JP5667504B2 - Nonmagnetic stainless steel - Google Patents

Nonmagnetic stainless steel Download PDF

Info

Publication number
JP5667504B2
JP5667504B2 JP2011089666A JP2011089666A JP5667504B2 JP 5667504 B2 JP5667504 B2 JP 5667504B2 JP 2011089666 A JP2011089666 A JP 2011089666A JP 2011089666 A JP2011089666 A JP 2011089666A JP 5667504 B2 JP5667504 B2 JP 5667504B2
Authority
JP
Japan
Prior art keywords
mass
stainless steel
content
present
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011089666A
Other languages
Japanese (ja)
Other versions
JP2012219367A (en
Inventor
幸隆 水野
幸隆 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Koshuha Steel Co Ltd
Original Assignee
Nippon Koshuha Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Koshuha Steel Co Ltd filed Critical Nippon Koshuha Steel Co Ltd
Priority to JP2011089666A priority Critical patent/JP5667504B2/en
Publication of JP2012219367A publication Critical patent/JP2012219367A/en
Application granted granted Critical
Publication of JP5667504B2 publication Critical patent/JP5667504B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は強磁場の環境下で使用される非磁性ステンレス鋼に関し、特に、優れた耐食性及び強度を有する析出強化型高強度非磁性ステンレス鋼に関する。   The present invention relates to a nonmagnetic stainless steel used in a strong magnetic field environment, and more particularly to a precipitation strengthened high strength nonmagnetic stainless steel having excellent corrosion resistance and strength.

近時、電動機で駆動される例えば新幹線等の鉄道車輌に代わる輸送手段として、磁気により浮上させた車輌に、地上又は車輌側に設けたリニアモータにより磁界を切り替えて推進力を与え、これにより走行させる方式の磁気浮上式車輌(リニアモータカー)が注目を集めている。このような超伝導磁石等の構造物の材料としては、例えばオーステナイト系ステンレス鋼が使用されている(例えば、特許文献1)。この特許文献1においては、極低温下におけるオーステナイト系ステンレス鋼の強度及び靱性を高めるための組成及び制御圧延方法が開示されており、添加するCの量を0.03質量%以下に減らすと共に、N:0.10乃至0.40質量%及びNb:0.02乃至0.25質量%添加することにより、鋼の再結晶温度が高まって制御圧延が容易になり、粗圧延後に微細な結晶組織を得やすくなることが開示されている。   Recently, as a means of transportation to replace railway vehicles, such as Shinkansen, driven by electric motors, a magnetic motor is used to switch the magnetic field by a linear motor provided on the ground or on the vehicle side to provide propulsive force. A magnetically levitated vehicle (linear motor car) that attracts attention attracts attention. As a material for such a structure such as a superconducting magnet, for example, austenitic stainless steel is used (for example, Patent Document 1). In Patent Document 1, a composition and a controlled rolling method for increasing the strength and toughness of austenitic stainless steel at extremely low temperatures are disclosed, and the amount of C to be added is reduced to 0.03% by mass or less, By adding N: 0.10 to 0.40% by mass and Nb: 0.02 to 0.25% by mass, the recrystallization temperature of the steel is increased to facilitate controlled rolling, and a fine crystal structure after rough rolling. It is disclosed that it becomes easy to obtain.

一方、磁気浮上式車輌が走行する際には、外部から作用する磁気力が磁気抵抗として作用するため、例えば敷設されるガイドウェイを支持する橋梁等の構造物には、従来の鉄橋梁及び鉄筋コンクリートを使用することができず、非磁性の材料を使用することが必要となる。同様の理由により、地上電磁コイルをガイドウェイに固定するためのボルト等の部材にも、非磁性の材料を使用することが求められている。そして、これらの構造物及びボルト等の部材に使用される非磁性ステンレス鋼の開発が近時ますます進められている。   On the other hand, when a magnetically levitated vehicle travels, the magnetic force acting from the outside acts as a magnetic resistance. For example, a structure such as a bridge supporting a guideway to be laid has a conventional iron bridge and reinforced concrete. It is necessary to use a non-magnetic material. For the same reason, it is required to use a non-magnetic material for a member such as a bolt for fixing the ground electromagnetic coil to the guide way. The development of non-magnetic stainless steel used for such structures and bolts is being promoted recently.

