JP5670096B2 - Method and apparatus for acquiring three-dimensional image of sample using tomography method - Google Patents

Method and apparatus for acquiring three-dimensional image of sample using tomography method Download PDF

Info

Publication number
JP5670096B2
JP5670096B2 JP2010111850A JP2010111850A JP5670096B2 JP 5670096 B2 JP5670096 B2 JP 5670096B2 JP 2010111850 A JP2010111850 A JP 2010111850A JP 2010111850 A JP2010111850 A JP 2010111850A JP 5670096 B2 JP5670096 B2 JP 5670096B2
Authority
JP
Japan
Prior art keywords
image
sample
reconstructed cross
sectional image
fourier transform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010111850A
Other languages
Japanese (ja)
Other versions
JP2011129500A (en
Inventor
金子 武司
武司 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2010111850A priority Critical patent/JP5670096B2/en
Publication of JP2011129500A publication Critical patent/JP2011129500A/en
Application granted granted Critical
Publication of JP5670096B2 publication Critical patent/JP5670096B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明はトモグラフィー法を用いた試料の3次元画像取得方法及び装置に関し、更に詳しくはビームブロードニングの影響を抑え、試料厚み方向の分解能の向上を図ったトモグラフィー法を用いた試料の3次元画像取得方法及び装置に関する。
方法及び装置に関する
The present invention relates to a method and apparatus for obtaining a three-dimensional image of a sample using the tomography method, and more specifically, a three-dimensional image of the sample using the tomography method that suppresses the influence of beam broadening and improves the resolution in the sample thickness direction. The present invention relates to an acquisition method and apparatus.
Method and apparatus

ナノメートルスケールの3次元構造物に対して、透過型電子顕微鏡(TEM)や走査透過型電子顕微鏡(STEM)にコンピュータトモグラフィー(CT)を適用することで、3次元的に構造観察・構造解析を可能とする手法(TEMトモグラフィーやSTEMトモグラフィー)がよく知られている。   By applying computer tomography (CT) to a transmission electron microscope (TEM) or a scanning transmission electron microscope (STEM) on a nanometer-scale three-dimensional structure, three-dimensional structural observation and structural analysis can be performed. Techniques that make it possible (TEM tomography and STEM tomography) are well known.

図17はTEMトモグラフィー・STEMトモグラフィーの模式図である。この手法は、先ずTEMやSTEMを用いて試料1をさまざまな角度で傾斜させ、TEM像若しくはSTEM像を取得する。例えば傾斜角度が±60度で1度ずつ傾斜させ、同時にTEM像若しくはSTEM像を取得すれば、合計取得傾斜画像は121枚となる。取得した傾斜像シリーズに対してCT法を適用することで、再構成断面像を得る。得られた再構成断面像のシリーズを重ね合わせることで3次元画像を得る。   FIG. 17 is a schematic diagram of TEM tomography / STEM tomography. In this method, first, the sample 1 is tilted at various angles using a TEM or STEM to obtain a TEM image or an STEM image. For example, if the tilt angle is ± 60 degrees and tilted one degree at a time, and a TEM image or a STEM image is acquired at the same time, the total acquired tilt image is 121 sheets. By applying the CT method to the acquired tilt image series, a reconstructed cross-sectional image is obtained. A three-dimensional image is obtained by superposing the obtained series of reconstructed sectional images.

従来のこの種の装置としては、透過電子顕微鏡像観察モードと走査電子顕微鏡像観察モードを備えた電子顕微鏡において、集束イオンビーム装置によって加工された試料をSEMモードで目的とする加工部の走査電子像を探し、目的とする走査電子像が探せたら、その部分を透過電子顕微鏡像観察モードに切り替えて透過像を得るようにした技術が知られている(例えば特許文献1参照)。   As a conventional apparatus of this type, in an electron microscope having a transmission electron microscope image observation mode and a scanning electron microscope image observation mode, a sample processed by a focused ion beam apparatus is scanned by a scanning electron of a target processing portion in an SEM mode. A technique is known in which when a desired scanning electron image is found by searching for an image, the portion is switched to a transmission electron microscope image observation mode to obtain a transmission image (see, for example, Patent Document 1).

特許第4111778号公報(段落0042〜0054、図1,図4)Japanese Patent No. 4111778 (paragraphs 0042-0054, FIGS. 1 and 4)

TEMトモグラフィーやSTEMトモグラフィーにより3次元画像を得る場合、試料の厚みが大きいほど、得られる3次元情報が多い。しかしながら、定量性の高い3次元画像を得る場合、ある程度の試料厚みで限界となり、その原因として2つ挙げられる。1つ目の原因は、試料が厚すぎて電子線が試料を透過せずTEM像若しくはSTEM像の取得が困難となる。   When obtaining a three-dimensional image by TEM tomography or STEM tomography, the larger the sample thickness, the more three-dimensional information is obtained. However, when obtaining a highly quantitative three-dimensional image, there is a limit to a certain sample thickness, and there are two causes. The first cause is that the sample is too thick and the electron beam does not pass through the sample, making it difficult to obtain a TEM image or STEM image.

この問題に対しては、加速電圧を上げることで解決することができる。2つ目の原因は、試料が厚すぎるとTEMの場合は色収差が発生し、TEM像の分解能が低下し、STEM像の場合はビームブロードニングの影響により電子線e-が電子線が試料を透過する距離に伴い、空間分解能が低下する。図18はビームブロードニングの説明図である。試料1の浅い部分では電子ビームは拡散が小さく、試料1の深い部分では拡散が大きくなっている。このため、拡散が大きい部分では試料の空間分解能が著しく悪くなる。 This problem can be solved by increasing the acceleration voltage. The second cause is that if the sample is too thick, chromatic aberration occurs in the case of TEM, and the resolution of the TEM image decreases. In the case of STEM image, the electron beam e The spatial resolution decreases with the transmission distance. FIG. 18 is an explanatory diagram of beam broadening. In the shallow part of the sample 1, the electron beam has a small diffusion, and in the deep part of the sample 1, the diffusion is large. For this reason, the spatial resolution of the sample is remarkably deteriorated in a portion where diffusion is large.

本発明はこのような課題に鑑みてなされたものであって、分解能を向上させることができるトモグラフィー法を用いた試料の3次元画像取得方法及び装置を提供することを目的としている。   The present invention has been made in view of such problems, and an object of the present invention is to provide a sample three-dimensional image acquisition method and apparatus using a tomography method capable of improving resolution.

上記した課題を解決するために、本発明は以下のような構成をとっている。   In order to solve the above-described problems, the present invention has the following configuration.

(1)請求項1記載の発明は、走査透過型電子顕微鏡において、試料を傾斜させて計算機トモグラフィー法を用いて試料の第1の3次元画像を得、次に試料を裏返して試料を傾斜させて計算機トモグラフィー法を用いて試料の第2の3次元画像を得、前記得られた試料の第1の3次元画像の上半分を切り出した画像前記試料の第2の3次元画像の上半分を切り出した画像を合成することにより試料の合成3次元画像を得る、ようにしたことを特徴とする。
(1) In the invention according to claim 1, in the scanning transmission electron microscope, the sample is tilted and a first three-dimensional image of the sample is obtained using a computer tomography method, and then the sample is turned over and the sample is tilted. Te to obtain a second three-dimensional image of the sample by using a computer tomography method, an image obtained by cutting out the upper half of the first three-dimensional image of the resulting sample, on the second three-dimensional image of the sample A synthesized three-dimensional image of the sample is obtained by synthesizing the half-cut image .

(2)請求項2記載の発明は、走査透過型電子顕微鏡において、試料の3次元画像を得る3次元画像取得手段を設け、該3次元画像取得手段を用いて試料の第1の3次元画像を得、次に、試料を裏返して該3次元画像取得手段を用いて試料の第2の3次元画像を得、得られた試料の第1の3次元画像の上半分を切り出した画像第2の3次元画像の上半分を切り出した画像を合成することにより試料の合成3次元画像を得る、ようにしたことを特徴とする。
(2) The invention according to claim 2 is provided with a three-dimensional image acquisition means for obtaining a three-dimensional image of the sample in the scanning transmission electron microscope, and the first three-dimensional image of the sample using the three-dimensional image acquisition means. Next, the sample is turned over to obtain a second three-dimensional image of the sample using the three-dimensional image acquisition means, and an image obtained by cutting out the upper half of the first three-dimensional image of the obtained sample ; A synthesized three-dimensional image of the sample is obtained by synthesizing an image obtained by cutting out the upper half of the second three-dimensional image.

