JP5670026B2 - Method for suppressing adhesion of powder for coating, powder conveying system for coating, and coating apparatus - Google Patents

Method for suppressing adhesion of powder for coating, powder conveying system for coating, and coating apparatus Download PDF

Info

Publication number
JP5670026B2
JP5670026B2 JP2009091593A JP2009091593A JP5670026B2 JP 5670026 B2 JP5670026 B2 JP 5670026B2 JP 2009091593 A JP2009091593 A JP 2009091593A JP 2009091593 A JP2009091593 A JP 2009091593A JP 5670026 B2 JP5670026 B2 JP 5670026B2
Authority
JP
Japan
Prior art keywords
powder
coating
transport
coating powder
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009091593A
Other languages
Japanese (ja)
Other versions
JP2010241550A (en
Inventor
秀匡 高奈
秀匡 高奈
秀哉 西山
秀哉 西山
志向 虻川
志向 虻川
剛 高畠
剛 高畠
吉雄 難波
吉雄 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tocalo Co Ltd
Original Assignee
Tocalo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tocalo Co Ltd filed Critical Tocalo Co Ltd
Priority to JP2009091593A priority Critical patent/JP5670026B2/en
Publication of JP2010241550A publication Critical patent/JP2010241550A/en
Application granted granted Critical
Publication of JP5670026B2 publication Critical patent/JP5670026B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Transport Of Granular Materials (AREA)

Description

本発明は、ガスにより気流搬送される被覆用粉体が搬送路の壁面部分に付着することを抑制する被覆用粉体の付着抑制方法、被覆用粉体の搬送方法、被覆用粉体搬送システム、及び搬送されてきた被覆用粉体を溶融状態にし、これを基材の表面に衝突させてその表面に皮膜を形成する被覆装置、皮膜の形成方法に関する。   The present invention relates to a coating powder adhesion suppression method, a coating powder conveyance method, and a coating powder conveyance system that suppresses the coating powder that is air-flow conveyed by gas from adhering to the wall surface portion of the conveyance path. Further, the present invention relates to a coating apparatus and a coating method for forming a coating on the surface of the coating powder that has been conveyed by bringing the coating powder into a molten state and colliding it with the surface of a substrate.

従来、粉体を所要量ずつ搬送し装置内へ供給する方法として、チューブ状の搬送管に粉体を送り込み、それと共に搬送方向にガスを流して同粉体を搬送口まで気流搬送する方法がとられている。このような搬送方法を利用したものとして、溶射により基材の表面へ皮膜を形成するための溶射装置が挙げられる。溶射は、セラミック等の溶射粉体(被覆用粉体)を熱源により溶融させて溶射粒子とし、これを基材に衝突させて溶射皮膜を形成するものであり、各種機械部品の耐摩耗性や耐熱性等を向上させることができる。   Conventionally, as a method of transporting powder by a required amount and supplying it into the apparatus, there is a method in which powder is fed into a tube-shaped transport tube and gas is flowed in the transport direction along with the powder to the transport port. It has been taken. As an apparatus utilizing such a conveying method, a thermal spraying apparatus for forming a film on the surface of a substrate by thermal spraying can be mentioned. Thermal spraying is a process in which a thermal spray powder (coating powder) such as ceramic is melted by a heat source to form thermal spray particles, which are then collided with a substrate to form a thermal spray coating. Heat resistance and the like can be improved.

上記溶射装置として、溶射トーチ、この溶射トーチに溶射粉体を導入するチューブ状の搬送管、及びこの搬送管に溶射粉体を供給するパウダーフィーダー等を備えたものが知られている(例えば、特許文献1)。上記溶射トーチには、陽極部と陰極部が設けられており、その間でアークを発生させると、同溶射トーチに導入された作動ガスがプラズマとなり、プラズマジェットとして噴出される。ここに溶射粉体を導入し溶融させて溶射粒子とし、この溶射粒子を基材に衝突させることで溶射皮膜を形成する。この溶射装置では、搬送管に搬送用のガスを流し、そのガス流にのせて溶射粉体を気流搬送している。固定されたパウダーフィーダーに対して溶射トーチが自由に動けるようにするため、搬送管には可撓性を有した比較的長い樹脂製のものが使用されている。   As the thermal spraying device, a thermal spraying torch, a tube-shaped transport pipe that introduces thermal spray powder into the thermal spray torch, and a powder feeder that supplies thermal spray powder to the transport pipe are known (for example, Patent Document 1). The spraying torch is provided with an anode part and a cathode part. When an arc is generated between the anode part and the cathode part, the working gas introduced into the spraying torch becomes plasma and is ejected as a plasma jet. The thermal spray powder is introduced and melted to form thermal spray particles, and the thermal spray coating is formed by colliding the thermal spray particles with the substrate. In this thermal spraying apparatus, a transport gas is passed through a transport pipe, and the sprayed powder is transported in an air stream on the gas flow. In order to allow the spraying torch to move freely with respect to the fixed powder feeder, a relatively long resin made of flexible resin is used for the transfer tube.

特開2004−81915号公報JP 2004-81915 A

図5に示すように、溶射粉体103が、ガス102のガス流により搬送管100の搬送路101を通過する際、当該溶射粉体103が搬送路101の壁面101aへ擦れることで、双方が異符号の電荷(例えば、搬送路101の壁面101aがプラス、溶射粉体103がマイナス)を帯び、それによるクーロン力が溶射粉体103に作用する。その結果、同図に示すように、溶射粉体103が壁面101aへ付着し堆積してしまう。   As shown in FIG. 5, when the sprayed powder 103 passes through the transport path 101 of the transport pipe 100 by the gas flow of the gas 102, the sprayed powder 103 rubs against the wall surface 101 a of the transport path 101, thereby Charges having different signs (for example, the wall surface 101 a of the conveyance path 101 is positive and the thermal spray powder 103 is negative), and the Coulomb force thereby acts on the thermal spray powder 103. As a result, as shown in the figure, the sprayed powder 103 adheres to and accumulates on the wall surface 101a.

成膜プロセスを続けるうちに、搬送路101の壁面101aへの溶射粉体103の付着量が増加していくと、搬送管100で搬送される溶射粉体103の単位時間当たりの搬送量が小さくなり、成膜プロセスにおける均一な条件を長時間維持し難くなる。成膜プロセス中に条件が変わってしまうと、大面積における均一な膜厚、膜質を有する溶射皮膜を得るのが困難となる。また、溶射粉体103の付着量が更に増加し、搬送路101が溶射粉体103で閉塞されると、成膜プロセスを中断しなければならない。成膜プロセスを中断すると、膜質の変化を招くおそれがあるので好ましくない。   As the deposition amount of the thermal spray powder 103 on the wall surface 101a of the transport path 101 increases while the film forming process continues, the transport amount per unit time of the thermal spray powder 103 transported by the transport pipe 100 decreases. It becomes difficult to maintain uniform conditions in the film forming process for a long time. If conditions change during the film forming process, it becomes difficult to obtain a sprayed coating having a uniform film thickness and film quality over a large area. Further, when the adhesion amount of the sprayed powder 103 further increases and the conveyance path 101 is blocked by the sprayed powder 103, the film forming process must be interrupted. If the film forming process is interrupted, the film quality may be changed, which is not preferable.

そこで、ガスの流量を大きくして、ガス流による粘性抵抗力で溶射粉体が付着しないようにすることも考えられる。しかし、ガスの流量には、搬送管の径やガスの圧力等により決まる限界値が存在するため、溶射粉体の付着を十分に抑制することはできない。また、ガスの流量が過大なものとなった場合、膜質の低下を招くおそれがある。   Therefore, it is conceivable to increase the gas flow rate so that the sprayed powder does not adhere due to the viscous resistance caused by the gas flow. However, since the gas flow rate has a limit value determined by the diameter of the transport pipe, the gas pressure, and the like, the adhesion of the sprayed powder cannot be sufficiently suppressed. Further, when the gas flow rate becomes excessive, the film quality may be deteriorated.

一方で、搬送管の外周を網目状の導線で包み込み、その導線をアース接続することで、帯電を防止することも考えられる。しかし、搬送管の外周における当該導線と接触している部分のみ除電されるだけで、溶射粉体と絶え間なく擦れている搬送路の壁面は帯電したままとなっている。従って、搬送管の外周を網目状の導線で包み込むということでは、搬送路の壁面へ溶射粉体が付着するという問題を解決することはできない。   On the other hand, it is also conceivable to prevent electrification by enclosing the outer periphery of the transport tube with a mesh-like lead wire and grounding the lead wire. However, only the portion of the outer periphery of the transport pipe that is in contact with the conducting wire is neutralized, and the wall surface of the transport path that is constantly rubbing against the sprayed powder remains charged. Therefore, wrapping the outer periphery of the transport pipe with a mesh-like conductor cannot solve the problem that the sprayed powder adheres to the wall surface of the transport path.

そこで本発明は、上記従来技術の問題点に鑑み、搬送路の壁面部分への被覆用粉体の付着を抑制することで、被覆用粉体の搬送量を長時間において均一に保つことができる(例えば、成膜プロセスにおける均一な条件を長時間維持できる)被覆用粉体の付着抑制方法、被覆用粉体搬送システム及び被覆装置を提供することを目的とする。 In view of the above-described problems of the prior art, the present invention can keep the amount of coating powder transported uniform over a long period of time by suppressing the adhesion of the coating powder to the wall surface of the transport path. (e.g., a long time can be maintained uniform conditions in the film forming process) method for suppressing adhesion coating powder, and an object thereof is to provide a powder transport system及 beauty coating equipment for the covering.