例えば、特許文献2には、高強度非磁性高Mn鋼において、フェライト組織を形成することにより透磁率を高めるCrの添加量を15%以下に減らすことが開示されている。   For example, Patent Document 2 discloses that in high-strength nonmagnetic high-Mn steel, the amount of Cr added to increase the magnetic permeability by forming a ferrite structure is reduced to 15% or less.

特開平2−97649号公報Japanese Patent Laid-Open No. 2-97649 特開平2−104633号公報JP-A-2-104633

しかしながら、前述の従来の技術には以下に示す問題点がある。特許文献1のオーステナイト系ステンレス鋼は、制御圧延及び制御冷却による加工硬化により強度を高めているため、大径材又は大型部品の場合に、ステンレス鋼の内部まで均一且つ十分に加工硬化を施すことが難しく、強度向上には限界がある。また、特許文献1の技術においては、製造可能なステンレス鋼の形状及び寸法が制限され、複雑な形状のステンレス鋼部品を製造しにくいという問題点がある。   However, the conventional techniques described above have the following problems. Since the austenitic stainless steel of Patent Document 1 has increased strength by work hardening by controlled rolling and controlled cooling, it is necessary to uniformly and sufficiently work harden the inside of the stainless steel in the case of large diameter materials or large parts. However, there is a limit to improving the strength. Moreover, in the technique of patent document 1, there exists a problem that the shape and dimension of stainless steel which can be manufactured are restrict | limited and it is difficult to manufacture the stainless steel component of a complicated shape.

また、特許文献2に開示された高強度非磁性高Mn鋼は、十分な耐食性を確保することができず、橋梁等の耐食性が望まれる用途には適していない。   In addition, the high-strength nonmagnetic high-Mn steel disclosed in Patent Document 2 cannot secure sufficient corrosion resistance, and is not suitable for applications where corrosion resistance such as bridges is desired.

本発明はかかる問題点に鑑みてなされたものであって、強磁場の環境下においても耐食性が高く、高荷重・高負荷に耐えられる高い強度を有する非磁性ステンレス鋼を提供することを目的とする。   The present invention has been made in view of such a problem, and an object thereof is to provide a nonmagnetic stainless steel having high corrosion resistance under a strong magnetic field environment and having a high strength capable of withstanding a high load and a high load. To do.

本発明に係る非磁性ステンレス鋼は、C:0.20乃至0.55質量%、Cr:15.0質量%を超え20.0質量%以下、N:0.025乃至0.25質量%、V:1.0乃至2.5質量%、Mn:4.50乃至9.50質量%、Ni:3.0乃至10.0質量%、Si:0.01乃至1.00質量%及びAl:0.001乃至0.050質量%を含有し、残部がFe及び不可避的不純物からなる非磁性ステンレス鋼であって、C及びNの含有量は、総量で0.3乃至0.6質量%であり、Cr、N、C及びVの含有量を夫々[Cr]、[N]、[C]及び[V]としたときに、Nの含有量[N]は、下記数式1で表される数値Xに対する比[N]/Xが0.4乃至3.0であり、Vの含有量[V]は、下記数式2で表される数値Yに対する比[V]/Yが0.7乃至1.5であることを特徴とする。   The nonmagnetic stainless steel according to the present invention has C: 0.20 to 0.55 mass%, Cr: more than 15.0 mass% and 20.0 mass% or less, N: 0.025 to 0.25 mass%, V: 1.0 to 2.5 mass%, Mn: 4.50 to 9.50 mass%, Ni: 3.0 to 10.0 mass%, Si: 0.01 to 1.00 mass%, and Al: Nonmagnetic stainless steel containing 0.001 to 0.050 mass%, the balance being Fe and inevitable impurities, and the total content of C and N is 0.3 to 0.6 mass% Yes, when the contents of Cr, N, C and V are [Cr], [N], [C] and [V], respectively, the N content [N] is expressed by the following formula 1. The ratio [N] / X to the numerical value X is 0.4 to 3.0, and the V content [V] corresponds to the numerical value Y represented by the following mathematical formula 2. The ratio [V] / Y is equal to or 0.7 to 1.5.

