydroxycarboxylic acid, aliphatic hydroxycarboxylic acid, polyvalent carboxylic acid, ethylene glycol, as long as the object of the present invention is not impaired Other glycols, polyhydric alcohols, or derivatives thereof may be copolymerized as other monomers. These can be used alone or in combination of two or more. By copolymerizing the other components, the glass transition temperature of the obtained oxygen-absorbing resin can be easily controlled, and the oxygen-absorbing performance can be improved. Furthermore, the solubility in an organic solvent can be controlled. Moreover, the viscosity characteristic of the oxygen-absorbing adhesive composition dissolved in the solvent can be adjusted by controlling the branched structure of the resin by introducing a polyhydric alcohol and a polycarboxylic acid.

芳香族ジカルボン酸としては、フタル酸、イソフタル酸、テレフタル酸などのベンゼンジカルボン酸、2,6−ナフタレンジカルボン酸などのナフタレンジカルボン酸、アントラセンジカルボン酸、スルホイソフタル酸、スルホイソフタル酸ナトリウム、又はこれらの誘導体が挙げられる。ここで誘導体には、エステル、酸無水物、酸ハロゲン化物、置換体、オリゴマーなどが含まれる。好ましくは、イソフタル酸、テレフタル酸である。テレフタル酸共重合により、テレフタル酸のもつ凝集力によって酸素吸収性樹脂自身の凝集力が向上する。凝集力の向上により接着剤の接着強度が向上し、また、デラミネーションが抑制できるため好ましい。また、イソフタル酸共重合により酸素吸収性樹脂の凝集力を確保しつつ溶剤への溶解性が向上するため好ましい。   Examples of the aromatic dicarboxylic acid include benzene dicarboxylic acid such as phthalic acid, isophthalic acid and terephthalic acid, naphthalenedicarboxylic acid such as 2,6-naphthalenedicarboxylic acid, anthracene dicarboxylic acid, sulfoisophthalic acid, sodium sulfoisophthalate, or these Derivatives. Here, the derivatives include esters, acid anhydrides, acid halides, substituents, oligomers and the like. Isophthalic acid and terephthalic acid are preferred. Copolymerization of terephthalic acid improves the cohesion of the oxygen-absorbing resin itself due to the cohesion of terephthalic acid. It is preferable because the adhesive strength of the adhesive is improved by improving the cohesive force and delamination can be suppressed. Further, isophthalic acid copolymerization is preferable because solubility in a solvent is improved while ensuring cohesion of the oxygen-absorbing resin.

コハク酸以外の脂肪族ジカルボン酸及びその誘導体としては、シュウ酸、マロン酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、3,3−ジメチルペンタン二酸、又はこれらの誘導体等が挙げられる。ここで誘導体には、エステル、酸無水物、酸ハロゲン化物、置換体、オリゴマーなどが含まれる。これらの中でも、アジピン酸を共重合することにより樹脂のガラス転移温度を容易に制御することができるため好ましい。   Aliphatic dicarboxylic acids other than succinic acid and derivatives thereof include oxalic acid, malonic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, 3,3- Examples thereof include dimethylpentanedioic acid and derivatives thereof. Here, the derivatives include esters, acid anhydrides, acid halides, substituents, oligomers and the like. Among these, it is preferable to copolymerize adipic acid because the glass transition temperature of the resin can be easily controlled.

脂肪族ヒドロキシカルボン酸及びその誘導体としては、グリコール酸、乳酸、ヒドロキシピバリン酸、ヒドロキシカプロン酸、ヒドロキシヘキサン酸、又はこれらの誘導体が挙げられる。
多価アルコール及びその誘導体としては、1,2,3−プロパントリオール、ソルビトール、1,3,5−ペンタントリオール、1,5,8−ヘプタントリオール、トリメチロールプロパン、ペンタエリスリトール、3,5−ジヒドロキシベンジルアルコール、グリセリン又はこれらの誘導体が挙げられる。
多価カルボン酸及びその誘導体としては、1,2,3−プロパントリカルボン酸、メソ−ブタン−1,2,3,4−テトラカルボン酸、クエン酸、トリメリット酸、ピロメリット酸、又はこれらの誘導体が挙げられる。
Examples of the aliphatic hydroxycarboxylic acid and derivatives thereof include glycolic acid, lactic acid, hydroxypivalic acid, hydroxycaproic acid, hydroxyhexanoic acid, and derivatives thereof.
Examples of polyhydric alcohols and derivatives thereof include 1,2,3-propanetriol, sorbitol, 1,3,5-pentanetriol, 1,5,8-heptanetriol, trimethylolpropane, pentaerythritol, 3,5-dihydroxy Examples include benzyl alcohol, glycerin, and derivatives thereof.
Examples of the polyvalent carboxylic acid and its derivatives include 1,2,3-propanetricarboxylic acid, meso-butane-1,2,3,4-tetracarboxylic acid, citric acid, trimellitic acid, pyromellitic acid, and these Derivatives.

本発明の酸素吸収性樹脂は酸成分(A)、コハク酸、エチレングリコール及び前記その他の酸成分を共重合させてポリエステルとして得ることができる。このとき、樹脂中の前記その他の酸成分の全酸成分に対する割合は1〜25モル%である場合が好ましく、より好ましくは1〜20モル%である。
また、多価アルコールや多価カルボン酸等の3官能以上の官能基を有する成分を共重合させる場合は全酸成分に対し5mol%以内にすることが好ましい。
The oxygen-absorbing resin of the present invention can be obtained as a polyester by copolymerizing the acid component (A), succinic acid, ethylene glycol and the other acid components. At this time, the ratio of the other acid components in the resin to the total acid components is preferably 1 to 25 mol%, more preferably 1 to 20 mol%.
Moreover, when copolymerizing the component which has trifunctional or more functional groups, such as a polyhydric alcohol and polyhydric carboxylic acid, it is preferable to make it into 5 mol% or less with respect to all the acid components.

本発明の酸素吸収性樹脂は当業者に公知の任意のポリエステルの重縮合方法により得ることが出来る。例えば、界面重縮合、溶液重縮合、溶融重縮合および固相重縮合である。   The oxygen-absorbing resin of the present invention can be obtained by any polyester polycondensation method known to those skilled in the art. For example, interfacial polycondensation, solution polycondensation, melt polycondensation and solid phase polycondensation.

本発明の酸素吸収性樹脂を合成する場合に、重合触媒は必ずとも必要としないが、例えばチタン系、ゲルマニウム系、アンチモン系、スズ系、アルミニウム系等の通常のポリエステル重合触媒が使用可能である。また、含窒素塩基性化合物、ホウ酸及びホウ酸エステル、有機スルホン酸系化合物等の公知の重合触媒を使用することもできる。
さらに、重合の際にはリン化合物等の着色防止剤や酸化防止剤等の各種添加剤を添加することもできる。酸化防止剤を添加することにより、重合中やその後の加工中の酸素吸収を抑制できるため、酸素吸収性樹脂の性能低下やゲル化を抑えることができる。
本発明の酸素吸収性樹脂の数平均分子量は、好ましくは500〜100000であり、より好ましくは1000〜20000である。また好ましい重量平均分子量は1000〜200000、より好ましくは2000〜100000である。上記範囲内の分子量の場合には、接着性および有機溶剤への溶解性に優れ、接着剤溶液として好適な粘度特性を有する酸素吸収性接着剤樹脂組成物を得ることが出来る。
When synthesizing the oxygen-absorbing resin of the present invention, a polymerization catalyst is not necessarily required. For example, a normal polyester polymerization catalyst such as titanium-based, germanium-based, antimony-based, tin-based, or aluminum-based can be used. . Further, known polymerization catalysts such as nitrogen-containing basic compounds, boric acid and boric acid esters, and organic sulfonic acid compounds can also be used.
Furthermore, various additives, such as coloring inhibitors, such as a phosphorus compound, and antioxidant, can also be added in the case of superposition | polymerization. By adding an antioxidant, it is possible to suppress oxygen absorption during polymerization and subsequent processing, and therefore, it is possible to suppress performance degradation and gelation of the oxygen-absorbing resin.
The number average molecular weight of the oxygen-absorbing resin of the present invention is preferably 500 to 100,000, more preferably 1,000 to 20,000. Moreover, a preferable weight average molecular weight is 1000-200000, More preferably, it is 2000-100000. When the molecular weight is in the above range, an oxygen-absorbing adhesive resin composition having excellent adhesive properties and solubility in an organic solvent and having viscosity characteristics suitable as an adhesive solution can be obtained.