(3)請求項3記載の発明は、前記試料を自動で裏返すための試料回転機構を設けたことを特徴とする。   (3) The invention described in claim 3 is characterized in that a sample rotation mechanism for automatically turning over the sample is provided.

(4)請求項4記載の発明は、走査透過型電子顕微鏡において、試料を傾斜させて計算機トモグラフィー法を用いて試料の第1の再構成断面像を得、次に試料を裏返して試料を傾斜させて計算機トモグラフィー法を用いて試料の第2の再構成断面像を得、前記第1の再構成断面像をフーリエ変換して第1のフーリエ変換画像を得、前記第2の再構成断面像に対して回転処理及びフーリエ変換処理を行って第2のフーリエ変換画像を得、これら第1のフーリエ変換画像と第2のフーリエ変換画像とを足し合わせて第3のフーリエ変換画像を得、この第3のフーリエ変換画像を逆フーリエ変換して再構成された再構成断面像を得る、ようにしたことを特徴とする。
(4) In the invention according to claim 4, in the scanning transmission electron microscope, the sample is tilted to obtain a first reconstructed cross-sectional image of the sample using a computer tomography method, and then the sample is turned over to tilt the sample. Then, using the computed tomography method, a second reconstructed cross-sectional image of the sample is obtained, the first reconstructed cross-sectional image is Fourier transformed to obtain a first Fourier transform image, and the second reconstructed cross-sectional image is obtained. Rotation processing and Fourier transform processing are performed on the second Fourier transform image, and the first Fourier transform image and the second Fourier transform image are added to obtain a third Fourier transform image. A reconstructed cross-sectional image obtained by performing inverse Fourier transform on the third Fourier transform image is obtained.

(5)請求項5記載の発明は、走査透過型電子顕微鏡において、試料の再構成断面像を得る再構成断面像取得手段を設け、該再構成断面像取得手段を用いて試料の第1の再構成断面像を得、次に、試料を裏返して前記再構成断面像取得手段を用いて試料の第2の再構成断面像を得、試料の再構成断面像をフーリエ変換するフーリエ変換手段を設け、前記第1の再構成断面像を該フーリエ変換手段を用いてフーリエ変換して第1のフーリエ変換画像を得、前記第2の再構成断面像に対して回転処理及び前記フーリエ変換手段を用いたフーリエ変換処理を行って第2のフーリエ変換画像を得、これら第1のフーリエ変換画像と第2のフーリエ変換画像を加算して第3のフーリエ変換画像を得る加算手段を設け、該加算手段の出力である第3のフーリエ変換画像を逆フーリエ変換する逆フーリエ変換手段を設け、該逆フーリエ変換手段の出力を最終的な再構成断面像とするように構成されたことを特徴とする。
(5) The invention according to claim 5 is the scanning transmission electron microscope, wherein a reconstructed cross-sectional image acquiring means for obtaining a reconstructed cross-sectional image of the sample is provided, and the first of the sample is obtained using the reconstructed cross-sectional image acquiring means. A Fourier transform unit that obtains a reconstructed cross-sectional image, then turns the sample over, obtains a second reconstructed cross-sectional image of the sample using the reconstructed cross-sectional image acquisition unit, and Fourier transforms the reconstructed cross-sectional image of the sample; provided, the first reconstructed cross-sectional image by Fourier transform by using the Fourier transform means to obtain a first Fourier transform image, the rotation process and the Fourier transform means with respect to the second reconstructed cross-sectional image The second Fourier transform image is obtained by performing the Fourier transform processing used , and an addition means for obtaining the third Fourier transform image by adding the first Fourier transform image and the second Fourier transform image is provided. The third hood that is the output of the means The inverse Fourier transform means for inverse Fourier transform of e converted image provided, characterized in that it is configured to output the inverse Fourier transform means such that the final reconstructed cross-sectional image.

(6)請求項6記載の発明は、傾斜STEM像シリーズを取得し、CT法を適用することで試料の特定領域について第1の再構成断面を得、次に、試料を裏返して前記特定領域について再度、傾斜STEM像シリーズを取得し、CT法を適用して第2の再構成断面像を得、第1の再構成断面像と同じ方向になるように第2の再構成断面像を回転させ、第1の再構成断面像と前記回転された第2の再構成断面像を実空間で足し合わせて第3の再構成断面像を得る、ようにしたことを特徴とする。
(6) invention of claim 6, obtains the inclination STEM image series, to obtain a first reconstructed cross-sectional image for a particular region of the sample by applying the CT method, then the turned over specimen again for a particular area, and obtains the inclination STEM image series, give a second reconstructed cross-sectional image by applying the CT method, the second reconstructed cross-sectional image to be the same direction as the first reconstruction sectional image , And the third reconstructed cross-sectional image is obtained by adding the first reconstructed cross-sectional image and the rotated second reconstructed cross-sectional image in real space.

(7)請求項7記載の発明は、走査透過型電子顕微鏡において、試料の再構成断面像を得る再構成断面像取得手段を設け、該再構成断面像取得手段を用いて試料の特定領域について第1の再構成断面像を得、次に、試料を裏返して前記再構成断面像取得手段を用いて試料の前記特定領域について第2の再構成断面像を得、第1の再構成断面像と同じ方向になるように第2の再構成断面像を回転させ、第1の再構成断面像と第2の再構成断面像を実空間で足し合わせる足し合わせ手段を設け、該足し合わせ手段を用いて第1の再構成断面像と前記回転された第2の再構成断面像を実空間で足し合わせて第3の再構成断面像を得るように構成されたことを特徴とする。
(7) The invention according to claim 7 provides a reconstructed cross-sectional image obtaining means for obtaining a reconstructed cross-sectional image of a sample in a scanning transmission electron microscope, and the reconstructed cross-sectional image obtaining means is used for a specific region of the sample. obtain a first reconstructed cross-sectional image, then turned over a sample using the reconstructed cross-sectional image acquisition unit to obtain a second reconstructed cross-sectional image for the particular region of the sample, the first reconstructed sectional images The second reconstructed cross-sectional image is rotated so as to be in the same direction as that of the first reconstructed cross-sectional image and the second reconstructed cross-sectional image are added in real space. And a third reconstructed cross-sectional image is obtained by adding the first reconstructed cross-sectional image and the rotated second reconstructed cross-sectional image in real space.

本発明は以下に示すような効果を有する。   The present invention has the following effects.

(1)請求項1記載の発明によれば、試料の表側から半分、試料を裏返して裏側から半分ずつの3次元画像を求め、これらの画像から試料の3次元画像を得るようにしているので、試料の厚さ方向のどの部分も分解能のよい3次元画像を得ることができる。   (1) According to the first aspect of the present invention, a three-dimensional image of half of the sample from the front side and half of the sample from the reverse side is obtained and a three-dimensional image of the sample is obtained from these images. A three-dimensional image with good resolution can be obtained at any part in the thickness direction of the sample.

(2)請求項2記載の発明によれば、試料の表側から半分、試料を裏返して裏側から半分ずつの3次元画像を求め、これらの画像から試料の3次元画像を得るようにしているので、試料の厚さ方向のどの部分も分解能のよい3次元画像を得ることができる。   (2) According to the second aspect of the present invention, a three-dimensional image of a half is obtained from the front side of the sample, and the sample is turned upside down to obtain a three-dimensional image of the sample from these images. A three-dimensional image with good resolution can be obtained at any part in the thickness direction of the sample.

(3)請求項3記載の発明によれば、試料を自動で裏返すための試料回転機構を設けたので、試料の裏返しを操作性よく行なうことができる。   (3) According to the invention described in claim 3, since the sample rotation mechanism for automatically turning over the sample is provided, the sample can be turned over with good operability.

(4)請求項4記載の発明によれば、請求項1で得られた再構成断面像に対してフーリエ変換を施し、フーリエ変換された2つの再構成断面像を足し合わせたものを更に逆フーリエ変換することにより再構成断面像を求めているので、請求項1の場合よりも試料厚み方向に対して空間分解能が均一で、定量性の高い3次元画像を得ることができる。   (4) According to the invention described in claim 4, the reconstructed cross-sectional image obtained in claim 1 is subjected to Fourier transform, and the result obtained by adding the two reconstructed cross-sectional images subjected to Fourier transform is further reversed. Since the reconstructed cross-sectional image is obtained by Fourier transform, it is possible to obtain a three-dimensional image having a uniform spatial resolution in the sample thickness direction and higher quantitativeness than in the case of claim 1.

