JP5670829B2 - Light wave distance meter - Google Patents

Light wave distance meter Download PDF

Info

Publication number
JP5670829B2
JP5670829B2 JP2011108484A JP2011108484A JP5670829B2 JP 5670829 B2 JP5670829 B2 JP 5670829B2 JP 2011108484 A JP2011108484 A JP 2011108484A JP 2011108484 A JP2011108484 A JP 2011108484A JP 5670829 B2 JP5670829 B2 JP 5670829B2
Authority
JP
Japan
Prior art keywords
light
light emission
emission amount
signal
input value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011108484A
Other languages
Japanese (ja)
Other versions
JP2012237720A (en
Inventor
康俊 青木
康俊 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sokkia Topcon Co Ltd
Original Assignee
Sokkia Topcon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sokkia Topcon Co Ltd filed Critical Sokkia Topcon Co Ltd
Priority to JP2011108484A priority Critical patent/JP5670829B2/en
Publication of JP2012237720A publication Critical patent/JP2012237720A/en
Application granted granted Critical
Publication of JP5670829B2 publication Critical patent/JP5670829B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本願発明は、目標反射物までの直線距離を光電的に測定する位相差方式の光波距離計に関する。   The present invention relates to a phase difference type lightwave distance meter that photoelectrically measures a linear distance to a target reflector.

この種の光波距離計では、強度変調された信号が発光素子から光として送出され、係る光の一方は目標反射物で反射されて得られる測距光として、他方の光は参照光路へ出射されて得られる参照光として、それぞれ受光素子で受光されて電気信号に変換された後、増幅器、周波数変換器等を経たのち、A/D変換器で測定され、アナログ信号からデジタルデータへと信号変換される。係る受光信号のうち、A/D変換器の最大入力値を超えない測定可能域の信号が、演算処理部にて信号振幅、位相情報を解析されて、測距信号と参照信号の位相差が算出されることで、目標反射物までの直線距離(測距値)が得られる。   In this type of lightwave distance meter, an intensity-modulated signal is transmitted as light from the light emitting element, one of the light is reflected by the target reflector, and the other light is emitted to the reference optical path. As the reference light obtained in this way, each light is received by a light receiving element and converted into an electrical signal, then passed through an amplifier, frequency converter, etc., then measured by an A / D converter, and converted from an analog signal to digital data Is done. Among the received light signals, signals in a measurable range that do not exceed the maximum input value of the A / D converter are analyzed by the arithmetic processing unit for signal amplitude and phase information, and the phase difference between the distance measurement signal and the reference signal is determined. By calculating, a linear distance (distance value) to the target reflector is obtained.

係る光波距離計では、光波距離計から目標反射物までの距離の遠近や、目標反射物がプリズムのような高反射物か否かによって、反射された測距光の受光光量にバラツキが発生し、測距値の算出に影響する。即ち、測距光の受光光量が大きく、測距信号がA/D変換器の最大入力値以上となった場合(測距信号がA/D変換器の飽和領域となった場合)には、測定可能域の信号とならず測距値が算出されない。一方、測距光の受光光量が小さい場合には、A/D変換器で受光信号の振幅が適切に分解されず信号変換の際に誤りが生じ、測距値に誤差が生じる。このため、測距信号がA/D変換器で測定可能となるよう、受光光量を最適受光量に調整する必要がある。   In such a lightwave distance meter, the received light amount of the reflected distance measuring light varies depending on the distance from the lightwave distance meter to the target reflector and whether the target reflector is a highly reflective object such as a prism. This affects the calculation of distance measurement values. In other words, when the received light amount of the distance measuring light is large and the distance measurement signal is equal to or greater than the maximum input value of the A / D converter (when the distance measurement signal is in the saturation region of the A / D converter), The signal is not in the measurable range and the distance value is not calculated. On the other hand, when the received light amount of the distance measuring light is small, the amplitude of the received light signal is not properly decomposed by the A / D converter, an error occurs during signal conversion, and an error occurs in the distance measurement value. For this reason, it is necessary to adjust the amount of received light to the optimum amount of received light so that the distance measurement signal can be measured by the A / D converter.

そこで、例えば特許文献1に示すように、モータ駆動する可変受光濃度フィルタを目標反射物と受光素子の間に設け、フィルタを除々に絞ることで受光光量を調節し、最適受光量に調整するものがある。或いは、特許文献2に示すように、可変受光濃度フィルタに代えて、光を送出する発光素子に、可変抵抗器をデジタル制御するデジタルポテンショメータを接続し、発光素子に負荷する抵抗値を除々に減少或いは増加させて発光素子の発光量を調節し、受光光量を最適受光量に調整するものがある。   Therefore, as shown in Patent Document 1, for example, a variable light reception density filter driven by a motor is provided between the target reflector and the light receiving element, and the amount of received light is adjusted by gradually narrowing the filter to adjust to the optimum light receiving amount. There is. Alternatively, as shown in Patent Document 2, a digital potentiometer that digitally controls a variable resistor is connected to a light emitting element that emits light instead of a variable light reception density filter, and the resistance value loaded on the light emitting element is gradually reduced. Alternatively, there is an apparatus that adjusts the light emission amount of the light emitting element to increase the light reception light amount to the optimum light reception amount.

特公昭51−8340号公報(図2)Japanese Patent Publication No.51-8340 (FIG. 2) 特開2011−013108号公報(段落番号0030〜0034、図1)Japanese Patent Laying-Open No. 2011-013108 (paragraph numbers 0030 to 0034, FIG. 1)

しかし、特許文献1のように可変受光濃度フィルタをモータによって除々に絞り調節する光量調節作業では、第1に、モータの使用年数により機械的不具合が生じるし、第2に、大気の揺らぎによって目標反射物からの反射光量が大きく変動すると、A/D変換器の飽和領域となる測距信号が増え、それらが測定可能域に収まるまで光量調節が繰り返されるため、光量調節に時間がかかり、所定の測距仕様時間内に終了しないという問題があった。   However, in the light amount adjustment work in which the variable light-receiving density filter is gradually adjusted by the motor as in Patent Document 1, first, mechanical troubles occur due to the years of use of the motor, and second, the target is caused by atmospheric fluctuations. If the amount of reflected light from the reflector fluctuates greatly, the distance measurement signal that becomes the saturation area of the A / D converter increases, and the light quantity adjustment is repeated until they fall within the measurable area. There was a problem that it did not end within the distance measurement specification time.

また、特許文献2では、光量調節作業がデジタルポテンショメータによる電気的制御となったことで、機械的制御よりも制御時間は早くなるものの、受光信号がA/D変換器の測定可能域となるまで(抵抗値を除々に変化させて)光量調節作業を繰り返し行うという点は可変受光濃度フィルタと同様であり、やはり光量調節に時間を要していた。   Further, in Patent Document 2, although the light amount adjustment work is electrical control using a digital potentiometer, the control time is faster than mechanical control, but the received light signal is within the measurable range of the A / D converter. It is the same as the variable light reception density filter in that the light amount adjustment operation is repeatedly performed (by gradually changing the resistance value), and it still takes time to adjust the light amount.

本願発明は、係る問題点に鑑みて為されたものであり、その目的は、発光量調節に機械的駆動を用いず、かつ光量調節作業を繰り返すことなく受光光量が最適受光量に調整される、高速で高精度な測距が可能な光波距離計を提供することにある。   The present invention has been made in view of such problems, and its purpose is to adjust the received light amount to the optimum received light amount without using mechanical drive for light emission amount adjustment and without repeating the light amount adjustment operation. An object of the present invention is to provide an optical rangefinder capable of high-speed and high-precision distance measurement.

本発明のある態様の光波距離計においては、複数の変調周波数で変調された光を送出する光送出手段と、前記光送出手段の光を、測定地点に配置した目標反射物までを往復する測距光路または参照光路のうち選択された一方に送出する光分出手段と、前記測距光路を通過した測距光または前記参照光路を通過した参照光を受光し、それぞれの受光信号を出力する受光手段と、前記受光信号を測定し、アナログ信号からデジタルデータへ変換する信号変換手段と、前記光送出手段に負荷されて発光量を調節する抵抗器と、前記抵抗器を前記受光信号の信号振幅に応じて設定し、前記信号変換手段でデジタル化された測距信号と参照信号の位相差によって前記目標反射物までの直線距離である測距値を算出する演算処理部と、を備えた光波距離計であって、前記抵抗器は複数であって、抵抗値大から小にかけてそれぞれが所定の固定抵抗値を持ち、そのうちの一が該抵抗器と一対一対応の選択信号により選択されて、前記光送出手段の発光量が小から大に切り換えられる抵抗器群として設け、前記演算処理部に、前記信号変換手段に入力された前記受光信号の信号振幅が、該信号変換手段の最大入力値以上か否かを判定する受光レベル判定手段と、前記受光レベル判定手段により、前記最大入力値以上と判定された場合には、最大入力値未満となるまで前記光送出手段の発光量を小に切り換える前記選択信号を選択し、前記最大入力値未満と判定された場合には、最大入力値を超えない最大の発光量となるまで前記光送出手段の発光量を大に切り換える前記選択信号を選択する光量選択手段と、を設けた。
In a lightwave distance meter according to an aspect of the present invention, a light transmission unit that transmits light modulated at a plurality of modulation frequencies, and a measurement that reciprocates light from the light transmission unit to a target reflector disposed at a measurement point. Light extraction means for transmitting to a selected one of the distance optical path or the reference optical path, and the distance measuring light that has passed through the distance measuring optical path or the reference light that has passed through the reference optical path, and outputs respective received light signals A light receiving means; a signal converting means for measuring the light receiving signal and converting the analog signal into digital data; a resistor loaded on the light sending means for adjusting the light emission amount; and a signal for the light receiving signal. An arithmetic processing unit that is set according to the amplitude and calculates a distance measurement value that is a linear distance to the target reflector based on a phase difference between the distance measurement signal digitized by the signal conversion means and a reference signal. Light wave distance meter The resistor includes a plurality of resistors, each having a predetermined fixed resistance value from a large resistance value to a small resistance value, one of which is selected by a selection signal corresponding to the resistor in a one-to-one relationship, Provided as a resistor group in which the light emission amount of the means is switched from small to large, and whether the signal amplitude of the received light signal input to the signal conversion means is greater than or equal to the maximum input value of the signal conversion means in the arithmetic processing unit The light receiving level determining means for determining whether or not the light receiving level determining means switches the light emission amount of the light sending means to a small value until it is less than the maximum input value when it is determined to be equal to or greater than the maximum input value. select signal, when it is determined that less than the maximum input value, the light quantity selection for selecting the selection signal for switching the light emission amount of the light transmitting means to atmospheric until the maximum light emission amount does not exceed the maximum input value And the stage, the provided.

(作用) 所定の固定抵抗値を持つ抵抗器を抵抗値大から小にかけて複数設けて、そのうちの一を演算処理部で受光信号振幅を見ながら選択し、光送出手段の光の出力を調整することで、断続的な複数パターンの発光量の中から最適な発光量に決定されるように構成した。即ち、演算処理部において、信号変換手段に入力される受光信号の信号振幅が、信号変換手段の最大入力値以上の飽和領域か、最大入力値未満の測定可能域かを見ながら、最大入力値以上と判定された場合には、最大入力値未満となるまで現段階の発光量から降順或いは数段階小さい発光量に下げるように信号選択を繰り返し、最大入力値未満と判定された場合には、最大入力値を超えない最大の発光量となるまで現発光量から昇順或いは数段階大きい発光量に上げるように信号選択を繰り返すことで、受光信号振幅が(受光レベルが)最適(最大入力値を超えない最大の発光量)となる最適な発光量に決定する。   (Operation) A plurality of resistors having a predetermined fixed resistance value are provided from a large resistance value to a small resistance value, and one of them is selected while checking the received light signal amplitude in the arithmetic processing unit, and the light output of the light sending means is adjusted. Thus, the optimum light emission amount is determined from the intermittent light emission amounts of a plurality of patterns. That is, in the arithmetic processing unit, the maximum input value is determined while checking whether the signal amplitude of the received light signal input to the signal conversion unit is a saturation region greater than the maximum input value of the signal conversion unit or a measurable region less than the maximum input value. If it is determined as above, the signal selection is repeated so as to decrease the light emission amount from the current stage to the light emission amount in descending order or several steps smaller until it becomes less than the maximum input value. By repeating the signal selection so that the current light emission amount is increased in ascending order or several steps higher until the maximum light emission amount does not exceed the maximum input value, the light reception signal amplitude (light reception level) is optimal (the maximum input value is The maximum light emission amount that does not exceed (the maximum light emission amount) is determined.

上記態様の光波距離計において、前記光量選択手段において、前記光送出手段の発光量を現段階より大に切り換える前記選択信号を選択する際に、前記選択信号数をn、該選択信号に対応する前記光送出手段の発光量を小から大にかけて発光量1、発光量2・・・発光量n、前記現発光量を発光量k(k<n)としたとき、現発光量kの次に選択する発光量を、発光量kの状態での前記受光信号の信号振幅が、前記最大入力値のr^2倍以上となっていれば発光量k+1となる選択信号を選択、前記最大入力値のr^3倍以上r^2倍未満となっていれば発光量k+2となる選択信号を選択、・・・・・・・前記最大入力値のr^(n−k)倍以上r^(n−(k+1))倍未満となっていれば発光量(n−1)となる選択信号を選択、前記最大入力値のr^(n−k)倍未満となっていれば発光量nとなる選択信号を選択する(但しrは発光量減衰定数(0<r<1))、次発光量判定手段を設けた。
In the lightwave distance meter of the above aspect, when the light quantity selection unit selects the selection signal for switching the light emission amount of the light transmission unit to be larger than the current stage, the number of the selection signals is n, and the selection signal corresponds to the selection signal. When the light emission amount of the light sending means is small to large, the light emission amount is 1, the light emission amount 2... The light emission amount n, and the current light emission amount is the light emission amount k (k <n). If the signal amplitude of the received light signal in the state of the light emission amount k is greater than or equal to r ^ 2 times the maximum input value, the selection signal that becomes the light emission amount k + 1 is selected and the maximum input value is selected. If r ^ 3 times or more and less than r ^ 2 times, a selection signal that gives a light emission amount k + 2 is selected, ... r ^ (n−k) times or more of the maximum input value r ^ ( If it is less than (n− (k + 1)) times, a selection signal for light emission amount (n−1) is selected, If it is less than r ^ (n−k) times the input value, a selection signal for the light emission amount n is selected (where r is a light emission amount attenuation constant (0 <r <1)), and the next light emission amount determination means is selected. Provided.

(作用) 信号変換手段で測定可能な受光レベルは最大入力値未満の範囲までであるため、現発光量kの状態の受光レベルが飽和領域である場合には、その信号振幅がどれほど最大入力値より大きいか信号変換手段で判断できない。しかし、現発光量kで飽和していない(測距可能域の)場合は、その信号振幅を測定可能であるため、現発光量kの受光レベルが最大入力値に対してどれほど小さいかを測定することができるので、信号振幅が最大入力値の何倍かを算出することで、次発光量を現発光量kから何段階上げれば良いのか判定することができる。   (Operation) Since the light reception level measurable by the signal conversion means is in a range less than the maximum input value, if the light reception level in the state of the current light emission amount k is in the saturation region, how much the signal amplitude is the maximum input value. It cannot be judged by the signal conversion means whether it is larger. However, when it is not saturated with the current light emission amount k (in the range that can be measured), it is possible to measure the signal amplitude, and thus measure how small the light reception level of the current light emission amount k is relative to the maximum input value. Therefore, by calculating how many times the signal amplitude is the maximum input value, it is possible to determine how many steps the next light emission amount should be increased from the current light emission amount k.