また、有機ジイソシアネート等の鎖延長剤を用いて本発明の酸素吸収性樹脂を高分子量化することも出来る。有機ジイソシアネート系鎖延長剤としては、芳香族、脂肪族または脂環族の各種公知のジイソシアネート類を使用することができる。芳香族ジイソシアネート類としては、例えば、4,4’−ジフェニルメタンジイソシアネート、トリレンジイソシアネート等が挙げられる。脂肪族ジイソシアネート類としては、例えば、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート、リジンジイソシアネート等が挙げられる。脂環族ジイソシアネート類としては、例えば、シクロヘキサン−1,4−ジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタン−4,4’−ジイソシアネート、ダイマー酸のカルボキシル基をイソシアネート基に転化したダイマージイソシアネート等が挙げられる。さらには、これら有機ジイソシアネート類をトリメチロールプロパンアダクトやイソシアヌレート、ビュレット体等として使用することも出来る。以上の有機イソシアネートおよび有機イソシアネート誘導体は単独で用いてもよく、また2種以上を組み合わせて用いてもよい。
本発明の酸素吸収性樹脂は、単独で用いてもよく、また2種以上組み合わせて用いてもよい。
In addition, the oxygen-absorbing resin of the present invention can be made high molecular weight by using a chain extender such as organic diisocyanate. As the organic diisocyanate chain extender, various known aromatic, aliphatic or alicyclic diisocyanates can be used. Examples of aromatic diisocyanates include 4,4′-diphenylmethane diisocyanate and tolylene diisocyanate. Examples of the aliphatic diisocyanates include hexamethylene diisocyanate, xylylene diisocyanate, and lysine diisocyanate. Examples of the alicyclic diisocyanates include cyclohexane-1,4-diisocyanate, isophorone diisocyanate, dicyclohexylmethane-4,4′-diisocyanate, dimerized isocyanate obtained by converting a carboxyl group of dimer acid into an isocyanate group. Furthermore, these organic diisocyanates can also be used as trimethylolpropane adducts, isocyanurates, burettes and the like. The above organic isocyanates and organic isocyanate derivatives may be used alone or in combination of two or more.
The oxygen-absorbing resin of the present invention may be used alone or in combination of two or more.

本発明の酸素吸収性樹脂は、適当な有機溶剤等の溶媒に溶解させて酸素吸収性接着剤樹脂組成物として用いることができる。溶媒としては、酢酸エチル、アセトン、メチルエチルケトン、メチルイソブチルケトン、トルエン、キシレン、イソプロパノール、などが挙げられる。特に酢酸エチルは残留溶剤を原因とする異臭トラブルが比較的少ないことから、軟包装のドライラミネート用接着剤の溶媒として一般的であり、産業応用を考慮するとトルエンやキシレン等を含有しない酢酸エチル単一溶剤を本発明の溶媒として用いることが好ましい。   The oxygen-absorbing resin of the present invention can be used as an oxygen-absorbing adhesive resin composition after being dissolved in a suitable solvent such as an organic solvent. Examples of the solvent include ethyl acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone, toluene, xylene, isopropanol, and the like. In particular, ethyl acetate is a common solvent for soft packaging dry laminate adhesives because it has relatively few off-flavors caused by residual solvents. Considering industrial applications, ethyl acetate containing no toluene, xylene, etc. One solvent is preferably used as the solvent of the present invention.

本発明の酸素吸収性樹脂は実用的な接着強度および凝集力を有しており、本発明の酸素吸収性接着剤樹脂組成物はこのまま1液型接着剤として使用する。しかしながら、必要に応じて例えば有機イソシアネート系硬化剤と共に2液混合型接着剤として使用することも出来る。2液混合型接着剤として用いる場合の有機イソシアネート系硬化剤としては鎖延長剤として上に記載したものを好適に使用できる。但し、イソシアネートによる硬化により酸素吸収性樹脂の分子鎖のモビリティーが低下すること等から酸素吸収性能が阻害される場合がある。高い酸素吸収性能を発現させるためには酸素吸収性接着剤樹脂組成物を1液型接着剤として用いることが好ましい。   The oxygen-absorbing resin of the present invention has practical adhesive strength and cohesive strength, and the oxygen-absorbing adhesive resin composition of the present invention is used as it is as a one-component adhesive. However, if necessary, it can also be used as a two-component mixed adhesive together with, for example, an organic isocyanate curing agent. As the organic isocyanate curing agent when used as a two-component mixed adhesive, those described above as chain extenders can be suitably used. However, oxygen absorption performance may be hindered due to a decrease in mobility of molecular chains of the oxygen-absorbing resin due to curing with isocyanate. In order to develop high oxygen absorption performance, it is preferable to use the oxygen-absorbing adhesive resin composition as a one-component adhesive.

本発明の酸素吸収性接着剤樹脂組成物には本発明の目的を損なわない範囲で必要に応じて、酸化防止剤、紫外線吸収剤、加水分解防止剤、防カビ剤、硬化触媒、増粘剤、可塑剤、顔料、充填剤、ポリエステル樹脂、エポキシ樹脂等の各種添加剤を添加することができる。   In the oxygen-absorbing adhesive resin composition of the present invention, an antioxidant, an ultraviolet absorber, a hydrolysis inhibitor, an antifungal agent, a curing catalyst, and a thickener are added as necessary without departing from the object of the present invention. Various additives such as a plasticizer, a pigment, a filler, a polyester resin, and an epoxy resin can be added.