(5)請求項5記載の発明によれば、再構成断面像取得手段を用いて試料の第1の再構成断面像を得、次に、試料を裏返して該再構成断面像取得手段を用いて試料の第2の再構成断面像を得、得られた試料の第1の再構成断面像と第2の再構成断面像のフーリエ変換を求め、これらフーリエ変換を加算したものを逆フーリエ変換手段を用いて最終的な3次元画像を得ているので、請求項2記載の場合よりも試料厚み方向に対して空間分解能が均一で、定量性の高い3次元画像を得ることができる。   (5) According to the invention described in claim 5, the first reconstructed cross-sectional image of the sample is obtained using the reconstructed cross-sectional image obtaining means, and then the sample is turned over and the reconstructed cross-sectional image obtaining means is used. The second reconstructed cross-sectional image of the sample is obtained, the Fourier transform of the first reconstructed cross-sectional image and the second reconstructed cross-sectional image of the obtained sample is obtained, and the result obtained by adding these Fourier transforms is the inverse Fourier transform Since the final three-dimensional image is obtained using the means, it is possible to obtain a three-dimensional image having a uniform spatial resolution in the sample thickness direction and having a high quantitativeness as compared with the case of claim 2.

(6)請求項6記載の発明によれば、試料の表面と裏面から撮影して得られた再構成断面像を実空間で足し合わせることにより、空間分解能の均一な再構成断面像を得ることができる。   (6) According to the invention described in claim 6, a reconstructed cross-sectional image having a uniform spatial resolution can be obtained by adding the reconstructed cross-sectional images obtained by photographing from the front and back surfaces of the sample in real space. Can do.

(7)請求項7記載の発明によれば、試料の表面と裏面から撮影して得られた再構成断面像を実空間で足し合わせることにより、空間分解能の均一な再構成断面像を得ることができる。   (7) According to the invention described in claim 7, a reconstructed cross-sectional image having uniform spatial resolution can be obtained by adding the reconstructed cross-sectional images obtained by photographing from the front and back surfaces of the sample in real space. Can do.

本発明による高分解トモグラフィー法の説明図である。It is explanatory drawing of the high-resolution tomography method by this invention. 従来の試料保持台を用いた試料裏面の3次元画像の取得法の説明図である。It is explanatory drawing of the acquisition method of the three-dimensional image of the sample back surface using the conventional sample holding stand. 自動回転機構を持つ試料保持台の模式図である。It is a schematic diagram of the sample holding stand with an automatic rotation mechanism. 1μm厚みのABS樹脂のSTEM像と試料を裏返して撮影した同じ領域のABS樹脂のSTEM像を示す図である。It is a figure which shows the STEM image of the ABS resin of the same area | region which reversed and photographed the STEM image of the ABS resin of 1 micrometer thickness, and the sample. 再構成断面像を示す図である。It is a figure which shows a reconstruction cross-sectional image. 3次元画像のx−yスライス像を示す図である。It is a figure which shows the xy slice image of a three-dimensional image. 3次元画像からの展開図である。It is an expanded view from a three-dimensional image. 本発明による他の高分解能トモグラフィー法の説明図である。It is explanatory drawing of the other high resolution tomography method by this invention. ABS樹脂のSTEM像を示す図である。It is a figure which shows the STEM image of ABS resin. 傾斜STEM像シリーズにCT法を適用して得た再構成断面像を示す図である。It is a figure which shows the reconstruction cross-sectional image obtained by applying CT method to an inclination STEM image series. フーリエ変換像を示す図である。It is a figure which shows a Fourier-transform image. 本発明により得られたフーリエ変換像と再構成断面像を示す図である。It is a figure which shows the Fourier-transform image and reconstruction cross-sectional image which were obtained by this invention. 本発明による他の高分解能トモグラフィー法の説明図である。It is explanatory drawing of the other high resolution tomography method by this invention. ABS樹脂のSTEM像を示す図である。It is a figure which shows the STEM image of ABS resin. 傾斜STEM像シリーズにCT法を適用して得た再構成断面像を示す図である。It is a figure which shows the reconstruction cross-sectional image obtained by applying CT method to an inclination STEM image series. 本発明により得られた再構成断面像を示す図である。It is a figure which shows the reconstruction cross-sectional image obtained by this invention. TEMトモグラフィー・STEMトモグラフィーの模式図である。It is a schematic diagram of TEM tomography and STEM tomography. ビームブロードニングの説明図である。It is explanatory drawing of beam broadening.

(実施例1)
以下、図面を参照して本発明の実施例を詳細に説明する。本発明で用いる走査透過型電子顕微鏡(STEM)は、従来知られている既存のものを用いるものとする。図1は本発明による高分解トモグラフィー法の説明図である。本発明は高傾斜機構を有する試料保持台と、電子顕微鏡像の取得を制御する外部コンピュータと、取得した画像を演算するためのプログラムからなる。以上の構成は、以下に説明する実施例に共通のものである。
Example 1
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The scanning transmission electron microscope (STEM) used in the present invention is an existing one that is conventionally known. FIG. 1 is an explanatory view of a high resolution tomography method according to the present invention. The present invention includes a sample holder having a high tilt mechanism, an external computer that controls acquisition of an electron microscope image, and a program for calculating the acquired image. The above configuration is common to the embodiments described below.

先ず、通常のSTEMトモグラフィーを用いて3次元画像丸1を得る。得た3次元画像丸1のビームブロードニングによる空間分解能の低下の影響が少ない上半分を切り出して3次元画像丸1’を得る。図1の(a)はこのようにして得られた3次元画像丸1’を示している。   First, a three-dimensional image circle 1 is obtained using ordinary STEM tomography. The upper half of the obtained three-dimensional image circle 1 that is less affected by the reduction in spatial resolution due to beam broadening is cut out to obtain a three-dimensional image circle 1 '. FIG. 1A shows the three-dimensional image circle 1 ′ thus obtained.

次に、試料1を裏返して3次元画像丸1を得た同じ領域をSTEMトモグラフィーを用いて3次元画像丸2を得る。同じく得た3次元画像丸2の上半分を切り出し、更に切り出した3次元画像に対して180度回転させて3次元画像丸2’を得る。像を180度回転させる方法は既存の画像処理技術を用いて行なうことができる。図1の(b)はこのようにして得られた3次元画像丸2’を示している。次に、3次元画像丸1’と3次元画像丸2’を合成させて図1の(c)に示すような3次元画像丸3を得る。以上の手法で、試料1の厚み方向に対してビームプロードニングによる分解能の低下を抑え、定量性の高い3次元画像を得ることができる。   Next, the sample 1 is turned over to obtain the three-dimensional image circle 2 by using STEM tomography on the same region where the three-dimensional image circle 1 is obtained. Similarly, the upper half of the obtained three-dimensional image circle 2 is cut out and further rotated by 180 degrees with respect to the cut-out three-dimensional image to obtain a three-dimensional image circle 2 '. The method of rotating the image by 180 degrees can be performed using an existing image processing technique. FIG. 1B shows the three-dimensional image circle 2 ′ obtained in this way. Next, the three-dimensional image circle 1 'and the three-dimensional image circle 2' are combined to obtain a three-dimensional image circle 3 as shown in FIG. With the above method, it is possible to obtain a highly quantitative three-dimensional image by suppressing a decrease in resolution due to beam broadening in the thickness direction of the sample 1.