または、上記態様の光波距離計において、前記光量選択手段において、前記選択信号数をn、該選択信号に対応する前記光送出手段の発光量を小から大にかけて発光量1、発光量2・・・発光量nとしたとき、初回の発光量を、選択信号数nを超えない2^m(但し、mは整数かつ2^(m+1)>n≧2^m)に対応する発光量2^mから始め、前記受光レベル判定手段により、現発光量が前記最大入力値以上と判定された場合には、前記光送出手段の発光量を、現発光量の次数を1減じた発光量分減算し、前記最大入力値未満と判定された場合には、現発光量の次数を1減じた発光量分加算する(但し、加算の結果発光量nを超える場合には、加算前の発光量に戻し、さらに次数を1減じた発光量分を加算する)ことを、次数mが0となるまで繰り返し、前記次数加減操作で探索した発光量のなかから、最大入力値を超えない最大の発光量となる前記選択信号を選択する最適発光量探索手段を設けた。
Alternatively, in the light wave distance meter according to the above aspect, in the light quantity selection unit, the number of selection signals is n, the light emission amount of the light transmission unit corresponding to the selection signal is small to large, the light emission amount is 1, and the light emission amount is 2. When the light emission amount is n, the initial light emission amount is 2 ^ m (where m is an integer and 2 ^ (m + 1)> n ≧ 2 ^ m), which does not exceed the selection signal number n. Starting from m, if the current light emission level is determined to be greater than or equal to the maximum input value by the light receiving level determination means, the light emission quantity of the light transmission means is subtracted by the light emission quantity obtained by subtracting the order of the current light emission quantity by one. If it is determined that the value is less than the maximum input value, the order of the current light emission amount is subtracted by 1 and added by the amount of light emission. The order m is 0). Repeat until from among the light emission amount of searching in the order acceleration operation, it provided the optimum light emission amount search means for selecting the selection signal having the maximum light emission amount not exceeding the maximum input value.

(作用) 例えば、選択信号数n=100で、最適な発光量が発光量47の場合、初回の発光量を、nを越えない最大の2の冪乗2^mに対応する発光量2^m、即ち100>2^6=64(m=6)から始める。受光レベルを判定すると、初回発光量64>47であるので、次数を1下げ(m=5)発光量を半分に減じて32(64−32)とし、m≠0であるので受光レベルを判定すると、32<47であるので、さらに次数を1下げ(m=4)た発光量分を加算して48(64−32+16)とし、48>47であるので、さらに次数を1下げ(m=3)た発光量分を減算して40(64−32+16−8)とし、40<47であるので、さらに次数を1下げ(m=2)た発光量分を加算して44(64−32+16−8+4)とし、44<47であるので、さらに次数を1下げ(m=1)た発光量分を加算して46(64−32+16−8+4+2)とし、46<47であるので、さらに次数を1下げ(m=0)た発光量分を加算して47(64−32+16−8+4+2+1)とし、m=0まで次数が下がったので受光レベルを判定すると、発光量47では最大入力値を超えない。そして、発光量64→32(64−32)→48(64−32+16)→40(64−32+16−8)→44(64−32+16−8+4)→46(64−32+16−8+4+2)→47(64−32+16−8+4+2+1)と操作した発光量の中で、最大入力値を超えない発光量は発光量32、40、44、46、47であり、このうち最大発光量は47と選択できる。なお、最適な発光量47を見つけるための信号選択回数は7回である。   (Operation) For example, when the number of selection signals is n = 100 and the optimum light emission amount is the light emission amount 47, the initial light emission amount is 2 ^ m corresponding to the maximum power of 2 ^ m not exceeding n. Start with m, ie 100> 2 ^ 6 = 64 (m = 6). When the light reception level is determined, since the initial light emission amount 64> 47, the order is reduced by 1 (m = 5), the light emission amount is reduced by half to 32 (64-32), and m ≠ 0, so the light reception level is determined. Then, since 32 <47, the light emission amount obtained by further reducing the order by 1 (m = 4) is added to 48 (64−32 + 16), and since 48> 47, the order is further decreased by 1 (m = 3) The light emission amount is subtracted to 40 (64−32 + 16−8), and 40 <47. Therefore, the light emission amount obtained by lowering the order by 1 (m = 2) is added to obtain 44 (64−32 + 16). −8 + 4) and 44 <47, the order is further reduced by 1 (m = 1), and the light emission amount is added to obtain 46 (64−32 + 16−8 + 4 + 2). Since 46 <47, the order is further reduced. 47 (64) by adding the light emission amount lowered by 1 (m = 0) 32 + 16-8 + 4 + 2 + 1) and, when determining the received light level because the degree drops to m = 0, do not exceed the maximum input value in the light-emitting amount 47. The light emission quantity is 64 → 32 (64−32) → 48 (64−32 + 16) → 40 (64−32 + 16−8) → 44 (64−32 + 16−8 + 4) → 46 (64−32 + 16−8 + 4 + 2) → 47 (64 Among the light emission amounts operated as −32 + 16−8 + 4 + 2 + 1), the light emission amounts that do not exceed the maximum input value are the light emission amounts 32, 40, 44, 46, and 47. Of these, the maximum light emission amount can be selected as 47. The number of signal selections for finding the optimum light emission amount 47 is seven.

また、最適な発光量が96の場合は、初回発光量64<96であるので、次数を1下げ(m=5)た発光量32を現発光量に加算96(64+32)する。発光量96は発光量100を超えず、m≠0であるので、受光レベルを判定すると、96=96で最大入力値を超えないので、さらに次数を1下げ(m=4)た発光量分を加算して112(64+32+16)とすると、発光量100を超えるので、加算前の発光量96に戻し、さらに次数を1下げ(m=3)た発光量分を加算して104(64+32+8)とすると、発光量100を超えるので、加算前の発光量96に戻し、さらに次数を1下げ(m=2)た発光量分を加算して100(64+32+4)とすると、100>96であるので、さらに次数を1下げ(m=1)た発光量分を減算して98(64+32+4−2)とし、98>96であるので、さらに次数を1下げ(m=0)た発光量分を減算して97(64+32+4−2−1)とし、m=0まで次数が下がったので、受光レベルを判定すると発光量97は最大入力値を超えるので、発光量64→96→100→98→97と操作した発光量の中で、最大入力値を超えない最大発光量は96と選択できる。なお、最適な発光量96を見つけるための信号選択回数は5回である。   When the optimum light emission amount is 96, since the initial light emission amount 64 <96, the light emission amount 32 obtained by reducing the order by 1 (m = 5) is added 96 (64 + 32) to the current light emission amount. Since the light emission amount 96 does not exceed the light emission amount 100 and m ≠ 0, if the light reception level is determined, 96 = 96 and the maximum input value is not exceeded, so the order is further reduced by 1 (m = 4). Is 112 (64 + 32 + 16), the amount of light emission exceeds 100. Therefore, the light amount is returned to 96 before addition, and the amount of light emission obtained by lowering the order by 1 (m = 3) is added to 104 (64 + 32 + 8). Then, since the light emission amount exceeds 100, the light emission amount is returned to the pre-addition light emission amount 96, and when the light emission amount obtained by lowering the order by 1 (m = 2) is added to 100 (64 + 32 + 4), 100> 96. Further, the light emission amount with the order lowered by 1 (m = 1) is subtracted to 98 (64 + 32 + 4-2), and 98> 96. Therefore, the light emission amount with the order lowered by 1 (m = 0) is subtracted. 97 (64 + 32 + 4-2- ) And the order has decreased to m = 0, and when the light reception level is determined, the light emission amount 97 exceeds the maximum input value. Therefore, the light emission amount 64 → 96 → 100 → 98 → 97 The maximum amount of light emission that does not exceed the input value can be selected as 96. Note that the number of signal selections for finding the optimum light emission amount 96 is five.

上記態様の光波距離計において、前記目標反射物が高反射物でないノンプリズム測距の場合には、前記光量選択手段により前記光送出手段の発光量が切り換えられ、前記目標反射物が高反射物であるプリズム測距の場合には、予め設定された発光量が前記光送出手段から送出され、前記受光信号が前記信号変換手段の前記最大入力値未満の場合にはそのまま測距が行われ、前記受光信号が前記最大入力値以上である場合には、前記測距光路間に濃度フィルタが挿入されて測距が行われるよう、濃度フィルタ挿入出手段を設けた。
In the lightwave distance meter of the above aspect , when the target reflector is a non-prism distance measurement that is not a highly reflective object, the light amount of the light sending means is switched by the light quantity selecting means, and the target reflector is a highly reflective object. In the case of prism distance measurement, a preset light emission amount is transmitted from the light transmission means, and when the light reception signal is less than the maximum input value of the signal conversion means, distance measurement is performed as it is. When the received light signal is equal to or greater than the maximum input value, density filter insertion / extraction means is provided so that a density filter is inserted between the distance measuring optical paths to perform distance measurement.

(作用) ノンプリズム測距が選択された場合、目標反射物からの反射光量は目標反射物によって異なり最適な発光量の決定が困難であるため、光量調節作業が短縮化できる光量選択手段を用いるのが有用である。一方、プリズム測距が選択された場合は、目標反射物からの反射光量がノンプリズム測距より多いことが経験的に分かっているので、信号変換手段の最大入力値以上とならないであろう小さな発光量、例えば、複数段階用意された発光量のうち最小の発光量を送出するよう予め設定する。係る最小発光量でも信号変換手段の最大入力値以上となるのは、高反射物(反射プリズムやミラー等)を近距離(0m〜10m程度)に設置し、送出した光が全て受光側に入射された場合であり、高反射物との距離が遠距離になるほど、送出した光が拡散されて全て受光側に入射されなくなるため飽和しにくくなる。そこで、固定濃度フィルタを挿入して測距光の受光光量を一定量減衰させ、近距離の高反射物でも飽和しないようにすると、高反射物との距離に依らず、受光信号が確実に信号変換手段の測定可能域に入る。   (Operation) When the non-prism distance measurement is selected, the amount of light reflected from the target reflector differs depending on the target reflector, and it is difficult to determine the optimum light emission amount. Is useful. On the other hand, when prism distance measurement is selected, it is empirically known that the amount of reflected light from the target reflector is greater than that of non-prism distance measurement, so that it will not exceed the maximum input value of the signal conversion means. A light emission amount, for example, a minimum light emission amount among the light emission amounts prepared in a plurality of stages is set in advance. Even if the minimum light emission amount is above the maximum input value of the signal conversion means, a highly reflective object (reflecting prism, mirror, etc.) is installed at a short distance (about 0 m to 10 m), and all the transmitted light enters the light receiving side. In this case, as the distance from the highly reflective object increases, the transmitted light is diffused and is not incident on the light receiving side. Therefore, if a fixed density filter is inserted to attenuate the received light amount of the distance measuring light by a certain amount so as not to saturate even a highly reflective object at a short distance, the received light signal is reliably signaled regardless of the distance to the highly reflective object. Enter the measurable range of the conversion means.

上記態様の光波距離計において、前記演算処理部に、前記ノンプリズム測距において、発光量が最小となる前記選択信号を選択しても、前記受光信号の信号振幅が前記信号変換手段の最大入力値以上となる場合には、自動的に前記プリズム測距に移行させる測距手段自動変更手段を設けた。
In the lightwave distance meter of the above aspect , even if the selection signal that minimizes the amount of light emission is selected in the non-prism distance measurement, the signal amplitude of the light reception signal is the maximum input of the signal conversion unit. A distance measuring means automatic changing means for automatically shifting to the prism distance measurement is provided when the value exceeds the value.

(作用) ノンプリズム測距において、最小の発光量を用いても、受光信号が信号変換手段の飽和領域に入る場合には、目標反射物が高反射物を視準していると演算処理部が判断し、自動的にプリズム測距に移行する。   (Operation) In the non-prism distance measurement, even if the minimum light emission amount is used, if the received light signal enters the saturation region of the signal conversion means, the arithmetic processing unit determines that the target reflector is collimating the highly reflective object. And automatically shifts to prism distance measurement.

本発明の光波距離計によれば、従来のデジタルポテンショメータのように、抵抗値を除々に(連続的に)変化させて最適な発光量を探るように光量調節するのではなく、断続的なパターンの発光量の中から選択するだけなので、その信号選択回数は最大でも用意した抵抗器数と同じ回数で済み、光量調節作業が大幅に早くなる。
According to the lightwave distance meter of the present invention , unlike the conventional digital potentiometer, the resistance value is gradually changed (continuously), and the light amount is not adjusted so as to find the optimum light emission amount. Therefore, the number of signal selections can be as many as the number of resistors prepared at the maximum, and the light quantity adjustment work is greatly accelerated.

また、例えば、初回に選択した発光量で最大入力値以上と判定された場合に、2回目の発光量を数段階小さい発光量を選択し以降は昇順で発光量を上げる、或いは、初回発光量で最大入力値未満と判定された場合に、2回目の発光量を数段階大きい発光量を選択し以降は降順に発光量を下げる、といったように信号選択すれば、挟み撃ち的に最適な発光量に決定できるため、信号選択回数が減り、より光量調節作業が早くなる。   Also, for example, when it is determined that the light emission amount selected for the first time is greater than or equal to the maximum input value, the light emission amount for the second time is selected to be several steps smaller, and thereafter the light emission amount is increased in ascending order, or the initial light emission amount If it is determined that the light emission amount is less than the maximum input value, select the light emission amount that is several steps larger than the second light emission amount and then decrease the light emission amount in descending order. Therefore, the number of signal selections is reduced, and the light quantity adjustment work becomes faster.

また、光量調節が機械的動作によらず行われるので、使用年数の経過によって機械的不具合が生じることは無い。   In addition, since the light amount adjustment is performed regardless of the mechanical operation, no mechanical malfunction occurs with the passage of years of use.

また、受光信号が測定可能域に確実に入るように最適な発光量に決定されるため、略全ての受光信号を測距値算出に用いることができるので、高精度な測距値を得ることができる。   In addition, since the optimum light emission amount is determined so that the received light signal surely falls within the measurable range, almost all received light signals can be used for distance measurement calculation, so a highly accurate distance measurement value can be obtained. Can do.

次発光量判定手段によれば、光送出手段の発光量を現段階より大に切り換える選択信号を選択する際に、判定基準を設けることができ、最適な次発光量を予測して一気に発光量をジャンプさせることができるので、最適な発光量を2回の信号選択ですぐに見つけることができる。
According to the next light emission amount determination means , when selecting a selection signal for switching the light emission amount of the light transmission means to be larger than the current stage, a determination criterion can be provided, and the optimum next light emission amount is predicted and the light emission amount at once. So that the optimum amount of light emission can be found immediately by two signal selections.

最適発光量探索手段によれば、選択信号がn個あり、初回発光量をnを超えない最大の2の冪乗2^mから始めると(但し、mは整数かつ2^(m+1)>n≧2^m)、最適な発光量を見つけられる回数はm+1回以内で終了する。最適な発光量が2進法で探索されるため、少ない信号選択回数で効率良く見つけることができる。
According to the optimum light emission amount search means, when there are n selection signals and the initial light emission amount starts from the largest power of 2 ^ m not exceeding n (where m is an integer and 2 ^ (m + 1)> n ≧ 2 ^ m), and the number of times that the optimum light emission amount can be found ends within m + 1 times. Since the optimum light emission amount is searched in the binary system, it can be found efficiently with a small number of signal selections.

また、ノンプリズム測距の場合は光量選択手段により、光量調節作業が短縮化される。プリズム測距の場合は、固定濃度フィルタを用いるか用いないかの2択であるため、もはや光量調節作業はない。結果、どちらの場合であったとしても、従来の可変濃度フィルタによる調節やデジタルポテンショメータによる調節よりも、光量調節が格段に速く終了する。
Further , in the case of non-prism distance measurement, the light amount adjustment work is shortened by the light amount selection means. In the case of prism distance measurement, since there are two choices of using a fixed density filter or not, there is no longer a light amount adjustment work. As a result, in either case, the light amount adjustment is completed much faster than the conventional adjustment using the variable density filter or the adjustment using the digital potentiometer.

また、ユーザがノンプリズム測距,プリズム測距の別を誤った場合であっても、適切な測距が自動的に成される。 Even if the user makes a mistake between non-prism distance measurement and prism distance measurement, appropriate distance measurement is automatically performed.