本発明の酸素吸収性接着剤組成物は通常のドライラミネート用接着剤と同様に複数のフィルムを積層する目的で使用することが出来る。特に酸素バリア性を有するフィルム基材と、ヒートシール性および酸素ガス透過性を有するシーラントフィルムの積層に好適に使用できる。この場合、外層側から酸素バリア基材層/酸素吸収性接着剤樹脂層/シーラント層の積層構成となり、外部から透過進入する酸素を酸素バリア基材により遮断することにより酸素吸収性接着剤樹脂の容器外酸素による酸素吸収性能の低下を抑えると共に、酸素吸収性接着剤樹脂が酸素透過性シーラントフィルムを介して容器内部の酸素を速やかに吸収できるため好ましい。
酸素バリア性を有するフィルム基材およびシーラントフィルムはそれぞれ単層でも積層体でもよい。酸素バリア性を有するフィルム基材としては、バリア層としてシリカ、アルミナ等の金属酸化物或いは金属の蒸着薄膜や、ポリビニルアルコール系樹脂、エチレン−ビニルアルコール共重合体、ポリアクリル酸系樹脂或いは塩化ビニリデン系樹脂等のガスバリア性有機材料を主剤とするバリアコーティング層を有する、二軸延伸PETフィルム、二軸延伸ポリアミドフィルム或いは二軸延伸ポリプロピレンフィルム等を好適に使用できる。またエチレン−ビニルアルコール共重合体フィルム、ポリメタキシリレンアジパミドフィルム、ポリ塩化ビニリデン系フィルムやアルミ箔等の金属箔も好ましい。これらの酸素バリア性を有するフィルム基材は同種基材や2種以上の異種基材を積層して使用することも出来、また、二軸延伸PETフィルム、二軸延伸ポリアミドフィルム、二軸延伸ポリプロピレンフィルム、セロファン、紙等を積層して使用することも好ましい。
シーラントフィルムの材料としては低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン、線状超低密度ポリエチレン、ポリプロピレン、ポリ−1−ブテン、ポリ−4−メチル−1−ペンテン、環状オレフィン重合体、環状オレフィン共重合体、或いはエチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン等のα−オレフィン同士のランダム又はブロック共重合体等のポリオレフィン、エチレン−酢酸ビニル共重合体、エチレン−(メタ)アクリル酸共重合体やそのイオン架橋物(アイオノマー)、エチレン−メタクリル酸メチル共重合体等のエチレン−ビニル化合物共重合体、ヒートシール性を有するPET、A−PET、PETG、PBT等のポリエステルやアモルファスナイロン等を好適に使用できる。これらは二種以上の材料をブレンドして使用することも出来、同種材料や異種材料を積層して用いることも出来る。
The oxygen-absorbing adhesive composition of the present invention can be used for the purpose of laminating a plurality of films in the same manner as an ordinary dry laminating adhesive. In particular, it can be suitably used for laminating a film substrate having oxygen barrier properties and a sealant film having heat sealability and oxygen gas permeability. In this case, the oxygen barrier substrate layer / oxygen-absorbing adhesive resin layer / sealant layer is laminated from the outer layer side, and the oxygen-permeable adhesive resin is blocked by blocking oxygen that permeates from the outside by the oxygen barrier substrate. While suppressing the fall of the oxygen absorption performance by oxygen outside a container, and an oxygen absorptive adhesive resin can absorb oxygen inside a container rapidly through an oxygen permeable sealant film, it is preferable.
Each of the film base material and the sealant film having oxygen barrier properties may be a single layer or a laminate. As a film substrate having an oxygen barrier property, as a barrier layer, a metal oxide such as silica or alumina or a deposited thin film of metal, a polyvinyl alcohol resin, an ethylene-vinyl alcohol copolymer, a polyacrylic acid resin, or vinylidene chloride is used. A biaxially stretched PET film, a biaxially stretched polyamide film, a biaxially stretched polypropylene film or the like having a barrier coating layer mainly composed of a gas barrier organic material such as a resin can be suitably used. Also preferred are metal foils such as ethylene-vinyl alcohol copolymer films, polymetaxylylene adipamide films, polyvinylidene chloride films and aluminum foils. These film base materials having oxygen barrier properties can be used by laminating the same kind of base material or two or more different kinds of base materials, and also biaxially stretched PET film, biaxially stretched polyamide film, biaxially stretched polypropylene. It is also preferable to use a film, cellophane, paper or the like laminated.
The material of the sealant film is low density polyethylene, medium density polyethylene, high density polyethylene, linear low density polyethylene, linear ultra low density polyethylene, polypropylene, poly-1-butene, poly-4-methyl-1-pentene, cyclic Polyolefins such as olefin polymers, cyclic olefin copolymers, or random or block copolymers of α-olefins such as ethylene, propylene, 1-butene, 4-methyl-1-pentene, and ethylene-vinyl acetate copolymers , Ethylene- (meth) acrylic acid copolymers and their ionic cross-linked products (ionomers), ethylene-vinyl compound copolymers such as ethylene-methyl methacrylate copolymer, heat-sealable PET, A-PET, PETG PBT and other polyesters and amorphous nylon are preferred It can be used for. These can be used by blending two or more kinds of materials, or can be used by laminating the same kind of materials or different kinds of materials.

本発明の酸素吸収性接着剤樹脂組成物を用いて複数のフィルム基材をラミネートする際、公知のドライラミネーターを使用することが出来る。ドライラミネーターにより、酸素吸収性接着剤樹脂組成物のバリアフィルム基材への塗布、乾燥オーブンによる溶剤揮散、50〜120℃に加温したニップロールでのシーラントフィルムとの貼り合わせの一連のラミネート工程を実施することが出来る。酸素吸収性樹脂の塗布量は0.1〜30g/m2、好ましくは1〜15g/m2であり、さらに好ましくは2〜10g/m2である。酸素吸収性接着剤樹脂組成物を用いてラミネートされた酸素吸収性積層フィルムは、室温付近の温度、例えば10〜60℃で硬化反応を進めるためにエージングすることも好ましい。硬化は酸素吸収性樹脂の結晶化や有機ジイソシアネート等の硬化剤による架橋反応によるものであり、硬化により接着強度や凝集力が向上するため好ましい。なお、エージングは、酸素吸収性積層フィルムを、例えば酸素不透過性の袋等で密封することにより、酸素不在下若しくは酸素遮断下で行うのが好ましい。このようにすることにより、エージング中の空気中の酸素による酸素吸収性能の低下を抑制することが出来る。
また、本発明の酸素吸収性樹脂は、溶剤に溶解させることなく、無用剤型接着剤として使用することもできる。この場合、公知のノンソルラミネーターを用いて酸素吸収性積層フィルムを得ることが出来る。
さらに、本発明の酸素吸収性樹脂は、接着剤用途に限らず塗料用途にも使用することができ、各種フィルム等のコーティング膜として塗工することができる。
When laminating a plurality of film substrates using the oxygen-absorbing adhesive resin composition of the present invention, a known dry laminator can be used. With a dry laminator, a series of laminating steps of applying the oxygen-absorbing adhesive resin composition to the barrier film substrate, evaporating the solvent with a drying oven, and laminating with a sealant film with a nip roll heated to 50 to 120 ° C. Can be implemented. The application amount of the oxygen-absorbing resin is 0.1 to 30 g / m 2 , preferably 1 to 15 g / m 2 , and more preferably 2 to 10 g / m 2 . It is also preferable that the oxygen-absorbing laminated film laminated using the oxygen-absorbing adhesive resin composition is aged in order to advance the curing reaction at a temperature near room temperature, for example, 10 to 60 ° C. Curing is preferable because crystallization of the oxygen-absorbing resin or cross-linking reaction with a curing agent such as organic diisocyanate improves the adhesive strength and cohesive strength by curing. In addition, it is preferable to perform aging in oxygen absence or oxygen interruption | blocking by sealing an oxygen absorptive laminated | multilayer film with an oxygen-impermeable bag etc., for example. By doing in this way, the fall of the oxygen absorption performance by the oxygen in the air during aging can be suppressed.
The oxygen-absorbing resin of the present invention can also be used as a useless adhesive without being dissolved in a solvent. In this case, an oxygen-absorbing laminated film can be obtained using a known non-sol laminator.
Furthermore, the oxygen-absorbing resin of the present invention can be used not only for adhesives but also for paints, and can be applied as coating films such as various films.

本発明の酸素吸収性樹脂を用いてラミネートされた酸素吸収性積層フィルムは、種々の形態の袋状容器や、カップ・トレイ容器の蓋材に好適に使用できる。袋状容器としては、三方又は四方シールの平パウチ類、ガセット付パウチ類、スタンディングパウチ類、ピロー包装袋等が挙げられる。   The oxygen-absorbing laminated film laminated using the oxygen-absorbing resin of the present invention can be suitably used for various forms of bag-like containers and cup / tray container lid materials. Examples of the bag-like container include three-way or four-side sealed flat pouches, gusseted pouches, standing pouches, pillow packaging bags, and the like.