3次元画像丸2を取得するためには、試料1を裏返す必要がある。従来の試料保持台の場合の3次元画像丸2の取得方法を図2に示す。3次元画像丸2を取得するためには、3次元画像丸1の取得後に図中に示す試料保持台2の先端部分(リテーナー)3を試料保持台2から取り外す。次に、リテーナー3を180度回転させて再び試料保持台2に取り付ける。以上の方法で、3次元画像丸2の取得が可能となる。
(実施例2)
実施例2の高分解トモグラフィー法は実施例1と同じである。試料保持台2が実施例1と異なる。図3は自動回転機構を持つ試料保持台の模式図である。2aは回転機構を持つ試料保持台である。該試料保持台2aには、リテーナー3と試料1が取り付けられている。この状態で、試料保持台2aを180度回転させると、試料1は丁度裏返しになる。実施例2では、試料保持台2aが180度回転することで、従来の試料を裏返す方法に比べて自動で180度回転できるので、試料の裏返しを操作性よく行なうことができる。
In order to acquire the three-dimensional image circle 2, it is necessary to turn the sample 1 upside down. FIG. 2 shows a method for obtaining the three-dimensional image circle 2 in the case of a conventional sample holder. In order to acquire the three-dimensional image circle 2, the tip portion (retainer) 3 of the sample holder 2 shown in the figure is removed from the sample holder 2 after the three-dimensional image circle 1 is acquired. Next, the retainer 3 is rotated 180 degrees and attached to the sample holder 2 again. The three-dimensional image circle 2 can be acquired by the above method.
(Example 2)
The high resolution tomography method of Example 2 is the same as that of Example 1. The sample holder 2 is different from the first embodiment. FIG. 3 is a schematic diagram of a sample holder having an automatic rotation mechanism. Reference numeral 2a denotes a sample holder having a rotation mechanism. A retainer 3 and a sample 1 are attached to the sample holder 2a. In this state, when the sample holder 2a is rotated 180 degrees, the sample 1 is just turned over. In the second embodiment, since the sample holder 2a rotates 180 degrees, it can be automatically rotated 180 degrees compared to the conventional method of turning the sample over, so that the sample can be turned over with good operability.

試料の種類・形状に制限はないが、今回汎用的な高分子材料の一つとしてアクリロニトリル・ブタジエン・スチレン重合合成樹脂(ABS樹脂)を用いた。先ずABS樹脂をウルトラミクロトームを用いて1μm厚みの試料切片を切り出し、TEM・STEM観察用銅製のグリッドの上に乗せた。その後、四酸化オスミウム溶液の蒸気により、ポリブタジエン(PB)相を金属染色させ、STEMを用いて染色した試料のSTEM像を得た。さまざまな角度に傾斜させ、傾斜STEM像シリーズからCT法を適用することで3次元画像丸1を得た。図1(b)と同様に試料を裏返して同じ領域をSTEMトモグラフィーを用いて3次元画像丸2を得た。   The type and shape of the sample are not limited, but acrylonitrile / butadiene / styrene polymerization synthetic resin (ABS resin) was used as one of the general-purpose polymer materials. First, a sample section having a thickness of 1 μm was cut out from the ABS resin using an ultramicrotome and placed on a copper grid for TEM / STEM observation. Thereafter, the polybutadiene (PB) phase was metal-stained with the vapor of the osmium tetroxide solution, and an STEM image of the sample dyed using STEM was obtained. The three-dimensional image circle 1 was obtained by inclining at various angles and applying the CT method from the inclined STEM image series. In the same manner as in FIG. 1B, the sample was turned over, and the same region was obtained using a STEM tomography to obtain a three-dimensional image circle 2.

図4に傾斜角度0度のABS樹脂のSTEM像を示す。図4の(a)が通常のSTEMトモグラフィーで撮影したSTEM像であり、図4の(b)が試料を裏返して同じ領域を撮影したSTEM像である。図4の(a)と(b)とが左右対称の像になっていることが分かる。STEM像中の灰色の相がPB相、白色の相がポリアクリロニトリルとポリスチレンの混合(PA/PS)相である。また、黒色の小さな粒子は金粒子であり、この金粒子は試料表面と裏面に付着している。傾斜角0度のSTEM像中の破線の黒丸で示した試料裏面の金粒子がボケていることが分かり、STEM像からもビームブロードニング(ビーム拡大)の影響が確認できる。   FIG. 4 shows a STEM image of ABS resin with an inclination angle of 0 degree. FIG. 4A is a STEM image taken by normal STEM tomography, and FIG. 4B is a STEM image taken by turning the sample over and photographing the same region. It can be seen that FIGS. 4A and 4B are symmetrical images. The gray phase in the STEM image is the PB phase, and the white phase is a mixed (PA / PS) phase of polyacrylonitrile and polystyrene. Further, the small black particles are gold particles, and these gold particles are attached to the front and back surfaces of the sample. It can be seen that the gold particles on the back side of the sample indicated by the broken black circle in the STEM image with an inclination angle of 0 degrees are blurred, and the influence of beam broadening (beam expansion) can also be confirmed from the STEM image.

図5に再構成断面像を示す。図5の(a)が3次元画像丸1の断面であり、図5の(b)が3次元画像丸2の断面である。図5の(a)と(b)は同じ断面を切り出している。図5中の円状の黒色の相がPB相であり、それ以外の灰色の相(マトリックス及びPB相内部の小さい円状の相)がPA/PS相である。   FIG. 5 shows a reconstructed cross-sectional image. 5A is a cross section of the three-dimensional image circle 1, and FIG. 5B is a cross section of the three-dimensional image circle 2. 5A and 5B are cut out from the same cross section. The circular black phase in FIG. 5 is the PB phase, and the other gray phase (small circular phase inside the matrix and PB phase) is the PA / PS phase.

また、z軸方向は電子線の入射方向であるので、図5(a)では電子線が上から下に向かって電子線が入射しており、(b)では電子線が下から上に入射している。破線の黒枠で囲んでいる領域は、電子線が試料表面から約0.6μmほど内部に入射した領域である。破線の黒枠内部ではPB相(黒相)とマトリックスの境界も鮮明であり、PB相内部の小さなPA/PS相(白相)の存在も鮮明に確認できる。   Further, since the z-axis direction is the incident direction of the electron beam, in FIG. 5A, the electron beam is incident from the top to the bottom, and in FIG. 5B, the electron beam is incident from the bottom to the top. doing. A region surrounded by a broken black frame is a region in which an electron beam is incident about 0.6 μm from the sample surface. The boundary between the PB phase (black phase) and the matrix is also clear inside the broken black frame, and the presence of a small PA / PS phase (white phase) inside the PB phase can also be clearly confirmed.

一方、破線の黒枠外部(試料表面から約0.6μmから試料裏面にかけた領域)では、PB相とマトリックスの境界も不鮮明であり、PB相内部の小さなPA/PS相の存在も不鮮明、若しくは確認できない箇所もある。再構成断面から、電子線が入射する距離に伴いビームブロードニングの影響が大きくなり、分解能の低下が確認できた。   On the other hand, outside the broken black frame (area from about 0.6 μm from the sample surface to the back of the sample), the boundary between the PB phase and the matrix is unclear, and the presence of small PA / PS phase inside the PB phase is unclear or confirmed. There are some parts that cannot be done. From the reconstructed cross section, the effect of beam broadening increased with the distance of incidence of the electron beam, and a decrease in resolution was confirmed.

更に、ビームブロードニングの影響による分解能の低下を示すために、3次元画像をx−y面で切り出したx−yスライス像を図6に示す。図6(a)は3次元画像丸1のx−yスライス像である。図6(a)の上から下に向かって電子線が入射しており、試料表面を0nmとして表面から180nm内部に入った位置から100nm毎にx−yスライス像を切り出している。   Furthermore, in order to show the resolution | decomposability fall by the influence of beam broadening, the xy slice image which cut out the three-dimensional image by the xy plane is shown in FIG. FIG. 6A is an xy slice image of the three-dimensional image circle 1. An electron beam is incident from the top to the bottom of FIG. 6A, and an xy slice image is cut out every 100 nm from a position where the sample surface is set to 0 nm and enters 180 nm from the surface.

図6(b)は3次元画像丸2のx−yスライス像であり、図6(a)とは逆に下から上に向かって電子線が入射している。また、図6(a)と(b)の隣り合うx−yスライス像は、同じ切り出し位置の関係である。図6(a)では表面(上図)から裏面(下図)に向かってx−yスライス像のPB相内部の白色の小さなPA/PS相やマトリックスとPB相との境界が不明瞭になっていく様子が確認できる。   FIG. 6B is an xy slice image of the three-dimensional image circle 2, and an electron beam is incident from the bottom to the top, contrary to FIG. 6A. Further, the adjacent xy slice images in FIGS. 6A and 6B have the same cutout position relationship. In FIG. 6A, the boundary between the small white PA / PS phase and the matrix and the PB phase inside the PB phase of the xy slice image from the front surface (upper diagram) to the rear surface (lower diagram) becomes unclear. You can see how it goes.