本願発明の第1の実施例に係る光波距離計のブロック図Block diagram of a lightwave distance meter according to a first embodiment of the present invention. 同光波距離計においてプリズム測距モードが選択された場合の測距の手順を示すフローチャート図The flowchart figure which shows the procedure of ranging when prism ranging mode is selected in the same optical distance meter 同光波距離計においてノンプリズム測距モードが選択された場合の測距の手順を示すフローチャート図The flowchart figure which shows the procedure of ranging when the non-prism ranging mode is selected in the same optical distance meter 本願発明の第2の実施例に係る光波距離計において、ノンプリズム測距モードが選択された場合の測距の手順を示すフローチャート図The flowchart figure which shows the procedure of ranging when the non-prism ranging mode is selected in the light wave rangefinder according to the second embodiment of the present invention. 本願発明の第3の実施例に係る光波距離計において、ノンプリズム測距モードが選択された場合の測距の手順を示すフローチャート図The flowchart figure which shows the procedure of ranging when the non-prism ranging mode is selected in the light wave rangefinder which concerns on 3rd Example of this invention. 本願発明の第4の実施例に係る光波距離計において、ノンプリズム測距モードが選択された場合の測距の手順を示すフローチャート図The flowchart figure which shows the procedure of ranging when the non-prism ranging mode is selected in the light wave rangefinder according to the fourth embodiment of the present invention. 本願発明の第5の実施例に係る光波距離計のブロック図Block diagram of a lightwave distance meter according to a fifth embodiment of the present invention. 同光波距離計において、ノンプリズム測距モードが選択された場合の測距の手順を示すフローチャート図The flowchart figure which shows the procedure of ranging when the non-prism ranging mode is selected in the same optical distance meter 同光波距離計において、ノンプリズム測距モードが選択された場合の測距の手順を示すフローチャート図The flowchart figure which shows the procedure of ranging when the non-prism ranging mode is selected in the same optical distance meter 最適な発光量が47の場合の光量調節作業を説明する概念図Conceptual diagram for explaining light amount adjustment work when the optimum light emission amount is 47 最適な発光量が1の場合の光量調節作業を説明する概念図Conceptual diagram for explaining light amount adjustment work when the optimum light emission amount is 1 最適な発光量が96の場合の光量調節作業を説明する概念図Conceptual diagram for explaining light amount adjustment work when the optimum light emission amount is 96 最適な発光量が64の場合の光量調節作業を説明する概念図Conceptual diagram for explaining light amount adjustment work when the optimum light emission amount is 64

以下に図1に基づいて、本願発明の光波距離計の第1の実施例の構成を説明する。図1は、本願発明の第1の実施例に係る光波距離計のブロック図である。実施例の光波距離計は、測距光と参照光との位相差から目標反射物33までの距離を算出する位相差方式の光波距離計であって、以下に示す光送出手段(発光素子29)と、光分出手段(切換シャッター37)と、受光手段(受光素子40)と、信号変換手段(A/D変換器44,47,50)と、演算処理部60と、を構成要素に含む。さらに、従来受光素子40の受光光量を調節するために測距光路31に設けられていた可変濃度フィルタを省き、代わりとして、発光素子29に後述する抵抗器群70が設けられている。   The configuration of the first embodiment of the lightwave distance meter according to the present invention will be described below with reference to FIG. FIG. 1 is a block diagram of a lightwave distance meter according to a first embodiment of the present invention. The light wave distance meter of the embodiment is a phase difference type light wave distance meter that calculates the distance to the target reflector 33 from the phase difference between the distance measuring light and the reference light, and is a light transmission means (light emitting element 29) described below. ), Light extracting means (switching shutter 37), light receiving means (light receiving element 40), signal converting means (A / D converters 44, 47, 50), and arithmetic processing unit 60. Including. Further, the variable density filter provided in the distance measuring optical path 31 in order to adjust the amount of light received by the conventional light receiving element 40 is omitted. Instead, a resistor group 70 described later is provided in the light emitting element 29.

発振器1で出力された信号F1は分周器2で複数の信号に分周され、異なる周波数を有する信号F2,F3を発生させる。信号F1,F2,F3は、周波数重畳回路3によって重畳化される。電圧供給を受ける駆動回路4は、重畳化された信号F1,F2,F3に基づく交流信号によって発光素子29を駆動する。周波数F1,F2,F3は、F1から順に周波数が低いものとなっており、それぞれの分解能に応じて測距値の各桁が決定される。また、信号F1はPLL(PhaseLockedLoop)5や、周波数生成回路7にも入力され、ローカル信号発振器6や周波数生成回路7から周波数変換器42,45,48に入力されるF1+△f1信号, F2+△f2信号, F3+△f3信号が出力される。   The signal F1 output from the oscillator 1 is divided into a plurality of signals by the frequency divider 2 to generate signals F2 and F3 having different frequencies. The signals F1, F2, and F3 are superimposed by the frequency superimposing circuit 3. The drive circuit 4 that receives the voltage supply drives the light emitting element 29 with an AC signal based on the superimposed signals F1, F2, and F3. The frequencies F1, F2, and F3 have a lower frequency in order from F1, and each digit of the distance measurement value is determined according to each resolution. The signal F1 is also input to a PLL (Phase Locked Loop) 5 and a frequency generation circuit 7, and F1 + Δf1 signals and F2 + Δ are input from the local signal oscillator 6 and the frequency generation circuit 7 to the frequency converters 42, 45, and 48. The f2 signal and F3 + Δf3 signal are output.

発光素子29は、交流信号F1,F2,F3で駆動され、また、それぞれ所定の固定の抵抗値を有する負荷抵抗(抵抗器)8,9,10,11が4つ並列的に接続されて構成された抵抗器群70を介して、直流電源16からも駆動される。抵抗器群70は、負荷抵抗8,9,10,11とこれら抵抗器と一対のアナログスイッチ12,13,14,15からなる。負荷抵抗8,9,10,11はそれぞれ異なる抵抗値を持ち、負荷抵抗8,9,10,11の順に抵抗値が大きくなっている。即ち、負荷抵抗8,9,10,11の順に発光素子29の光量は減少する。負荷抵抗は一般には電流制限抵抗とも呼ばれ、値が大きいほど発光素子に流れる電流が減り(制限され)、光量が少なくなるからである。   The light emitting element 29 is driven by AC signals F1, F2, and F3, and includes four load resistors (resistors) 8, 9, 10, and 11 each having a predetermined fixed resistance value connected in parallel. The DC power supply 16 is also driven through the resistor group 70. The resistor group 70 includes load resistors 8, 9, 10, 11, these resistors and a pair of analog switches 12, 13, 14, 15. The load resistors 8, 9, 10, and 11 have different resistance values, and the resistance values increase in the order of the load resistors 8, 9, 10, and 11. That is, the light amount of the light emitting element 29 decreases in the order of the load resistances 8, 9, 10, and 11. This is because the load resistance is generally called a current limiting resistor, and the larger the value, the smaller (limited) the current flowing through the light emitting element, and the smaller the amount of light.

負荷抵抗8,アナログスイッチ12は選択信号(4)で動作可能になり、負荷抵抗9,アナログスイッチ13は選択信号(3)で動作可能になり、負荷抵抗10,アナログスイッチ14は選択信号(2)で動作可能になり、負荷抵抗11,アナログスイッチ15は選択信号(1)で動作可能になる。即ち、選択信号により動作可能になれば、負荷抵抗8,9,10,11のいずれかが発光素子29に負荷される。   The load resistor 8 and the analog switch 12 can be operated by the selection signal (4), the load resistor 9 and the analog switch 13 can be operated by the selection signal (3), and the load resistor 10 and the analog switch 14 can be operated by the selection signal (2). ) And the load resistor 11 and the analog switch 15 can be operated by the selection signal (1). That is, when the operation becomes possible by the selection signal, any one of the load resistors 8, 9, 10, and 11 is loaded on the light emitting element 29.

選択信号(1), (2), (3), (4)のいずれを選択するかは、後述する演算処理部60の光量選択手段により決定される。これ以降、用意する抵抗器数に対応した選択信号数をn個としたときに、選択信号(1),選択信号(2),・・・選択信号(n)によって切り換えられる発光素子29の発光量の段階を、以後、発光量小から大にかけて発光量1,発光量2,発光量3,・・・発光量nと表現する。   Which one of the selection signals (1), (2), (3), and (4) is selected is determined by the light quantity selection means of the arithmetic processing unit 60 described later. Thereafter, when the number of selection signals corresponding to the number of resistors to be prepared is n, the light emission of the light emitting element 29 switched by the selection signal (1), the selection signal (2),... The amount level is hereinafter expressed as light emission amount 1, light emission amount 2, light emission amount 3,...

発光素子29から送出された光は、ビームスプリッタ30で2つに分割され、切換シャッター37によって択一的に出射されて、一方の光は、測距光路31を経て目標反射物33で反射され、受光光学34で集光されて受光素子40に入力される。他方の光は、参照光路35を経て光量調節用固定濃度フィルタ36を通過し受光素子40に入力される。なお、測距光路31には、固定濃度フィルタ挿入出手段80が設けられており、後述するプリズム測距モードが選択された場合に、測距光の受光光量を一定量減衰させる濃度フィルタ32が挿入可能となっている。   The light transmitted from the light emitting element 29 is divided into two by the beam splitter 30 and selectively emitted by the switching shutter 37, and one light is reflected by the target reflector 33 through the distance measuring optical path 31. The light is collected by the light receiving optical 34 and input to the light receiving element 40. The other light passes through the reference light path 35, passes through the light quantity adjusting fixed density filter 36, and is input to the light receiving element 40. The distance measuring optical path 31 is provided with a fixed density filter inserting / extracting means 80. When a prism distance measuring mode to be described later is selected, a density filter 32 that attenuates the received light amount of the distance measuring light by a certain amount. It can be inserted.

受光素子40で受光された光は、3つの周波数F1,F2,F3をもつ信号に変換変換される。信号F1,F2,F3は受光素子40に接続された増幅器41で信号振幅を増幅されたのち、それぞれ周波数変換器42,45,48で周波数乗算されて、周波数の低い扱いやすい信号△f1, △f2, △f3にされる。そして、低域フィルタ43,46,49で周波数変換器42,45,48で生成されたノイズが除去され、A/D変換器44,47,50によってアナログ信号を多値デジタル信号に変換し、演算処理部60にて信号の振幅情報、位相情報を取得できるようにする。ここでの振幅情報は、後述する演算処理部60の受光レベル判定手段に活用される。   The light received by the light receiving element 40 is converted and converted into a signal having three frequencies F1, F2, and F3. The signals F1, F2, and F3 are amplified in signal amplitude by an amplifier 41 connected to the light receiving element 40, and then frequency-multiplied by frequency converters 42, 45, and 48, respectively. f2, Δf3. The noise generated by the frequency converters 42, 45, and 48 is removed by the low-pass filters 43, 46, and 49, and the analog signals are converted into multi-value digital signals by the A / D converters 44, 47, and 50. The arithmetic processing unit 60 can acquire signal amplitude information and phase information. The amplitude information here is used for the light reception level determination means of the arithmetic processing unit 60 described later.

A/D変換器44,47,50はそれぞれ演算処理部60に接続されており、演算処理部60では、信号△f1, △f2, △f3の信号振幅や位相情報が解析され、測距光と参照光のそれぞれの測距データを算出する。そして、送出光駆動回路や受光部の温度位相ドリフトや電気回路による遅延は測距光と参照光とで共通に含まれる誤差であることから、測距光と参照光の位相差をとることで、目標反射物33までの直線距離(測距値)が算出される。   The A / D converters 44, 47, and 50 are connected to the arithmetic processing unit 60. The arithmetic processing unit 60 analyzes the signal amplitude and phase information of the signals Δf1, Δf2, and Δf3, and the distance measuring light. And distance measurement data of the reference light are calculated. Since the temperature phase drift of the transmission light drive circuit and the light receiving unit and the delay due to the electric circuit are errors that are included in both the distance measurement light and the reference light, the phase difference between the distance measurement light and the reference light is taken. A linear distance (range value) to the target reflector 33 is calculated.

また、演算処理部60には、受光レベル判定手段及び光量選択手段が設けられており、受光レベル判定手段の判定に応じて、光量選択手段により選択信号(1), (2), (3), (4)のいずれかが選択され、対応する負荷抵抗8,9,10,11と一対のアナログスイッチ12,13,14,15に発信される。   The arithmetic processing unit 60 is provided with light reception level determination means and light quantity selection means. Depending on the determination of the light reception level determination means, the light quantity selection means selects the selection signals (1), (2), (3). , (4) is selected and transmitted to the corresponding load resistors 8, 9, 10, 11 and the pair of analog switches 12, 13, 14, 15.

受光レベル判定手段では、A/D変換器44,47,50に入力された受光信号の信号振幅が、予め設定された最大入力値以上の飽和領域か、最大入力値未満の測定可能域かを判定する。A/D変換器44,47,50で測定可能な受光レベルは最大入力値の範囲までであるため、受光信号振幅が飽和領域である場合には、その信号振幅は測定されない。そして、測定可能域であれば、演算処理部60で解析されて測距値算出に用いられる。   In the light reception level determination means, it is determined whether the signal amplitude of the light reception signal input to the A / D converters 44, 47, 50 is a saturation region greater than a preset maximum input value or a measurable region less than the maximum input value. judge. Since the light reception level measurable by the A / D converters 44, 47, 50 is up to the range of the maximum input value, when the light reception signal amplitude is in the saturation region, the signal amplitude is not measured. And if it is a measurable range, it will be analyzed by the arithmetic processing part 60 and used for ranging value calculation.

演算処理部60では、光量選択手段により受光レベルを見ながら抵抗器群70から一の抵抗器を選択する。即ち、受光レベル判定手段により、測距光の受光信号振幅が最大入力値以上であると判定された場合には、発光素子29の発光量が現在用いている抵抗器による発光量よりも(現段階よりも)小さい発光量に切り換える選択信号が、最大入力値未満となるまで繰り返し発信される。一方、測距光の受光信号振幅が最大入力値未満と判定された場合には、発光素子29の発光量が現在用いている抵抗器による発光量よりも(現段階よりも)大きい発光量に切り換える選択信号が、最大入力値を超えない最大の発光量(最大の受光レベル)となるまで繰り返し発信される。これにより、負荷抵抗8,9,10,11の一が選択されて、発光素子29の発光量が、その測距光の受光信号がA/D変換器44,47,50の最大入力値を超えない最大の発光量となる最適受光量となる、最適な発光量に決定される。   The arithmetic processing unit 60 selects one resistor from the resistor group 70 while looking at the light reception level by the light quantity selection means. That is, when the light reception level determination means determines that the light reception signal amplitude of the distance measuring light is greater than or equal to the maximum input value, the light emission amount of the light emitting element 29 is larger than the light emission amount by the currently used resistor (current A selection signal for switching to a smaller amount of light emission (less than the stage) is repeatedly transmitted until it becomes less than the maximum input value. On the other hand, when it is determined that the light reception signal amplitude of the distance measuring light is less than the maximum input value, the light emission amount of the light emitting element 29 is larger than the light emission amount by the resistor currently used (than the current stage). The selection signal to be switched is repeatedly transmitted until the maximum light emission amount (maximum light reception level) does not exceed the maximum input value. As a result, one of the load resistors 8, 9, 10, 11 is selected, the light emission amount of the light emitting element 29, and the light receiving signal of the distance measuring light becomes the maximum input value of the A / D converters 44, 47, 50. The optimum light emission amount is determined to be the optimum light reception amount that is the maximum light emission amount not exceeding.