上記目的を達成するため、次の技術的手段を講じた。
即ち、本発明の被覆用粉体の付着抑制方法は、ガスが流れる搬送路を有する搬送管で当該搬送路の搬送口に向かって被覆用粉体を気流搬送する際に、当該被覆用粉体が前記搬送路の壁面部分に付着することを抑制する被覆用粉体の付着抑制方法であって、前記搬送管の外周面上で互い違いに隙間を空けて同方向の螺旋状に巻回された細長状の導線からなる複数の電極に電圧を印加することにより、フッ素樹脂製の当該搬送管の前記搬送路内に強弱の電界を生じさせ、この強弱の電界により前記被覆用粉体を前記搬送路内で、前記いずれかの電極の真上方向及びその前後斜め方向へ飛翔移動させ、前記複数の電極の数をnとしたときに当該複数の電極に印加する電圧の位相を互いに(360°/n)ずらすと共に、下記式を満たすことを特徴とするものである。
Fp>Fa
ただし、Fp:電界により被覆用粉体に生じるクーロン力、Fa:被覆用粉体と搬送路との摩擦で双方の帯電により生じた被覆用粉体の搬送路に対する付着力。
被覆用粉体を搬送管で気流搬送する際に、上記本発明の被覆用粉体の付着抑制方法を使用すれば、搬送管の外側に配置された複数の電極に電圧を印加することによりで生じた電界により、被覆用粉体がガスの流れ方向と異なる方向へ飛翔移動させられるので、被覆用粉体が搬送路の壁面部分から離れ、当該壁面部分への被覆用粉体の付着を抑制することができる。本発明における被覆用粉体は、溶射に用いる溶射粉体、及びエアロゾルデポジション法、粉体肉盛り溶接法に用いる粉体に限定される。
In order to achieve the above object, the following technical measures were taken.
That is, the method for suppressing the adhesion of coating powder according to the present invention is performed when the coating powder is air-flowed toward the transport port of the transport path using a transport pipe having a transport path through which gas flows. Is a method for suppressing the adhesion of the coating powder to the wall surface portion of the transport path, and is wound in a spiral in the same direction with a gap alternately on the outer peripheral surface of the transport pipe by applying a voltage to the plurality of electrodes consisting of elongated conductor causes an electric field of strength in the conveyance path of fluororesin of the conveying tube, the said coating powder by the electric field of the intensity Within the transport path, the phase of the voltage applied to the plurality of electrodes is mutually (360) when the number of the plurality of electrodes is n. ° / n) with shifting, and satisfies the following expression Is shall.
Fp> Fa
However, Fp: Coulomb force generated in the coating powder by the electric field, Fa: Adhesive force of the coating powder generated by charging of the coating powder and the conveyance path due to both charging to the conveyance path.
When the coating powder is air-flow conveyed by the conveying tube, if the coating powder adhesion suppression method of the present invention is used, the voltage can be applied to a plurality of electrodes arranged outside the conveying tube. The generated electric field causes the coating powder to fly and move in a direction different from the gas flow direction, so that the coating powder is separated from the wall surface portion of the transport path, and the adhesion of the coating powder to the wall surface portion is suppressed. can do. The powder for coating in the present invention is limited to the thermal spraying powder used for thermal spraying, and the powder used for the aerosol deposition method and the powder build-up welding method.

本発明の被覆用粉体搬送システムは、被覆用粉体をガスにより気流搬送するための搬送路を有するフッ素樹脂製の搬送管と、前記搬送路の搬送口に向かって前記被覆用粉体が気流搬送されるように、当該搬送路へ前記ガスを供給するガス供給手段と、前記搬送路に電界を生じさせ、この電界により前記被覆用粉体を前記ガスの流れ方向と異なる方向へ飛翔移動させることで、前記搬送路の壁面部分への当該被覆用粉体の付着を抑制する電界発生手段と、を備え、前記電界発生手段は、前記搬送管の外周面上で互い違いに同方向の螺旋状に巻回された細長状の導線からなる複数の電極を有し、これら複数の電極は、前記搬送路内で生じさせた強弱の電界によって前記被覆用粉体の当該搬送路内での飛翔移動方向が前記いずれかの電極の真上方向及びその前後斜め方向となるように互いに隙間を空けて巻回されており、前記複数の電極の数をnとしたときに当該複数の電極に印加する電圧の位相を互いに(360°/n)ずらすと共に、下記式を満たすことを特徴とするものである。
Fp>Fa
ただし、Fp:電界により被覆用粉体に生じるクーロン力、Fa:被覆用粉体と搬送路との摩擦で双方の帯電により生じた被覆用粉体の搬送路に対する付着力。
上記本発明の被覆用粉体搬送システムによれば、搬送路に電界を生じさせ、この電界により被覆用粉体をガスの流れ方向と異なる方向へ飛翔移動させ、搬送路の壁面部分への被覆用粉体の付着を抑制する電界発生手段を備えているので、搬送路の壁面部分への被覆用粉体の付着が抑制されて、被覆用粉体の搬送量を長時間において均一に保つことができる。これにより、この被覆用粉体搬送システムを用いた各種の成膜プロセスにおいて、均一な条件を長時間維持することができる。本発明における被覆用粉体は、溶射に用いる溶射粉体、及びエアロゾルデポジション法、粉体肉盛り溶接法に用いる粉体に限定される。
The coating powder conveyance system according to the present invention includes a fluororesin conveyance tube having a conveyance path for conveying the coating powder by gas in an air stream, and the coating powder toward the conveyance port of the conveyance path. A gas supply means for supplying the gas to the transport path and an electric field generated in the transport path so as to be transported by air current, and the coating powder is caused to fly in a direction different from the gas flow direction by the electric field. Electric field generating means for suppressing adhesion of the coating powder to the wall surface portion of the transport path, and the electric field generating means are spirally staggered in the same direction on the outer peripheral surface of the transport pipe. Jo to have a plurality of electrodes consisting of wound elongated conductors are, the plurality of electrodes are flying within the transport path of the coating powder by an electric field intensity that caused by the conveying path The direction of movement is directly above one of the electrodes Beauty with a gap from each other so that a longitudinal oblique direction are wound, shifted from each other (360 ° / n) the phase of the voltage applied to the plurality of electrodes when the number of said plurality of electrodes is n In addition, the following formula is satisfied .
Fp> Fa
However, Fp: Coulomb force generated in the coating powder by the electric field, Fa: Adhesive force of the coating powder generated by charging of the coating powder and the conveyance path due to both charging to the conveyance path.
According to the coating powder conveying system of the present invention, an electric field is generated in the conveying path, and the coating powder is caused to fly and move in a direction different from the gas flow direction by this electric field, thereby covering the wall surface portion of the conveying path. It is equipped with electric field generation means that suppresses the adhesion of powder for coating, so that adhesion of powder for coating on the wall surface of the conveyance path is suppressed, and the amount of coating powder transported is kept uniform over a long period of time. Can do. Thereby, uniform conditions can be maintained for a long time in various film forming processes using the coating powder conveyance system. The powder for coating in the present invention is limited to the thermal spraying powder used for thermal spraying, and the powder used for the aerosol deposition method and the powder build-up welding method.

本発明の被覆装置は、被覆用粉体を溶融させ基材へ衝突させることで当該基材の表面に皮膜を形成する成膜部と、前記成膜部へ導入する前記被覆用粉体を貯留し排出する粉体供給部と、前記被覆用粉体を前記粉体供給部から前記成膜部へ搬送する被覆用粉体搬送システムと、を備えた被覆装置であり、このうち、被覆用粉体搬送システムが、上記の被覆用粉体搬送システムであることを特徴とするものである。 The coating apparatus of the present invention stores a film forming unit that forms a film on the surface of the base material by melting the powder for coating and colliding with the base material, and the powder for coating introduced into the film forming unit. A coating apparatus comprising: a powder supply unit that discharges the powder; and a coating powder transport system that transports the coating powder from the powder supply unit to the film forming unit. The body conveyance system is the above-described powder conveyance system for coating.

上記本発明の被覆装置によれば、被覆用粉体を搬送する搬送路に電界を生じさせ、この電界により被覆用粉体をガスの流れ方向と異なる方向へ飛翔移動させることで、搬送路の壁面部分への被覆用粉体の付着を抑制する電界発生手段を備えているので、搬送路の壁面部分への被覆用粉体の付着が抑制されて、被覆用粉体の搬送量を長時間において均一に保つことができる。本発明における被覆用粉体は、溶射に用いる溶射粉体、及びエアロゾルデポジション法、粉体肉盛り溶接法に用いる粉体に限定される。   According to the coating apparatus of the present invention, an electric field is generated in the transport path for transporting the coating powder, and the coating powder is caused to fly and move in a direction different from the gas flow direction by this electric field. Since it is equipped with electric field generating means that suppresses the adhesion of the coating powder to the wall surface part, the adhesion of the coating powder to the wall surface part of the conveying path is suppressed, and the conveyance amount of the coating powder is increased for a long time. Can be kept uniform. The powder for coating in the present invention is limited to the thermal spraying powder used for thermal spraying, and the powder used for the aerosol deposition method and the powder build-up welding method.

上記の通り、本発明によれば、搬送路に生じさせた電界により、被覆用粉体(例えば、溶射粉体)が搬送路の壁面部分から離れ、搬送路の壁面部分への当該被覆用粉体の付着が抑制されるので、被覆用粉体の搬送量を長時間において均一に保つことができる。また、成膜プロセスにおいて、均一な条件を長時間維持することができる。   As described above, according to the present invention, the coating powder (for example, the sprayed powder) is separated from the wall surface portion of the conveyance path by the electric field generated in the conveyance path, and the coating powder on the wall surface portion of the conveyance path. Since the adhesion of the body is suppressed, the amount of coating powder transported can be kept uniform over a long period of time. In the film forming process, uniform conditions can be maintained for a long time.

本発明の第1の実施形態に係るプラズマ溶射装置の全体構成を表す系統図である。It is a systematic diagram showing the whole structure of the plasma spraying apparatus which concerns on the 1st Embodiment of this invention. 搬送管に第1、第2の電極が巻回されている状態を示す側面図である。It is a side view which shows the state by which the 1st, 2nd electrode is wound around the conveyance pipe. 搬送路に発生させた電界で溶射粉体がガスの流れ方向に対して異なる方向に飛翔移動している状態を表す説明図である。It is explanatory drawing showing the state which the thermal spray powder is flying and moving in the direction different with respect to the flow direction of gas with the electric field generated in the conveyance path. 本発明の第2の実施形態に係るプラズマ溶射装置の要部構成を表す系統図である。It is a systematic diagram showing the principal part structure of the plasma spraying apparatus which concerns on the 2nd Embodiment of this invention. 従来の粉体搬送システムで溶射粉体が搬送されている状態を示す説明図である。It is explanatory drawing which shows the state by which the thermal spray powder is conveyed with the conventional powder conveyance system.

以下、本発明の実施の形態について図面を参照しながら説明する。図1は、本発明の一実施形態(第1の実施形態)に係る溶射装置(被覆装置)1の全体構成を表す系統図である。この溶射装置1は、プラズマ溶射装置1として構成されたものであり、プラズマ発生部である溶射トーチ(成膜部)2と、この溶射トーチ2に電流を供給する直流電源3と、溶射トーチ2を冷却するためのチラー4と、溶射トーチ2へ導入する溶射粉体(被覆用粉体)5を貯留し排出するパウダーフィーダー(粉体供給部)6と、溶射粉体5をパウダーフィーダー6から溶射トーチ2へ搬送する被覆用粉体搬送システム7(以下、粉体搬送システムという)と、直流電源3、チラー4、パウダーフィーダー6、及び粉体搬送システム7等を制御するための制御部8とで主に構成されている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a system diagram showing the overall configuration of a thermal spraying apparatus (coating apparatus) 1 according to one embodiment (first embodiment) of the present invention. The thermal spraying device 1 is configured as a plasma thermal spraying device 1, and includes a thermal spraying torch (film forming unit) 2 that is a plasma generating unit, a DC power source 3 that supplies current to the thermal spraying torch 2, and a thermal spraying torch 2. A chiller 4 for cooling the powder, a powder feeder (powder supply unit) 6 for storing and discharging sprayed powder (coating powder) 5 to be introduced into the spraying torch 2, and the sprayed powder 5 from the powder feeder 6. A control unit 8 for controlling a coating powder transfer system 7 (hereinafter referred to as a powder transfer system) for transferring to the thermal spraying torch 2, a DC power source 3, a chiller 4, a powder feeder 6, and a powder transfer system 7. And is mainly composed.