図6(b)も試料表面(下図)から裏面(上図)に向かって同じ現象がみられた。このようにビームブロードニングの影響により試料底面に行くほど空間分解能が低下することが明らかになった。そこで、3次元画像丸1及び3次元画像丸2の試料表面から約500nm程度の位置で像を切り出し合成し新たな3次元画像丸3を作成することにした(手法は図1参照)。   In FIG. 6B, the same phenomenon was observed from the sample surface (bottom) to the back surface (top). Thus, it became clear that the spatial resolution decreases toward the bottom of the sample due to the influence of beam broadening. Therefore, it was decided to create a new three-dimensional image circle 3 by cutting out and synthesizing images from the sample surface of the three-dimensional image circle 1 and the three-dimensional image circle 2 at a position of about 500 nm (see FIG. 1 for the method).

図7に3次元画像からの展開図を示す。図7(a)が3次元画像丸1の展開図、(b)が3次元画像丸2の展開図、(c)が3次元画像丸1の表面から約500nmの領域(破線の黒枠の領域)を切り出した3次元画像丸1’と、3次元画像丸2の表面から約500nmの領域(破線の黒枠の領域)を切り出した3次元画像丸2’を合成した3次元画像丸3である。図7(a)と(b)のx−zスライス像(再構成断面像)、y−zスライス像ではz軸方向にビームブロードニングの影響により分解能が低下し、像がボケているのが確認できる。一方、図7(c)では、図7(a)と(b)のビームブロードニングの影響が少ないところの領域を合成することにより、z軸方向に対してビームブロードニングの影響を抑え空間分解能の高い線が得られている。   FIG. 7 shows a development view from a three-dimensional image. 7A is a development view of the three-dimensional image circle 1, FIG. 7B is a development view of the three-dimensional image circle 2, and FIG. 7C is an area of about 500 nm from the surface of the three-dimensional image circle 1 (a black frame area of a broken line). 3D image circle 1 ′ obtained by synthesizing a 3D image circle 1 ′ obtained by cutting out a region of about 500 nm (a dashed black frame region) from the surface of the 3D image circle 2). . In the xz slice images (reconstructed cross-sectional images) and yz slice images in FIGS. 7A and 7B, the resolution is lowered due to the influence of beam broadening in the z-axis direction, and the image is blurred. I can confirm. On the other hand, in FIG. 7C, by combining the regions where the influence of beam broadening in FIGS. 7A and 7B is small, the influence of beam broadening is suppressed in the z-axis direction and the spatial resolution is reduced. A high line is obtained.

以上、詳細に説明したように、本発明によれば、試料厚み方向のビームブロードニングによる空間分解能の低下が低減され、定量性の高い3次元画像の取得が可能となる。
(実施例3)
図8は本発明による他の高分解能トモグラフィー法の説明図である。先ず通常のSTEMトモグラフィーと同様にして傾斜STEM像シリーズを取得し、CT法を適用して再構成断面像丸1を得る。次に、観察した試料を裏返して先ほどと同じ領域について傾斜STEM像シリーズを取得し、CT法を適用して再構成断面像丸2を得る。次に再構成断面像丸1と同じ方向になるように再構成断面像丸2を回転させる。
As described above in detail, according to the present invention, a reduction in spatial resolution due to beam broadening in the sample thickness direction is reduced, and a highly quantitative three-dimensional image can be acquired.
Example 3
FIG. 8 is an explanatory diagram of another high-resolution tomography method according to the present invention. First, an inclined STEM image series is obtained in the same manner as in normal STEM tomography, and a reconstructed cross-sectional image circle 1 is obtained by applying the CT method. Next, the observed sample is turned over to obtain an inclined STEM image series for the same region as before, and a reconstructed cross-sectional image circle 2 is obtained by applying the CT method. Next, the reconstructed cross-sectional image circle 2 is rotated so as to be in the same direction as the reconstructed cross-sectional image circle 1.

次に、再構成断面像丸1をフーリエ変換してフーリエ変換像丸1を得る。次に再構成断面像丸2を180°回転した像をフーリエ変換してフーリエ変換像丸2を得る。次に、このフーリエ変換像丸1とフーリエ変換像丸2を足し合わせてフーリエ変換像丸3を得る。得たフーリエ変換像丸3を逆フーリエ変換して再構成断面像丸3を得ることができる。再構成断面像丸3が得られたら、3次元画像を得ることは既存の技術を用いることができ、容易である。   Next, the reconstructed cross-sectional image circle 1 is Fourier transformed to obtain a Fourier transform image circle 1. Next, the image obtained by rotating the reconstructed cross-sectional image circle 2 by 180 ° is Fourier transformed to obtain the Fourier transform image circle 2. Next, the Fourier transform image circle 3 is obtained by adding the Fourier transform image circle 1 and the Fourier transform image circle 2 together. The obtained Fourier transform image circle 3 can be subjected to inverse Fourier transform to obtain a reconstructed cross-sectional image circle 3. Once the reconstructed cross-sectional image circle 3 is obtained, it is easy to obtain a three-dimensional image using an existing technique.

以上の方法で空間分解能の均一な再構成された再構成画像を得ることができ、この手法を用いた全ての再構成断面像をスタックすることで、空間分解能の高い3次元画像を得ることが可能となる。   A reconstructed image having a uniform spatial resolution can be obtained by the above method, and a three-dimensional image having a high spatial resolution can be obtained by stacking all the reconstructed sectional images using this method. It becomes possible.

試料の種類・形状に制限は無いが、今回汎用的な高分子材料の一つであるアクリロニトリル・ブタジエン・スチレン重合合成樹脂(ABS樹脂)を用いた。先ずABS樹脂をウルトラミクロトームを用いて1μm厚みの試料切片を切り出し、TEM・STEM観察用銅製のグリッドの上に乗せた。その後、四酸化オスミウム溶液の蒸気により、ポリブタジエン(PB)相を金属染色させ、STEMを用いて染色した試料のSTEM像を得た。   Although there is no restriction | limiting in the kind and shape of a sample, the acrylonitrile butadiene styrene polymerization synthetic resin (ABS resin) which is one of the general purpose polymer materials this time was used. First, a sample section having a thickness of 1 μm was cut out from the ABS resin using an ultramicrotome and placed on a copper grid for TEM / STEM observation. Thereafter, the polybutadiene (PB) phase was metal-stained with the vapor of the osmium tetroxide solution, and an STEM image of the sample dyed using STEM was obtained.

図9は傾斜角0°のABS樹脂のSTEM像を示す図である。(a)は1μm厚みのABS樹脂のSTEM像、(b)は試料を裏返して撮影した同じ領域のSTEM像である。図のスケールバーは0.5μmである。(a)と(b)とは左右対称の像になっていることが分かる。STEM像中の灰色の相がPB相、白色の相がポリアクリロニトリルとポリスチレンの混合(PA/PS)相である。また、黒色の小さな粒子は金粒子であり、この金粒子は試料表面と裏面に付着している。傾斜角0°のSTEM像中の破線の黒丸で示した試料裏面の金粒子がボケていることが分かり、STEM像からもビームブロードニングの影響による像のボケが明らかである。   FIG. 9 is a view showing a STEM image of an ABS resin having an inclination angle of 0 °. (A) is a STEM image of a 1 μm thick ABS resin, and (b) is a STEM image of the same region taken by turning the sample over. The scale bar in the figure is 0.5 μm. It can be seen that (a) and (b) are symmetrical images. The gray phase in the STEM image is the PB phase, and the white phase is a mixed (PA / PS) phase of polyacrylonitrile and polystyrene. Further, the small black particles are gold particles, and these gold particles are attached to the front and back surfaces of the sample. It can be seen that the gold particles on the back surface of the sample indicated by the broken black circles in the STEM image with an inclination angle of 0 ° are blurred, and the blur of the image due to the influence of beam broadening is also apparent from the STEM image.

図10は傾斜STEM像シリーズCT法を適用して得た再構成断面像を示す図である。この図は様々な角度に試料を傾斜させて得た傾斜STEM像シリーズにCT法を適用して得た再構成断面像を示す。(a)は紙面に対して上から下に電子線が透過しているために下部でビームブロードニングによる空間分解能の低下が見られ、(b)は紙面に対して下から上に電子線が透過しているために、上部でビームブロードニングによる空間分解能の低下が見られる。   FIG. 10 is a diagram showing a reconstructed cross-sectional image obtained by applying the inclined STEM image series CT method. This figure shows reconstructed cross-sectional images obtained by applying the CT method to a series of tilted STEM images obtained by tilting the sample at various angles. In (a), since the electron beam is transmitted from the top to the bottom with respect to the paper surface, the spatial resolution is reduced due to beam broadening at the bottom, and (b) is the electron beam from the bottom to the top with respect to the paper surface. Due to the transmission, the spatial resolution is reduced by beam broadening at the top.