さらに、光量選択手段は以下の次発光量判定手段を備えている。次発光量判定手段では、発光素子29の発光量を現段階より大に切り換える選択信号を選択する際に、選択信号数をn、該選択信号に対応する発光素子29の発光量を小から大にかけて発光量1、発光量2・・・発光量n、現段階の発光量を発光量k(k<n)としたとき、現発光量kの次に選択する発光量を、発光量kの状態での受光信号の信号振幅が、発光量kの状態での受光信号の信号振幅が、最大入力値のr倍以上となっていれば発光量kとなる選択信号を選択、最大入力値のr^2倍以上r倍未満となっていれば発光量k+1となる選択信号を選択、最大入力値のr^3倍以上r^2倍未満となっていれば発光量k+2となる選択信号を選択、・・・・・・・最大入力値のr^(n−k)倍以上r^(n−(k+1))倍未満となっていれば発光量(n−1)となる選択信号を選択、最大入力値のr^(n−k)倍未満となっていれば発光量nとなる選択信号を選択する(但しrは発光量減衰定数(0<r<1))。本実施例では、発光量減衰定数r=0.5として、発光量3は発光量4の0.5倍、発光量2は発光量3の0.5倍、発光量1は発光量2の0.5倍に設定されている。即ち、発光量2は発光量4の0.25倍、発光量1は発光量4の0.125倍となる。この関係から、次発光量判定手段では、「発光量2の状態での受光信号振幅がA/D変換器44の最大入力値の0.5倍以上となっていれば発光量2を選択、A/D変換器44の最大入力値の0.5^2(=0.25)倍以上0.5倍未満となっていれば発光量3を選択、A/D変換器44の最大入力値の0.5^2(=0.25)倍未満となっていれば発光量4を選択する」という判定基準が設けられる。   Further, the light quantity selection means includes the following next light emission quantity determination means. In the next light emission amount determination means, when selecting a selection signal for switching the light emission amount of the light emitting element 29 to be larger than the current stage, the number of selection signals is n, and the light emission amount of the light emitting element 29 corresponding to the selection signal is small to large. Assuming that the light emission amount is 1, the light emission amount 2... The light emission amount n, and the current light emission amount is the light emission amount k (k <n), the light emission amount selected next to the current light emission amount k is the light emission amount k. If the signal amplitude of the received light signal in the state is equal to or greater than r times the maximum input value when the signal amplitude of the received light signal is greater than or equal to r times the maximum input value, the selection signal for the light emission amount k is selected. When r ^ 2 times or more and less than r times, a selection signal is selected that gives a light emission amount k + 1, and when r ^ 3 times or more and less than r ^ 2 times the maximum input value, a selection signal that gives a light emission amount k + 2 is selected. Selection: ... more than r ^ (n-k) times the maximum input value and less than r ^ (n- (k + 1)) times If so, the selection signal for the light emission amount (n-1) is selected, and if it is less than r ^ (nk) times the maximum input value, the selection signal for the light emission amount n is selected (where r is the light emission amount). Attenuation constant (0 <r <1)). In this embodiment, the light emission amount attenuation constant r = 0.5, the light emission amount 3 is 0.5 times the light emission amount 4, the light emission amount 2 is 0.5 times the light emission amount 3, and the light emission amount 1 is the light emission amount 2. It is set to 0.5 times. That is, the light emission amount 2 is 0.25 times the light emission amount 4, and the light emission amount 1 is 0.125 times the light emission amount 4. From this relationship, in the next light emission amount determination means, “if the light reception signal amplitude in the state of light emission amount 2 is 0.5 times or more of the maximum input value of the A / D converter 44, the light emission amount 2 is selected, If the maximum input value of the A / D converter 44 is 0.5 ^ 2 (= 0.25) times or more and less than 0.5 times, the light emission amount 3 is selected, and the maximum input value of the A / D converter 44 is selected. A criterion of “selecting a light emission amount of 4 if it is less than 0.5 ^ 2 (= 0.25) times” is provided.

ここで、本実施例の光波距離計は、従来用いられていた可変濃度フィルタに代えて数パターンの負荷抵抗8,9,10,11による光量調節を行うため、増幅器41の増幅率を従来よりも下げ、A/D変換器44,47,50の分解能を従来よりも上げる構成とした。なお、以降、信号F2,F3についてはF1と同じ原理となるため説明を省略する。   Here, the light wave distance meter of the present embodiment performs light amount adjustment by several patterns of load resistors 8, 9, 10, and 11 instead of the conventionally used variable density filter. The resolution of the A / D converters 44, 47, 50 is increased compared to the conventional one. Hereinafter, the signals F2 and F3 have the same principle as that of F1, and the description thereof is omitted.

可変濃度フィルタを用いる従来の光波距離計では、例えば増幅器のゲインが80dB、A/D変換器の分解能は12bitとすると、飽和領域となる場合に可変濃度フィルタで測距可能域に入るよう調整を行う。一方、本実施例では、飽和領域となる場合は発光素子29の出力が段階的であるため、目標反射物33がプリズムやミラーのような高反射物でないノンプリズム測距の場合、飽和領域となったときの調整が困難となる。そこで、増幅器41のゲインを例えば56dBに下げることで、飽和領域となる可能性を低くできる。さらに、増幅率を下げたことで受光信号振幅が小さくなり、A/D変換器44で振幅が適切に分解されず信号変換の際に小さい信号振幅を誤って0にデジタル化する恐れを回避するため、A/D変換器44の分解能を16bitに上げ、A/D変換値を同等まで向上させている。なお、増幅器41のゲインは、例えば5mの近距離においてKODAK
Grayカード白面等の高反射物を基準として設定した。なお、目標反射物33を高反射物とするプリズム測距の場合の増幅器41のゲインはノンプリズム測距と同じ値を使用した。
In a conventional optical distance meter using a variable density filter, for example, if the gain of the amplifier is 80 dB and the resolution of the A / D converter is 12 bits, the variable density filter is adjusted so that the range can be measured when the saturation range is reached. Do. On the other hand, in this embodiment, when the saturation region is reached, the output of the light emitting element 29 is stepwise. Therefore, in the case of non-prism distance measurement where the target reflector 33 is not a highly reflective object such as a prism or mirror, Adjustment becomes difficult. Therefore, by reducing the gain of the amplifier 41 to 56 dB, for example, the possibility of becoming a saturation region can be reduced. Further, by reducing the amplification factor, the received light signal amplitude is reduced, and the risk that the A / D converter 44 does not properly resolve the amplitude and that the signal amplitude is accidentally digitized to a small signal amplitude is avoided. Therefore, the resolution of the A / D converter 44 is increased to 16 bits, and the A / D conversion value is improved to the same level. Note that the gain of the amplifier 41 is, for example, KODAK at a short distance of 5 m.
A highly reflective object such as a gray card white surface was used as a reference. Note that the gain of the amplifier 41 in the case of prism distance measurement using the target reflector 33 as a highly reflective object was the same value as in non-prism distance measurement.

そして、係るプリズム測距の場合には、初回の発光量は最小発光量1となる選択信号(1)を出力するよう設定されている。最小発光量1を選択しても受光信号振幅がA/D変換器44の飽和領域となる場合には、濃度フィルタ挿入出手段80により、測距光路31間に濃度フィルタ32が挿入され、測距光の受光光量を一定量減衰される。濃度フィルタ32は、従来の固定濃度フィルタよりも減衰量の大きいフィルタを用いる。   In the case of the prism distance measurement, the selection signal (1) is set so that the first light emission amount is the minimum light emission amount 1. If the received light signal amplitude falls within the saturation region of the A / D converter 44 even when the minimum light emission amount 1 is selected, the density filter 32 is inserted between the distance measuring optical paths 31 by the density filter insertion / extraction means 80, and the measurement is performed. The received light amount of the distance light is attenuated by a certain amount. The density filter 32 uses a filter having a larger attenuation than the conventional fixed density filter.

また、演算処理部60は、ノンプリズム測距の場合において、最小発光量1となる選択信号(1)を選択しても受光信号振幅がA/D変換器44の飽和領域となる場合には、自動的にプリズム測距に移行される測距手段自動変更手段が設けられている。   Further, in the case of non-prism distance measurement, the arithmetic processing unit 60 selects the selection signal (1) with the minimum light emission amount of 1 and the received light signal amplitude is in the saturation region of the A / D converter 44. A distance measuring means automatic changing means for automatically shifting to prism distance measurement is provided.

次に、図2に示す、同光波距離計においてプリズム測距モードが選択された場合の測距の手順を示すフローチャート図に基づいて、実施例に係る光波距離計のプリズム測距の手順を説明する。プリズム測距モードが選択されると、まず、ステップ1において、演算処理部60から、発光素子29が最小発光量1となるよう選択信号(1)が出力される。次にステップ2では、A/D変換器44で発光量1での測距光の受光信号振幅が測定される。ステップ3では、演算処理部60の受光レベル判定手段により、受光信号振幅が最大入力値を超えるか否かが判定される。受光レベルが最大入力値を超えない(最大入力値未満)の測定可能域の場合には、ステップ5に移行し、発光量1で測距が行われて終了となる。一方、受光信号振幅が最大入力値を超える(最大入力値以上)の飽和領域である場合には、ステップ4に移行し、濃度フィルタ挿入出手段80によって濃度フィルタ32が挿入されたのちステップ5で測距が行われて終了となる。   Next, the prism distance measurement procedure of the optical distance meter according to the embodiment will be described based on the flowchart of the distance measurement procedure when the prism distance measurement mode is selected in the optical distance meter shown in FIG. To do. When the prism distance measurement mode is selected, first, in step 1, a selection signal (1) is output from the arithmetic processing unit 60 so that the light emitting element 29 has the minimum light emission amount 1. Next, in step 2, the A / D converter 44 measures the light reception signal amplitude of the distance measuring light with the light emission amount 1. In step 3, it is determined by the light reception level determination means of the arithmetic processing unit 60 whether or not the light reception signal amplitude exceeds the maximum input value. In the case of a measurable range where the light reception level does not exceed the maximum input value (less than the maximum input value), the process proceeds to step 5 where distance measurement is performed with the light emission amount of 1 and the process ends. On the other hand, if the received light signal amplitude is in a saturation region where the amplitude exceeds the maximum input value (greater than or equal to the maximum input value), the process proceeds to step 4, and after the density filter 32 is inserted by the density filter insertion / extraction means 80, in step 5. The distance measurement is performed and the process ends.

次に、図3に示す、同光波距離計においてノンプリズム測距モードが選択された場合の測距の手順を示すフローチャート図に基づいて実施例に係る光波距離計のノンプリズム測距の手順を説明する。   Next, the non-prism distance measurement procedure of the light wave distance meter according to the embodiment is shown in FIG. 3 based on the flowchart showing the distance measurement procedure when the non-prism distance measurement mode is selected in the same optical distance meter. explain.

ノンプリズム測距モードが選択されると、まず、ステップ1において、演算処理部60から、発光素子29が発光量2となるよう選択信号(2)が出力される。次にステップ2で、A/D変換器44で発光量2での受光信号振幅が測定され、ステップ3で、演算処理部60の受光レベル判定手段により、受光信号振幅が最大入力値を超えるか否かが判定される。最大入力値を超える場合には、ステップ9に移行し、現発光量2よりも小さい発光量1となるよう選択信号(1)が出力され、ステップ10で、発光量1で再度受光レベル判定手段により受光レベルが判定される。ここで最大入力値を超えない場合には、ステップ11に移行し発光量1を最適として、ステップ13に移行し測距が行われて終了となる。ステップ10で最大入力値を超える場合には、ステップ12に移行し、測距手段自動変更手段によりユーザが測距モードの選択を誤ったと判断して自動的にプリズムモードへ移行してプリズムモードの測距フローを経て終了となる。   When the non-prism distance measurement mode is selected, first, in step 1, a selection signal (2) is output from the arithmetic processing unit 60 so that the light emitting element 29 has a light emission amount of 2. Next, at step 2, the received light signal amplitude at the light emission amount 2 is measured by the A / D converter 44, and at step 3, the received light signal level determination means of the arithmetic processing unit 60 determines whether the received light signal amplitude exceeds the maximum input value. It is determined whether or not. If the maximum input value is exceeded, the process proceeds to step 9 where the selection signal (1) is output so that the light emission amount 1 is smaller than the current light emission amount 2, and in step 10, the light reception level determination means again at the light emission amount 1. Thus, the light reception level is determined. If the maximum input value is not exceeded, the process proceeds to step 11 where the light emission amount 1 is optimum, the process proceeds to step 13 and the distance measurement is performed and the process ends. If the maximum input value is exceeded in step 10, the process proceeds to step 12, and the user automatically determines that the ranging mode is selected by the ranging means automatic changing means and automatically shifts to the prism mode, and the prism mode is changed. The process ends after a distance measurement flow.

一方、ステップ3で最大入力値を超えない場合には、ステップ4に移行し、次発光量判定手段により発光量2での受光信号振幅が最大入力値の0.5倍以上であるか否かが判定され、最大入力値の0.5倍以上であれば、ステップ5に移行し発光量2となるよう選択信号(2)が出力され、ステップ13で発光量2で測距が行われて終了となる。ステップ4で0.5倍未満の場合は、ステップ6に移行し、次発光量判定手段により発光量2での受光信号振幅が最大入力値の0.25(=0.5^2)倍以上0.5倍未満であるか否かが判定され、最大入力値の0.25倍以上0.5倍未満であれば、ステップ7に移行し、発光量3となるよう選択信号(3)が出力され、ステップ13で発光量3で測距が行われて終了となる。また、ステップ6で発光量2の受光信号振幅が最大入力値の0.25倍未満と判定されると、ステップ8に移行し、発光量4を最適として、ステップ13に移行し、発光量4で測距が行われて終了となる。   On the other hand, if the maximum input value is not exceeded in step 3, the process proceeds to step 4 and whether or not the received light signal amplitude at the light emission amount 2 is 0.5 times or more of the maximum input value by the next light emission amount determination means. If the maximum input value is 0.5 times or more, the selection signal (2) is output so that the process proceeds to step 5 so that the light emission amount becomes 2, and the distance measurement is performed with the light emission amount 2 in step 13. End. If it is less than 0.5 times in Step 4, the process proceeds to Step 6 where the light reception signal amplitude at the light emission amount 2 is 0.25 (= 0.5 ^ 2) times or more of the maximum input value by the next light emission amount determination means. It is determined whether or not it is less than 0.5 times. If it is 0.25 times or more and less than 0.5 times the maximum input value, the process proceeds to step 7 where the selection signal (3) is set so that the light emission amount is 3. In step 13, the distance is measured with the light emission amount of 3 and the process ends. If it is determined in step 6 that the received light signal amplitude of the light emission amount 2 is less than 0.25 times the maximum input value, the process proceeds to step 8, the light emission amount 4 is optimized, the process proceeds to step 13, and the light emission amount 4 Measures the distance and ends.

本実施例によれば、ユーザの判断でプリズム測距モードが選択された場合には、予め設定された発光量1か、発光量1において濃度フィルタ32が挿入された状態のいずれかで測距が行われる。プリズム測距モードでは、予め設定された発光量1を用いて濃度フィルタ32を挿入するか否かの2択となるため、もはや光量調節作業がなく、光量調節は即終了する。最小発光量1でもA/D変換器44の飽和領域となるのは、目標反射物33に高反射物を用いて近距離(0m〜10m程度)に設置し、送出した光が全て受光側に入射された場合であり、目標反射物33との距離が遠距離になるほど、送出した光が拡散されて全て受光側に入射されなくなるため飽和しにくくなるので、濃度フィルタ32で近距離の高反射物でも飽和しないようにすると、目標反射物33との距離に依らず、受光信号が確実にA/D変換器44の測定可能域に入るようになる。   According to the present embodiment, when the prism distance measurement mode is selected by the user's judgment, the distance measurement is performed in either the preset light emission amount 1 or the state in which the density filter 32 is inserted at the light emission amount 1. Is done. In the prism distance measurement mode, there are two choices of whether or not to insert the density filter 32 using a preset light emission amount 1, so that there is no more light amount adjustment work, and light amount adjustment is immediately terminated. Even if the minimum light emission amount is 1, the A / D converter 44 becomes a saturated region by using a highly reflective object as the target reflector 33 and installing it at a short distance (about 0 m to 10 m). In this case, as the distance from the target reflector 33 increases, the transmitted light is diffused and is not incident on the light receiving side. If the object is not saturated, the received light signal reliably enters the measurable range of the A / D converter 44 regardless of the distance from the target reflector 33.