Figure 0005667504
Figure 0005667504

Figure 0005667504
Figure 0005667504

この非磁性ステンレス鋼は、更に、Cu:0.05乃至4.00質量%、Mo:0.05乃至2.00質量%、W:0.05乃至2.00質量%、Nb:0.01乃至1.00質量%、Ti:0.01乃至1.00質量%、B:0.0005乃至0.0200質量%及びMg:0.0005乃至0.0200質量%からなる群から選択された成分を1種又は2種以上含有することが好ましい。   This non-magnetic stainless steel further includes Cu: 0.05 to 4.00 mass%, Mo: 0.05 to 2.00 mass%, W: 0.05 to 2.00 mass%, and Nb: 0.01. To 1.00% by mass, Ti: 0.01 to 1.00% by mass, B: 0.0005 to 0.0200% by mass, and Mg: 0.0005 to 0.0200% by mass It is preferable to contain 1 type, or 2 or more types.

また、非磁性ステンレス鋼は、更に、P:0.02乃至0.20質量%、S:0.005乃至0.300質量%及びSe:0.005乃至0.200質量%からなる群から選択された成分を1種又は2種以上含有することができる。   The nonmagnetic stainless steel is further selected from the group consisting of P: 0.02 to 0.20 mass%, S: 0.005 to 0.300 mass%, and Se: 0.005 to 0.200 mass%. 1 type, or 2 or more types can be contained.

本発明の非磁性ステンレス鋼は、C、N、V及びCrの含有量が最適化されている。これにより、時効処理によりMC型炭窒化物が優先的に析出し、耐食性の確保のためにCrを多量に含有する非磁性ステンレス鋼において、硬度及び強度を高めることができる。   In the nonmagnetic stainless steel of the present invention, the contents of C, N, V and Cr are optimized. Thereby, MC type carbonitride precipitates preferentially by the aging treatment, and the hardness and strength can be increased in the nonmagnetic stainless steel containing a large amount of Cr to ensure corrosion resistance.

本発明におけるN及びCrの適正添加範囲を示す図である。It is a figure which shows the appropriate addition range of N and Cr in this invention.

以下、本発明の実施形態に係る非磁性ステンレス鋼について、具体的に説明する。本実施形態の非磁性ステンレス鋼は、C:0.20乃至0.55質量%、Cr:15.0質量%を超え20.0質量%以下、N:0.025乃至0.25質量%、V:1.0乃至2.5質量%、Mn:4.50乃至9.50質量%、Ni:3.0乃至10.0質量%、Si:0.01乃至1.00質量%及びAl:0.001乃至0.050質量%を含有し、残部がFe及び不可避的不純物からなる非磁性ステンレス鋼であり、C及びNの含有量は、総量で0.3乃至0.6質量%である。また、Cr、N、C及びVの含有量を夫々[Cr]、[N]、[C]及び[V]としたときに、Nの含有量[N]は、下記数式3で表される数値Xに対する比[N]/Xが0.4乃至3.0であり、Vの含有量[V]は、下記数式4で表される数値Yに対する比[V]/Yが0.7乃至1.5である。   Hereinafter, the nonmagnetic stainless steel according to the embodiment of the present invention will be specifically described. The nonmagnetic stainless steel of the present embodiment includes C: 0.20 to 0.55 mass%, Cr: more than 15.0 mass% and 20.0 mass% or less, N: 0.025 to 0.25 mass%, V: 1.0 to 2.5 mass%, Mn: 4.50 to 9.50 mass%, Ni: 3.0 to 10.0 mass%, Si: 0.01 to 1.00 mass%, and Al: It is a nonmagnetic stainless steel containing 0.001 to 0.050 mass% with the balance being Fe and inevitable impurities, and the total content of C and N is 0.3 to 0.6 mass% . Further, when the contents of Cr, N, C, and V are [Cr], [N], [C], and [V], respectively, the N content [N] is expressed by the following Equation 3. The ratio [N] / X to the numerical value X is 0.4 to 3.0, and the content [V] of V is the ratio [V] / Y to the numerical value Y represented by the following formula 4 is 0.7 to 1.5.