例えば図10中の白丸部分は(a)の方が各相の境界が鮮明に見え、一方破線白丸部分は(b)の方がPB相内部の小さなPA/PS相の粒子が鮮明に見える。このように、それぞれの再構成断面で空間分解能が不均一である。そこでビームブロードニングによる空間分解能を抑えるために、本発明の手順に従い、それぞれの再構成断面像をフーリエ変換してフーリエ変換像を得た。   For example, in the white circle portion in FIG. 10, the boundary of each phase is clearer in (a), while the broken white circle portion in (b) shows smaller PA / PS phase particles inside the PB phase. Thus, the spatial resolution is not uniform in each reconstructed cross section. Therefore, in order to suppress the spatial resolution due to beam broadening, each reconstructed cross-sectional image was Fourier transformed to obtain a Fourier transformed image according to the procedure of the present invention.

図11はフーリエ変換像を示す図である。(a)は図10の(a)のフーリエ変換像を、(b)は図10の(b)のフーリエ変換像に対応している。2つのフーリエ変換像をフーリエ空間内で足し合わせることでフーリエ変換像を得ることができた(図12(a))。図12は本発明により得られたフーリエ変換像と再構成断面像を示す図である。(a)がフーリエ変換像、(b)が最終的な逆フーリエ変換を行なった後の再構成断面像である。   FIG. 11 is a diagram showing a Fourier transform image. 10A corresponds to the Fourier transform image of FIG. 10A, and FIG. 10B corresponds to the Fourier transform image of FIG. A Fourier transform image could be obtained by adding the two Fourier transform images in Fourier space (FIG. 12A). FIG. 12 is a diagram showing a Fourier transform image and a reconstructed cross-sectional image obtained by the present invention. (A) is a Fourier transform image, (b) is a reconstructed cross-sectional image after the final inverse Fourier transform.

このフーリエ変換像を逆フーリエ変換することで、(b)に示すような再構成断面像を得ることができた。この再構成断面像は、(b)中の実線及び破線の白丸部分両方共位相の境界部分や内部構成が鮮明であり、紙面に対して上下方向への空間分解能の低下もない、空間分解能が均一な定量性の高い再構成断面像である。この実施例によれば、試料の表面と裏面から撮影して得られた再構成断面像をフーリエ空間内で足し合わせることで、試料厚み方向に対してビームブロードニングの影響からくる空間分解能の低下を抑え、空間分解能が均一となり、定量性の高い3次元画像の取得が可能になった。
(実施例4)
図13は本発明による他の高分解能トモグラフィー法の説明図である。先ず、通常のSTEMトモグラフィーと同様にして傾斜STEM像シリーズを取得し、CT法を適用することで再構成断面像丸1を得る。次に、観察した試料を裏返して先ほどと同じ領域を再度、傾斜STEM像シリーズを取得し、CT法を適用して再構成断面像丸2を得る。
By performing inverse Fourier transform on the Fourier transform image, a reconstructed cross-sectional image as shown in (b) could be obtained. In this reconstructed cross-sectional image, both the solid and broken white circles in (b) have clear phase boundaries and internal structures, and there is no decrease in spatial resolution in the vertical direction with respect to the paper surface. It is a reconstructed cross-sectional image with high uniform quantitativeness. According to this embodiment, the reconstructed cross-sectional images obtained by photographing from the front surface and the back surface of the sample are added in Fourier space, thereby reducing the spatial resolution caused by the effect of beam broadening in the sample thickness direction. This makes it possible to obtain a highly quantitative three-dimensional image.
Example 4
FIG. 13 is an explanatory diagram of another high-resolution tomography method according to the present invention. First, a tilted STEM image series is obtained in the same manner as in normal STEM tomography, and the reconstructed cross-sectional image circle 1 is obtained by applying the CT method. Next, the observed sample is turned over, and an inclined STEM image series is acquired again for the same region as before, and a reconstructed cross-sectional image circle 2 is obtained by applying the CT method.

そして、再構成断面像丸1と同じ方向になるように再構成断面像丸2を回転させる。次に、再構成断面像丸1と再構成断面像丸2を実空間で足し合わせて再構成断面像丸3を得る。この実施例は、実施例1がX−Y平面で画像を足し合わせたのに対し、X−Z平面で足し合わせている点が異なる。   Then, the reconstructed sectional image circle 2 is rotated so as to be in the same direction as the reconstructed sectional image circle 1. Next, the reconstructed cross-sectional image circle 1 and the reconstructed cross-sectional image circle 2 are added in real space to obtain a reconstructed cross-sectional image circle 3. This embodiment is different from the embodiment 1 in that the images are added on the XY plane, whereas the images are added on the XZ plane.

以上の手法により、空間分解能の均一な再構成断面像を得ることができ、この手法を用いた全ての再構成断面像をスタックすることで空間分解能の高い3次元像を得ることが可能となる。   With the above method, a reconstructed cross-sectional image having a uniform spatial resolution can be obtained, and a three-dimensional image with a high spatial resolution can be obtained by stacking all reconstructed cross-sectional images using this method. .

試料の種類・形状に制限は無いが、今回汎用的な高分子材料の一つとしてアクリロニトリル・ブタジエン・スチレン重合合成樹脂(ABS樹脂)を用いた。先ずABS樹脂をウルトラミクロトームを用いて1μm厚みの試料切片を切り出し、TEM・STEM観察用銅製のグリッドの上に乗せた。その後、四酸化オスミウム溶液の蒸気により、ポリブタジエン(PB)相を金属染色させ、STEMを用いて染色した試料のSTEM像を得た。   The type and shape of the sample are not limited, but acrylonitrile / butadiene / styrene polymerization synthetic resin (ABS resin) was used as one of the general-purpose polymer materials. First, a sample section having a thickness of 1 μm was cut out from the ABS resin using an ultramicrotome and placed on a copper grid for TEM / STEM observation. Thereafter, the polybutadiene (PB) phase was metal-stained with the vapor of the osmium tetroxide solution, and an STEM image of the sample dyed using STEM was obtained.

図14は傾斜角0°のABS樹脂のSTEM像を示す図である。図14(a)が通常のSTEMトモグラフィーで撮影したSTEM像であり、図14(b)が試料を裏返しにして同じ領域を撮影したSTEM像である。(a)と(b)が左右対称の像になっていることが分かる。STEM像中の灰色の相がPB相、白色の相がポリアクリロニトリルとポリスチレンの混合(PA/PS)相である。また、黒色の小さな粒子は金粒子であり、この金粒子は試料表面と裏面に付着している。   FIG. 14 is a view showing a STEM image of an ABS resin having an inclination angle of 0 °. FIG. 14A is a STEM image photographed by normal STEM tomography, and FIG. 14B is a STEM image photographed in the same region with the sample turned over. It can be seen that (a) and (b) are symmetrical images. The gray phase in the STEM image is the PB phase, and the white phase is a mixed (PA / PS) phase of polyacrylonitrile and polystyrene. Further, the small black particles are gold particles, and these gold particles are attached to the front and back surfaces of the sample.

傾斜角度0°のSTEM像中の破線の黒丸で示した試料裏面の金粒子がボケていることが分かり、STEM像からもビームブロードニングの影響による像のボケが明らかである。図15に様々な角度に試料を傾斜させて得た傾斜STEM像シリーズにCT法を適用して得た再構成断面像を示す。(a)は紙面に対して上から下に電子線が透過しているために下部でビームブロードニングによる空間分解能の低下が見られ、(b)は紙面に対して下から上に電子線が透過しているために上部でビームブロードニングによる空間分解能の低下が見られる。   It can be seen that the gold particles on the back surface of the sample indicated by the broken black circle in the STEM image at an inclination angle of 0 ° are blurred, and the blur of the image due to the effect of beam broadening is also apparent from the STEM image. FIG. 15 shows reconstructed cross-sectional images obtained by applying the CT method to the tilted STEM image series obtained by tilting the sample at various angles. In (a), since the electron beam is transmitted from the top to the bottom with respect to the paper surface, the spatial resolution is reduced due to beam broadening at the bottom, and (b) is the electron beam from the bottom to the top with respect to the paper surface. Since it is transmitted, the spatial resolution is reduced by beam broadening at the top.