このプラズマ溶射装置1は、粉末状のセラミックス等の溶射粉体5をプラズマで加熱し、溶融させて液状微粒子の溶射粒子とし、この溶射粒子を図示しない基材の表面へ高速で衝突させて当該表面に溶射皮膜(皮膜)を形成するためのものである。基材の表面に溶射皮膜を形成することにより、基材の耐摩耗性や電気絶縁性等を向上させる。   The plasma spraying apparatus 1 heats and melts a thermal spray powder 5 such as powdered ceramics with plasma to form a thermal spray particle of liquid fine particles. The thermal spray particle collides with a surface of a base material (not shown) at high speed. This is for forming a sprayed coating (film) on the surface. By forming a thermal spray coating on the surface of the substrate, the wear resistance, electrical insulation, etc. of the substrate are improved.

溶射トーチ2は、公知のものを使用することができ、例えば先細り状の先端部11aを有する陰電極11と、この陰電極11と絶縁された状態で当該陰電極11の周りを囲むように設けられ、溶射粒子を噴出するノズル部12aが形成された陽電極12とを有している。溶射トーチ2には、陽電極12及び陰電極11に直流電源3からの電流を供給するための電源接続部13が設けられており、この電源接続部13と直流電源3とが配線14を介して電気的に接続されている。更に、溶射トーチ2には、陽電極12及び陰電極11を冷却すべく当該陽電極12、陰電極11にチラー4からの冷却水を流入出させる冷却口15、及び当該溶射トーチ2にプラズマ作動ガス16を送り込むための作動ガス供給口17が設けられている。   As the thermal spraying torch 2, a known one can be used. For example, the negative electrode 11 having a tapered tip portion 11a and the negative electrode 11 are provided so as to surround the negative electrode 11 while being insulated from the negative electrode 11. And a positive electrode 12 on which a nozzle portion 12a for ejecting spray particles is formed. The thermal spraying torch 2 is provided with a power supply connecting portion 13 for supplying a current from the DC power supply 3 to the positive electrode 12 and the negative electrode 11, and the power supply connecting portion 13 and the DC power supply 3 are connected via a wiring 14. Are electrically connected. Further, the spraying torch 2 has a positive electrode 12 and a negative electrode 11 for cooling the positive electrode 12, a cooling port 15 for allowing cooling water from the chiller 4 to flow into and out of the negative electrode 11, and a plasma operation for the thermal spraying torch 2. A working gas supply port 17 for feeding the gas 16 is provided.

チラー4は、水冷式の冷却装置として構成されたものであり、冷却口15と同チラー4とは冷却水を流すための冷却用配管18で接続されており、冷却口15を介して陽電極12及び陰電極11に所定温度の冷却水が循環するようになっている。これにより、陽電極12及び陰電極11の温度が制御可能となっている。作動ガス供給口17には、ガス用配管19を介してマスフローコントローラ20が接続されており、更に、このマスフローコントローラ20には、ガス共通配管21を介してガスボンベ22が接続されている。ガスボンベ22には、プラズマ作動ガス16としてアルゴン、窒素、水素、ヘリウム等のガスが充填されている。これにより、ガスボンベ22から溶射トーチ2へ向けて上記のプラズマ作動ガス16が供給可能とされ、かつそのプラズマ作動ガス16の流量が調整可能となっている。なお、上記プラズマ作動ガス16は、限定されるものではない。   The chiller 4 is configured as a water-cooled cooling device, and the cooling port 15 and the chiller 4 are connected by a cooling pipe 18 for flowing cooling water, and the positive electrode is connected via the cooling port 15. A cooling water having a predetermined temperature is circulated through the anode 12 and the negative electrode 11. Thereby, the temperature of the positive electrode 12 and the negative electrode 11 can be controlled. A mass flow controller 20 is connected to the working gas supply port 17 via a gas pipe 19, and a gas cylinder 22 is connected to the mass flow controller 20 via a gas common pipe 21. The gas cylinder 22 is filled with a gas such as argon, nitrogen, hydrogen, and helium as the plasma working gas 16. Thus, the plasma working gas 16 can be supplied from the gas cylinder 22 toward the thermal spraying torch 2, and the flow rate of the plasma working gas 16 can be adjusted. The plasma working gas 16 is not limited.

溶射トーチ2の陽電極12には、溶射粉体5を導入するための粉体供給口23が設けられており、この粉体供給口23を介して、発生させたプラズマジェットへ溶射粉体5が供給されるようになっている。また、溶射粉体5が貯留されているパウダーフィーダー6は、貯留タンク6Aとこの貯留タンク6Aに溜められた溶射粉体5を所定量ずつ排出するための計量部6Bとを備えている。計量部6Bは、モータで回転される図示しない回転ディスクを備えており、貯留タンク6Aに溜められている溶射粉体5は当該回転ディスクの盤面上に出される。回転ディスクの回転速度の制御により、溶射粉体5の供給量が調整されるようになっている。   The positive electrode 12 of the thermal spraying torch 2 is provided with a powder supply port 23 for introducing the thermal spray powder 5, and the thermal spray powder 5 is supplied to the generated plasma jet through the powder supply port 23. Is to be supplied. The powder feeder 6 in which the sprayed powder 5 is stored includes a storage tank 6A and a measuring unit 6B for discharging the sprayed powder 5 stored in the storage tank 6A by a predetermined amount. The weighing unit 6B includes a rotating disk (not shown) that is rotated by a motor, and the sprayed powder 5 stored in the storage tank 6A is put out on the surface of the rotating disk. The supply amount of the thermal spray powder 5 is adjusted by controlling the rotational speed of the rotary disk.

粉体搬送システム7は、溶射粉体5をキャリヤーガス(ガス)25により気流搬送するための搬送路26を有する搬送管27と、搬送路26の出口である搬送口26aに向かって溶射粉体5が気流搬送されるように、当該搬送路26へキャリヤーガス25を供給するガス供給手段28とを備えている。ガス供給手段28は、パウダーフィーダー6にキャリヤーガス用配管29を介して接続されたマスフローコントローラ20と、このマスフローコントローラ20にガス共通配管21を介して接続されたガスボンベ22とからなる。ガスボンベ22からマスフローコントローラ20までは、プラズマ作動ガス16を供給するためのものと共通のものが使用されており、プラズマ溶射装置1の製造コストを抑え、装置1の設置スペースを小さくしている。なお、キャリヤーガス25は,限定されるものではないが、本実施形態ではアルゴンや窒素が使用される。   The powder transfer system 7 includes a transfer pipe 27 having a transfer path 26 for transferring the sprayed powder 5 by air flow with a carrier gas (gas) 25, and a spray powder toward a transfer port 26 a that is an outlet of the transfer path 26. 5 is provided with gas supply means 28 for supplying the carrier gas 25 to the conveyance path 26 so that the gas 5 is conveyed by airflow. The gas supply means 28 includes a mass flow controller 20 connected to the powder feeder 6 via a carrier gas pipe 29, and a gas cylinder 22 connected to the mass flow controller 20 via a gas common pipe 21. The gas cylinder 22 to the mass flow controller 20 are the same as those used to supply the plasma working gas 16, thereby reducing the manufacturing cost of the plasma spraying apparatus 1 and reducing the installation space of the apparatus 1. The carrier gas 25 is not limited, but argon or nitrogen is used in this embodiment.

搬送管27は、外径4mmのフッ素樹脂チューブで構成されたものであり、低い表面摩擦係数と高い絶縁性等を有している。搬送口26a(搬送管出口)は、図1に示すように溶射トーチ2の粉体供給口23に繋がっており、これにより、パウダーフィーダー6と溶射トーチ2とが接続され、搬送路26を通じて、パウダーフィーダー6から溶射トーチ2へ溶射粉体5が導入されるようになっている。また、溶射トーチ2は、図示しない走査機構に取り付けられており、この走査機構により溶射トーチ2が図示しない基材の表面上を相対的に移動できるようになっている。そのため、搬送管27は、固定されたパウダーフィーダー6に対して溶射トーチ2が自由に動けるようにするため、約2mのものが使用されている。なお、搬送管27の材質、径、長さは限定されるものではなく、適宜変更することができる。   The conveyance tube 27 is made of a fluororesin tube having an outer diameter of 4 mm, and has a low surface friction coefficient, high insulation, and the like. As shown in FIG. 1, the conveying port 26 a (conveying tube outlet) is connected to the powder supply port 23 of the thermal spraying torch 2, whereby the powder feeder 6 and the thermal spraying torch 2 are connected to each other through the conveying path 26. The thermal spray powder 5 is introduced from the powder feeder 6 to the thermal spray torch 2. Further, the thermal spraying torch 2 is attached to a scanning mechanism (not shown), and the thermal spraying torch 2 can relatively move on the surface of a base material (not shown) by this scanning mechanism. Therefore, about 2 m of the transfer pipe 27 is used so that the thermal spraying torch 2 can move freely with respect to the fixed powder feeder 6. The material, diameter, and length of the transport tube 27 are not limited and can be changed as appropriate.

上記粉体搬送システム7により、パウダーフィーダー6に貯留されている溶射粉体5は、計量部6Bで供給量が調整され、マスフローコントローラ20で流量調整されたキャリヤーガス25にのせられて、搬送管27の搬送路26を通って溶射トーチ2へ圧送(気流搬送)されるようになっている。
プラズマ溶射装置1の制御部8は、チラー4、直流電源3、マスフローコントローラ20、パウダーフィーダー6、及び粉体搬送システム7に接続されている。この制御部8には、作業者が走査するための操作パネル31が設けられており、この操作パネル31が操作されることで、プラズマ溶射装置1の制御部8は、チラー4、直流電源3、マスフローコントローラ19、パウダーフィーダー6、及び粉体搬送システム7の各々の操作パラメーターを制御する。
The sprayed powder 5 stored in the powder feeder 6 is placed on the carrier gas 25 whose supply amount is adjusted by the measuring unit 6B and the flow rate of which is adjusted by the mass flow controller 20 by the powder transfer system 7, and the transfer pipe 27 is sent to the thermal spraying torch 2 through the conveyance path 26 (air flow conveyance).
The control unit 8 of the plasma spraying apparatus 1 is connected to the chiller 4, the DC power supply 3, the mass flow controller 20, the powder feeder 6, and the powder conveyance system 7. The control unit 8 is provided with an operation panel 31 for an operator to scan. By operating the operation panel 31, the control unit 8 of the plasma spraying apparatus 1 includes the chiller 4 and the DC power supply 3. The operation parameters of the mass flow controller 19, the powder feeder 6, and the powder conveying system 7 are controlled.