Figure 0005667504
Figure 0005667504

Figure 0005667504
Figure 0005667504

非磁性ステンレス鋼において、強磁場の環境下においても高い耐食性を付与するためには、Crを従来に比して多量に含有させればよい。しかしながら、Crを多量に含有させることは、鋼内にフェライト組織が形成されることにより、透磁率が高くなってしまい、また、M23型のCr炭窒化物が形成されることにより、ステンレス鋼を時効処理する際に、析出強化による十分な硬化量を得られなくなってしまう。本願発明者は、この問題点を解決するために、種々実験検討を行った。そして、高Crのステンレス鋼において、非磁性を維持するためには、非磁性に寄与するMn及びCを適量添加すればよいことを見出した。また、この非磁性ステンレス鋼において、高荷重・高負荷に耐えられる高い強度を得るためには、C及びNをCr及びVに対して適量添加すればよいことを見出し、本発明の構成を見出した。 In nonmagnetic stainless steel, in order to provide high corrosion resistance even in an environment with a strong magnetic field, Cr may be contained in a larger amount than in the past. However, the inclusion of a large amount of Cr means that the magnetic permeability increases due to the formation of a ferrite structure in the steel, and the M 23 C 6 type Cr carbonitride is formed. When aging the stainless steel, a sufficient amount of hardening due to precipitation strengthening cannot be obtained. The inventor of the present application has conducted various experimental studies in order to solve this problem. And in high Cr stainless steel, in order to maintain nonmagnetism, it discovered that Mn and C which contribute to nonmagnetism should just be added. In addition, in this non-magnetic stainless steel, in order to obtain high strength that can withstand high loads and high loads, it is found that an appropriate amount of C and N may be added to Cr and V, and the configuration of the present invention is found. It was.

即ち、本発明においては、Crの添加により高い耐食性を維持しつつ、Mn及びCの添加によりステンレス鋼の透磁率が高くなることを抑制し、Nの添加により、C及びNがVと優先的に結合してMC型炭窒化物を形成するようになり、MC型炭窒化物の析出により、非磁性ステンレス鋼の強度が向上する。   That is, in the present invention, the addition of Cr suppresses an increase in the magnetic permeability of stainless steel by adding Mn and C while maintaining high corrosion resistance. By adding N, C and N are preferentially set to V. To form MC type carbonitride, and precipitation of MC type carbonitride improves the strength of nonmagnetic stainless steel.

即ち、本発明においては、所定の組成を有する鋳塊に、圧延加工及び矯正加工を施し、その後、固溶化熱処理を施した後、固溶化処理後の素材を例えばボルト等の用途に合わせて、所定の寸法に切断する。そして、冷間加工又は切削加工により、拡径、顎加工、六角ボルト頭等の形状を加工した後、時効処理を施す。この時効処理の際に、本発明においては、C及びNがVと優先的に結合したMC型炭窒化物が析出する。このように、本発明においては、熱処理による析出硬化のみにより、耐食性の確保のためにCrを多量に含有する非磁性ステンレス鋼において、硬度及び強度を高めることができる。よって、制御圧延及び制御冷却等による加工硬化により強度を高める場合に比して、ステンレス鋼の内部まで十分に高い強度が得られ、また、寸法及び形状による制約がほとんどないため、非磁性ステンレス鋼を適用できる製品に大きな自由度が得られる。特に、大径の顎付きボルト及び複雑な形状の部品等において、十分な強度を表面から鋼内部まで均一に得るためには、本発明のように、熱処理による析出強化が最適である。   That is, in the present invention, the ingot having a predetermined composition is subjected to rolling processing and straightening processing, and then subjected to solution heat treatment, and then the material after the solution treatment is used for, for example, a bolt or the like, Cut to predetermined dimensions. And after processing shapes, such as diameter expansion, jaw processing, and a hexagon bolt head, by cold processing or cutting, an aging treatment is given. In this aging treatment, in the present invention, MC type carbonitride in which C and N are preferentially bonded to V is precipitated. Thus, in the present invention, the hardness and strength can be increased in the nonmagnetic stainless steel containing a large amount of Cr to ensure corrosion resistance only by precipitation hardening by heat treatment. Therefore, compared to the case where the strength is increased by work hardening by controlled rolling and controlled cooling, etc., sufficiently high strength is obtained up to the inside of the stainless steel, and there are almost no restrictions due to dimensions and shapes, so non-magnetic stainless steel A great degree of freedom can be obtained for products that can be applied. In particular, in the case of large-diameter jaw bolts and parts having complicated shapes, precipitation strengthening by heat treatment is optimal as in the present invention in order to obtain sufficient strength uniformly from the surface to the inside of the steel.