酸素吸収性積層フィルムを少なくとも一部に用いた酸素吸収性容器は、容器外部から透過する酸素を有効に遮断し、容器内に残存した酸素を吸収する。そのため、容器内の酸素濃度を長期間低いレベルに保ち、内容物の酸素が係わる品質低下を防止し、シェルフライフを向上させる容器として有用である。
特に、酸素存在下で劣化しやすい内容品として、例えば、食品ではコーヒー豆、茶葉、スナック類、米菓、生・半生菓子、果物、ナッツ、野菜、魚・肉製品、練り製品、干物、薫製、佃煮、生米、米飯類、幼児食品、ジャム、マヨネーズ、ケチャップ、食用油、ドレッシング、ソース類、乳製品等、飲料ではビール、ワイン、フルーツジュース、緑茶、コーヒー等、その他では医薬品、化粧品、電子部品等が挙げられるが、これらの例に限定されない。
An oxygen-absorbing container using at least a part of the oxygen-absorbing laminated film effectively blocks oxygen permeating from the outside of the container and absorbs oxygen remaining in the container. Therefore, it is useful as a container that keeps the oxygen concentration in the container at a low level for a long period of time, prevents the quality deterioration related to the oxygen in the contents, and improves the shelf life.
In particular, as content that easily deteriorates in the presence of oxygen, for example, coffee beans, tea leaves, snacks, rice confectionery, raw and semi-fresh confectionery, fruits, nuts, vegetables, fish and meat products, kneaded products, dried fish, smoked products, Boiled rice, raw rice, cooked rice, infant food, jam, mayonnaise, ketchup, cooking oil, dressing, sauces, dairy products, beverages such as beer, wine, fruit juice, green tea, coffee, etc., pharmaceuticals, cosmetics, electronics Although parts etc. are mentioned, it is not limited to these examples.

以下、本発明を実施例により具体的に説明する。各値は以下の方法により測定した。
(1)数平均分子量(Mn)及び重量平均分子量(Mw)
ゲルパーミエーションクロマトグラフィー(GPC、東ソー社製;HLC−8120型GPC)により、ポリスチレン換算で測定した。溶媒にはクロロホルムを使用した。
Hereinafter, the present invention will be specifically described by way of examples. Each value was measured by the following method.
(1) Number average molecular weight (Mn) and weight average molecular weight (Mw)
It was measured in terms of polystyrene by gel permeation chromatography (GPC, manufactured by Tosoh Corporation; HLC-8120 GPC). Chloroform was used as the solvent.

(2)酸素吸収性ポリエステル樹脂中の各モノマー単位の組成比
核磁気共鳴分光法(1H−NMR、日本電子データム社製;EX270)により、テレフタル酸由来のベンゼン環プロトン(8.1ppm)、コハク酸由来のメチレンプロトン(2.6ppm)、アジピン酸由来のメチレンプロトン(2.3ppm)、テレフタル酸から誘導されたエステル基に隣接するメチレンプロトン(4.3〜4.4ppm)、メチルテトラヒドロ無水フタル酸、コハク酸及びアジピン酸から誘導されたエステル基に隣接するメチレンプロトン(4.1〜4.2ppm)のシグナルの面積比から樹脂中の酸成分の組成比をそれぞれ算出した。溶媒には基準物質としてテトラメチルシランを含む重クロロホルムを使用した。
このとき、樹脂中の酸成分の組成比は、重合に使用した各モノマーの仕込み量(モル比)とほぼ同等であった。
(2) Composition ratio of each monomer unit in the oxygen-absorbing polyester resin According to nuclear magnetic resonance spectroscopy (1H-NMR, manufactured by JEOL Datum; EX270), a benzene ring proton derived from terephthalic acid (8.1 ppm), Acid-derived methylene protons (2.6 ppm), adipic acid-derived methylene protons (2.3 ppm), methylene protons adjacent to ester groups derived from terephthalic acid (4.3-4.4 ppm), methyltetrahydrophthalic anhydride The composition ratio of the acid component in the resin was calculated from the area ratio of the signals of methylene protons (4.1 to 4.2 ppm) adjacent to the ester group derived from acid, succinic acid and adipic acid. The solvent used was deuterated chloroform containing tetramethylsilane as a reference substance.
At this time, the composition ratio of the acid component in the resin was substantially equal to the charged amount (molar ratio) of each monomer used for the polymerization.

(3)ガラス転移温度;Tg
示差走査熱量測定器(セイコーインスツルメンツ社製DSC6220)を用いて、窒素気流中、昇温速度10℃/分で測定した。
(3) Glass transition temperature; Tg
Using a differential scanning calorimeter (DSC 6220 manufactured by Seiko Instruments Inc.), the measurement was performed in a nitrogen stream at a heating rate of 10 ° C./min.

(4)溶解性評価
樹脂を酢酸エチルに20wt%の濃度で室温にて混合した際、液相が安定な単一かつ均一系を呈し、透明あるいは半透明の状態になるものを溶解性良好とした。
(4) Solubility evaluation When the resin is mixed with ethyl acetate at a concentration of 20 wt% at room temperature, the liquid phase exhibits a stable single and homogeneous system, and a transparent or translucent state is considered to have good solubility. did.

(5)酸素吸収量
2cm×10cmに切り出した積層フィルム試験片を、内容積85cm3の酸素不透過性のスチール箔積層カップに仕込んでアルミ箔積層フィルム蓋でヒートシール密封し、22℃雰囲気下にて保存した。一定時間保存後のカップ内酸素濃度をマイクロガスクロマトグラフ装置(アジレント・テクノロジー社製;M200)にて測定し、フィルム1cm2当たりの酸素吸収量を算出した。
(5) Oxygen absorption amount A laminated film test piece cut out to 2 cm × 10 cm was charged into an oxygen-impermeable steel foil laminated cup having an internal volume of 85 cm 3 and heat-sealed with an aluminum foil laminated film lid, and the atmosphere was 22 ° C. Saved at. The oxygen concentration in the cup after storage for a fixed time was measured with a micro gas chromatograph (manufactured by Agilent Technologies; M200), and the amount of oxygen absorbed per 1 cm 2 of film was calculated.

(6)ラミネート強度
予め50℃、窒素雰囲気下で1日キュアした積層フィルム試験片について23℃、50%RHの雰囲気下でT型剥離試験を行った。このとき、試験片幅15mm、剥離速度300mm/minの測定条件で酸素吸収性接着剤によるアルミ箔−LDPE間のラミネート強度(単位:N/15mm)を測定した。
(6) Laminate strength A T-type peel test was performed in an atmosphere of 23 ° C. and 50% RH on a laminated film specimen that had been cured in advance at 50 ° C. for 1 day in a nitrogen atmosphere. At this time, the laminate strength (unit: N / 15 mm) between the aluminum foil and the LDPE with the oxygen-absorbing adhesive was measured under the measurement conditions of a test piece width of 15 mm and a peeling speed of 300 mm / min.

(7)耐クリープ性
23℃、50%RHの雰囲気下において、試験片幅25mm、荷重50gでアルミ箔−LDPE間のT型剥離クリープ試験を行い、2時間後に剥離距離(単位:mm)を測定した。
(7) Creep resistance In an atmosphere of 23 ° C. and 50% RH, a T-type peel creep test between an aluminum foil and an LDPE was performed with a test piece width of 25 mm and a load of 50 g, and the peel distance (unit: mm) was measured after 2 hours. It was measured.