ノンプリズム測距モードが選択された場合には、発光素子29が発光量2から開始され、次発光量判定手段により、次の信号選択で最適な発光量に決定される。即ち、光送出手段の発光量を現段階より大に切り換える選択信号を選択する際に判定基準が設けられている(ステップ4、ステップ6)ので、最適な次発光量を予測して発光量を一気にジャンプさせることができ、最適な発光量を2回の信号選択で見つけることができる。よって、最適な発光量が発光量4である場合には、最適な発光量を予測して初回発光量2→発光量4へ一気にジャンプするので、発光量2→発光量3→発光量4と昇順で選択していく場合よりも光量調節作業が大幅に短縮される。   When the non-prism distance measurement mode is selected, the light emitting element 29 starts from the light emission amount 2, and the next light emission amount determination means determines the optimum light emission amount by the next signal selection. That is, since a determination criterion is provided when selecting a selection signal for switching the light emission amount of the light sending means to be larger than the current level (steps 4 and 6), the optimum next light emission amount is predicted and the light emission amount is determined. It is possible to jump at a stretch, and the optimum light emission amount can be found by selecting the signal twice. Therefore, when the optimum light emission amount is the light emission amount 4, the optimum light emission amount is predicted and jumps from the initial light emission amount 2 to the light emission amount 4 at a stretch. Therefore, the light emission amount 2 → the light emission amount 3 → the light emission amount 4 The light quantity adjustment work is greatly shortened compared with the case of selecting in ascending order.

また、最小発光量1を用いても受光レベルが飽和領域となる場合には、演算処理部60が高反射物を視準していると判断し、自動的にプリズム測距モードに移行される(ステップ12)ので、ユーザが測距モードの判断を誤った場合であっても、適切な測距が自動的に成される。   If the light reception level is in the saturation region even when the minimum light emission amount 1 is used, the arithmetic processing unit 60 determines that the highly reflective object is collimated, and automatically shifts to the prism distance measurement mode. Since (Step 12), even if the user makes a mistake in the determination of the distance measurement mode, appropriate distance measurement is automatically performed.

結果、ノンプリズム測距モード、プリズム測距モードのいずれが選択された場合であっても、従来の可変濃度フィルタによる調節やデジタルポテンショメータによる調節よりも、光量調節作業が格段に早く終了する。   As a result, regardless of whether the non-prism distance measurement mode or the prism distance measurement mode is selected, the light amount adjustment operation is completed much earlier than the conventional adjustment using the variable density filter or the adjustment using the digital potentiometer.

さらに、光量調節がモータ等の機械的動作によらず行われるので、使用年数の経過によって機械的不具合が生じることは無い。また、最適な発光量に決定されて受光信号が測定可能域に確実に入るので、略全ての受光信号を測距値算出に用いることができ、高精度な測距値を得ることができる。   Furthermore, since the light quantity adjustment is performed regardless of the mechanical operation of the motor or the like, no mechanical malfunction will occur with the passage of the years of use. Further, since the light receiving signal is surely entered into the measurable range by determining the optimum light emission amount, almost all the light receiving signals can be used for distance measurement calculation, and a highly accurate distance measurement value can be obtained.

さらには、用意した発光段階(1,2,3,4)のうち、発光段階を二分したうちの小さい側の発光量2を初回発光量としたことで、次発光量判定手段(ステップ4、ステップ6)が有効に機能している。即ち、仮に発光量kの状態の受光レベルが飽和領域である場合には、その信号振幅がどれほど最大入力値より大きいかA/D変換器44で判断ができない。しかし、発光量kで飽和していない(測距可能域の)場合は、その信号振幅を測定可能であるため、発光量kの受光レベルが最大入力値に対してどれほど小さいかを測定することができるので、初回の発光量を小さくすれば、次発光量判定手段によって、次発光量を発光量kから何段階上げれば良いのか予測することができる。   Further, among the prepared light emission stages (1, 2, 3, 4), the light emission amount 2 on the smaller side of the light emission stage is divided into the initial light emission quantity, so that the next light emission quantity judging means (step 4, Step 6) is functioning effectively. That is, if the light reception level in the state of the light emission amount k is in the saturation region, the A / D converter 44 cannot determine how much the signal amplitude is larger than the maximum input value. However, when the light emission amount k is not saturated (in the range where the distance can be measured), the signal amplitude can be measured. Therefore, measure how small the light reception level of the light emission amount k is relative to the maximum input value. Therefore, if the initial light emission amount is reduced, the next light emission amount determination means can predict how many steps the next light emission amount should be increased from the light emission amount k.

また、実施例1の変形例として、選択信号数が6(抵抗器が6個)の場合には、光量選択手段における次発光量判定手段において、初回発光量2から発光量3,発光量4,発光量5,発光量6のいずれかを選ぶ判定基準は、「発光量2の状態での受光信号振幅が、A/D変換器44の最大入力値の0.5倍以上となっていれば発光量2を選択、A/D変換器44の最大入力値の0.5^2倍以上0.5倍未満となっていれば発光量3を選択、A/D変換器44の最大入力値の0.5^3倍以上0.5^2倍未満となっていれば発光量4を選択、A/D変換器44の最大入力値の0.5^4倍以上0.5^3倍未満となっていれば発光量5を選択、A/D変換器44の最大入力値の0.5^4倍未満となっていれば発光量6を選択」する。   Further, as a modification of the first embodiment, when the number of selection signals is 6 (six resistors), the next light emission amount determination means in the light quantity selection means performs the first light emission amount 2 to the light emission amount 3 and the light emission amount 4. The criterion for selecting one of the light emission amount 5 and the light emission amount 6 is “the light reception signal amplitude in the state of the light emission amount 2 should be 0.5 times or more of the maximum input value of the A / D converter 44. If the amount of light emission is 2 or more and less than 0.5 ^ 2 times the maximum input value of the A / D converter 44, select the amount of light emission 3 and the maximum input of the A / D converter 44 If the value is 0.5 ^ 3 times or more and less than 0.5 ^ 2 times, the light emission amount 4 is selected, and the maximum input value of the A / D converter 44 is 0.5 ^ 4 times or more and 0.5 ^ 3. If it is less than twice, the light emission amount 5 is selected, and if it is less than 0.5 ^ 4 times the maximum input value of the A / D converter 44, the light emission amount 6 is selected.

さらに、一般的に選択信号がn(抵抗器がn個)用意された場合には、次発光量判定手段における判定基準は「発光量2の状態での受光信号振幅が、A/D変換器44の最大入力値の0.5倍以上となっていれば発光量2を選択、A/D変換器44の最大入力値の0.5^2倍以上0.5倍未満となっていれば発光量3を選択、A/D変換器44の最大入力値の0.5^3倍以上0.5^2倍未満となっていれば発光量4を選択、・・・・・・・A/D変換器44の最大入力値の0.5^(n−2)倍以上0.5^(n−3)倍未満となっていれば発光量(n−1)を選択、A/D変換器44の最大入力値の0.5^(n−2)倍未満となっていれば発光量nを選択」する。   Further, in general, when n selection signals (n resistors) are prepared, the determination criterion in the next light emission amount determination means is “the light reception signal amplitude in the state of light emission amount 2 is A / D converter. If the maximum input value of 44 is 0.5 times or more, the light emission amount 2 is selected, and if it is 0.5 ^ 2 times or more and less than 0.5 times the maximum input value of the A / D converter 44 Select light emission amount 3, select light emission amount 4 if it is 0.5 ^ 3 times or more and less than 0.5 ^ 2 times the maximum input value of A / D converter 44, ... A If the maximum input value of the / D converter 44 is 0.5 ^ (n-2) times or more and less than 0.5 ^ (n-3) times, the light emission amount (n-1) is selected, and A / D If it is less than 0.5 ^ (n-2) times the maximum input value of the converter 44, the light emission amount n is selected ".

なお、初回発光量を発光量2より大きい発光量k(仮に2<k)から始める)場合の次発光量判定手段の一般式は「発光量kの状態で受光レベルがA/D変換器44の最大入力値の0.5倍以上となっていれば発光量kを選択、A/D変換器44の最大入力値の0.5^2倍以上0.5倍未満となっていれば発光量k+1を選択、A/D変換器44の最大入力値の0.5^3倍以上0.5^2倍未満となっていれば発光量k+2を選択、A/D変換器44の最大入力値の0.5^4倍以上0.5^3倍未満となっていれば発光量k+3を選択、A/D変換器44の最大入力値の0.5^5倍以上0.5^4倍未満となっていれば発光量k+4を選択、・・・・・・・A/D変換器44の最大入力値の0.5^(n-k)倍以上0.5^(n−(k+1))倍未満となっていれば発光量(n−1)を選択、A/D変換器44の最大入力値の0.5^(n−k)倍未満となっていれば発光量nを選択」となる。仮に予測した次発光量が最大入力値を超えた場合には、以降の発光量を降順で小に移行させれば、挟み撃ち的に最適な発光量が選択され、数回の信号選択で受光信号振幅は確実に測距可能域に入るので、光量調節作業は従来よりも格段に早い。なお、選択信号数nは、測距仕様時間との兼ね合いと演算処理部60で処理可能である限り増やすことができる。   It should be noted that the general formula of the next light emission amount determination means when the initial light emission amount is larger than the light emission amount 2 (starting from 2 <k) is “the light reception level is A / D converter 44 in the state of the light emission amount k”. If the maximum input value is 0.5 times or more, the light emission amount k is selected, and if the maximum input value of the A / D converter 44 is 0.5 ^ 2 times or more and less than 0.5 times, light emission is performed. Select the amount k + 1, select the light emission amount k + 2 if it is 0.5 ^ 3 times or more and less than 0.5 ^ 2 times the maximum input value of the A / D converter 44, and the maximum input of the A / D converter 44 If the value is 0.5 ^ 4 times or more and less than 0.5 ^ 3 times, the light emission amount k + 3 is selected, and the maximum input value of the A / D converter 44 is 0.5 ^ 5 times or more and 0.5 ^ 4. If it is less than twice, the light emission amount k + 4 is selected,..., 0.5 ^ (n−k) times or more of the maximum input value of the A / D converter 44 and 0.5 ^ (n− ( k + 1)) The light emission amount (n−1) is selected if it is less than 0.5, and the light emission amount n is selected if it is less than 0.5 ^ (nk) times the maximum input value of the A / D converter 44. Become. If the predicted next light emission amount exceeds the maximum input value, the subsequent light emission amount is shifted to small in descending order, and the optimum light emission amount is selected by pinching, and the light reception signal is selected several times. Since the amplitude surely falls within the distance measurement range, the light amount adjustment work is much faster than before. Note that the number n of selection signals can be increased as long as the calculation processing unit 60 can process the balance with the distance measurement specification time.

図4は、本願発明の第2の実施例に係る光波距離計において、ノンプリズム測距モードが選択された場合の測距の手順を示すフローチャート図である。第2の実施例は、初回発光量が発光量1から開始されること以外は実施例1と同様であるため、同一の符号を用いて説明を割愛する。   FIG. 4 is a flowchart showing a distance measurement procedure when the non-prism distance measurement mode is selected in the lightwave distance meter according to the second embodiment of the present invention. Since the second embodiment is the same as the first embodiment except that the initial light emission amount starts from the light emission amount 1, description thereof will be omitted using the same reference numerals.

図4に示すように、ノンプリズム測距モードが選択されると、まず、ステップ1において、演算処理部60から、発光素子29が発光量1となるよう選択信号(1)が出力される。次にステップ2で発光量1での受光信号振幅が測定され、ステップ3で、演算処理部60の受光レベル判定手段により、受光信号振幅が最大入力値を超えるか否かが判定される。最大入力値を超える場合には、ステップ11に移行し、実施例1と同様、ユーザのモード選択ミスと判断して自動的にプリズム測距を行う。   As shown in FIG. 4, when the non-prism distance measurement mode is selected, first, in step 1, a selection signal (1) is output from the arithmetic processing unit 60 so that the light emitting element 29 has a light emission amount 1. Next, at step 2, the light reception signal amplitude at the light emission amount 1 is measured, and at step 3, the light reception level determination means of the arithmetic processing unit 60 determines whether or not the light reception signal amplitude exceeds the maximum input value. If the maximum input value is exceeded, the process proceeds to step 11 and, like the first embodiment, it is determined that the user has made a mode selection error and prism distance measurement is automatically performed.

ステップ3で、最大入力値を超えない場合には、ステップ4に移行し、次発光量判定手段により発光量1での受光信号振幅が最大入力値の0.5倍以上であるか否かが判定され、最大入力値の0.5倍以上であれば、ステップ5に移行し発光量1が最適として、ステップ12で発光量1で測距が行われて終了となる。ステップ4で0.5倍未満の場合は、ステップ6に移行し、次発光量判定手段により発光量1での受光信号振幅が最大入力値の0.25(=0.5^2)倍以上0.5倍未満であるか否かが判定され、最大入力値の0.25倍以上0.5倍未満であれば、ステップ7に移行し、発光量2となるよう選択信号(2)が出力され、ステップ12で発光量2で測距が行われて終了となる。また、ステップ6で発光量2の受光信号振幅が最大入力値の0.25倍未満と判定されると、ステップ8に移行し、次発光量判定手段により発光量1での受光信号振幅が最大入力値の0.125(=0.5^3)倍以上0.25倍未満であるか否かが判定され、最大入力値の0.125倍以上0.25倍未満であれば、ステップ9に移行し、発光量3となるよう選択信号(3)が出力され、ステップ12で発光量3で測距が行われて終了となる。また、ステップ8で発光量1の受光信号振幅が最大入力値の0.125倍未満と判定されると、ステップ10に移行し、発光量4が選択され、ステップ12に移行し、発光量4で測距が行われて終了となる。   If the maximum input value is not exceeded in step 3, the process proceeds to step 4 to determine whether or not the received light signal amplitude at the light emission amount 1 is 0.5 times or more of the maximum input value by the next light emission amount determination means. If it is determined that the value is 0.5 times or more of the maximum input value, the process proceeds to step 5 where the light emission amount 1 is optimum, and distance measurement is performed with the light emission amount 1 in step 12 and the process is terminated. If it is less than 0.5 times in step 4, the process proceeds to step 6 where the light emission signal amplitude at the light emission amount 1 is 0.25 (= 0.5 ^ 2) times or more of the maximum input value by the next light emission amount determination means. It is determined whether or not it is less than 0.5 times, and if it is 0.25 times or more and less than 0.5 times the maximum input value, the process proceeds to step 7 where the selection signal (2) is set so that the light emission amount becomes 2. In step 12, the distance is measured with the light emission amount 2 in step 12, and the process ends. If it is determined in step 6 that the light reception signal amplitude of the light emission amount 2 is less than 0.25 times the maximum input value, the process proceeds to step 8, and the light reception signal amplitude at the light emission amount 1 is maximum by the next light emission amount determination means. It is determined whether or not the input value is 0.125 (= 0.5 ^ 3) times or more and less than 0.25 times, and if it is 0.125 times or more and less than 0.25 times the maximum input value, Step 9 , The selection signal (3) is output so that the light emission amount becomes 3, and the distance measurement is performed with the light emission amount 3 in step 12, and the process is terminated. If it is determined in step 8 that the received light signal amplitude of the light emission amount 1 is less than 0.125 times the maximum input value, the process proceeds to step 10 where the light emission amount 4 is selected, and the process proceeds to step 12 where the light emission amount 4 Measures the distance and ends.

本実施例においても、初回発光量を、用意した発光段階のうち最小の発光量1としたことで、次発光量判定手段(ステップ4、ステップ6、ステップ8)が有効に機能し、2回の信号選択で最適な発光量を見つけることができる。よって、実施例1と同様、ノンプリズム測距モード、プリズム測距モードのいずれが選択された場合であっても、従来よりも光量調節が格段に早く終了する。   Also in this embodiment, the first light emission amount is set to the minimum light emission amount 1 in the prepared light emission stages, so that the next light emission amount determination means (step 4, step 6, and step 8) function effectively, and twice. The optimal light emission can be found by selecting the signal. Therefore, as in the first embodiment, the light amount adjustment is completed much earlier than in the past, regardless of whether the non-prism distance measurement mode or the prism distance measurement mode is selected.

図5は、本願発明の第3の実施例に係る光波距離計において、ノンプリズム測距モードが選択された場合の測距の手順を示すフローチャート図である。第3の実施例は、実施例1と同様の構成で、プリズム測距モードの場合のフローも実施例1と同様である。第3の実施例では、ノンプリズム測距モードの場合に、初回発光量が発光量3から開始され、演算処理部60において、受光レベル判定手段と光量選択手段のみを用いている。   FIG. 5 is a flowchart showing a distance measurement procedure when the non-prism distance measurement mode is selected in the lightwave distance meter according to the third embodiment of the present invention. The third embodiment has the same configuration as that of the first embodiment, and the flow in the prism distance measurement mode is the same as that of the first embodiment. In the third embodiment, in the non-prism distance measurement mode, the initial light emission amount starts from the light emission amount 3, and the arithmetic processing unit 60 uses only the light reception level determination unit and the light amount selection unit.