以下、本実施形態の非磁性ステンレス鋼における数値限定理由について説明する。   Hereinafter, the reason for the numerical limitation in the nonmagnetic stainless steel of this embodiment will be described.

C:0.20乃至0.55質量%
Cは、Vと結びついて、MC型炭窒化物を生成し、時効処理における析出強化に寄与する。即ち、CとVとの間に生成される炭窒化物は、ステンレス鋼の硬度及び強度を高める作用がある。また、Cは、オーステナイトフォーマーとして非磁性に寄与する。Cの含有量が0.20質量%未満であると、時効処理による十分な析出強化の効果が得られず、0.55質量%を超えると、生成する炭窒化物が粗大化して靱性が劣化する。よって、本発明においては、Cの含有量は、0.20乃至0.55質量%と規定する。
C: 0.20 to 0.55 mass%
C combines with V to produce MC-type carbonitrides and contributes to precipitation strengthening in the aging treatment. That is, the carbonitride produced between C and V has the effect of increasing the hardness and strength of stainless steel. C contributes to non-magnetism as an austenite former. If the C content is less than 0.20% by mass, the effect of sufficient precipitation strengthening due to the aging treatment cannot be obtained, and if it exceeds 0.55% by mass, the carbonitride produced is coarsened and the toughness is deteriorated. To do. Therefore, in the present invention, the C content is defined as 0.20 to 0.55 mass%.

Cr:15.0質量%を超え20.0質量%以下
Crは、非磁性ステンレス鋼において、高い耐食性、耐酸化性及び非磁性を確保するために添加する。また、Crは、冷間加工時に、マルテンサイトの生成を抑制する効果がある。Crの含有量が15.0質量%以下であると、これらの効果が十分に得られず、Crの含有量が20.0質量%を超えると、時効処理の際に、M23型のCr炭窒化物を生成して、Vを主体とするMC型炭窒化物の生成を阻害し、時効処理による析出強化の効果を十分に得られなくなる。よって、本発明においては、Crの含有量は、15.0質量%を超え、20.0質量%以下と規定する。
Cr: more than 15.0% by mass and not more than 20.0% by mass Cr is added to ensure high corrosion resistance, oxidation resistance, and non-magnetism in non-magnetic stainless steel. Moreover, Cr has an effect of suppressing martensite formation during cold working. When the content of Cr is 15.0% by mass or less, these effects cannot be sufficiently obtained. When the content of Cr exceeds 20.0% by mass, the M 23 C 6 type is used in the aging treatment. Thus, the production of Cr carbonitride of V is inhibited, and the production of MC type carbonitride having V as a main component is inhibited, and the effect of precipitation strengthening by aging treatment cannot be sufficiently obtained. Therefore, in the present invention, the Cr content is specified to be more than 15.0 mass% and not more than 20.0 mass%.

N:0.025乃至0.25質量%
Nは、Cと同様にVと結びついて、MC型炭窒化物を生成し、時効処理による析出強化に寄与する。Crの含有量が多いステンレス鋼において、時効処理時に、MC型炭窒化物を他の炭窒化物よりも優先的に生成させるために添加する。Nの含有量が0.025質量%未満であると、時効処理により析出する炭窒化物がMC型ではなく、M23型のCr主体の炭窒化物となり、時効処理による析出強化の効果が不十分となり、強度が低下する。また、マトリックス中のCr量の減少により、耐食性が低下する。Nを0.025質量%以上添加することにより、時効処理による析出物がV主体のMC型炭窒化物となり、耐食性を低下させることなく、析出強化の効果を十分に得ることができる。一方、Nの添加量が0.25質量%を超えると、凝固の際に、巨大な共晶炭窒化物が晶出し、靱性が劣化する。よって、本発明においては、Nの含有量は、0.025乃至0.25質量%と規定する。
N: 0.025 to 0.25% by mass
N, like C, is combined with V to form MC-type carbonitrides and contributes to precipitation strengthening by aging treatment. In stainless steel with a high Cr content, MC type carbonitride is added during the aging treatment so as to be preferentially produced over other carbonitrides. When the N content is less than 0.025% by mass, the carbonitride precipitated by aging treatment is not MC type, but becomes M 23 C 6 type Cr-based carbonitride, and the effect of precipitation strengthening by aging treatment Becomes insufficient, and the strength decreases. Moreover, corrosion resistance falls by the reduction | decrease of Cr content in a matrix. By adding N in an amount of 0.025% by mass or more, the precipitate formed by the aging treatment becomes a V-type MC carbonitride, and the effect of precipitation strengthening can be sufficiently obtained without reducing the corrosion resistance. On the other hand, when the addition amount of N exceeds 0.25% by mass, a huge eutectic carbonitride crystallizes during solidification and the toughness deteriorates. Therefore, in the present invention, the N content is defined as 0.025 to 0.25% by mass.