(実施例1)
攪拌装置、窒素導入管、Dean−Stark型水分離器を備えた500mlのセパラブルフラスコに、酸成分(A)として4−メチル−Δ3−テトラヒドロ無水フタル酸を45モル%及びcis−3−メチル−Δ4−テトラヒドロ無水フタル酸を21モル%含有するメチルテトラヒドロ無水フタル酸異性体混合物(日立化成社製;HN−2200)を83.1g、コハク酸(和光純薬社製)を59.0g、エチレングリコール(和光純薬社製)を93.1g、重合触媒としてイソプロピルチタナート(キシダ化学社製)を500ppm、及びトルエン10mlを仕込み、窒素雰囲気中150℃〜200℃で生成する水を除きながら約6時間反応させた。引き続いて反応系よりトルエンを除いた後、0.1kPaの減圧下、200〜220℃で約3時間重合を行い、Tgが3.8℃のポリエステル樹脂を得た。このときMnは約3100で、Mwは44500であった。
得られた酸素吸収性樹脂を酢酸エチルに20wt%の濃度で室温にて溶解し、接着剤溶液を調製した。調製した接着剤溶液を、ドライラミネート法により作成した二軸延伸PETフィルム(膜厚12μm)/アルミ箔(膜厚7μm)の積層フィルムのアルミ箔面に、#18のバーコーターにて塗布した。ヘアドライヤーの温風にて接着剤に含まれる溶剤を飛ばした後、積層フィルムの接着剤塗布面と30μmLDPEフィルム(タマポリ製;AJ−3)のコロナ処理面を対向させて70℃の熱ロールに通し、二軸延伸PETフィルム(膜厚12μm)/アルミ箔(膜厚7μm)/酸素吸収性樹脂(接着剤)(膜厚4μm)/30μmLDPEからなる酸素吸収性積層フィルムを得た。
得られた酸素吸収性積層フィルムを、酸素吸収量評価、ラミネート強度評価及び耐クリープ性評価に供した。結果を表1に示す。
Example 1
In a 500-ml separable flask equipped with a stirrer, a nitrogen inlet tube, and a Dean-Stark type water separator, 45 mol% of 4-methyl-Δ 3 -tetrahydrophthalic anhydride as the acid component (A) and cis-3- 83.1 g of a methyltetrahydrophthalic anhydride isomer mixture (Hitachi Chemical Co., Ltd .; HN-2200) containing 21 mol% of methyl-Δ 4 -tetrahydrophthalic anhydride and 59. 6% of succinic acid (Wako Pure Chemical Industries, Ltd.). 0 g, 93.1 g of ethylene glycol (manufactured by Wako Pure Chemical Industries, Ltd.), 500 ppm of isopropyl titanate (manufactured by Kishida Chemical Co., Ltd.) and 10 ml of toluene as a polymerization catalyst, It was made to react for about 6 hours, removing. Subsequently, toluene was removed from the reaction system, and then polymerization was performed at 200 to 220 ° C. under a reduced pressure of 0.1 kPa for about 3 hours to obtain a polyester resin having a Tg of 3.8 ° C. At this time, Mn was about 3100 and Mw was 44500.
The obtained oxygen-absorbing resin was dissolved in ethyl acetate at a concentration of 20 wt% at room temperature to prepare an adhesive solution. The prepared adhesive solution was applied to the aluminum foil surface of a biaxially stretched PET film (film thickness 12 μm) / aluminum foil (film thickness 7 μm) laminated film prepared by a dry laminating method using a # 18 bar coater. After the solvent contained in the adhesive is blown off with warm air from a hair dryer, the adhesive application surface of the laminated film and the corona-treated surface of the 30 μmL DPE film (manufactured by Tamapoly; AJ-3) are opposed to a hot roll at 70 ° C. Through this, an oxygen-absorbing laminated film composed of biaxially stretched PET film (film thickness 12 μm) / aluminum foil (film thickness 7 μm) / oxygen-absorbing resin (adhesive) (film thickness 4 μm) / 30 μmL DPE was obtained.
The obtained oxygen-absorbing laminated film was subjected to oxygen absorption amount evaluation, laminate strength evaluation, and creep resistance evaluation. The results are shown in Table 1.

(実施例2)
酸成分(A)として4−メチル−Δ3−テトラヒドロ無水フタル酸を45モル%及びcis−3−メチル−Δ4−テトラヒドロ無水フタル酸を21モル%含有するメチルテトラヒドロ無水フタル酸異性体混合物(日立化成社製;HN−2200)を99.7g、コハク酸を47.2g、エチレングリコールを93.1g、重合触媒としてイソプロピルチタナートを500ppm、及びトルエン10mlを用いた以外は実施例1と同様に重合を行い、Tgが7.8℃のポリエステル樹脂を得た。このときMnは約2800で、Mwは37800であった。
さらに、実施例1と同様にして酸素吸収性フィルムを得て、各評価に供した。結果を表1に示す。
(Example 2)
Methyltetrahydrophthalic anhydride isomer mixture containing 45 mol% 4-methyl-Δ 3 -tetrahydrophthalic anhydride and 21 mol% cis-3-methyl-Δ 4 -tetrahydrophthalic anhydride as the acid component (A) ( Hitachi Chemical Co., Ltd. (HN-2200) was 99.7 g, succinic acid was 47.2 g, ethylene glycol was 93.1 g, isopropyl titanate was used as a polymerization catalyst at 500 ppm, and toluene was used in the same manner as in Example 1. Polymerization was performed to obtain a polyester resin having a Tg of 7.8 ° C. At this time, Mn was about 2800 and Mw was 37800.
Further, an oxygen-absorbing film was obtained in the same manner as in Example 1 and used for each evaluation. The results are shown in Table 1.

(実施例3)
酸成分(A)としてcis−3−メチル−Δ4−テトラヒドロ無水フタル酸を99.7g、コハク酸を47.2g、エチレングリコールを93.1g、重合触媒としてイソプロピルチタナートを500ppm、及びトルエン10mlを用いた以外は実施例1と同様に重合を行い、Tgが8.3℃のポリエステル樹脂を得た。このときMnは約2900で、Mwは42100であった。
さらに、実施例1と同様にして酸素吸収性フィルムを得て、各評価に供した。結果を表1に示す。
Example 3
As the acid component (A), 99.7 g of cis-3-methyl-Δ 4 -tetrahydrophthalic anhydride, 47.2 g of succinic acid, 93.1 g of ethylene glycol, 500 ppm of isopropyl titanate as a polymerization catalyst, and 10 ml of toluene Polymerization was carried out in the same manner as in Example 1 except that a polyester resin having a Tg of 8.3 ° C. was obtained. At this time, Mn was about 2900 and Mw was 42100.
Further, an oxygen-absorbing film was obtained in the same manner as in Example 1 and used for each evaluation. The results are shown in Table 1.

(実施例4)
酸成分(A)として4−メチル−Δ3−テトラヒドロ無水フタル酸を45モル%及びcis−3−メチル−Δ4−テトラヒドロ無水フタル酸を21モル%含有するメチルテトラヒドロ無水フタル酸異性体混合物(日立化成社製;HN−2200)を116.3g、コハク酸を35.4g、エチレングリコールを93.1g、重合触媒としてイソプロピルチタナートを500ppm、及びトルエン10mlを用いた以外は実施例1と同様に重合を行い、Tgが13.3℃のポリエステル樹脂を得た。このときMnは約2900で、Mwは49500であった。
さらに、実施例1と同様にして酸素吸収性フィルムを得て、各評価に供した。結果を表1に示す。
Example 4
Methyltetrahydrophthalic anhydride isomer mixture containing 45 mol% 4-methyl-Δ 3 -tetrahydrophthalic anhydride and 21 mol% cis-3-methyl-Δ 4 -tetrahydrophthalic anhydride as the acid component (A) ( 116.3 g of Hitachi Chemical Co., Ltd. (HN-2200), 35.4 g of succinic acid, 93.1 g of ethylene glycol, 500 ppm of isopropyl titanate as a polymerization catalyst, and 10 ml of toluene were used. Polymerization was carried out to obtain a polyester resin having a Tg of 13.3 ° C. At this time, Mn was about 2900 and Mw was 49500.
Further, an oxygen-absorbing film was obtained in the same manner as in Example 1 and used for each evaluation. The results are shown in Table 1.