上記構成のプラズマ溶射装置1により、次のようにして基材の表面へ溶射皮膜を形成する。溶射トーチ2の陽電極12と陰電極11との間に直流電源3から電圧を印加して、陰電極11の先端部11aにアークプラズマを発生させる。このアークプラズマにプラズマ作動ガス16を吹き付けて高温のプラズマジェットとし、ここに粉体搬送システム7で圧送されてきた溶射粉体5が供給される。溶射粉体5は、加熱されて溶融し、液状微粒子(溶射粒子)となり、プラズマジェトと共に噴出される。噴出された溶射粒子は、基材の表面に高速度で衝突し、同表面で積層されていき、当該表面に溶射皮膜が形成される。   With the plasma spraying apparatus 1 having the above-described configuration, a sprayed coating is formed on the surface of the substrate as follows. A voltage is applied from the DC power source 3 between the positive electrode 12 and the negative electrode 11 of the thermal spraying torch 2 to generate arc plasma at the tip 11 a of the negative electrode 11. A plasma working gas 16 is sprayed on the arc plasma to form a high-temperature plasma jet, and the sprayed powder 5 fed by the powder conveying system 7 is supplied thereto. The sprayed powder 5 is heated and melted to form liquid fine particles (sprayed particles) and is ejected together with the plasma jet. The sprayed sprayed particles collide with the surface of the substrate at a high speed and are stacked on the surface, so that a sprayed coating is formed on the surface.

本実施形態の粉体搬送システム7には、搬送路26に電界を生じさせる電界発生手段32が設けられている。この電界発生手段32は、搬送路26を通る溶射粉体5が当該搬送路26の壁面部分26hへ付着することを抑制するためのものであり、搬送管27の外側に配置された電極部Dと、この電極部Dに接続された電源部34及びアース部33とで主に構成されている。   In the powder conveyance system 7 of the present embodiment, an electric field generating means 32 that generates an electric field in the conveyance path 26 is provided. The electric field generating means 32 is for suppressing the sprayed powder 5 passing through the transport path 26 from adhering to the wall surface portion 26 h of the transport path 26, and the electrode portion D disposed outside the transport pipe 27. And a power supply unit 34 and a ground unit 33 connected to the electrode unit D.

電極部Dは、第1の電極35と第2の電極36で構成されており、これら第1、第2の電極35、36はいずれも細長状の導線からなる。導線の素材は、限定されるものではなく、銅やアルミニウム等が使用される。第1、第2の電極35、36は、搬送管27の一端部近傍(パウダーフィーダー6の近傍)の外周に、螺旋状に巻回されている(図2参照)。   The electrode part D is composed of a first electrode 35 and a second electrode 36, and both the first and second electrodes 35 and 36 are formed of elongated conductive wires. The material of the conducting wire is not limited, and copper, aluminum or the like is used. The first and second electrodes 35 and 36 are spirally wound around the outer periphery in the vicinity of one end of the transport tube 27 (in the vicinity of the powder feeder 6) (see FIG. 2).

第1、第2の電極35、36の形態として、本実施形態のように細長状に形成された導電を用いることにより、搬送管27の外周が第1、第2の電極35、36で包み込まれ、搬送路26の全体に電界を発生させることができる。なお、本実施形態では、第1、第2の電極35、36は、図2のように若干の隙間を空けて搬送管27の外周に巻回されているが、当該第1、第2の電極35、36の巻き方は限定されるものではなく、例えば、図2に示すよりも隙間を大きく空けて巻回してもよい。   As the form of the first and second electrodes 35 and 36, the outer periphery of the transport tube 27 is encased in the first and second electrodes 35 and 36 by using the elongated conductive shape as in this embodiment. Thus, an electric field can be generated in the entire transport path 26. In the present embodiment, the first and second electrodes 35 and 36 are wound around the outer periphery of the transport tube 27 with a slight gap as shown in FIG. The method of winding the electrodes 35 and 36 is not limited. For example, the electrodes 35 and 36 may be wound with a gap larger than that shown in FIG.

電源部34は電源トランスとして構成されたものであり、例えば60Hzの周波数で5kVの電圧を出力するものである。この電源部34により、電極Dへ交流電圧が印加されるようになっている。第1、第2の電極35、36のうち、第1の電極35は上記電源部34に電気的に接続されており、第2の電極36は電気的にアース部33に接続されている。そして、電源部34で第1の電極35に交流電圧が印加されると、搬送路26に電界E1が発生する(図3参照)。つまり、第1、第2の電極35、36に外周が囲まれた搬送管27の搬送路26に、電界E1を生じさせることができる。   The power supply unit 34 is configured as a power transformer, and outputs a voltage of 5 kV at a frequency of 60 Hz, for example. An AC voltage is applied to the electrode D by the power source 34. Of the first and second electrodes 35, 36, the first electrode 35 is electrically connected to the power supply unit 34, and the second electrode 36 is electrically connected to the ground unit 33. When an AC voltage is applied to the first electrode 35 by the power supply unit 34, an electric field E1 is generated in the transport path 26 (see FIG. 3). That is, the electric field E1 can be generated in the transport path 26 of the transport tube 27 whose outer periphery is surrounded by the first and second electrodes 35 and 36.

かかる電界E1は、搬送路26の略径方向(略横断面方向)に向かうものである。電界E1が生じている搬送路26に溶射粉体5が搬送されていくと、例えばセラミック製の同溶射粉体5は、当該電界E1により帯電させられる。その際、溶射粉体5には電界方向(搬送路26の略径方向)へのクーロン力が作用し、当該溶射粉体5は、搬送路26の略径方向へ飛翔移動し、壁面部分26hから離れる。   The electric field E1 is directed in the substantially radial direction (substantially transverse direction) of the transport path 26. When the thermal spray powder 5 is conveyed to the conveyance path 26 where the electric field E1 is generated, the thermal spray powder 5 made of ceramic, for example, is charged by the electric field E1. At that time, the Coulomb force in the electric field direction (substantially radial direction of the conveyance path 26) acts on the thermal spray powder 5, and the thermal spray powder 5 flies and moves in the approximate radial direction of the conveyance path 26, and the wall surface portion 26h. Get away from.

なお、ここでいう搬送路26の略径方向(略横断面方向)とは、搬送路26の径方向、即ち図3の上下方向のみをいうのではなく、当該径方向を含む広範囲の方向をいうものとする。具体的には、図3で搬送管27の下側に断面として示された第1の電極35の真上方向(図3の上方向)を0°方向としたときに、ガスの流れ方向(図3の右方向)へ60°方向から、ガスの流れ方向と逆流方向(図3の左方向)へ−60°方向の範囲を含むものである。なお、この範囲は、電界E1の強さ等によって変わるものであり、これに限定されるものではない。   In addition, the substantially radial direction (substantially transverse direction) of the conveyance path 26 here means not only the radial direction of the conveyance path 26, that is, the vertical direction in FIG. 3, but a wide range including the radial direction. It shall be said. Specifically, the gas flow direction (when the direction directly above the first electrode 35 (upward direction in FIG. 3) shown as a cross section below the transport pipe 27 in FIG. This includes a range from the 60 ° direction (to the right in FIG. 3) to the −60 ° direction from the gas flow direction to the backflow direction (left direction in FIG. 3). This range varies depending on the strength of the electric field E1 and the like, and is not limited to this.

実際には、搬送路26には強い電界E1が生じている範囲と、これよりも弱い電界E1が生じている範囲、微少の電界E1が生じている範囲が存在する。従って、搬送路26の壁面部分26hにおける第1の電極35の近くにきた溶射粉体5は、強い電界Eにより略横断面方向へ飛翔移動させられ、弱い電界E1が生じている範囲、或いは微少の電界E1が生じている範囲へ向けて飛翔移動する。なお、壁面部分26hとは、搬送路26の壁面の表面のみをいうものではなく、この表面に近い部分を含む表層部分をいうものとする。   Actually, the conveyance path 26 includes a range where a strong electric field E1 is generated, a range where a weaker electric field E1 is generated, and a range where a minute electric field E1 is generated. Therefore, the sprayed powder 5 that comes near the first electrode 35 in the wall surface portion 26h of the transport path 26 is moved and moved in a substantially transverse direction by a strong electric field E, and a weak electric field E1 is generated or is in a very small range. Flying toward the range where the electric field E1 is generated. The wall surface portion 26h does not mean only the surface of the wall surface of the conveyance path 26, but a surface layer portion including a portion close to the surface.

従って、搬送路26で搬送される溶射粉体5は、電界発生手段32で生じた電界E1により、図3に示すように多方向(キャリヤーガス25の流れ方向と異なる方向)へ飛翔移動する。溶射粉体5が多方向へ飛翔移動するので、キャリヤーガス25の流れによる粘性抵抗力と相まって、搬送路26の壁面部分26hへの当該溶射粉体5の付着を抑制することができる。
電界E1の強さ、溶射粉体5の粒径、密度、キャリヤーガスの流量、搬送管の径等の各条件は、次の式を満たすように決定される。
Fp>Fa
Fp:電界E1により溶射粉体5に生じるクーロン力。
Fa:溶射粉体5と搬送路26との摩擦で双方の帯電により生じた当該溶射粉体5の搬送路26に対する付着力。
Therefore, the thermal spray powder 5 conveyed by the conveyance path 26 flies and moves in multiple directions (a direction different from the flow direction of the carrier gas 25) by the electric field E1 generated by the electric field generating means 32 as shown in FIG. Since the sprayed powder 5 flies and moves in multiple directions, the adhesion of the sprayed powder 5 to the wall surface portion 26h of the transport path 26 can be suppressed in combination with the viscous resistance force caused by the flow of the carrier gas 25.
Each condition such as the strength of the electric field E1, the particle size and density of the sprayed powder 5, the flow rate of the carrier gas, the diameter of the transfer tube, and the like is determined so as to satisfy the following equation.
Fp> Fa
Fp: Coulomb force generated in the sprayed powder 5 by the electric field E1.
Fa: Adhesive force of the sprayed powder 5 to the transport path 26 caused by the friction between the sprayed powder 5 and the transport path 26 due to charging of both.