C及びN:総量で0.3乃至0.6質量%
上記のように、本発明においては、C及びNは、MC型炭窒化物の生成に寄与する成分であるが、これらの含有量を総量で0.3乃至0.6質量%とすることにより、MC型炭窒化物を、両成分により、最適の割合で生成させることができる。即ち、C及びNの含有量が総量で0.3質量%未満であると、MC型炭窒化物の生成量が少なくなり、時効処理における析出強化の効果が不十分となる。一方、C及びNの含有量が総量で0.6質量%を超えると、生成する炭窒化物が粗大化して靱性が劣化する。
C and N: 0.3 to 0.6% by mass in total
As described above, in the present invention, C and N are components that contribute to the production of MC-type carbonitrides. By making these contents 0.3 to 0.6% by mass in total, MC type carbonitride can be produced at an optimum ratio by both components. That is, when the total content of C and N is less than 0.3% by mass, the amount of MC-type carbonitride produced is reduced, and the effect of precipitation strengthening in the aging treatment is insufficient. On the other hand, if the total content of C and N exceeds 0.6% by mass, the produced carbonitride becomes coarse and the toughness deteriorates.

[N]/X:0.4乃至3.0(但し、X=[Cr]/100−0.10)
本発明の非磁性ステンレス鋼は、C及びNを添加した高Crの析出強化型ステンレス鋼であり、適量を超えてCrを多量に添加した場合においては、時効処理の際に、M23型のCr炭窒化物を生成し、またNを適量を超えて多量に添加した場合においては、巨大な共晶炭窒化物が晶出する。これにより、時効処理時にVを主体とするMC型炭窒化物の生成が阻害され、時効処理による析出強化の効果を十分に得られなくなる場合がある。よって、上記のように、C及びNの含有量を総量で規定するのに加えて、Cr及びNの両者を最適な量で組み合わせて添加する。即ち、本発明においては、Cr量に応じて、Nを最適な量で添加することにより、時効処理により、析出強化の効果を十分に得ることができる。上記比[N]/Xが0.4未満であると、Cr量に対してNの含有量が少なくなり、Nの添加によるMC型炭窒化物の優先的な生成の効果が得にくくなって強度が低下する。一方、比[N]/Xが3.0を超えると、Cr量に対して、Nの含有量が多くなり、凝固の際に、巨大な共晶炭窒化物が晶出し、靱性が劣化するようになる。
[N] / X: 0.4 to 3.0 (where X = [Cr] /100−0.10)
The non-magnetic stainless steel of the present invention is a high Cr precipitation strengthened stainless steel to which C and N are added. When a large amount of Cr is added in excess of an appropriate amount, M 23 C 6 is used during aging treatment. When a type of Cr carbonitride is produced and a large amount of N is added in excess of an appropriate amount, a huge eutectic carbonitride is crystallized. Thereby, the generation of MC type carbonitrides mainly composed of V during the aging treatment is inhibited, and the effect of precipitation strengthening by the aging treatment may not be sufficiently obtained. Therefore, as described above, in addition to defining the contents of C and N by the total amount, both Cr and N are added in combination in an optimum amount. That is, in the present invention, the effect of precipitation strengthening can be sufficiently obtained by aging treatment by adding N in an optimum amount according to the Cr amount. When the ratio [N] / X is less than 0.4, the content of N is reduced with respect to the amount of Cr, and it is difficult to obtain the effect of preferential production of MC type carbonitride by adding N. Strength decreases. On the other hand, when the ratio [N] / X exceeds 3.0, the content of N increases with respect to the amount of Cr, and during the solidification, huge eutectic carbonitrides crystallize and toughness deteriorates. It becomes like this.