(実施例5)
酸成分(A)として4−メチル−Δ3−テトラヒドロ無水フタル酸を45モル%及びcis−3−メチル−Δ4−テトラヒドロ無水フタル酸を21モル%含有するメチルテトラヒドロ無水フタル酸異性体混合物(日立化成社製;HN−2200)を91.4g、コハク酸を47.2g、テレフタル酸(和光純薬社製)を8.3g、エチレングリコールを93.1g、重合触媒としてイソプロピルチタナートを500ppm、及びトルエン10mlを用いた以外は実施例1と同様に重合を行い、Tgが10.2℃のポリエステル樹脂を得た。このときMnは約3300で、Mwは40300であった。
さらに、実施例1と同様にして酸素吸収性フィルムを得て、各評価に供した。結果を表1に示す。
(Example 5)
Methyltetrahydrophthalic anhydride isomer mixture containing 45 mol% 4-methyl-Δ 3 -tetrahydrophthalic anhydride and 21 mol% cis-3-methyl-Δ 4 -tetrahydrophthalic anhydride as the acid component (A) ( Hitachi Chemical Co., Ltd. (HN-2200) 91.4g, succinic acid 47.2g, terephthalic acid (Wako Pure Chemical Industries, Ltd.) 8.3g, ethylene glycol 93.1g, isopropyl titanate 500ppm as polymerization catalyst Polymerization was performed in the same manner as in Example 1 except that 10 ml of toluene was used to obtain a polyester resin having a Tg of 10.2 ° C. At this time, Mn was about 3300 and Mw was 40300.
Further, an oxygen-absorbing film was obtained in the same manner as in Example 1 and used for each evaluation. The results are shown in Table 1.

(実施例6)
酸成分(A)として4−メチル−Δ3−テトラヒドロ無水フタル酸を45モル%及びcis−3−メチル−Δ4−テトラヒドロ無水フタル酸を21モル%含有するメチルテトラヒドロ無水フタル酸異性体混合物(日立化成社製;HN−2200)を83.1g、コハク酸を53.1g、テレフタル酸(和光純薬社製)を8.3g、エチレングリコールを93.1g、重合触媒としてイソプロピルチタナートを500ppm、及びトルエン10mlを用いた以外は実施例1と同様に重合を行い、Tgが8.0℃のポリエステル樹脂を得た。このときMnは約3400で、Mwは47800であった。
さらに、実施例1と同様にして酸素吸収性フィルムを得て、各評価に供した。結果を表1に示す。
(Example 6)
Methyltetrahydrophthalic anhydride isomer mixture containing 45 mol% 4-methyl-Δ 3 -tetrahydrophthalic anhydride and 21 mol% cis-3-methyl-Δ 4 -tetrahydrophthalic anhydride as the acid component (A) ( Hitachi Chemical Co., Ltd. (HN-2200) 83.1 g, succinic acid 53.1 g, terephthalic acid (Wako Pure Chemical Industries) 8.3 g, ethylene glycol 93.1 g, isopropyl titanate 500 ppm as a polymerization catalyst Polymerization was performed in the same manner as in Example 1 except that 10 ml of toluene was used, and a polyester resin having a Tg of 8.0 ° C. was obtained. At this time, Mn was about 3400 and Mw was 47800.
Further, an oxygen-absorbing film was obtained in the same manner as in Example 1 and used for each evaluation. The results are shown in Table 1.

(比較例1)
酸成分(A)として4−メチル−Δ3−テトラヒドロ無水フタル酸を45モル%及びcis−3−メチル−Δ4−テトラヒドロ無水フタル酸を21モル%含有するメチルテトラヒドロ無水フタル酸異性体混合物(日立化成社製;HN−2200)を66.5g、コハク酸を70.9g、エチレングリコールを93.1g、重合触媒としてイソプロピルチタナートを500ppm、及びトルエン10mlを用いた以外は実施例1と同様に重合を行い、Tgが−0.8℃のポリエステル樹脂を得た。このときMnは約3200で、Mwは39400であった。
さらに、実施例1と同様にして酸素吸収性フィルムを得て、各評価に供した。結果を表1に示す。
(Comparative Example 1)
Methyltetrahydrophthalic anhydride isomer mixture containing 45 mol% 4-methyl-Δ 3 -tetrahydrophthalic anhydride and 21 mol% cis-3-methyl-Δ 4 -tetrahydrophthalic anhydride as the acid component (A) ( Hitachi Chemical Co., Ltd. (HN-2200) 66.5 g, succinic acid 70.9 g, ethylene glycol 93.1 g, isopropyl titanate 500 ppm as a polymerization catalyst, and toluene 10 ml were used as in Example 1. Polymerization was performed to obtain a polyester resin having a Tg of -0.8 ° C. At this time, Mn was about 3200 and Mw was 39400.
Further, an oxygen-absorbing film was obtained in the same manner as in Example 1 and used for each evaluation. The results are shown in Table 1.

(比較例2)
酸成分(A)として4−メチル−Δ3−テトラヒドロ無水フタル酸を45モル%及びcis−3−メチル−Δ4−テトラヒドロ無水フタル酸を21モル%含有するメチルテトラヒドロ無水フタル酸異性体混合物(日立化成社製;HN−2200)を133.0g、コハク酸を23.6g、エチレングリコールを93.1g、重合触媒としてイソプロピルチタナートを500ppm、及びトルエン10mlを用いた以外は実施例1と同様に重合を行い、Tgが17.7℃のポリエステル樹脂を得た。このときMnは約2800で、Mwは42700であった。
さらに、実施例1と同様にして酸素吸収性フィルムを得て、各評価に供した。結果を表1に示す。
(Comparative Example 2)
Methyltetrahydrophthalic anhydride isomer mixture containing 45 mol% 4-methyl-Δ 3 -tetrahydrophthalic anhydride and 21 mol% cis-3-methyl-Δ 4 -tetrahydrophthalic anhydride as the acid component (A) ( Hitachi Chemical Co., Ltd. (HN-2200) 133.0 g, succinic acid 23.6 g, ethylene glycol 93.1 g, isopropyl titanate 500 ppm as a polymerization catalyst, and toluene 10 ml were used as in Example 1. Polymerization was carried out to obtain a polyester resin having a Tg of 17.7 ° C. At this time, Mn was about 2800 and Mw was 42700.
Further, an oxygen-absorbing film was obtained in the same manner as in Example 1 and used for each evaluation. The results are shown in Table 1.

(比較例3)
酸成分(A)として4−メチル−Δ3−テトラヒドロ無水フタル酸を45モル%及びcis−3−メチル−Δ4−テトラヒドロ無水フタル酸を21モル%含有するメチルテトラヒドロ無水フタル酸異性体混合物(日立化成社製;HN−2200)を99.7g、テレフタル酸を66.4g、1,4−ブタンジオール(和光純薬社製)を180.2g、重合触媒としてイソプロピルチタナートを300ppm、及びトルエン10mlを用いた以外は実施例1と同様に重合を行い、Tgが8.1℃のポリエステル樹脂を得た。このときMnは約7000で、Mwは81000であった。
得られた酸素吸収性樹脂を酢酸エチルに20wt%の濃度で室温にて混合したが、溶解しなかった。
(Comparative Example 3)
Methyltetrahydrophthalic anhydride isomer mixture containing 45 mol% 4-methyl-Δ 3 -tetrahydrophthalic anhydride and 21 mol% cis-3-methyl-Δ 4 -tetrahydrophthalic anhydride as the acid component (A) ( 99.7 g of Hitachi Chemical Co., Ltd. (HN-2200), 66.4 g of terephthalic acid, 180.2 g of 1,4-butanediol (manufactured by Wako Pure Chemical Industries, Ltd.), 300 ppm of isopropyl titanate as a polymerization catalyst, and toluene Polymerization was carried out in the same manner as in Example 1 except that 10 ml was used to obtain a polyester resin having a Tg of 8.1 ° C. At this time, Mn was about 7000 and Mw was 81000.
The obtained oxygen-absorbing resin was mixed with ethyl acetate at a concentration of 20 wt% at room temperature, but did not dissolve.