上記本実施形態の粉体搬送システム7を備えるプラズマ溶射装置1によれば、溶射粉体5の搬送路26に電界E1を生じさせる電界発生手段32により、搬送路26の壁面部分26hへの溶射粉体5の付着が抑制されるので、溶射粉体5の搬送量を長時間において均一に保つことができる。また、搬送路26が溶射粉体5で閉塞されるのを防止することができる。電界発生手段32として、搬送管27の外側に設けられた第1、第2の電極35、36の一方に電源部34、他方にアース部33を接続する簡易な構成で電界を発生さるので、粉体搬送システム7を簡易に製作でき、プラズマ溶射装置1の製作コストを抑えることができる。   According to the plasma spraying apparatus 1 including the powder transfer system 7 of the present embodiment, the electric field generating means 32 for generating the electric field E1 in the transfer path 26 of the spray powder 5 sprays the wall surface portion 26h of the transfer path 26. Since the adhesion of the powder 5 is suppressed, the conveyance amount of the thermal spray powder 5 can be kept uniform for a long time. Further, it is possible to prevent the conveyance path 26 from being blocked by the sprayed powder 5. As the electric field generating means 32, an electric field is generated with a simple configuration in which the power supply unit 34 is connected to one of the first and second electrodes 35, 36 provided outside the transport tube 27 and the ground unit 33 is connected to the other. The powder transfer system 7 can be easily manufactured, and the manufacturing cost of the plasma spraying apparatus 1 can be suppressed.

更に、搬送管の搬送路を流れるガスにより気流搬送されて成膜部へ導入された被覆用粉体を、溶融させ基材へ衝突させることにより当該基材の表面に溶射皮膜を形成する本発明に係る皮膜の形成方法として、上記プラズマ溶射装置1を用いて、溶射粉体(被覆用粉体)5が搬送路26の壁面部分26hへ付着することを抑制した状態で、当該溶射粉体5を気流搬送し溶射トーチ(成膜部)2へ導入し、皮膜を形成する方法が挙げられる。この皮膜の形成方法によれば、溶射トーチ2へ導入する溶射粉体5の搬送量を長時間において均一に保つことができる。   Furthermore, the present invention forms a thermal spray coating on the surface of the base material by melting the powder for coating introduced into the film forming section by air flow by the gas flowing through the transport path of the transport pipe and colliding with the base material As a method for forming the coating, the plasma spraying apparatus 1 is used to suppress the spraying powder (coating powder) 5 from adhering to the wall surface portion 26h of the conveyance path 26, and the spraying powder 5 Can be introduced into the thermal spraying torch (film forming unit) 2 to form a film. According to this film forming method, the transport amount of the thermal spray powder 5 introduced into the thermal spray torch 2 can be kept uniform over a long period of time.

これにより、上記皮膜の形成方法を使用した成膜プロセスにおいて、溶射トーチ2への溶射粉体5の導入量が長時間において一定に保たれ、均一な条件を長時間維持することができる。また、搬送路26が溶射粉体5で閉塞されるのを防止することができるので、成膜プロセスを中断する必要がなく、膜質の変化を招くおそれがない。従って、基材の大面積部分へ溶射する場合であっても、均一な膜厚、膜質を有する高品質の溶射皮膜を得ることができる。   Thereby, in the film forming process using the above-described film forming method, the amount of the sprayed powder 5 introduced into the thermal spraying torch 2 is kept constant for a long time, and uniform conditions can be maintained for a long time. In addition, since the conveyance path 26 can be prevented from being blocked by the thermal spray powder 5, there is no need to interrupt the film formation process and there is no possibility of causing a change in film quality. Therefore, even when spraying over a large area of the substrate, a high-quality sprayed coating having a uniform film thickness and film quality can be obtained.

特に、溶射トーチ2へ導入する溶射粉体5の粒径が小さい(例えば10μm以下)の場合には、一般的に溶射粉体5は搬送路26へ付着し易く、堆積し易い。上記実施形態の粉体搬送システム7を備えたプラズマ溶射装置1で溶射皮膜を形成すれば、溶射粉体5の付着が抑制されるので、小さな溶射粉体5であっても、均一な条件が長時間維持され、高品質の溶射皮膜を得ることができる。   In particular, when the particle size of the thermal spray powder 5 introduced into the thermal spray torch 2 is small (for example, 10 μm or less), the thermal spray powder 5 generally tends to adhere to the conveyance path 26 and easily deposit. If the sprayed coating is formed by the plasma spraying apparatus 1 provided with the powder transfer system 7 of the above embodiment, the adhesion of the sprayed powder 5 is suppressed. It is maintained for a long time, and a high quality sprayed coating can be obtained.

上記本実施形態のプラズマ溶射装置1が備える粉体搬送システム7は、本発明に係る被覆用粉体粉体の付着抑制方法、及び被覆用粉体の搬送方法を使用するための一構成例である。即ち、ガスが流れる搬送路を有する搬送管で当該搬送路の搬送口に向かって被覆用粉体を気流搬送する際に、当該被覆用粉体が搬送路の壁面部分に付着することを抑制する本発明にかかる被覆用粉体の付着抑制方法として、上記実施形態のように、搬送管27の外側に配置された2つの第1、第2の電極35、36に、電圧を印加することにより搬送路26に電界E1を生じさせ、この電界E1により、溶射粉体5をキャリヤーガス25の流れ方向と異なる方向へ飛翔移動させる方法が挙げられる。この方法によれば、溶射粉体5が搬送路26の壁面部分26hから離れ、搬送路26の壁面部分26hへの当該溶射粉体5の付着を抑制することができる。   The powder transfer system 7 provided in the plasma spraying apparatus 1 of the present embodiment is a configuration example for using the coating powder powder adhesion suppressing method and the coating powder transfer method according to the present invention. is there. That is, when the coating powder is conveyed by air flow toward the conveyance port of the conveyance path by the conveyance pipe having the conveyance path through which the gas flows, the coating powder is prevented from adhering to the wall surface portion of the conveyance path. As a method for suppressing the adhesion of the coating powder according to the present invention, a voltage is applied to the two first and second electrodes 35 and 36 arranged outside the transport tube 27 as in the above embodiment. An example is a method in which an electric field E1 is generated in the transport path 26, and the sprayed powder 5 is caused to fly and move in a direction different from the flow direction of the carrier gas 25 by the electric field E1. According to this method, the thermal spray powder 5 is separated from the wall surface portion 26 h of the transport path 26, and adhesion of the thermal spray powder 5 to the wall surface portion 26 h of the transport path 26 can be suppressed.

また、ガスが流れる搬送路を有する搬送管で当該搬送路の搬送口に向かって被覆用粉体を気流搬送する本発明に係る被覆用粉体の搬送方法として、上記実施形態のように、搬送路26に生じさせた電界E1により、溶射粉体5をキャリヤーガス25の流れ方向と異なる方向へ飛翔移動させ、当該溶射粉体5が搬送路26の壁面部分26hへ付着することを抑制した状態で、当該溶射粉体5を気流搬送する方法が挙げられる。この方法によれば、搬送路26の内壁部分26hへの溶射粉体5の付着を抑制した状態で当該溶射粉体5を搬送することができる。   Further, as a method for conveying a coating powder according to the present invention in which a coating powder having a conveyance path through which a gas flows is air-flow conveyed toward a conveyance port of the conveyance path, as in the above-described embodiment, A state in which the sprayed powder 5 is caused to fly and move in a direction different from the flow direction of the carrier gas 25 by the electric field E1 generated in the path 26, and the sprayed powder 5 is prevented from adhering to the wall surface portion 26h of the transport path 26. Thus, a method of conveying the sprayed powder 5 by airflow can be mentioned. According to this method, the sprayed powder 5 can be transported in a state where adhesion of the sprayed powder 5 to the inner wall portion 26 h of the transport path 26 is suppressed.

図4は、本発明のプラズマ溶射装置に係る第2の実施形態を示している。本実施形態のプラズマ溶射装置40が上記第1の実施形態と異なる点は、第1、第2の電極41、42の形態とこれらを搬送管27の外周に配置する位置が異なっている点である。図4は、パウダーフィーダー6の出口付近と溶射トーチ2を表している。なお、本実施形態のプラズマ溶射装置40のうち、第1、第2の電極41、42、及び電源部34以外の他の構成については、第1の実施形態と共通する。同図でわかるように、搬送管27の搬送管入口27aが、パウダーフィーダー6に連結され、溶射粉体5の通路の断面積が急に小さくなっている。通路の断面積が急に小さくなると、パウダーフィーダー6と当該搬送管入口27aとの連結部分に溶射粉体5が付着し易いという問題がある。本実施形態のプラズマ溶射装置40では、この問題を解決することを目的としている。   FIG. 4 shows a second embodiment according to the plasma spraying apparatus of the present invention. The plasma spraying device 40 of the present embodiment is different from the first embodiment in that the first and second electrodes 41 and 42 are different from the positions where they are arranged on the outer periphery of the transfer tube 27. is there. FIG. 4 shows the vicinity of the outlet of the powder feeder 6 and the thermal spraying torch 2. Note that, in the plasma spraying apparatus 40 of the present embodiment, configurations other than the first and second electrodes 41 and 42 and the power supply unit 34 are the same as those of the first embodiment. As can be seen from the figure, the conveyance pipe inlet 27a of the conveyance pipe 27 is connected to the powder feeder 6, and the cross-sectional area of the passage of the sprayed powder 5 is abruptly reduced. When the cross-sectional area of the passage is suddenly reduced, there is a problem that the sprayed powder 5 is likely to adhere to the connecting portion between the powder feeder 6 and the transport pipe inlet 27a. The plasma spraying apparatus 40 of the present embodiment aims to solve this problem.

第1、第2の電極41、42は、共にリング状に形成された所要厚みを有する導電プレート(リング状プレート)で構成されている。第1、第2の電極41、42の内径は搬送管27の外径と略同寸法であり、当該第1、第2の電極41、42に搬送管27を挿通可能となっている。また、第1、第2の電極41、42の外径は10mmとされている。なお、これら内外径の寸法は、限定されるものではなく、搬送管27の外径寸法等により適宜変更すればよい。第2の電極42は、搬送管27の外周におけるパウダーフィーダー6に隣接する位置に装着されており、第1の電極41は、第2の電極42と所要間隔をおいて装着されている。このように、第1、第2の電極41、42は、搬送路26の入口26tに装着されている(図4参照)。なお、第1の電極41と第2の電極42との間隔は限定されるものではない。   The first and second electrodes 41 and 42 are both constituted by a conductive plate (ring-shaped plate) having a required thickness formed in a ring shape. The inner diameters of the first and second electrodes 41 and 42 are approximately the same as the outer diameter of the transport tube 27, and the transport tube 27 can be inserted through the first and second electrodes 41 and 42. The outer diameters of the first and second electrodes 41 and 42 are 10 mm. These inner and outer diameter dimensions are not limited, and may be appropriately changed depending on the outer diameter dimension of the transport pipe 27 and the like. The second electrode 42 is mounted at a position adjacent to the powder feeder 6 on the outer periphery of the transport tube 27, and the first electrode 41 is mounted with a required distance from the second electrode 42. Thus, the 1st, 2nd electrodes 41 and 42 are mounted | worn with the entrance 26t of the conveyance path 26 (refer FIG. 4). Note that the distance between the first electrode 41 and the second electrode 42 is not limited.