本発明におけるN及びCrの最適な添加量の関係について、図1を参照して説明する。図1は、本発明におけるN及びCrの適正添加範囲を示す図であり、実線で囲まれた部分が本発明の範囲を示す。なお、図1における白丸のプロットは、後述する実施例において、本発明の範囲を満足する実施例No.1乃至No.10のN及びCrの含有量を示し、引張強度、延性、耐食性及び非磁性が良好であった実施例を示す。黒丸のプロットは、本発明の範囲を満足しない比較例No.39,No.42,No.45乃至No.48,No.53及びNo.54のN及びCrの含有量を示し、引張強度、延性、耐食性及び非磁性の1以上の項目が劣化した比較例を示す。図1において、各プロットに付した番号は、実施例又は比較例の番号を示す。図1に示すように、本発明においては、N:0.025乃至0.25質量%、Cr:15.0質量%を超え20.0質量%以下であり、比[N]/Xの値が0.4乃至3.0であれば、引張強度、延性、耐食性及び非磁性のいずれも優れた非磁性ステンレス鋼が得られる。   The relationship between the optimum addition amounts of N and Cr in the present invention will be described with reference to FIG. FIG. 1 is a diagram showing a proper addition range of N and Cr in the present invention, and a portion surrounded by a solid line shows the range of the present invention. Note that the white circle plots in FIG. 1 to No. An example in which the content of N and Cr of 10 was shown and the tensile strength, ductility, corrosion resistance, and non-magnetism were good. The black circle plot indicates the comparative example No. which does not satisfy the scope of the present invention. 39, no. 42, no. 45-No. 48, no. 53 and no. A comparative example in which one or more items of tensile strength, ductility, corrosion resistance, and non-magnetic properties are deteriorated is shown. In FIG. 1, the numbers given to the plots indicate the numbers of the examples or comparative examples. As shown in FIG. 1, in the present invention, N: 0.025 to 0.25% by mass, Cr: more than 15.0% by mass and 20.0% by mass or less, and the value of the ratio [N] / X Is 0.4 to 3.0, a nonmagnetic stainless steel having excellent tensile strength, ductility, corrosion resistance and nonmagnetic properties can be obtained.

V:1.0乃至2.5質量%
Vは、時効処理の際に、C及びNと結びついてMC型炭窒化物を生成し、析出強化により非磁性ステンレス鋼の強度を高める効果がある。Vの含有量が1.0質量%未満であると、析出強化の効果が十分に得られず、Vの含有量が2.5質量%を超えると、析出する炭窒化物が粗大化し、靱性が劣化する。よって、Vは、1.0乃至2.5質量%添加する。
V: 1.0 to 2.5% by mass
V has the effect of generating MC type carbonitrides by combining with C and N during the aging treatment and increasing the strength of the nonmagnetic stainless steel by precipitation strengthening. If the V content is less than 1.0% by mass, the effect of precipitation strengthening cannot be sufficiently obtained. If the V content exceeds 2.5% by mass, the precipitated carbonitrides become coarse and toughness Deteriorates. Therefore, V is added in an amount of 1.0 to 2.5% by mass.

[V]/Y:0.8乃至1.5(但し、Y=4.25×[C]+3.64×[N])
本発明においては、高Crのステンレス鋼において、時効処理時にMC型炭窒化物を他の炭窒化物よりも優先的に生成させるために、適量のC及びNを添加し、Vと結合させている。よって、Vの含有量を規定するだけではなく、Vの含有量をC及びNの夫々の含有量に対する比で規定することにより、MC型炭窒化物の生成量を最適にすることができる。即ち、上記比[V]/Yが0.8未満であると、生成するMC型炭窒化物の量が十分でなく、時効処理による析出強化の効果を十分に得られなくなる。一方、[V]/Yが1.5を超えると、C及びNの含有量に対してVの含有量が過剰となり、靭性が劣化し、冷間加工性が低下する。
[V] / Y: 0.8 to 1.5 (Y = 4.25 × [C] + 3.64 × [N])
In the present invention, in high Cr stainless steel, in order to preferentially produce MC type carbonitride over other carbonitrides during aging treatment, an appropriate amount of C and N is added and combined with V. Yes. Therefore, not only the content of V but also the content of V is defined by the ratio to the respective contents of C and N, so that the amount of MC type carbonitride produced can be optimized. That is, when the ratio [V] / Y is less than 0.8, the amount of MC type carbonitride produced is not sufficient, and the effect of precipitation strengthening by aging treatment cannot be obtained sufficiently. On the other hand, when [V] / Y exceeds 1.5, the content of V becomes excessive with respect to the contents of C and N, toughness deteriorates, and cold workability deteriorates.