ノンプリズム測距モードが選択されると、まず、ステップ1において発光量3が選択され、ステップ2で受光信号振幅が測定される。そしてステップ3で受光レベル判定手段により発光量3で受光レベルが判定され、最大入力値を超える場合には、ステップ4で発光量2に切り換えられ、ステップ5で発光量2で受光レベル判定され、最大入力値を超える場合には、ステップ6で発光量1に切り換えられ、ステップ7で発光量1で受光レベル判定され、最大入力値を超える場合には、ステップ8でプリズムモードに自動で移行し、ステップ5で最大入力値を超えない場合には、ステップ12に移行されそのままの発光量2で測距が行われて終了となる。一方、ステップ3で最大入力値を超えないと判定された場合には、ステップ9で発光量4に切り換えられ、ステップ10で発光量4で受光レベル判定され、最大入力値を超えない場合にはステップ12に移行して発光量4で測距され、ステップ10で最大入力値を超える場合には、ステップ11で発光量3に切り換えられてステップ12へ移行して測距されて終了となる。   When the non-prism distance measurement mode is selected, first, the light emission amount 3 is selected in step 1, and the light reception signal amplitude is measured in step 2. In step 3, the light reception level is determined by the light emission level 3 by the light reception level determination means, and when the maximum input value is exceeded, the light emission level 2 is switched in step 4, the light reception level is determined in step 5 and the light emission level 2 is determined. If the maximum input value is exceeded, the light emission level is switched to 1 in step 6, the received light level is determined based on the light emission level 1 in step 7, and if the maximum input value is exceeded, the mode is automatically shifted to the prism mode in step 8. If the maximum input value is not exceeded in step 5, the process proceeds to step 12 to perform distance measurement with the light emission amount 2 as it is, and the process is terminated. On the other hand, if it is determined in step 3 that the maximum input value is not exceeded, the light emission level is switched to 4 in step 9, the light reception level is determined in step 10 based on the light emission level 4, and the maximum input value is not exceeded. When the process proceeds to step 12 and the distance is measured with the light emission amount 4 and the maximum input value is exceeded at step 10, the light emission amount is switched to 3 at step 11, the process proceeds to step 12 and the distance measurement is completed.

本実施例によれば、受光レベル判定手段により、受光信号振幅がA/D変換器44の最大入力値以上か否か(飽和領域か測定可能域か)を判断し(ステップ3,ステップ5,ステップ7,ステップ10)、飽和領域であれば、発光素子29の発光量を現段階から降順に下げるように測定可能域に入るまで信号選択を行う(ステップ3〜ステップ6、ステップ10〜ステップ11)。一方、測定可能域であれば、発光素子29の発光量を現段階から昇順に上げるように、最大入力値を超えないレベルまで信号選択を行う(ステップ3→ステップ9)。発光量1でも飽和する場合には、実施例1と同様に自動でプリズムモードへ移行する(ステップ8)。   According to this embodiment, the light reception level determination means determines whether the light reception signal amplitude is greater than or equal to the maximum input value of the A / D converter 44 (whether it is a saturation region or a measurable region) (steps 3, 5, In step 7 and step 10), in the saturation region, signal selection is performed until the light-emitting element 29 enters the measurable region so as to decrease the light emission amount from the current stage in descending order (step 3 to step 6, step 10 to step 11). ). On the other hand, in the measurable range, signal selection is performed to a level that does not exceed the maximum input value so as to increase the light emission amount of the light emitting element 29 in ascending order from the current stage (step 3 → step 9). If the light emission amount is saturated even when the light emission amount is 1, the system automatically shifts to the prism mode as in the first embodiment (step 8).

これにより、断続的なパターンの発光量の中から最適受光量となる最適な発光量に決定するだけなので、信号選択回数は最大でも用意した抵抗器数と同じ回数で済み、従来よりも光量調節作業が格段に早く終了する。   As a result, it is only necessary to determine the optimum light emission amount that is the optimum light reception amount from the intermittent pattern light emission amount, so the number of signal selections can be the same as the number of resistors prepared at the maximum, and the light intensity adjustment than before The work is completed much earlier.

図6は、本願発明の第4の実施例に係る光波距離計において、ノンプリズム測距モードが選択された場合の測距の手順を示すフローチャート図である。第4の実施例では、ノンプリズム測距モードの場合に、モード開始から2回目に選択される発光量が、初回発光量3から数段小さい発光量1を選択する点のみが実施例3と異なる。   FIG. 6 is a flowchart showing a distance measurement procedure when the non-prism distance measurement mode is selected in the lightwave distance meter according to the fourth embodiment of the present invention. In the fourth embodiment, in the non-prism distance-measuring mode, only the point that the light emission amount selected for the second time from the start of the mode is the light emission amount 1 that is several steps smaller than the initial light emission amount 3 is selected. Different.

ノンプリズム測距モードが選択されると、まず、ステップ1において発光量3が選択され、ステップ2の受光信号振幅測定を経て、ステップ3で受光レベル判定される。ステップ3で最大入力値を超える場合には、ステップ4で発光量1に切り換えられ、ステップ5で発光量1で受光レベル判定され、最大入力値を超える場合には、ステップ6でプリズム測距モードに自動的に移行し、ステップ5で最大入力値を超えない場合には、ステップ7で発光量2に切り換えられ、ステップ8で発光量2で受光レベル判定され、最大入力値を超えない場合には、ステップ13に移行され発光量2で測距されて終了し、ステップ8で最大入力値を超える場合には、ステップ9で発光量1に切り換えられてステップ13で測距されて終了する。一方、ステップ3で最大入力値を超えないと判定された場合には、実施例2と同様となる。   When the non-prism distance measurement mode is selected, first, the light emission amount 3 is selected in step 1, the light reception signal amplitude is measured in step 2, and the light reception level is determined in step 3. If the maximum input value is exceeded in step 3, the light emission level is switched to 1 in step 4, and the light reception level is determined based on the light emission level 1 in step 5. If the maximum input value is exceeded, the prism distance measurement mode is determined in step 6. If the maximum input value is not exceeded in step 5, the light emission level is switched to 2 in step 7, the light reception level is determined based on the light emission level 2 in step 8, and the maximum input value is not exceeded. The process proceeds to step 13 and ends after the distance is measured with the light emission amount 2. If the maximum input value is exceeded in step 8, the light emission amount is switched to 1 in step 9 and the distance is measured in step 13 and the process ends. On the other hand, when it is determined in step 3 that the maximum input value is not exceeded, the same as in the second embodiment.

本実施例によれば、ステップ3の受光レベル判定手段により飽和領域と判定されると、発光素子29の発光量が、発光量3から数段階小さい発光量1に下げられ(ステップ4)、以降、発光量が昇順に選択されて最適な発光量となるまで信号選択を行う(ステップ5〜ステップ9)。   According to the present embodiment, when the light receiving level determining means in step 3 determines that the light is saturated, the light emitting amount of the light emitting element 29 is lowered from the light emitting amount 3 to the light emitting amount 1 that is several steps smaller (step 4). The signal selection is performed until the light emission amount is selected in ascending order and the light emission amount becomes the optimum light emission amount (steps 5 to 9).

本実施例においても、断続的なパターンの中から最適な発光量に決定するだけなので、従来よりも光量調節作業が格段に早く終了する。さらに、初回発光量において飽和領域と判定された場合に、2回目の発光量を数段階小さい発光量を選択し、以降は昇順で発光量を上げるため、挟み撃ち的に最適な発光量に決定できるため、信号選択回数が減り、実施例2よりも光量調節作業が早くなる。
なお、前記実施例1〜4における発光量減衰定数r=0.5は一例であり、0<r<1のものであればこれに限定されない。
Also in the present embodiment, the light emission adjustment work is completed much earlier than in the prior art because only the optimum light emission amount is determined from the intermittent patterns. Furthermore, when the initial light emission amount is determined to be a saturated region, the light emission amount is selected by several steps smaller than the second light emission amount, and thereafter the light emission amount is increased in ascending order, so that the optimal light emission amount can be determined by pinching. Therefore, the number of signal selections is reduced, and the light amount adjustment work is faster than in the second embodiment.
Note that the emission amount attenuation constant r = 0.5 in Examples 1 to 4 is an example, and is not limited to this as long as 0 <r <1.

図7は、本願発明の第5の実施例に係る光波距離計のブロック図である。第5の実施例では、実施例1における抵抗器群70に、抵抗器が複数個用意され、演算処理部60から受光信号振幅を見ながらこれに対応する数の選択信号によって発光素子29の発光量が選択可能な構成とされた他は、実施例1と同様の構成であり、プリズム測距モードのフローも同様である。そして、本実施例における光波距離計は、光量選択手段において、選択信号数をn、該選択信号に対応する光送出手段の発光量を小から大にかけて発光量1、発光量2・・・発光量nとしたとき、初回の発光量は、信号数nを超えない最大の2の冪乗(2^m)に該等する発光量から始められ、後述の最適発光量探索手段によって最適な発光量が決定される。   FIG. 7 is a block diagram of an optical distance meter according to a fifth embodiment of the present invention. In the fifth embodiment, a plurality of resistors are prepared in the resistor group 70 in the first embodiment, and light emission of the light emitting element 29 is performed according to the number of selection signals corresponding to the received light signal amplitude from the arithmetic processing unit 60. Except for the configuration in which the amount can be selected, the configuration is the same as that of the first embodiment, and the flow of the prism distance measurement mode is also the same. In the light wave distance meter in this embodiment, in the light quantity selection means, the number of selection signals is n, and the light emission quantity of the light sending means corresponding to the selection signal is changed from small to large. When the amount is n, the initial light emission amount starts from the light emission amount equal to the maximum power of 2 (2 ^ m) that does not exceed the number of signals n. The amount is determined.

図7に示すように、本実施例の光波距離計では、抵抗器が100個、即ち負荷抵抗101〜負荷抵抗200とこれに一対のアナログスイッチ201〜アナログスイッチ300が用意されており、演算処理部60からは、これに対応する選択信号(1)〜選択信号(100)が発信され、発光素子29の発光段階は100パターンに構成されている。   As shown in FIG. 7, in the lightwave distance meter of the present embodiment, 100 resistors, that is, a load resistor 101 to a load resistor 200 and a pair of analog switches 201 to 300 are prepared. Corresponding selection signals (1) to (100) are transmitted from the unit 60, and the light emission stages of the light emitting elements 29 are configured in 100 patterns.

次に、最適発光量探索手段を、図8a及びbに示す、同光波距離計においてノンプリズム測距モードが選択された場合の測距の手順を示すフローチャート図に基づいて説明する。図8aは初回発光量で最大入力値を超えるため、初回発光量よりも小さい発光量の中から探索するフローであり、図8bは初回発光量で最大入力値を超えないため、初回発光量よりも大きい発光量の中から探索するフローである。   Next, the optimum light emission amount searching means will be described with reference to the flowchart shown in FIGS. 8a and 8b, which shows the distance measurement procedure when the non-prism distance measurement mode is selected in the same optical distance meter. FIG. 8a is a flow for searching from a light emission amount smaller than the initial light emission amount because the initial light emission amount exceeds the maximum input value. FIG. 8b is a flow from the initial light emission amount because the initial light emission amount does not exceed the maximum input value. This is a flow for searching from a large light emission amount.

ノンプリズム測距モードが選択されると、まず、初回の発光量は、選択信号数n=100を越えない最大の2の冪乗2^mから開始する。即ちステップ1で100>2^6=64(m=6)に対応する発光量64が選択される。次に、ステップ2の受光信号振幅測定を経て、ステップ3で受光レベル判定手段にて受光レベルを判定される。発光量64でA/D変換器44に入力される受光信号の信号振幅が最大入力値を超える場合は、ステップ4に移行し、次数を1下げ(m=5)て、64の半分の発光量32(=2^5)に減じたのち、ステップ5でm=0か判定される。ステップ5でm≠0であれば、ステップ6で再度受光レベルを判定される。ステップ6で最大入力値を超える場合には、ステップ9で、32と32の半分の発光量16(=2^4)とで減算する。次にステップ10でm=0か判定し、m=0まで次数が下がったならばステップ11で受光レベル判定手段にて受光レベルを判定される。m=0で無ければステップ6に戻る。ステップ6で最大入力値を超えない場合には、ステップ7で、32と32の半分の発光量16(=2^4)とで加算する。次にステップ8でm=0か判定し、m=0まで次数が下がったならばステップ11で受光レベル判定手段にて受光レベルを判定される。m=0で無ければステップ6に戻る。以降同様の場合はステップ6〜ステップ10を繰り返して次数が下げられ発光量が増減される。ステップ11で最大入力値を超えないと判定されると、これまで操作した発光量のうち最大入力値を超えない最大発光量を最適な発光量とする。また、ステップ5でm=0である場合も、ステップ11に移行する。次にステップ12では、発光量1でも最大入力値を超える場合、ステップ13のプリズム測距に移行する。発光量が1以上で最適な場合、ステップ14に移行して測距されて終了となる。   When the non-prism distance measurement mode is selected, first, the initial light emission amount starts from the maximum power of 2 ^ m that does not exceed the selection signal number n = 100. That is, in step 1, the light emission amount 64 corresponding to 100> 2 ^ 6 = 64 (m = 6) is selected. Next, after the light reception signal amplitude measurement in step 2, the light reception level is determined by the light reception level determination means in step 3. When the signal amplitude of the received light signal input to the A / D converter 44 with the light emission amount 64 exceeds the maximum input value, the process proceeds to step 4 where the order is decreased by 1 (m = 5) and light emission of half of 64 is performed. After the amount is reduced to 32 (= 2 ^ 5), it is determined in step 5 whether m = 0. If m ≠ 0 in step 5, the received light level is determined again in step 6. If the maximum input value is exceeded in step 6, the subtraction is performed in step 9 by the light emission amount 16 (= 2 ^ 4) which is half of 32 and 32. Next, in step 10, it is determined whether m = 0, and if the order has decreased to m = 0, the light reception level is determined in step 11 by the light reception level determination means. If m = 0 is not true, the process returns to step 6. If the maximum input value is not exceeded in step 6, the light emission amount 16 which is half of 32 and 32 (= 2 ^ 4) is added in step 7. Next, in step 8, it is determined whether m = 0, and if the order decreases to m = 0, the light reception level is determined in step 11 by the light reception level determination means. If m = 0 is not true, the process returns to step 6. Thereafter, in the same case, step 6 to step 10 are repeated, the order is lowered, and the light emission amount is increased or decreased. If it is determined in step 11 that the maximum input value is not exceeded, the maximum light emission amount that does not exceed the maximum input value among the light emission amounts operated so far is set as the optimum light emission amount. If m = 0 in step 5, the process proceeds to step 11. Next, in step 12, when even the light emission amount 1 exceeds the maximum input value, the process proceeds to prism ranging in step 13. When the light emission amount is 1 or more and optimal, the process proceeds to step 14 and the distance measurement is completed.