(比較例4)
酸成分(A)として4−メチル−Δ3−テトラヒドロ無水フタル酸を45モル%及びcis−3−メチル−Δ4−テトラヒドロ無水フタル酸を21モル%含有するメチルテトラヒドロ無水フタル酸異性体混合物(日立化成社製;HN−2200)を116.3g、テレフタル酸を49.8g、1,4−ブタンジオール(和光純薬社製)を180.2g、重合触媒としてイソプロピルチタナートを300ppm、及びトルエン10mlを用いた以外は実施例1と同様に重合を行い、Tgが5.3℃のポリエステル樹脂を得た。このときMnは約6300で、Mwは75000であった。
さらに、実施例1と同様にして酸素吸収性フィルムを得て、各評価に供した。結果を表1に示す。
(Comparative Example 4)
Methyltetrahydrophthalic anhydride isomer mixture containing 45 mol% 4-methyl-Δ 3 -tetrahydrophthalic anhydride and 21 mol% cis-3-methyl-Δ 4 -tetrahydrophthalic anhydride as the acid component (A) ( 116.3 g of Hitachi Chemical Co., Ltd. (HN-2200), 49.8 g of terephthalic acid, 180.2 g of 1,4-butanediol (manufactured by Wako Pure Chemical Industries, Ltd.), 300 ppm of isopropyl titanate as a polymerization catalyst, and toluene Polymerization was carried out in the same manner as in Example 1 except that 10 ml was used to obtain a polyester resin having a Tg of 5.3 ° C. At this time, Mn was about 6300 and Mw was 75000.
Further, an oxygen-absorbing film was obtained in the same manner as in Example 1 and used for each evaluation. The results are shown in Table 1.

(比較例5)
酸成分(A)として4−メチル−Δ3−テトラヒドロ無水フタル酸を45モル%及びcis−3−メチル−Δ4−テトラヒドロ無水フタル酸を21モル%含有するメチルテトラヒドロ無水フタル酸異性体混合物(日立化成社製;HN−2200)を133.0g、テレフタル酸を33.2g、1,4−ブタンジオール(和光純薬社製)を180.2g、重合触媒としてイソプロピルチタナートを300ppm、及びトルエン10mlを用いた以外は実施例1と同様に重合を行い、Tgが0.8℃のポリエステル樹脂を得た。このときMnは約4300で、Mwは37000であった。
さらに、実施例1と同様にして酸素吸収性フィルムを得て、各評価に供した。結果を表1に示す。
(Comparative Example 5)
Methyltetrahydrophthalic anhydride isomer mixture containing 45 mol% 4-methyl-Δ 3 -tetrahydrophthalic anhydride and 21 mol% cis-3-methyl-Δ 4 -tetrahydrophthalic anhydride as the acid component (A) ( Hitachi Chemical Co., Ltd. (HN-2200) 133.0 g, terephthalic acid 33.2 g, 1,4-butanediol (Wako Pure Chemical Industries) 180.2 g, isopropyl titanate 300 ppm as a polymerization catalyst, and toluene Polymerization was carried out in the same manner as in Example 1 except that 10 ml was used to obtain a polyester resin having a Tg of 0.8 ° C. At this time, Mn was about 4300 and Mw was 37000.
Further, an oxygen-absorbing film was obtained in the same manner as in Example 1 and used for each evaluation. The results are shown in Table 1.

(比較例6)
酸成分(A)として4−メチル−Δ3−テトラヒドロ無水フタル酸を45モル%及びcis−3−メチル−Δ4−テトラヒドロ無水フタル酸を21モル%含有するメチルテトラヒドロ無水フタル酸異性体混合物(日立化成社製;HN−2200)を99.7g、コハク酸を47.2g、ネオペンチルグリコール(東京化成工業)を125.0g、重合触媒としてイソプロピルチタナートを500ppm、及びトルエン10mlを用いた以外は実施例1と同様に重合を行い、Tgが6.4℃のポリエステル樹脂を得た。このときMnは約3800で、Mwは52300であった。
さらに、実施例1と同様にして酸素吸収性フィルムを得て、各評価に供した。結果を表1に示す。
(Comparative Example 6)
Methyltetrahydrophthalic anhydride isomer mixture containing 45 mol% 4-methyl-Δ 3 -tetrahydrophthalic anhydride and 21 mol% cis-3-methyl-Δ 4 -tetrahydrophthalic anhydride as the acid component (A) ( Hitachi Chemical Co., Ltd .; HN-2200) 99.7 g, succinic acid 47.2 g, neopentyl glycol (Tokyo Chemical Industry) 125.0 g, isopropyl titanate 500 ppm as a polymerization catalyst, and toluene 10 ml were used. Was polymerized in the same manner as in Example 1 to obtain a polyester resin having a Tg of 6.4 ° C. At this time, Mn was about 3800 and Mw was 52300.
Further, an oxygen-absorbing film was obtained in the same manner as in Example 1 and used for each evaluation. The results are shown in Table 1.

(比較例7)
酸成分(A)として4−メチル−Δ3−テトラヒドロ無水フタル酸を45モル%及びcis−3−メチル−Δ4−テトラヒドロ無水フタル酸を21モル%含有するメチルテトラヒドロ無水フタル酸異性体混合物(日立化成社製;HN−2200)を99.7g、アジピン酸(和光純薬社製)を58.5g、ネオペンチルグリコール(東京化成工業)を125.0g、重合触媒としてイソプロピルチタナートを500ppm、及びトルエン10mlを用いた以外は実施例1と同様に重合を行い、Tgがー6.3℃のポリエステル樹脂を得た。このときMnは約3500で、Mwは27500であった。
さらに、実施例1と同様にして酸素吸収性フィルムを得て、各評価に供した。結果を表1に示す。
(Comparative Example 7)
Methyltetrahydrophthalic anhydride isomer mixture containing 45 mol% 4-methyl-Δ 3 -tetrahydrophthalic anhydride and 21 mol% cis-3-methyl-Δ 4 -tetrahydrophthalic anhydride as the acid component (A) ( 99.7 g of Hitachi Chemical Co., Ltd .; HN-2200), 58.5 g of adipic acid (manufactured by Wako Pure Chemical Industries), 125.0 g of neopentyl glycol (Tokyo Chemical Industry), 500 ppm of isopropyl titanate as a polymerization catalyst, Polymerization was carried out in the same manner as in Example 1 except that 10 ml of toluene was used to obtain a polyester resin having a Tg of −6.3 ° C. At this time, Mn was about 3500 and Mw was 27500.
Further, an oxygen-absorbing film was obtained in the same manner as in Example 1 and used for each evaluation. The results are shown in Table 1.

Figure 0005671802
Figure 0005671802

本発明の酸素吸収性樹脂を配合した接着剤組成物を、従来のドライラミネート用接着剤の代替として用いることにより、優れた脱酸素性能を有する軟包材を簡単に製造することができる。この酸素吸収性軟包材により、酸素に敏感な食品や医薬品、電子部品等の品質を長期間維持することができる。   By using the adhesive composition containing the oxygen-absorbing resin of the present invention as an alternative to conventional adhesives for dry laminating, it is possible to easily produce a soft packaging material having excellent deoxygenation performance. With this oxygen-absorbing soft packaging material, it is possible to maintain the quality of foods, medicines, electronic parts, etc. sensitive to oxygen for a long period of time.