例えば、図15中の白丸部分は(a)の方が各相の境界が鮮明に見え、一方破線白丸部分は(b)の方がPB相内部の小さなPA/PS相の粒子が鮮明に見える。このように、それぞれの再構成断面で空間分解能が不均一である。そこで、ビームブロードニングによる空間分解能を抑えるために、本発明の手順に従い、図15の(a),(b)に示す2つの再構成断面像を実空間で足し合わせた。   For example, the white circles in FIG. 15 (a) show clearer boundaries between the phases, while the dashed white circles show clearer PA / PS phase particles inside the PB phase (b). . Thus, the spatial resolution is not uniform in each reconstructed cross section. Therefore, in order to suppress the spatial resolution due to beam broadening, two reconstructed cross-sectional images shown in FIGS. 15A and 15B were added in real space according to the procedure of the present invention.

図16に本発明により得られた再構成断面像を示す。この再構成断面像は図16中の実線及び破線の白丸部分両方共に相の境界部分や内部構造が鮮明であり、紙面に対して上下方向への空間分解能の低下もない、空間分解能が均一な定量性の高い再構成断面像になっていることが分かる。   FIG. 16 shows a reconstructed cross-sectional image obtained by the present invention. In this reconstructed cross-sectional image, both the solid and broken white circles in FIG. 16 have clear phase boundary portions and internal structures, and there is no decrease in the spatial resolution in the vertical direction with respect to the paper surface, and the spatial resolution is uniform. It can be seen that the reconstructed cross-sectional image is highly quantitative.

以上詳細に説明したように、本発明によれば、試料厚み方向のビームブロードニングによる空間分解能の低下が低減され、定量性の高い3次元画像の取得が可能となる。また空間分解能の均一な再構成断面像を得ることができ、この手法を用いた全ての再構成断面像をスタックすることで空間分解能の高い3次元像を得ることが可能となる。   As described above in detail, according to the present invention, a reduction in spatial resolution due to beam broadening in the specimen thickness direction is reduced, and a highly quantitative three-dimensional image can be acquired. In addition, a reconstructed cross-sectional image having a uniform spatial resolution can be obtained, and a three-dimensional image having a high spatial resolution can be obtained by stacking all reconstructed cross-sectional images using this method.

1 試料
2 試料保持台
2a’ 試料保持台
3 リテーナー
1 Sample 2 Sample holder 2a 'Sample holder 3 Retainer

Claims (7)

走査透過型電子顕微鏡において、試料を傾斜させて計算機トモグラフィー法を用いて試料の第1の3次元画像を得、
次に試料を裏返して試料を傾斜させて計算機トモグラフィー法を用いて試料の第2の3次元画像を得、
前記得られた試料の第1の3次元画像の上半分を切り出した画像前記試料の第2の3次元画像の上半分を切り出した画像を合成することにより試料の合成3次元画像を得る、
ようにしたことを特徴とするトモグラフィー法を用いた試料の3次元画像取得方法。
In a scanning transmission electron microscope, the sample is tilted to obtain a first three-dimensional image of the sample using a computed tomography method,
The sample is then turned over and the sample is tilted to obtain a second 3D image of the sample using a computed tomography method,
An image obtained by cutting out the upper half of the first three-dimensional image of the resulting sample, the synthetic 3-dimensional image of the sample by synthesizing the images obtained by cutting out the upper half of the second three-dimensional image of the sample obtain,
A method for acquiring a three-dimensional image of a sample using a tomography method, characterized in that it is configured as described above.
走査透過型電子顕微鏡において、試料の3次元画像を得る3次元画像取得手段を設け、
該3次元画像取得手段を用いて試料の第1の3次元画像を得、
次に、試料を裏返して該3次元画像取得手段を用いて試料の第2の3次元画像を得、
得られた試料の第1の3次元画像の上半分を切り出した画像第2の3次元画像の上半分を切り出した画像を合成することにより試料の合成3次元画像を得る、
ようにしたことを特徴とするトモグラフィー法を用いた試料の3次元画像取得装置。
In the scanning transmission electron microscope, a three-dimensional image acquisition means for obtaining a three-dimensional image of the sample is provided,
Obtaining a first three-dimensional image of the sample using the three-dimensional image obtaining means;
Next, the sample is turned over to obtain a second 3D image of the sample using the 3D image acquisition means,
An image obtained by cutting out upper half of the first three-dimensional image of the obtained sample, obtain a combined three-dimensional image of the sample by synthesizing the images obtained by cutting out the upper half of the second three-dimensional image,
An apparatus for acquiring a three-dimensional image of a sample using a tomography method, characterized in that it is configured as described above.
前記試料を自動で裏返すための試料回転機構を設けたことを特徴とする請求項2記載のトモグラフィー法を用いた試料の3次元画像取得装置。   The apparatus for obtaining a three-dimensional image of a sample using the tomography method according to claim 2, further comprising a sample rotation mechanism for automatically turning over the sample. 走査透過型電子顕微鏡において、試料を傾斜させて計算機トモグラフィー法を用いて試料の第1の再構成断面像を得、
次に試料を裏返して試料を傾斜させて計算機トモグラフィー法を用いて試料の第2の再構成断面像を得、
前記第1の再構成断面像をフーリエ変換して第1のフーリエ変換画像を得、
前記第2の再構成断面像に対して回転処理及びフーリエ変換処理を行って第2のフーリエ変換画像を得、
これら第1のフーリエ変換画像と第2のフーリエ変換画像とを足し合わせて第3のフーリエ変換画像を得、
この第3のフーリエ変換画像を逆フーリエ変換して再構成された再構成断面像を得る、
ようにしたことを特徴とするトモグラフィー法を用いた試料の3次元画像取得方法。
In a scanning transmission electron microscope, the sample is tilted to obtain a first reconstructed cross-sectional image of the sample using a computer tomography method,
The sample is then turned over and the sample is tilted to obtain a second reconstructed cross-sectional image of the sample using computed tomography,
Fourier transforming the first reconstructed cross-sectional image to obtain a first Fourier transform image,
A rotation process and a Fourier transform process are performed on the second reconstructed cross-sectional image to obtain a second Fourier transform image,
The first Fourier transform image and the second Fourier transform image are added to obtain a third Fourier transform image,
The third Fourier transform image is subjected to inverse Fourier transform to obtain a reconstructed sectional image.
A method for acquiring a three-dimensional image of a sample using a tomography method, characterized in that it is configured as described above.
走査透過型電子顕微鏡において、試料の再構成断面像を得る再構成断面像取得手段を設け、
該再構成断面像取得手段を用いて試料の第1の再構成断面像を得、
次に、試料を裏返して前記再構成断面像取得手段を用いて試料の第2の再構成断面像を得、
試料の再構成断面像をフーリエ変換するフーリエ変換手段を設け、
前記第1の再構成断面像を該フーリエ変換手段を用いてフーリエ変換して第1のフーリエ変換画像を得、
前記第2の再構成断面像に対して回転処理及び前記フーリエ変換手段を用いたフーリエ変換処理を行って第2のフーリエ変換画像を得、
これら第1のフーリエ変換画像と第2のフーリエ変換画像を加算して第3のフーリエ変換画像を得る加算手段を設け、
該加算手段の出力である第3のフーリエ変換画像を逆フーリエ変換する逆フーリエ変換手段を設け、
該逆フーリエ変換手段の出力を最終的な再構成断面像とする、
ように構成されたことを特徴とする試料の3次元画像取得装置。
In the scanning transmission electron microscope, a reconstructed cross-sectional image acquisition means for obtaining a reconstructed cross-sectional image of the sample is provided,
A first reconstructed cross-sectional image of the sample is obtained using the reconstructed cross-sectional image acquisition means,
Next, the sample is turned over to obtain a second reconstructed cross-sectional image of the sample using the reconstructed cross-sectional image acquisition means,
A Fourier transform means for Fourier transforming the reconstructed cross-sectional image of the sample is provided,
Fourier transforming the first reconstructed cross-sectional image using the Fourier transform means to obtain a first Fourier transform image,
The second reconstructed cross-sectional image is subjected to rotation processing and Fourier transform processing using the Fourier transform means to obtain a second Fourier transform image,
Adding means for adding the first Fourier transform image and the second Fourier transform image to obtain a third Fourier transform image;
Inverse Fourier transform means for performing inverse Fourier transform on the third Fourier transform image that is the output of the adding means is provided,
The output of the inverse Fourier transform means is the final reconstructed cross-sectional image,
An apparatus for acquiring a three-dimensional image of a sample, characterized by being configured as described above.
傾斜STEM像シリーズを取得し、CT法を適用することで試料の特定領域について第1の再構成断面を得、
次に、試料を裏返して前記特定領域について再度、傾斜STEM像シリーズを取得し、CT法を適用して第2の再構成断面像を得、
次に、第1の再構成断面像と同じ方向になるように第2の再構成断面像を回転させ、
次に、第1の再構成断面像と前記回転された第2の再構成断面像を実空間で足し合わせて第3の再構成断面像を得る、
ようにしたことを特徴とする試料の3次元画像取得方法。
Obtain a first reconstructed cross-sectional image for a specific region of the sample by acquiring a tilted STEM image series and applying the CT method,
Next, the specific area again for Flip the specimen, and obtains the inclination STEM image series, give a second reconstructed cross-sectional image by applying the CT method,
Next, rotate the second reconstructed cross-sectional image so that it is in the same direction as the first reconstructed cross-sectional image,
Next, the first reconstructed cross-sectional image and the rotated second reconstructed cross-sectional image are added in real space to obtain a third reconstructed cross-sectional image.
A method for acquiring a three-dimensional image of a sample, characterized in that it is configured as described above.
走査透過型電子顕微鏡において、試料の再構成断面像を得る再構成断面像取得手段を設け、
該再構成断面像取得手段を用いて試料の特定領域について第1の再構成断面像を得、
次に、試料を裏返して前記再構成断面像取得手段を用いて試料の前記特定領域について第2の再構成断面像を得、
1の再構成断面像と同じ方向になるように第2の再構成断面像を回転させ、
1の再構成断面像と第2の再構成断面像を実空間で足し合わせる足し合わせ手段を設け、
該足し合わせ手段を用いて第1の再構成断面像と前記回転された第2の再構成断面像を実空間で足し合わせて第3の再構成断面像を得る、
ように構成されたことを特徴とする試料の3次元画像取得装置。
In the scanning transmission electron microscope, a reconstructed cross-sectional image acquisition means for obtaining a reconstructed cross-sectional image of the sample is provided,
A first reconstructed cross-sectional image is obtained for a specific region of the sample using the reconstructed cross-sectional image acquisition means,
Next, the sample is turned over to obtain a second reconstructed cross-sectional image for the specific region of the sample using the reconstructed cross-sectional image acquisition means,
Rotate the second reconstructed cross-sectional image to be in the same direction as the first reconstructed cross-sectional image,
Providing an adding means for adding the first reconstructed cross-sectional image and the second reconstructed cross-sectional image in real space;
Using the adding means, the first reconstructed cross-sectional image and the rotated second reconstructed cross-sectional image are added in real space to obtain a third reconstructed cross-sectional image;
An apparatus for acquiring a three-dimensional image of a sample, characterized by being configured as described above.
JP2010111850A 2009-11-17 2010-05-14 Method and apparatus for acquiring three-dimensional image of sample using tomography method Active JP5670096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010111850A JP5670096B2 (en) 2009-11-17 2010-05-14 Method and apparatus for acquiring three-dimensional image of sample using tomography method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009261682 2009-11-17
JP2009261682 2009-11-17
JP2010111850A JP5670096B2 (en) 2009-11-17 2010-05-14 Method and apparatus for acquiring three-dimensional image of sample using tomography method