第1の電極41は、電源部34に電気的に接続されており、第2の電極42はアース部33に電気的に接続されている。そして、第1の電極41に交流電圧が印加されると、第1、第2の電極41、42に挟まれた搬送路26の入口26tに、電界E2を生じさせることができる。   The first electrode 41 is electrically connected to the power supply unit 34, and the second electrode 42 is electrically connected to the ground unit 33. When an AC voltage is applied to the first electrode 41, an electric field E2 can be generated at the inlet 26t of the transport path 26 sandwiched between the first and second electrodes 41 and 42.

電界E2が生じている搬送路26の入口26tに溶射粉体5がくると、例えばセラミック製の同溶射粉体5は、当該電界E2により帯電させられる。その際、溶射粉体5には電界方向(ガスの流れ方向と逆方向;図4の下方向)へのクーロン力が作用し、入口26tに溜まろうとする溶射粉体5は、電界方向へ飛翔移動しようとする。そのため、入口26tにきた溶射粉体5は、当該入口26tに溜まらず、搬送路26へスムーズに導入されていく。以上のように第1、第2の電極41、42を搬送管27の局所的な部分に配置することで、当該局所的な部分に溶射粉体5が付着し堆積するのを抑制することができる。   When the thermal spray powder 5 comes to the inlet 26t of the conveyance path 26 where the electric field E2 is generated, the thermal spray powder 5 made of ceramic, for example, is charged by the electric field E2. At that time, a Coulomb force in the electric field direction (the direction opposite to the gas flow direction; the lower direction in FIG. 4) acts on the thermal spray powder 5, and the thermal spray powder 5 trying to collect at the inlet 26 t flies in the electric field direction. Try to move. Therefore, the thermal spray powder 5 coming to the inlet 26t does not collect at the inlet 26t but is smoothly introduced into the transport path 26. As described above, by arranging the first and second electrodes 41 and 42 in the local portion of the transport tube 27, it is possible to suppress the sprayed powder 5 from adhering and depositing on the local portion. it can.

また、図4に示す第2の実施形態において、上記の第1の電極41、第2の電極42を、搬送路26の入口26tだけでなく、搬送路26の出口である搬送口26aにも設けるか、或いは、搬送路26の搬送口26aのみに設けてもよい。溶射トーチ2の粉体供給口23に繋がっている搬送口26aでは、当該搬送口26aの直径が搬送路26の他の部分の直径より小さくなっているため、溶射粉体5が、搬送口26aに溜まり易いが、第1の電極41、第2の電極42を、当該搬送口26aにも設けることによって、溶射粉体5を溜まらないようにすることができる。   In the second embodiment shown in FIG. 4, the first electrode 41 and the second electrode 42 are not only applied to the entrance 26 t of the transport path 26 but also to the transport port 26 a that is the exit of the transport path 26. Alternatively, it may be provided only at the transport port 26 a of the transport path 26. At the transfer port 26a connected to the powder supply port 23 of the thermal spraying torch 2, the diameter of the transfer port 26a is smaller than the diameter of the other part of the transfer path 26, so that the sprayed powder 5 is transferred to the transfer port 26a. However, the sprayed powder 5 can be prevented from accumulating by providing the first electrode 41 and the second electrode 42 also at the transfer port 26a.

以下、実施例を用いて本発明をより詳細に説明する。なお、本発明はこの実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. In addition, this invention is not limited to this Example.

(実施例)
上記第1の実施形態と同じ粉体搬送システム及びパウダーフィーダーを使用した。外径4mmの搬送管に、1分間あたり10gの量の溶射粉体を投入しながら、キャリヤーガスを10L/分の流量で流し、溶射粉体を搬送管に通過させた。搬送路へ付着している溶射粉体の状態、及び溶射粉体の搬送量を確認した。溶射粉体には、平均粒径3μmのアルミナ粉末を用い、電源部により第1の電極へ5kVの交流電圧を印加し続けた。なお、搬送路へ付着している溶射粉体の状態については、試験中においては半透明な搬送管の外部から確認し、試験後、搬送管を切断して確認した。溶射粉体の搬送量については、搬送管の出口を目視で確認した。
搬送路へ付着している溶射粉体の状態:若干の溶射粉体が螺旋状に付着するが、時間の経過で付着量が増加することはなく、搬送路の閉塞はなかった。
溶射粉体の搬送量:減少せず。
(Example)
The same powder conveyance system and powder feeder as in the first embodiment were used. The carrier gas was allowed to flow at a flow rate of 10 L / min while introducing the sprayed powder in an amount of 10 g per minute into a transport tube having an outer diameter of 4 mm, and the sprayed powder was passed through the transport tube. The state of the thermal spray powder adhering to the transport path and the transport amount of the thermal spray powder were confirmed. As the thermal spray powder, alumina powder having an average particle diameter of 3 μm was used, and an AC voltage of 5 kV was continuously applied to the first electrode by the power supply unit. In addition, about the state of the thermal spraying powder adhering to a conveyance path, it confirmed from the outside of the translucent conveyance pipe | tube during the test, and cut | disconnected the conveyance pipe | tube after the test and confirmed. About the conveyance amount of the thermal spray powder, the exit of the conveyance pipe was confirmed visually.
The state of the sprayed powder adhering to the conveyance path: Some sprayed powder adhered spirally, but the amount of adhesion did not increase over time, and the conveyance path was not blocked.
Amount of sprayed powder transport: not decreased.

(比較例)
上記実施例の粉体搬送システムから電界発生手段を取り除き、搬送路に電界を発生させない状態で行った。上記実施例と同条件で溶射粉体を搬送管に通過させた。実施例と同じく、溶射粉体に平均粒径3μmのアルミナ粉末を用い、搬送路へ付着している溶射粉体の状態、及び溶射粉体の搬送量を確認した。
搬送路へ付着している溶射粉体の状態:試験開始直後から付着し始め、大量に凝集している溶射粉体が一度に流れる現象と、少量に凝集している溶射粉体が搬送路に付着したままとなる現象とが繰り返された。
溶射粉体の搬送量:試験開始直後から減少し始めると共に、上記の現象が繰り返されることにより、搬送量が一定ではなくなった。更に、時間の経過と共に搬送量が減少していき、10分後に搬送路が溶射粉体で閉塞されて、搬送不可能となった。
(Comparative example)
The electric field generating means was removed from the powder transfer system of the above example, and the process was performed without generating an electric field in the transfer path. The sprayed powder was passed through the transfer tube under the same conditions as in the above example. As in the example, alumina powder having an average particle diameter of 3 μm was used as the spray powder, and the state of the spray powder adhering to the transport path and the transport amount of the spray powder were confirmed.
The state of the sprayed powder adhering to the transport path: The phenomenon that the sprayed powder that started to adhere immediately after the start of the test and a large amount of agglomerated powder flows at once, and the sprayed powder that has aggregated in a small amount to the transport path The phenomenon of remaining attached was repeated.
Amount of sprayed powder transported: The transported amount became non-constant by starting to decrease immediately after the start of the test and repeating the above phenomenon. Furthermore, the amount of conveyance decreased with the passage of time, and after 10 minutes, the conveyance path was blocked with the sprayed powder, making conveyance impossible.

以上の実施例と比較例から、電界発生手段を用いて搬送路に電界を発生させれば、搬送路への溶射粉体の付着が飛躍的に抑制されることがわかる。   From the above Examples and Comparative Examples, it can be seen that if an electric field is generated in the transport path using the electric field generating means, the adhesion of the sprayed powder to the transport path is drastically suppressed.

なお、上記で開示した各実施形態、実施例は例示であり、制限的なものではない。粉体搬送システムに用いられる搬送管、ガス供給手段、及び電界発生手段は、用途に応じて多様な形態のものを用いることができる。特に、電界発生手段に関して、上記第1の実施形態では、一方の電極が電源部に接続され、他方の電極がアース部に接続されているが、他の形態として、アース部には接続せずに、両方の電極に印加する電圧の位相を互いに180°ずらしてもよい。この場合、複数の電極に印加する電圧の位相を互いにずらすための、例えば位相調整手段を更に設ければよい。2つの電極に印加する電圧の位相をずらすことで、搬送路に生じる2つの電界により溶射粉体を多方向へ飛翔移動させることができる。   In addition, each embodiment and Example disclosed above are examples, and are not restrictive. The conveyance pipe, gas supply means, and electric field generation means used in the powder conveyance system can be used in various forms depending on the application. In particular, with regard to the electric field generating means, in the first embodiment, one electrode is connected to the power supply unit and the other electrode is connected to the ground unit. However, as another form, it is not connected to the ground unit. In addition, the phase of the voltage applied to both electrodes may be shifted by 180 °. In this case, for example, a phase adjusting means for shifting the phases of the voltages applied to the plurality of electrodes may be further provided. By shifting the phase of the voltage applied to the two electrodes, the sprayed powder can be moved in multiple directions by two electric fields generated in the transport path.

また、電極部を構成する電極は2つに限られるものではなく、当該電極部を3つ或いは4つ以上の電極で構成してもよい。以下、第1、第2の電極を含む複数の電極とは、各電極に印加される電圧が異なるか、各電極に印加される電圧の位相がずれている電極をいうものとする。例えば電極部を3つの電極で構成した場合、3つ電極のうち1つの電極をアース部に接続し、残りの2つの電極に印加する電圧の位相を、互いに180°ずらせばよい。また、3つの電極のいずれの電極もアース部には接続せず、3つの電極に印加する電圧の位相を互いに120°ずらしてもよい。更に、電極を4つ以上とした場合、電極の数をnとしたときに、n個の電極のいずれの電極もアース部には接続せず、n個の電極に印加する電圧の位相を互いに360°/nずらせばよい。このように、電極部を構成する電極の数、これら電極へのアース部の接続の有無、これら電極へ印加する電圧を互いにずらせる度合いを変更することで、有効な電界を搬送路に生じさせればよい。   Moreover, the electrode which comprises an electrode part is not restricted to two, You may comprise the said electrode part by three or four or more electrodes. Hereinafter, the plurality of electrodes including the first and second electrodes refer to electrodes in which voltages applied to the electrodes are different or phases of voltages applied to the electrodes are shifted. For example, when the electrode portion is composed of three electrodes, one of the three electrodes may be connected to the ground portion, and the phases of the voltages applied to the remaining two electrodes may be shifted from each other by 180 °. In addition, none of the three electrodes may be connected to the ground portion, and the phases of the voltages applied to the three electrodes may be shifted from each other by 120 °. Furthermore, when the number of electrodes is four or more, when the number of electrodes is n, none of the n electrodes are connected to the ground portion, and the phases of the voltages applied to the n electrodes are mutually different. It may be shifted by 360 ° / n. In this way, an effective electric field is generated in the transport path by changing the number of electrodes constituting the electrode part, the presence / absence of connection of the ground part to these electrodes, and the degree to which the voltages applied to these electrodes are shifted from each other. Just do it.