Claims (5)

酸成分(A)、コハク酸及びエチレングリコールに由来する構造単位を含むポリエステルであって、酸成分(A)の全酸成分に対する割合が45〜75モル%であり、コハク酸の全酸成分に対する割合が25〜55モル%であり、ガラス転移温度が2〜15℃である、酸素吸収性接着剤樹脂:
酸成分(A):テトラヒドロフタル酸若しくはその誘導体又はテトラヒドロ無水フタル酸若しくはその誘導体。
A polyester comprising a structural unit derived from an acid component (A), succinic acid and ethylene glycol, wherein the ratio of the acid component (A) to the total acid component is 45 to 75 mol%, and the total acid component of succinic acid Oxygen-absorbing adhesive resin having a ratio of 25 to 55 mol% and a glass transition temperature of 2 to 15 ° C .:
Acid component (A): tetrahydrophthalic acid or a derivative thereof or tetrahydrophthalic anhydride or a derivative thereof.
酸成分(A)がメチルテトラヒドロフタル酸又はメチルテトラヒドロ無水フタル酸である、請求項1に記載の酸素吸収性接着剤樹脂。 The oxygen-absorbing adhesive resin according to claim 1, wherein the acid component (A) is methyltetrahydrophthalic acid or methyltetrahydrophthalic anhydride. 酸成分(A)が(i)及び(ii)からなる群より選ばれる構造を有する酸成分を50〜100モル%含有する、請求項1又は2に記載の酸素吸収性接着剤樹脂:
(i)下記構造(a)及び(b)の両方の基に結合し、かつ、1個の水素原子と結合した炭素原子を有し、該炭素原子が脂環構造に含まれているジカルボン酸若しくはジカルボン酸無水物;
(a)炭素−炭素二重結合基、
(b)カルボニル基;及び
(ii)不飽和脂環構造内の炭素−炭素二重結合に隣接する炭素原子が電子供与性置換基及び水素原子と結合し、かつ、該炭素原子に隣接する別の炭素原子がカルボニル基と結合しており、該電子供与性置換基と該カルボニル基とがシス位に位置しているジカルボン酸若しくはジカルボン酸無水物。
The oxygen-absorbing adhesive resin according to claim 1 or 2, wherein the acid component (A) contains 50 to 100 mol% of an acid component having a structure selected from the group consisting of (i) and (ii):
(I) a dicarboxylic acid bonded to both groups of the following structures (a) and (b) and having a carbon atom bonded to one hydrogen atom, the carbon atom being contained in the alicyclic structure Or a dicarboxylic acid anhydride;
(A) a carbon-carbon double bond group,
(B) a carbonyl group; and (ii) a carbon atom adjacent to the carbon-carbon double bond in the unsaturated alicyclic structure is bonded to an electron-donating substituent and a hydrogen atom, and is adjacent to the carbon atom. A dicarboxylic acid or dicarboxylic acid anhydride in which the carbon atom is bonded to a carbonyl group, and the electron-donating substituent and the carbonyl group are located in the cis position.
(i)の構造を有する酸成分が4−メチル−Δ3−テトラヒドロフタル酸又は4−メチル−Δ3−テトラヒドロ無水フタル酸であり、(ii)の構造を有する酸成分がcis−3−メチル−Δ4−テトラヒドロフタル酸又はcis−3−メチル−Δ4−テトラヒドロ無水フタル酸である、請求項3に記載の酸素吸収性接着剤樹脂。 The acid component having the structure (i) is 4-methyl-Δ 3 -tetrahydrophthalic acid or 4-methyl-Δ 3 -tetrahydrophthalic anhydride, and the acid component having the structure (ii) is cis-3-methyl. The oxygen-absorbing adhesive resin according to claim 3, which is -Δ 4 -tetrahydrophthalic acid or cis-3-methyl-Δ 4 -tetrahydrophthalic anhydride. 請求項1〜4のいずれか1項に記載の酸素吸収性接着剤樹脂と、溶媒として酢酸エチルを含有する酸素吸収性接着剤樹脂組成物。 Any oxygen-absorbing adhesive resin according to item 1, the oxygen-absorbing adhesive resin composition containing ethyl acetate as a solvent of the preceding claims.
JP2010006832A 2009-03-06 2010-01-15 Oxygen-absorbing resin and oxygen-absorbing adhesive resin composition Active JP5671802B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2010006832A JP5671802B2 (en) 2010-01-15 2010-01-15 Oxygen-absorbing resin and oxygen-absorbing adhesive resin composition
EP10748881.9A EP2404948B1 (en) 2009-03-06 2010-03-08 Oxygen-absorbable solvent-soluble resin and oxygen-absorbable adhesive resin composition
CN2010800196784A CN102414246B (en) 2009-03-06 2010-03-08 Oxygen-absorbable solvent-soluble resin and oxygen-absorbable adhesive resin composition
US13/255,057 US8673173B2 (en) 2009-03-06 2010-03-08 Oxygen-absorbable solvent-soluble resin and oxygen-absorbable adhesive resin composition
PCT/JP2010/053792 WO2010101290A1 (en) 2009-03-06 2010-03-08 Oxygen-absorbable solvent-soluble resin and oxygen-absorbable adhesive resin composition
KR1020117023356A KR101312669B1 (en) 2009-03-06 2010-03-08 Oxygen-absorbable solvent-soluble resin and oxygen-absorbable adhesive resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010006832A JP5671802B2 (en) 2010-01-15 2010-01-15 Oxygen-absorbing resin and oxygen-absorbing adhesive resin composition

Publications (2)

Publication Number Publication Date
JP2011144281A JP2011144281A (en) 2011-07-28
JP5671802B2 true JP5671802B2 (en) 2015-02-18

Family

ID=44459421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010006832A Active JP5671802B2 (en) 2009-03-06 2010-01-15 Oxygen-absorbing resin and oxygen-absorbing adhesive resin composition

Country Status (1)

Country Link
JP (1) JP5671802B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130143734A1 (en) * 2010-08-19 2013-06-06 Toyo Seikan Kaisha Ltd. Resin for Oxygen-absorbing Adhesive and Oxygen-absorbing Adhesive
JP6024892B2 (en) * 2011-11-25 2016-11-16 東洋製罐株式会社 Oxygen-absorbing resin composition and oxygen-absorbing adhesive resin composition
CN104968753B (en) 2013-01-18 2017-11-07 东洋制罐集团控股株式会社 Oxygen absorption film and oxygen absorption adhesive resin composition
JP6443823B2 (en) * 2017-02-10 2018-12-26 東洋製罐株式会社 Oxygen absorbing film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11209731A (en) * 1998-01-23 1999-08-03 Toyobo Co Ltd Adhesive composition for laminated can, laminated metal plate and metal can
JP2006160787A (en) * 2004-12-02 2006-06-22 Unitika Ltd Biodegradable polyester resin and adhesive by using the same
JP5212883B2 (en) * 2006-04-12 2013-06-19 東洋製罐株式会社 Oxygen-absorbing resin, oxygen-absorbing resin composition, and oxygen-absorbing container
JP5505852B2 (en) * 2006-07-11 2014-05-28 東洋製罐株式会社 Oxygen-absorbing resin, oxygen-absorbing resin composition, and oxygen-absorbing container

Also Published As

Publication number Publication date
JP2011144281A (en) 2011-07-28

Similar Documents

Publication Publication Date Title
JP5920591B2 (en) Two-component curable oxygen-absorbing resin composition and oxygen-absorbing adhesive
JP5910998B2 (en) Oxygen-absorbing adhesive resin and oxygen-absorbing adhesive
WO2010101290A1 (en) Oxygen-absorbable solvent-soluble resin and oxygen-absorbable adhesive resin composition
JP5403272B2 (en) Two-component curable oxygen-absorbing resin composition
JP5671816B2 (en) Oxygen-absorbing solvent-soluble resin and oxygen-absorbing adhesive resin composition
JP5671802B2 (en) Oxygen-absorbing resin and oxygen-absorbing adhesive resin composition
JP2024138446A (en) Oxygen-absorbing resin composition and oxygen-absorbing film containing the same
US11939495B2 (en) Oxygen-absorbing film
JP6115708B2 (en) Oxygen absorbing film
JP6443823B2 (en) Oxygen absorbing film
JP6075710B2 (en) Oxygen-absorbing adhesive resin composition
JP6090566B2 (en) Oxygen-absorbing resin composition and oxygen-absorbing adhesive resin composition
JP6024892B2 (en) Oxygen-absorbing resin composition and oxygen-absorbing adhesive resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121218

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130513

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141208

R150 Certificate of patent or registration of utility model

Ref document number: 5671802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150