Publications (2)

Publication Number Publication Date
JP2011129500A JP2011129500A (en) 2011-06-30
JP5670096B2 true JP5670096B2 (en) 2015-02-18

Family

ID=44291851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010111850A Active JP5670096B2 (en) 2009-11-17 2010-05-14 Method and apparatus for acquiring three-dimensional image of sample using tomography method

Country Status (1)

Country Link
JP (1) JP5670096B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013044607A (en) * 2011-08-23 2013-03-04 Sumitomo Rubber Ind Ltd Method of observing rubber material
JP2013057638A (en) * 2011-09-09 2013-03-28 Sumitomo Rubber Ind Ltd Simulation method for rubber materials
JP5395864B2 (en) * 2011-09-14 2014-01-22 住友ゴム工業株式会社 Rubber material simulation method
JP6346034B2 (en) * 2014-08-29 2018-06-20 日本電子株式会社 3D image construction method, image processing apparatus, and electron microscope

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3287858B2 (en) * 1991-05-15 2002-06-04 株式会社日立製作所 Electron microscope device and electron microscope method
JP3304681B2 (en) * 1995-04-25 2002-07-22 株式会社日立製作所 Electron microscope and three-dimensional atomic array observation method
JPH08329875A (en) * 1995-06-01 1996-12-13 Hitachi Ltd Scanning electron microscope and method of displaying specimen image therefor
JPH10214587A (en) * 1997-01-30 1998-08-11 Hitachi Ltd Scanning transmission electron microscope for stereoscopic observation and stereoscopic image forming system
JP2004087214A (en) * 2002-08-26 2004-03-18 Hitachi High-Technologies Corp Sample holder for charged particle beam device
JP2005019218A (en) * 2003-06-26 2005-01-20 Jeol Ltd Electron microscope device
JP4299208B2 (en) * 2004-08-20 2009-07-22 日本電子株式会社 3D image construction method
JP2005032732A (en) * 2004-09-15 2005-02-03 Hitachi Ltd Scanning electron microscope
JP5268324B2 (en) * 2007-10-29 2013-08-21 株式会社日立ハイテクノロジーズ Charged particle beam microscope and microscope method
JP5309552B2 (en) * 2007-12-21 2013-10-09 富士通株式会社 Electron beam tomography method and electron beam tomography apparatus
JP4988662B2 (en) * 2008-07-25 2012-08-01 株式会社日立ハイテクノロジーズ Charged particle beam equipment

Also Published As

Publication number Publication date
JP2011129500A (en) 2011-06-30

Similar Documents

Publication Publication Date Title
Feng et al. Seeing mesoatomic distortions in soft-matter crystals of a double-gyroid block copolymer
Mayo et al. Quantitative X‐ray projection microscopy: phase‐contrast and multi‐spectral imaging
Xu et al. Single-shot three-dimensional structure determination of nanocrystals with femtosecond X-ray free-electron laser pulses
Kübel et al. Recent advances in electron tomography: TEM and HAADF-STEM tomography for materials science and semiconductor applications
Loeber et al. Reducing curtaining effects in FIB/SEM applications by a goniometer stage and an image processing method
McEwen et al. Tomographic three-dimensional reconstruction of cilia ultrastructure from thick sections.
JP5670096B2 (en) Method and apparatus for acquiring three-dimensional image of sample using tomography method
JP6458898B1 (en) Charged particle beam equipment
WO2021027264A1 (en) Method for accurately representing crystal three-dimensional orientation and crystallographic orientation
JP5309552B2 (en) Electron beam tomography method and electron beam tomography apparatus
JP7374860B2 (en) Methods and systems for determining molecular structure
West et al. Combined EBSD/EDS tomography in a dual‐beam FIB/FEG–SEM
Li et al. Revealing nano-scale lattice distortions in implanted material with 3D Bragg ptychography
Oveisi et al. Tilt-less 3-D electron imaging and reconstruction of complex curvilinear structures
Briegel et al. The challenge of determining handedness in electron tomography and the use of DNA origami gold nanoparticle helices as molecular standards
Lepinay et al. Three-dimensional semiconductor device investigation using focused ion beam and scanning electron microscopy imaging (FIB/SEM tomography)
JPH08115699A (en) Device for machining and observing cross section three-dimensionally
Friedrich et al. Phase object reconstruction for 4D-STEM using deep learning
Stegmann et al. Characterization of barrier/seed layer stacks of Cu interconnects by electron tomographic three-dimensional object reconstruction
JP2018128307A (en) Observation method and sample production method
JP2012204041A (en) Electron microscope and three-dimensional image construction method
JP2022159158A (en) Method and system for determining crystal structure
US20220128806A1 (en) Low numerical aperture lens based oblique plane illumination imagining
CN114002240A (en) Electron microscopic three-dimensional reconstruction characterization method for geological sample microstructure
Bayazid et al. Investigation of the Effect of Magnification, Accelerating Voltage, and Working Distance on the 3D Digital Reconstruction Techniques

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111110

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141217

R150 Certificate of patent or registration of utility model

Ref document number: 5670096

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150