上記実施形態では第1、第2の電極として導線、リング状プレートを用いたが、搬送路に有効な電界を発生させられるものであれば、他の形状のものを使用することもできる。例えば、第1、第2の電極を搬送路(搬送管)の長手に沿って伸びる金属箔としてもよい。金属箔としては、アルミ箔や銅箔等が挙げられる。つまり、金属箔からなる長い第1、第2の電極を互いに対向状に設けることで、当該第1、第2の電極で搬送路を挟み込めばよい。また、このような搬送路の長手に沿って伸びる金属箔からなる電極を、3つ以上設けてもよい。この場合においても、電極部を構成する電極の数、これら電極へのアース部の接続の有無、これら電極へ印加する電圧を互いにずらせる度合いを変更することで、有効な電界を搬送路に生じさせればよい。   In the above embodiment, the conductive wire and the ring-shaped plate are used as the first and second electrodes, but other shapes can be used as long as an effective electric field can be generated in the transport path. For example, the first and second electrodes may be metal foils extending along the length of the transport path (transport pipe). Examples of the metal foil include aluminum foil and copper foil. In other words, the first and second electrodes made of metal foil are provided opposite to each other so that the conveyance path is sandwiched between the first and second electrodes. Moreover, you may provide three or more electrodes which consist of metal foil extended along the length of such a conveyance path. Even in this case, an effective electric field is generated in the transport path by changing the number of electrodes constituting the electrode part, the presence / absence of connection of the ground part to these electrodes, and the degree to which the voltages applied to these electrodes are shifted from each other. You can do it.

更に、第1、第2の電極を、第2の実施形態におけるリング状に形成された所要厚みを有する導電プレート(リング状プレート)とし、これらを搬送管入口や搬送管出口だけでなく、搬送管入口から搬送管出口に渡って、互い違いに所要間隔を開けて複数設けてもよい。この場合においても、電極部を構成する電極の数、これら電極へのアース部の接続の有無、これら電極へ印加する電圧を互いにずらせる度合いを変更することで、有効な電界を搬送路に生じさせればよい。   Furthermore, the first and second electrodes are conductive plates (ring-shaped plates) having a required thickness formed in a ring shape in the second embodiment, and these are transported not only at the transport pipe inlet and the transport pipe outlet. A plurality of them may be provided at a necessary interval alternately from the pipe inlet to the transport pipe outlet. Even in this case, an effective electric field is generated in the transport path by changing the number of electrodes constituting the electrode part, the presence / absence of connection of the ground part to these electrodes, and the degree to which the voltages applied to these electrodes are shifted from each other. You can do it.

第1の実施形態において、電極部Dを構成する細長状の第1の電極と第2の電極を、搬送管の搬送管入口から搬送管出口に渡る外周に、螺旋状に巻回してもよい。これにより、搬送管の搬送管入口から搬送管出口に渡る外周全体が、第1、第2の電極35、36で包み込まれ、当該第1、第2の電極で包み込まれた搬送路の入口から、搬送路の出口である搬送口までのより広い範囲に電界を発生させることができる。   In the first embodiment, the elongated first electrode and the second electrode constituting the electrode part D may be spirally wound around the outer periphery of the transport pipe from the transport pipe inlet to the transport pipe outlet. . As a result, the entire outer periphery from the conveyance pipe inlet to the conveyance pipe outlet of the conveyance pipe is wrapped by the first and second electrodes 35 and 36, and from the conveyance path inlet wrapped by the first and second electrodes. In addition, an electric field can be generated in a wider range up to the transport opening that is the exit of the transport path.

被覆用粉体の付着抑制方法、被覆用粉体の搬送方法、被覆用粉体搬送システムとして、プラズマ溶射装置を例にして説明したが、これらの方法、システムは、搬送管にキャリヤーガスを流し、そこで被覆用粉体を圧送する他の各種の装置に適用することができる。従って、搬送する被覆用粉体は、溶射粉体に限らず、基材を被覆する用途に使用される粉体であれば、どのようなものにも本発明を適用することができる。例えば、溶射粉体を用いるものとして、上記各実施形態では、プラズマ溶射装置を例に説明したが、例えば、フレーム溶射装置等、溶射粉体を溶射部に導入するタイプの溶射装置に適用可能である。また、第1の実施形態と第2の実施形態を組み合わせることもできる。この場合、パウダーフィーダーからの粉体は、搬送路へスムーズに導入されていき、かつ搬送路の壁面部分全体への付着が抑制されるので、成膜プロセス或いは、各種の製造プロセスにおいて均一な条件を長時間維持でき、より高品質の製品を得ることができる。   A plasma spraying apparatus has been described as an example of a method for suppressing the adhesion of powder for coating, a method for transporting powder for coating, and a powder transport system for coating. However, these methods and systems flow carrier gas through a transport pipe. Therefore, the present invention can be applied to various other apparatuses that pump the coating powder. Accordingly, the coating powder to be conveyed is not limited to the thermal spraying powder, and the present invention can be applied to any powder as long as it is used for coating a substrate. For example, in the above embodiments, the plasma spraying apparatus has been described as an example using a sprayed powder. However, the present invention can be applied to a spraying apparatus of a type that introduces a sprayed powder into a sprayed part, such as a flame spraying apparatus. is there. Further, the first embodiment and the second embodiment can be combined. In this case, the powder from the powder feeder is smoothly introduced into the conveyance path and is prevented from adhering to the entire wall surface of the conveyance path, so that uniform conditions are used in the film forming process or various manufacturing processes. Can be maintained for a long time, and a higher quality product can be obtained.

更に、本発明に係る被覆用粉体の付着抑制方法、被覆用粉体の搬送方法、被覆用粉体搬送システムが適用されるものとして、エアロゾルデポジション法、及び粉体肉盛り溶接法における被覆用粉体の搬送が挙げられる。
(エアロゾルデポジション法)
エアロゾルデポジション
法(以下、AD法とする)は、粒径が数十nm〜数μmのセラミックス或いは金属の微粒子からなる粉体(被覆用粉体)をガスと混合してエアロゾル化し、減圧化の雰囲気でノズルを通して基板に噴射して、皮膜を形成する技術である。近年、AD法は、低基板温度で、かつ高成膜速度で、原料である微粒子と同様の結晶構造を有する緻密な皮膜が形成できる方法として着目されている。
Further, the coating method in the aerosol deposition method and the powder build-up welding method is applied to the coating powder adhesion suppressing method, the coating powder transport method, and the coating powder transport system according to the present invention. Conveyance of the powder for use.
(Aerosol deposition method)
In the aerosol deposition method (hereinafter referred to as AD method), powder (coating powder) made of ceramics or metal fine particles with a particle size of several tens of nanometers to several μm is mixed with gas to form an aerosol and decompressed. This is a technique for forming a film by spraying onto a substrate through a nozzle in the atmosphere described above. In recent years, the AD method has attracted attention as a method capable of forming a dense film having a crystal structure similar to that of fine particles as a raw material at a low substrate temperature and at a high film formation rate.

AD法を用いた成膜装置は、例えば、搬送管で接続されたエアロゾルチャンバー、成膜チャンバー、その他ガスボンベ、フローコントローラ等で構成されている。成膜チャンバー内は、真空ポンプで減圧されており、ドライな粉体は、エアロゾルチャンバー内でガスと攪拌、混合されてエアロゾル化される。両チャンバーの圧力差により生じるガスの流れにより、粉体が成膜チャンバーに搬送されて、ノズルを通って加速され、基板に噴射される。   A film forming apparatus using the AD method includes, for example, an aerosol chamber, a film forming chamber, a gas cylinder, a flow controller, and the like connected by a transfer pipe. The inside of the film forming chamber is depressurized by a vacuum pump, and the dry powder is agitated and mixed with gas in the aerosol chamber to be aerosolized. Due to the gas flow generated by the pressure difference between the two chambers, the powder is transferred to the film forming chamber, accelerated through the nozzle, and sprayed onto the substrate.

このようなAD法を用いた成膜装置における粉体の搬送に、本発明に係る被覆用粉体の付着抑制方法、被覆用粉体搬送方法、被覆用粉体搬送システムを適用することができる。
この場合、上記AD法を用いた成膜装置が使用される製作プロセスにおいて、粉体の搬送量が長時間において均一に保たれ、均一な条件を長時間維持することができる。
The coating powder adhesion suppressing method, the coating powder transport method, and the coating powder transport system according to the present invention can be applied to the powder transport in the film forming apparatus using the AD method. .
In this case, in the manufacturing process in which the film forming apparatus using the AD method is used, the transport amount of the powder is kept uniform for a long time, and the uniform condition can be maintained for a long time.

(粉体肉盛り溶接法)
粉体肉盛り溶接法は、高温のプラズマガスを水冷ノズルにより絞り、エネルギー密度の高いプラスマアークとして基材に到達させて、アーク電流を基材に流し、基材表面に溶融池を形成し、キャリアーガスによって搬送されてきた粉体(被覆用粉体)を、プラスマアーク中に送り込んで溶融させた状態で基材上の上記溶融池に投入し、肉盛層を形成するものである。
(Powder overlay welding method)
In the powder build-up welding method, high-temperature plasma gas is squeezed with a water-cooled nozzle to reach the base material as a plasma arc with high energy density, and an arc current is passed through the base material to form a molten pool on the surface of the base material. The powder (coating powder) conveyed by the carrier gas is fed into the plasma arc and melted, and then charged into the molten pool on the base material to form a built-up layer.

上記粉体肉盛り溶接法では、肉盛り材料として粉体を用いるので、ワイヤーや棒に加工できなかった難加工材である高硬度材やセラミックスで肉盛り溶接が可能となり、異なる粉体の配合費を変えることで多様な目的に応じた皮膜を形成でき、耐剥離性に優れ、厚めの皮膜を形成できるので、第1級の品質管理が求められる石油、船舶、航空機、輸送機、原子力発電等、広い応用範囲を有している。   In the above-mentioned powder build-up welding method, powder is used as the build-up material, so build-up welding is possible with high-hardness materials and ceramics, which are difficult to process materials that could not be processed into wires and rods. By changing costs, it is possible to form coatings for various purposes, with excellent peel resistance, and thick coatings. Oil, ships, aircraft, transportation equipment, and nuclear power generation that require first-class quality control Etc., and has a wide range of applications.