一方、ステップ3で、初回発光量64で受光信号振幅が飽和領域とならない(測定可能域の)場合は、ステップ15に移行し、次数を1下げ(m=5)て、64と64の半分の発光量32(=2^5)とで加算し、ステップ16で発光量が100を超えるか判定する。超えた場合はステップ17で発光量を加算前に戻し次数mは減じたままにステップ15に戻るが、今64+32=96で100を超えないので、ステップ16に移行する。ステップ18ではm=0かを判定し、m=0であれば、ステップ26に移行し受光レベル判定手段にて受光レベルを判定される。m=0で無ければ、ステップ19にて受光レベルを判定される。ステップ19で最大入力値を超えない場合には、ステップ20で、次は96と32の半分の16を加算して、発光量を増加させ、ステップ21で発光量が100を超えるか判定し、超える場合はステップ22で加算前に96に戻し次数mは減じたままにステップ20に戻る。ステップ21で発光量が100を超えなければ、ステップ23でm=0かを判定する。m=0であればステップ26で受光レベル判定手段にて受光レベルを判定される。m=0でなければステップ19に戻る。ステップ19で最大入力値を超えた場合には、ステップ24で、次は96と32の半分の16を減算して、発光量を減少させ、ステップ25でm=0かを判定する。m=0であればステップ26で受光レベル判定手段にて受光レベルを判定される。m=0でなければステップ19に戻る。以降同様の場合はステップ19〜ステップ25を繰り返して発光量が増減され、ステップ26で最大入力値を超えないと判定されると、これまで操作した発光量のうち最大入力値を超えない最大発光量を最適な発光量とする。ステップ27では発光量1での最大入力値を超える場合、ステップ28のプリズム測距に移行する。発光量が1以上で最適な場合、ステップ29に移行して測距されて終了となる。   On the other hand, if the received light signal amplitude does not reach the saturation region at the initial light emission amount 64 in step 3 (in the measurable region), the process proceeds to step 15 where the order is lowered by 1 (m = 5) and is half of 64 and 64. The amount of light emission is 32 (= 2 ^ 5), and it is determined in step 16 whether the amount of light emission exceeds 100. If it exceeds, the light emission amount is returned to before addition in step 17 and the process returns to step 15 with the order m reduced, but now 64 + 32 = 96 and does not exceed 100, so the process proceeds to step 16. In step 18, it is determined whether m = 0, and if m = 0, the process proceeds to step 26 where the light reception level is determined by the light reception level determination means. If m = 0 is not satisfied, the light reception level is determined in step 19. If the maximum input value is not exceeded in step 19, then in step 20, next 16 and half of 96 and 32 are added to increase the light emission amount, and in step 21, it is determined whether the light emission amount exceeds 100, If it exceeds, the value is returned to 96 before the addition in step 22, and the order m is returned to step 20 while the order m is reduced. If the light emission amount does not exceed 100 in step 21, it is determined in step 23 whether m = 0. If m = 0, the received light level is determined by the received light level determining means in step 26. If m = 0, the process returns to step 19. If the maximum input value is exceeded in step 19, then in step 24, the next half of 96 and 32 is subtracted to reduce the light emission amount, and in step 25, it is determined whether m = 0. If m = 0, the received light level is determined by the received light level determining means in step 26. If m = 0, the process returns to step 19. Thereafter, in the same case, the light emission amount is increased or decreased by repeating Step 19 to Step 25, and if it is determined in Step 26 that the maximum input value is not exceeded, the maximum light emission that does not exceed the maximum input value among the light emission amounts operated so far. The amount is set to the optimum light emission amount. In step 27, if the maximum input value at the light emission amount 1 is exceeded, the process proceeds to prism distance measurement in step 28. When the light emission amount is 1 or more and optimal, the process proceeds to step 29, where the distance is measured and the process ends.

次に、最適発光量探索手段を具体的例を挙げて説明する。図9は、最適な発光量が47の場合の光量選択作業を説明する概念図である。なお、黒丸はその発光量で飽和(最大入力値以上)、白丸はその発光量で測定可能(最大入力値未満)であることを示す。   Next, the optimum light emission amount searching means will be described with a specific example. FIG. 9 is a conceptual diagram illustrating the light quantity selection work when the optimum light emission amount is 47. A black circle indicates that the light emission is saturated (greater than the maximum input value), and a white circle indicates that the light emission can be measured (less than the maximum input value).

選択信号数n=100で、最適な発光量が発光量47の場合、初回発光量は100>2^6=64(m=6)である(ステップ1)。初回発光量64>47(ステップ3)であるので、次数を1下げ(m=5)、半分の発光量32とし(ステップ4)、m≠0であるので(ステップ5)、再度受光レベルを判定する(ステップ6)と、32<47であるので、さらに次数を1下げ(m=4)た発光量分を加算して48(64−32+16)とし(ステップ7)、48>47(ステップ6)であるので、さらに次数を1下げ(m=3)た発光量分を減算して40(64−32+16−8)とし(ステップ9)、40<47(ステップ6)であるので、さらに次数を1下げ(m=2)た発光量分を加算して44(64−32+16−8+4)とし(ステップ7)、44<47(ステップ6)であるので、さらに次数を1下げ(m=1)た発光量分を加算して46(64−32+16−8+4+2)とし(ステップ7)、46<47(ステップ6)であるので、さらに次数を1下げ(m=0)た発光量分を加算して47(64−32+16−8+4+2+1)とし(ステップ7)、m=0まで次数が下がった(ステップ8)ので受光レベルを判定すると、発光量47では最大入力値を超えない。そして、発光量64→32(64−32)→48(64−32+16)→40(64−32+16−8)→44(64−32+16−8+4)→46(64−32+16−8+4+2)→47(64−32+16−8+4+2+1)と操作した発光量の中で、最大入力値を超えない発光量は発光量32、40、44、46、47であり、このうち最大発光量は47と選択できる(ステップ11)。このように、最適な発光量47を見つけるための信号選択回数は7回である。   When the number of selection signals n = 100 and the optimal light emission amount is the light emission amount 47, the initial light emission amount is 100> 2 ^ 6 = 64 (m = 6) (step 1). Since the initial light emission amount 64> 47 (step 3), the order is reduced by 1 (m = 5), the light emission amount is half (step 4), and m ≠ 0 (step 5). When the determination is made (step 6), 32 <47, so the light emission amount obtained by lowering the order by 1 (m = 4) is added to obtain 48 (64−32 + 16) (step 7), 48> 47 (step 6), the light emission amount obtained by further reducing the order by 1 (m = 3) is subtracted to 40 (64-32 + 16-8) (step 9), and 40 <47 (step 6). The light emission amount obtained by lowering the order by 1 (m = 2) is added to obtain 44 (64−32 + 16−8 + 4) (step 7), and 44 <47 (step 6). Therefore, the order is further decreased by 1 (m = 1) The amount of emitted light is added to obtain 46 (64-32 + 1). −8 + 4 + 2) (step 7), and 46 <47 (step 6). Therefore, the light emission amount obtained by lowering the order by 1 (m = 0) is added to obtain 47 (64−32 + 16−8 + 4 + 2 + 1) (step 7). ), The order has decreased to m = 0 (step 8), and when the light reception level is determined, the light emission amount 47 does not exceed the maximum input value. The light emission quantity is 64 → 32 (64−32) → 48 (64−32 + 16) → 40 (64−32 + 16−8) → 44 (64−32 + 16−8 + 4) → 46 (64−32 + 16−8 + 4 + 2) → 47 (64 Among the light emission amounts operated as −32 + 16−8 + 4 + 2 + 1), the light emission amounts that do not exceed the maximum input value are the light emission amounts 32, 40, 44, 46, and 47, and the maximum light emission amount can be selected as 47 (step 11). ). Thus, the number of signal selections for finding the optimum light emission amount 47 is seven.

また、図10は、最適な発光量が1の場合の光量選択作業を説明する概念図である。最適な発光量が1の場合は、初回発光量64>1(ステップ3)であるので、次数を1下げ(m=5)、半分の発光量32とし(ステップ4)、m≠0であるので(ステップ5)、再度受光レベルを判定すると、32>1(ステップ6)であるので、さらに次数を1下げ(m=4)た発光量分を減算し16(64−32−16)(ステップ9)、16>1(ステップ6)であるので、さらに次数を1下げ(m=3)て8(64−32−16−8)(ステップ9)、さらに次数を1下げ(m=2)て4(64−32−16−8−4)(ステップ9)、さらに次数を1下げ(m=1)て2(64−32−16−8−4−2)(ステップ9)、さらに次数を1下げ(m=0)て1(64−32−16−8−4−2−1)(ステップ9)、m=0まで次数が下がった(ステップ10)ので受光レベルを判定すると、発光量1では最大入力値を超えない。そして、発光量64→32→16→8→2→1と操作した発光量の中で、最大入力値を超えない最大発光量は1と選択できる(ステップ11)。このように、最適な発光量が初回発光量64(2^m=6)未満の場合は、最適な発光量を見つけるための信号選択回数は必ず7回以内で決まる。   FIG. 10 is a conceptual diagram for explaining the light amount selection work when the optimum light emission amount is 1. FIG. When the optimum light emission amount is 1, since the initial light emission amount 64> 1 (step 3), the order is decreased by 1 (m = 5), and the light emission amount is halved (step 4), and m ≠ 0. Therefore (step 5), if the light reception level is determined again, 32> 1 (step 6). Therefore, the light emission amount obtained by lowering the order by 1 (m = 4) is further subtracted 16 (64-32-16) ( Since Steps 9) and 16> 1 (Step 6), the order is further lowered by 1 (m = 3) and 8 (64-32-16-8) (Step 9), and the order is further lowered by 1 (m = 2). ) 4 (64-32-16-8-4) (step 9), the order is further lowered by 1 (m = 1), 2 (64-32-16-8-4-2) (step 9), and further Decrease the order by 1 (m = 0) to 1 (64-32-16-8-4-2-1) (step 9), until m = 0 If the number has dropped (step 10) to determine the received light level does not exceed the maximum input value in the light-emitting amount 1. The maximum light emission amount that does not exceed the maximum input value among the light emission amounts operated as 64 → 32 → 16 → 8 → 2 → 1 can be selected as 1 (step 11). Thus, when the optimal light emission amount is less than the initial light emission amount 64 (2 ^ m = 6), the number of signal selections for finding the optimal light emission amount is always determined within 7 times.

図11は、最適な発光量が96の場合の光量選択作業を説明する概念図である。初回発光量64<96(ステップ3)であるので、次数を1下げ(m=5)た発光量32を現発光量に加算して96(64+32)する(ステップ15)。発光量96は発光量100を超えず(ステップ16)、m≠0であるので(ステップ18)、再度受光レベルを判定すると、96=96で最大入力値を超えないので(ステップ19)、さらに次数を1下げ(m=4)た発光量分を加算して112(64+32+16)とすると(ステップ20)、発光量100を超える(ステップ21)ので、加算前の発光量96に戻し(ステップ22)、さらに次数を1下げ(m=3)た発光量分を加算して104(64+32+8)とすると(ステップ20)、発光量100を超える(ステップ21)ので、加算前の発光量96に戻し(ステップ22)、さらに次数を1下げ(m=2)た発光量分を加算して100(64+32+4)とすると(ステップ20)、100>96(ステップ19)であるので、さらに次数を1下げ(m=1)た発光量分を減算して98(64+32+4−2)とし(ステップ24)、98>96(ステップ19)であるので、さらに次数を1下げ(m=0)た発光量分を減算して97(64+32+4−2−1)とし(ステップ24)、m=0まで次数が下がった(ステップ25)ので、受光レベルを判定する(ステップ26)と発光量97では最大入力値を超えてしまう。そして、発光量64→96→100→98→97と操作した発光量の中で、最大入力値を超えない最大発光量は96と選択できる(ステップ26)。このように、最適な発光量96を見つけるための信号選択回数は5回である。   FIG. 11 is a conceptual diagram illustrating the light quantity selection work when the optimum light emission amount is 96. Since the initial light emission amount 64 <96 (step 3), the light emission amount 32 obtained by reducing the order by 1 (m = 5) is added to the current light emission amount to 96 (64 + 32) (step 15). Since the light emission amount 96 does not exceed the light emission amount 100 (step 16) and m ≠ 0 (step 18), if the light reception level is determined again, 96 = 96 and the maximum input value is not exceeded (step 19). If the order of emission is reduced by 1 (m = 4) to add 112 (64 + 32 + 16) (step 20), the emission exceeds 100 (step 21), so the emission is returned to 96 before addition (step 22). ) Further, when the light emission amount obtained by lowering the order by 1 (m = 3) is added to 104 (64 + 32 + 8) (step 20), the light emission amount exceeds 100 (step 21), so the light emission amount 96 before the addition is restored. (Step 22) Further, when the light emission amount obtained by lowering the order by 1 (m = 2) is added to be 100 (64 + 32 + 4) (Step 20), 100> 96 (Step 19). Further, the emission amount obtained by lowering the order by 1 (m = 1) is subtracted to 98 (64 + 32 + 4-2) (step 24), and 98> 96 (step 19), so the order is further reduced by 1 (m = 0) is subtracted to 97 (64 + 32 + 4-2-1) (step 24), and the order is reduced to m = 0 (step 25), so the light reception level is judged (step 26) and the light emission amount. In 97, the maximum input value is exceeded. Then, the maximum light emission amount that does not exceed the maximum input value among the light emission amounts operated as 64 → 96 → 100 → 98 → 97 can be selected as 96 (step 26). Thus, the number of signal selections for finding the optimum light emission amount 96 is five.

また、最適な発光量は発光量95の場合、発光量64→96(64+32)→80(64+32−16)→88(64+32−16+8)→92(64+32−16+8+4)→94(64+32−16+8+4+2)→95(64+32−16+8+4+2+1)の選択で、最大入力値を超えない最大発光量は95と選択でき、最適な発光量を見つけるための信号選択回数は7回である。このように最適な発光量が64超の場合でも必ず7回以内で決まる。   When the light emission amount is 95, the light emission amount is 64 → 96 (64 + 32) → 80 (64 + 32-16) → 88 (64 + 32-16 + 8) → 92 (64 + 32-16 + 8 + 4) → 94 (64 + 32-16 + 8 + 4 + 2) → In the selection of 95 (64 + 32-16 + 8 + 4 + 2 + 1), the maximum light emission amount not exceeding the maximum input value can be selected as 95, and the number of signal selections for finding the optimum light emission amount is seven. Thus, even when the optimum light emission amount exceeds 64, it is always determined within 7 times.

また、図12は、最適な発光量が64の場合の光量選択作業を説明する概念図である。最適な発光量が2^m=64(m=6)の場合、発光量64→96(64+32)→80(64+32−16)→72(64+32−16−8)→68(64+32−16−8−4)→66(64+32−16−8−4−2)→65(64+32−16−8−4−2−1)の選択で、最大入力値を超えない最適な発光量は64であることを見つけるための信号選択回数は7回である。このように最適な発光量が64(2^m)の場合でも必ず7回以内で決まる。   FIG. 12 is a conceptual diagram for explaining the light amount selection work when the optimum light emission amount is 64. When the optimal light emission amount is 2 ^ m = 64 (m = 6), the light emission amount 64 → 96 (64 + 32) → 80 (64 + 32-16) → 72 (64 + 32-16-8) → 68 (64 + 32-16-8) -4) → 66 (64 + 32-16-8-4-2) → 65 (64 + 32-16-8-4-2-1), and the optimum light emission amount not exceeding the maximum input value is 64 The number of signal selections for finding is 7 times. Thus, even when the optimum light emission amount is 64 (2 ^ m), it is always determined within seven times.

即ち、選択信号がn個あり、初回発光量をnを超えない最大の2の冪乗2^mから始めると(但し、mは整数かつ2^(m+1)>n≧2^m)、最適な発光量を見つけられる回数はm+1回以内で終了する。最適な発光量が2進法で探索されるため、少ない信号選択回数で効率良く見つけることができる。   That is, when there are n selection signals and the initial light emission amount starts from the largest power of 2 ^ m that does not exceed n (where m is an integer and 2 ^ (m + 1)> n ≧ 2 ^ m), it is optimal. The number of times that a suitable amount of light emission can be found ends within m + 1 times. Since the optimum light emission amount is searched in the binary system, it can be found efficiently with a small number of signal selections.

なお、実施例1〜5において、選択信号を数個同時に動作させても発光素子29から出射可能であるが、負荷抵抗が合成され、光量パワーが精密に把握できなくなるため、選択信号は単独で動作させるのが好ましい。   In the first to fifth embodiments, the light can be emitted from the light emitting element 29 even if several selection signals are operated simultaneously. However, since the load resistance is synthesized and the light power cannot be accurately grasped, the selection signal is independent. It is preferable to operate.