粉体肉盛り溶接法を用いた成膜装置における粉体搬送システムとしては、本発明が適用された図1に示す粉体搬送システムと略同様のものを使用することができる。この場合、当該粉体肉盛り溶接法を用いた成膜装置が使用される製作プロセスにおいて、粉体の搬送量が長時間において均一に保たれ、均一な製作条件を長時間維持することができる。
なお、本発明の範囲は、上記した実施形態や実施例に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内の全ての変更が含まれる。
As a powder conveyance system in the film forming apparatus using the powder build-up welding method, a system substantially the same as the powder conveyance system shown in FIG. 1 to which the present invention is applied can be used. In this case, in the manufacturing process in which the film deposition apparatus using the powder build-up welding method is used, the amount of powder transport can be kept uniform over a long period of time, and uniform manufacturing conditions can be maintained for a long time. .
The scope of the present invention is not limited to the above-described embodiments and examples, but is indicated by the scope of the claims, and includes meanings equivalent to the scope of the claims and all modifications within the scope.

本発明は、搬送管にガスを流し、そこで被覆用粉体を圧送する方法、装置に有効に適用される。   INDUSTRIAL APPLICABILITY The present invention is effectively applied to a method and an apparatus in which a gas is allowed to flow through a transport pipe and the coating powder is pumped there.

1 プラズマ溶射装置
2 溶射トーチ
5 溶射粉体
6 パウダーフィーダー
7 粉体搬送システム
25 キャリヤーガス
26 搬送路
27 搬送管
32 電界発生手段
33 アース部
34 電源部
35 第1の電極
36 第2の電極
DESCRIPTION OF SYMBOLS 1 Plasma spraying apparatus 2 Spraying torch 5 Spraying powder 6 Powder feeder 7 Powder conveyance system 25 Carrier gas 26 Conveyance path 27 Conveyance pipe 32 Electric field generation means 33 Grounding part 34 Power supply part 35 1st electrode 36 2nd electrode

Claims (3)

ガスが流れる搬送路を有する搬送管で当該搬送路の搬送口に向かって被覆用粉体を気流搬送する際に、当該被覆用粉体が前記搬送路の壁面部分に付着することを抑制する被覆用粉体の付着抑制方法であって、
前記搬送管の外周面上で互い違いに隙間を空けて同方向の螺旋状に巻回された細長状の導線からなる複数の電極に電圧を印加することにより、フッ素樹脂製の当該搬送管の前記搬送路内に強弱の電界を生じさせ、この強弱の電界により前記被覆用粉体を前記搬送路内で、前記いずれかの電極の真上方向及びその前後斜め方向へ飛翔移動させ
前記複数の電極の数をnとしたときに当該複数の電極に印加する電圧の位相を互いに(360°/n)ずらすと共に、下記式を満たすことを特徴とする被覆用粉体の付着抑制方法。
Fp>Fa
ただし、Fp:電界により被覆用粉体に生じるクーロン力、Fa:被覆用粉体と搬送路との摩擦で双方の帯電により生じた被覆用粉体の搬送路に対する付着力。
A coating that suppresses the coating powder from adhering to the wall surface portion of the transport path when the coating powder is transported by air flow toward the transport port of the transport path with a transport pipe having a transport path through which gas flows. A method for suppressing adhesion of powder for use,
By applying a voltage to the plurality of electrodes to alternately consisting elongated conductor wound in the same direction of the spiral with a gap on the outer peripheral surface of the transport tube, the fluororesin of the transport tube A strong electric field is generated in the transport path, and the coating powder is caused to fly and move in the transport path in a direction directly above one of the electrodes and in an oblique direction before and after the electrode .
A method for suppressing the adhesion of powder for coating, wherein the number of the plurality of electrodes is n, the phases of voltages applied to the plurality of electrodes are shifted from each other (360 ° / n), and the following equation is satisfied : .
Fp> Fa
However, Fp: Coulomb force generated in the coating powder by the electric field, Fa: Adhesive force of the coating powder generated by charging of the coating powder and the conveyance path due to both charging to the conveyance path.
被覆用粉体をガスにより気流搬送するための搬送路を有するフッ素樹脂製の搬送管と、
前記搬送路の搬送口に向かって前記被覆用粉体が気流搬送されるように、当該搬送路へ前記ガスを供給するガス供給手段と、
前記搬送路に電界を生じさせ、この電界により前記被覆用粉体を前記ガスの流れ方向と異なる方向へ飛翔移動させることで、前記搬送路の壁面部分への当該被覆用粉体の付着を抑制する電界発生手段と、を備え、
前記電界発生手段は、前記搬送管の外周面上で互い違いに同方向の螺旋状に巻回された細長状の導線からなる複数の電極を有し、これら複数の電極は、前記搬送路内で生じさせた強弱の電界によって前記被覆用粉体の当該搬送路内での飛翔移動方向が前記いずれかの電極の真上方向及びその前後斜め方向となるように互いに隙間を空けて巻回されており、
前記複数の電極の数をnとしたときに当該複数の電極に印加する電圧の位相を互いに(360°/n)ずらすと共に、下記式を満たすことを特徴とする被覆用粉体搬送システム。
Fp>Fa
ただし、Fp:電界により被覆用粉体に生じるクーロン力、Fa:被覆用粉体と搬送路との摩擦で双方の帯電により生じた被覆用粉体の搬送路に対する付着力。
A fluororesin transport pipe having a transport path for air-flowing the coating powder by gas;
Gas supply means for supplying the gas to the transport path so that the coating powder is air-flow transported toward the transport port of the transport path;
An electric field is generated in the transport path, and the coating powder is caused to fly and move in a direction different from the gas flow direction, thereby preventing the coating powder from adhering to the wall surface portion of the transport path. And an electric field generating means for
Said electric field generating means, have a plurality of electrodes consisting of elongated conductor which alternately wound in the same direction of the spiral on the outer peripheral surface of the transport pipe, the plurality of electrodes, in the conveying path The coating powder is wound with a gap between each other so that the flying movement direction of the coating powder in the conveyance path is directly above the one of the electrodes and obliquely in front and back thereof by the generated strong and weak electric field. And
A coating powder transport system , wherein when the number of the plurality of electrodes is n, the phases of voltages applied to the plurality of electrodes are shifted from each other (360 ° / n) and the following equation is satisfied .
Fp> Fa
However, Fp: Coulomb force generated in the coating powder by the electric field, Fa: Adhesive force of the coating powder generated by charging of the coating powder and the conveyance path due to both charging to the conveyance path.
被覆用粉体を溶融させ基材へ衝突させることで当該基材の表面に皮膜を形成する成膜部と、
前記成膜部へ導入する前記被覆用粉体を貯留し排出する粉体供給部と、
前記被覆用粉体を前記粉体供給部から前記成膜部へ搬送する被覆用粉体搬送システムと、を備えた被覆装置において、
前記被覆用粉体搬送システムが、請求項2に記載の被覆用粉体搬送システムであることを特徴とする被覆装置。
A film forming unit that forms a film on the surface of the substrate by melting the powder for coating and colliding with the substrate;
A powder supply unit for storing and discharging the coating powder to be introduced into the film forming unit;
A coating apparatus comprising: a coating powder conveyance system configured to convey the coating powder from the powder supply unit to the film forming unit;
3. The coating apparatus according to claim 2, wherein the coating powder transport system is the coating powder transport system according to claim 2.
JP2009091593A 2009-04-03 2009-04-03 Method for suppressing adhesion of powder for coating, powder conveying system for coating, and coating apparatus Active JP5670026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009091593A JP5670026B2 (en) 2009-04-03 2009-04-03 Method for suppressing adhesion of powder for coating, powder conveying system for coating, and coating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009091593A JP5670026B2 (en) 2009-04-03 2009-04-03 Method for suppressing adhesion of powder for coating, powder conveying system for coating, and coating apparatus

Publications (2)

Publication Number Publication Date
JP2010241550A JP2010241550A (en) 2010-10-28
JP5670026B2 true JP5670026B2 (en) 2015-02-18

Family

ID=43095036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009091593A Active JP5670026B2 (en) 2009-04-03 2009-04-03 Method for suppressing adhesion of powder for coating, powder conveying system for coating, and coating apparatus

Country Status (1)

Country Link
JP (1) JP5670026B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5946179B2 (en) * 2012-07-31 2016-07-05 トーカロ株式会社 Ceramic film forming apparatus and method
KR20200107146A (en) * 2019-03-06 2020-09-16 에스케이이노베이션 주식회사 Automatic Powder Transfer System Using Vacuum Conveyor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933192Y1 (en) * 1970-06-03 1974-09-07
JPS5777117A (en) * 1980-10-30 1982-05-14 Mitsubishi Heavy Ind Ltd Method of transporting powdery or granular material
JPS60187668A (en) * 1984-03-07 1985-09-25 Honda Motor Co Ltd Conveying method of powder material
JP3569544B2 (en) * 1994-03-25 2004-09-22 財団法人神奈川科学技術アカデミー Variable pitch type powder conveying device

Also Published As

Publication number Publication date
JP2010241550A (en) 2010-10-28

Similar Documents

Publication Publication Date Title
JP6629748B2 (en) Method and apparatus for producing powder particles by atomizing a feed material in the form of an elongated member
US10730063B2 (en) Plasma transfer wire arc thermal spray system
US10787733B2 (en) Device for forming coatings on surfaces of a component, band-shaped material, or tool
ES2345986T3 (en) PROCEDURE FOR COATING A SUBSTRATE SURFACE USING A PLASMA JET.
US9433957B2 (en) Cold spray systems with in-situ powder manufacturing
JPH07107876B2 (en) Plasma generator and plasma generating method
CN112024885A (en) Plasma arc nozzle, plasma generating device with plasma arc nozzle and three-dimensional printing equipment
JPS6250192B2 (en)
JPS6215256B2 (en)
US8877297B2 (en) Deposition method
US20090183835A1 (en) Etching process apparatus and member for etching process chamber
KR20140003336A (en) Deposition method
JP5670026B2 (en) Method for suppressing adhesion of powder for coating, powder conveying system for coating, and coating apparatus
KR101263602B1 (en) Cone-Jet Mode Electrostatic Spray Deposition Apparatus
KR101671097B1 (en) Deposition method, deposition apparatus and structure
JP4774510B2 (en) Plasma deposition equipment
JP2006198577A (en) Classification method of finely divided particle and film forming method
EP2582858A1 (en) Apparatus and method for coating glass substrate
KR101263591B1 (en) Cone-Jet Mode Electrostatic Spray Deposition Apparatus
JP2698359B2 (en) Multi-phase, multi-electrode arc spraying equipment
JP4613056B2 (en) Pressure gradient ion plating film forming apparatus and film forming method
KR20090044157A (en) Coating device for composite material
CN203554776U (en) Device for plasma coating
CN108368609A (en) Device and method for applying coating
RU2366122C1 (en) Plasmatron for application of coatings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141217

R150 Certificate of patent or registration of utility model

Ref document number: 5670026

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250