29 発光素子(光送出手段)
31 測距光路
33 目標反射物
35 参照光路
37 切換シャッター(光分出手段)
40 受光素子(受光手段)
44,47,50 A/D変換器(信号変換手段)
60 演算処理部
70 抵抗器群
80 濃度フィルタ挿入出手段
29 Light emitting element (light transmission means)
31 Distance optical path 33 Target reflector 35 Reference optical path 37 Switching shutter (light extraction means)
40 Light receiving element (light receiving means)
44, 47, 50 A / D converter (signal conversion means)
60 arithmetic processing unit 70 resistor group 80 density filter insertion / extraction means

Claims (4)

複数の変調周波数で変調された光を送出する光送出手段と、
前記光送出手段の光を、測定地点に配置した目標反射物までを往復する測距光路または参照光路のうち選択された一方に送出する光分出手段と、
前記測距光路を通過した測距光または前記参照光路を通過した参照光を受光し、それぞれの受光信号を出力する受光手段と、
前記受光信号を測定し、アナログ信号からデジタルデータへ変換する信号変換手段と、
前記光送出手段に負荷されて発光量を調節する抵抗器と、
前記抵抗器を前記受光信号の信号振幅に応じて設定し、前記信号変換手段でデジタル化された測距信号と参照信号の位相差によって前記目標反射物までの直線距離である測距値を算出する演算処理部と、
を備えた光波距離計であって、
前記抵抗器は複数であって、抵抗値大から小にかけてそれぞれが所定の固定抵抗値を持ち、そのうちの一が該抵抗器と一対一対応の選択信号により選択されて、前記光送出手段の発光量が小から大に切り換えられる抵抗器群として設けられ、
前記演算処理部には、
前記信号変換手段に入力された前記受光信号の信号振幅が、該信号変換手段の最大入力値以上か否かを判定する受光レベル判定手段と、
前記受光レベル判定手段により、前記最大入力値以上と判定された場合には、最大入力値未満となるまで前記光送出手段の発光量を小に切り換える前記選択信号を選択し、前記最大入力値未満と判定された場合には、最大入力値を超えない最大の発光量となるまで前記光送出手段の発光量を大に切り換える前記選択信号を選択する光量選択手段と、が設けられ
前記光量選択手段において、前記光送出手段の発光量を現段階より大に切り換える前記選択信号を選択する際に、
前記選択信号数をn、該選択信号に対応する前記光送出手段の発光量を小から大にかけて発光量1、発光量2・・・発光量n、前記現発光量を発光量k(k<n)としたとき、現発光量kの次に選択する発光量を、
発光量kの状態での前記受光信号の信号振幅が、
前記最大入力値のr^2倍以上となっていれば発光量k+1となる選択信号を選択、
前記最大入力値のr^3倍以上r^2倍未満となっていれば発光量k+2となる選択信号を選択、・・・・・・・
前記最大入力値のr^(n−k)倍以上r^(n−(k+1))倍未満となっていれば発光量(n−1)となる選択信号を選択、
前記最大入力値のr^(n−k)倍未満となっていれば発光量nとなる選択信号を選択する(但しrは発光量減衰定数(0<r<1))、次発光量判定手段が設けられたことを特徴とする光波距離計。
Light transmitting means for transmitting light modulated at a plurality of modulation frequencies;
A light extraction means for sending the light of the light sending means to a selected one of a distance measuring optical path or a reference optical path that reciprocates to a target reflector disposed at a measurement point;
A light receiving unit that receives the distance measuring light that has passed through the distance measuring optical path or the reference light that has passed through the reference optical path, and outputs respective light receiving signals;
Signal conversion means for measuring the light reception signal and converting the analog signal into digital data;
A resistor that adjusts the amount of light emitted from the light sending means;
The resistor is set according to the signal amplitude of the light reception signal, and a distance measurement value that is a linear distance to the target reflector is calculated based on a phase difference between the distance measurement signal digitized by the signal conversion means and a reference signal. An arithmetic processing unit to perform,
A lightwave distance meter with a
There are a plurality of resistors, each having a predetermined fixed resistance value from a large resistance value to a small resistance value, one of which is selected by a selection signal corresponding to the resistor in a one-to-one relationship, and the light emitting means emits light. It is provided as a group of resistors whose amount can be switched from small to large,
In the arithmetic processing unit,
A light receiving level determining means for determining whether a signal amplitude of the light receiving signal input to the signal converting means is equal to or greater than a maximum input value of the signal converting means;
When the light receiving level determining means determines that the light intensity is equal to or greater than the maximum input value, the selection signal for switching the light emission amount of the light transmitting means to a small value is selected until the light input level is less than the maximum input value, and less than the maximum input value. A light amount selection means for selecting the selection signal for switching the light emission amount of the light transmission means to a large value until a maximum light emission amount not exceeding the maximum input value is provided ,
In the light amount selection means, when selecting the selection signal for switching the light emission amount of the light transmission means to be larger than the current stage,
The number of the selection signals is n, the light emission amount of the light transmission means corresponding to the selection signal is changed from small to large, the light emission amount 1, the light emission amount 2... The light emission amount n, and the current light emission amount is the light emission amount k (k <k n), the light emission amount to be selected next to the current light emission amount k is
The signal amplitude of the received light signal in the state of light emission amount k is
If the maximum input value r ^ 2 times or more, select a selection signal that gives a light emission amount k + 1,
If the maximum input value is r ^ 3 times or more and less than r ^ 2 times, a selection signal for light emission amount k + 2 is selected.
If the maximum input value is r ^ (n−k) times or more and less than r ^ (n− (k + 1)) times, a selection signal for light emission amount (n−1) is selected.
If the maximum input value is less than r ^ (n−k) times, a selection signal for light emission amount n is selected (where r is a light emission amount attenuation constant (0 <r <1)), and next light emission amount determination. A light wave distance meter characterized in that means are provided .
複数の変調周波数で変調された光を送出する光送出手段と、
前記光送出手段の光を、測定地点に配置した目標反射物までを往復する測距光路または参照光路のうち選択された一方に送出する光分出手段と、
前記測距光路を通過した測距光または前記参照光路を通過した参照光を受光し、それぞれの受光信号を出力する受光手段と、
前記受光信号を測定し、アナログ信号からデジタルデータへ変換する信号変換手段と、
前記光送出手段に負荷されて発光量を調節する抵抗器と、
前記抵抗器を前記受光信号の信号振幅に応じて設定し、前記信号変換手段でデジタル化された測距信号と参照信号の位相差によって前記目標反射物までの直線距離である測距値を算出する演算処理部と、
を備えた光波距離計であって、
前記抵抗器は複数であって、抵抗値大から小にかけてそれぞれが所定の固定抵抗値を持ち、そのうちの一が該抵抗器と一対一対応の選択信号により選択されて、前記光送出手段の発光量が小から大に切り換えられる抵抗器群として設けられ、
前記演算処理部には、
前記信号変換手段に入力された前記受光信号の信号振幅が、該信号変換手段の最大入力値以上か否かを判定する受光レベル判定手段と、
前記受光レベル判定手段により、前記最大入力値以上と判定された場合には、最大入力値未満となるまで前記光送出手段の発光量を小に切り換える前記選択信号を選択し、前記最大入力値未満と判定された場合には、最大入力値を超えない最大の発光量となるまで前記光送出手段の発光量を大に切り換える前記選択信号を選択する光量選択手段と、が設けられ
前記光量選択手段において、前記選択信号数をn、該選択信号に対応する前記光送出手段の発光量を小から大にかけて発光量1、発光量2・・・発光量nとしたとき、初回の発光量を、選択信号数nを超えない2^m(但し、mは整数かつ2^(m+1)>n≧2^m)に対応する発光量2^mから始め、前記受光レベル判定手段により、現発光量が前記最大入力値以上と判定された場合には、前記光送出手段の発光量を、現発光量の次数を1減じた発光量分減算し、前記最大入力値未満と判定された場合には、現発光量の次数を1減じた発光量分加算する(但し、加算の結果発光量nを超える場合には、加算前の発光量に戻し、さらに次数を1減じた発光量分を加算する)ことを、次数mが0となるまで繰り返し、前記次数加減操作で探索した発光量のなかから、最大入力値を超えない最大の発光量となる前記選択信号を選択する最適発光量探索手段が設けられたことを特徴とする光波距離計。
Light transmitting means for transmitting light modulated at a plurality of modulation frequencies;
A light extraction means for sending the light of the light sending means to a selected one of a distance measuring optical path or a reference optical path that reciprocates to a target reflector disposed at a measurement point;
A light receiving unit that receives the distance measuring light that has passed through the distance measuring optical path or the reference light that has passed through the reference optical path, and outputs respective light receiving signals;
Signal conversion means for measuring the light reception signal and converting the analog signal into digital data;
A resistor that adjusts the amount of light emitted from the light sending means;
The resistor is set according to the signal amplitude of the light reception signal, and a distance measurement value that is a linear distance to the target reflector is calculated based on a phase difference between the distance measurement signal digitized by the signal conversion means and a reference signal. An arithmetic processing unit to perform,
A lightwave distance meter with a
There are a plurality of resistors, each having a predetermined fixed resistance value from a large resistance value to a small resistance value, one of which is selected by a selection signal corresponding to the resistor in a one-to-one relationship, and the light emitting means emits light. It is provided as a group of resistors whose amount can be switched from small to large,
In the arithmetic processing unit,
A light receiving level determining means for determining whether a signal amplitude of the light receiving signal input to the signal converting means is equal to or greater than a maximum input value of the signal converting means;
When the light receiving level determining means determines that the light intensity is equal to or greater than the maximum input value, the selection signal for switching the light emission amount of the light transmitting means to a small value is selected until the light input level is less than the maximum input value, and less than the maximum input value. A light amount selection means for selecting the selection signal for switching the light emission amount of the light transmission means to a large value until a maximum light emission amount not exceeding the maximum input value is provided ,
In the light quantity selection means, when the number of the selection signals is n and the light emission quantity of the light sending means corresponding to the selection signal is set to light emission quantity 1, light emission quantity 2... The light emission amount starts from a light emission amount 2 ^ m corresponding to 2 ^ m (where m is an integer and 2 ^ (m + 1)> n ≧ 2 ^ m), which does not exceed the number of selection signals n. When it is determined that the current light emission amount is greater than or equal to the maximum input value, the light emission amount of the light sending means is subtracted by the light emission amount obtained by subtracting the order of the current light emission amount by 1, and determined to be less than the maximum input value. In this case, the light emission amount obtained by subtracting the order of the current light emission amount by 1 is added (however, if the result of addition exceeds the light emission amount n, the light emission amount is returned to the pre-addition light emission amount and the order is further reduced by 1). Repeat until the order m becomes 0, and search by the order addition / subtraction operation. From among the light emission amount, the light wave distance meter, wherein the optimum that the emission amount search means is provided for selecting the selection signal having the maximum light emission amount does not exceed the maximum input value.
前記目標反射物が高反射物でないノンプリズム測距の場合には、前記光量選択手段により前記光送出手段の発光量が切り換えられ、
前記目標反射物が高反射物であるプリズム測距の場合には、予め設定された発光量が前記光送出手段から送出され、前記受光信号が前記信号変換手段の前記最大入力値未満の場合にはそのまま測距が行われ、前記受光信号が前記最大入力値以上である場合には、前記測距光路間に濃度フィルタが挿入されて測距が行われるよう、濃度フィルタ挿入出手段が設けられたことを特徴とする請求項1または2に記載の光波距離計
In the case of non-prism distance measurement where the target reflector is not a high reflector, the light emission amount of the light sending means is switched by the light quantity selecting means,
In the case of prism distance measurement in which the target reflector is a high reflector, a preset light emission amount is sent from the light sending means, and the received light signal is less than the maximum input value of the signal converting means. Is provided with a density filter insertion / extraction means so that a density filter is inserted between the distance measuring optical paths when the received light signal is equal to or greater than the maximum input value. The light wave distance meter according to claim 1 or 2, wherein
前記演算処理部に、前記ノンプリズム測距において、発光量が最小となる前記選択信号を選択しても、前記受光信号の信号振幅が前記信号変換手段の最大入力値以上となる場合には、自動的に前記プリズム測距に移行させる測距手段自動変更手段が設けられたことを特徴とする請求項3に記載の光波距離計。Even if the selection signal that minimizes the amount of light emission is selected in the non-prism distance measurement to the arithmetic processing unit, if the signal amplitude of the received light signal is equal to or greater than the maximum input value of the signal conversion means, 4. The light wave distance meter according to claim 3, further comprising a distance measuring means automatic changing means for automatically shifting to the prism distance measurement.
JP2011108484A 2011-05-13 2011-05-13 Light wave distance meter Active JP5670829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011108484A JP5670829B2 (en) 2011-05-13 2011-05-13 Light wave distance meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011108484A JP5670829B2 (en) 2011-05-13 2011-05-13 Light wave distance meter

Publications (2)

Publication Number Publication Date
JP2012237720A JP2012237720A (en) 2012-12-06
JP5670829B2 true JP5670829B2 (en) 2015-02-18

Family

ID=47460719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011108484A Active JP5670829B2 (en) 2011-05-13 2011-05-13 Light wave distance meter

Country Status (1)

Country Link
JP (1) JP5670829B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6604623B2 (en) * 2015-03-31 2019-11-13 株式会社トプコン Light wave distance meter
KR20170048972A (en) 2015-10-27 2017-05-10 삼성전자주식회사 Apparatus and Method for generating image
WO2020032996A2 (en) * 2018-01-10 2020-02-13 Velodyne Lidar, Inc. Lidar based distance measurements with tiered power control
WO2023181947A1 (en) * 2022-03-23 2023-09-28 株式会社デンソー Object detection device and object detection method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0382909A (en) * 1989-08-25 1991-04-08 Honda Motor Co Ltd Optical reflector detecting apparatus
ES2229258T3 (en) * 1996-12-24 2005-04-16 Datasensor S.P.A. PROCEDURE AND OPTICAL DEVICE FOR MEASURING DISTANCES.
JP4332255B2 (en) * 1999-05-14 2009-09-16 株式会社トプコン Distance measuring device
JP3737771B2 (en) * 2002-04-01 2006-01-25 日本電産コパル株式会社 Light level multi-step distance measuring device
US6707054B2 (en) * 2002-03-21 2004-03-16 Eastman Kodak Company Scannerless range imaging system having high dynamic range
JP2005234359A (en) * 2004-02-20 2005-09-02 Ricoh Co Ltd Optical characteristic measuring apparatus of scanning optical system, method of calibrating optical characteristic measuring apparatus of scanning optical system, scanning optical system and image forming apparatus
JP5665286B2 (en) * 2009-07-02 2015-02-04 株式会社 ソキア・トプコン Light wave distance meter

Also Published As

Publication number Publication date
JP2012237720A (en) 2012-12-06

Similar Documents

Publication Publication Date Title
JP3839851B2 (en) Electronic distance measuring instrument
JP5670829B2 (en) Light wave distance meter
JP4828167B2 (en) Distance measuring apparatus and method
JP4971744B2 (en) Spatial information detector using intensity-modulated light
US7339655B2 (en) Electric optical distance wavelength meter
US6252655B1 (en) Distance measuring apparatus
US8334969B2 (en) Optoelectronic sensor and method for the measurement of distances in accordance with the light transit time principle
JP2010122221A (en) Optoelectronic sensor and method for measuring distance in accordance with light transit time principle
KR20050013184A (en) Device and method for distance measurement
JP2006329797A (en) Light wave range finder
CN116804746A (en) Optical wave distance meter
JP5665286B2 (en) Light wave distance meter
CN112088473B (en) Bias current control method and device of laser
JP2005085815A (en) Wavelength stabilizing unit
JP2009258006A (en) Light wave range finder
JP4002199B2 (en) Light wave distance meter
JP2005064132A (en) Circuit and method for driving laser diode
JP5730094B2 (en) Light wave distance meter
JP2003254858A (en) Optical pulse tester
JP2006138702A (en) Light wave range finder
JP5916443B2 (en) Light wave distance meter
EP3474035B1 (en) Electronic distance meter and modulated frequency determination method of feedback signal
JP5840209B2 (en) Lightwave ranging device
JP2023142442A (en) Light wave rangefinder
JP6875025B1 (en) Gas concentration detector, gas concentration detection system and gas concentration detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141218

R150 Certificate of patent or registration of utility model

Ref document number: 5670829

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250