Mn:4.50乃至9.50質量%
Mnは、オーステナイトを生成する成分として添加し、冷間加工時のマルテンサイトの生成を抑制する。Mnは、非磁性ステンレス鋼の強度を高めるために重要であり、固溶化処理時に炭窒化物の固溶を促進し、時効処理時に炭窒化物の析出量を増加させて、非磁性ステンレス鋼の強度を高める効果がある。また、Mnはステンレス鋼の非磁性に寄与する。これらの効果を得るため、本発明においては、Mnを4.50質量%以上添加する。工業的には、量産型の弧光式電気炉を使用して非磁性ステンレス鋼を製造する際に、製造の容易さからMnの添加量は9.50質量%以下とするのが一般的である。
Mn: 4.50 to 9.50 mass%
Mn is added as a component that generates austenite, and suppresses the generation of martensite during cold working. Mn is important for increasing the strength of nonmagnetic stainless steel, promotes the solid solution of carbonitride during the solution treatment, increases the precipitation amount of carbonitride during the aging treatment, Has the effect of increasing strength. Moreover, Mn contributes to the nonmagnetic property of stainless steel. In order to obtain these effects, 4.50% by mass or more of Mn is added in the present invention. Industrially, when non-magnetic stainless steel is manufactured using a mass-produced arc-type electric furnace, the amount of Mn added is generally 9.50% by mass or less for ease of manufacturing. .

Ni:3.0乃至10.0質量%
Niは、オーステナイト形成元素として重要であり、ステンレス鋼の基本元素である。即ち、Niを添加することにより、非磁性ステンレス鋼の冷間加工性及び耐食性が向上すると共に、冷間加工時のマルテンサイトの生成が抑制される。しかし、Niは高価であるため、その添加量の上限値を10.0質量%とする。
Ni: 3.0 to 10.0% by mass
Ni is important as an austenite forming element and is a basic element of stainless steel. That is, by adding Ni, the cold workability and corrosion resistance of the nonmagnetic stainless steel are improved, and the formation of martensite during cold working is suppressed. However, since Ni is expensive, the upper limit of the amount added is 10.0% by mass.

Si:0.01乃至1.00質量%
Siは、脱酸剤として溶鋼に添加する。即ち、Siの添加量が0.01質量%未満であると、溶鋼を十分に脱酸できず、Siの添加量が1.00質量%を超えると、非磁性ステンレス鋼の冷間加工性及び耐食性が劣化する。
Si: 0.01 to 1.00% by mass
Si is added to molten steel as a deoxidizer. That is, if the addition amount of Si is less than 0.01% by mass, the molten steel cannot be sufficiently deoxidized, and if the addition amount of Si exceeds 1.00% by mass, the cold workability of nonmagnetic stainless steel and Corrosion resistance deteriorates.

Al:0.001乃至0.050質量%
Alは、Siと同様に、脱酸剤として溶鋼に添加する。即ち、Alの添加量が0.0001質量%未満であると、溶鋼を十分に脱酸できず、Alの添加量が0.050質量%を超えると、酸化物系介在物が増加し、非磁性ステンレス鋼の靱性及び疲労特性が劣化する。
Al: 0.001 to 0.050 mass%
Al is added to molten steel as a deoxidizing agent in the same manner as Si. That is, if the addition amount of Al is less than 0.0001% by mass, the molten steel cannot be sufficiently deoxidized, and if the addition amount of Al exceeds 0.050% by mass, oxide inclusions increase, The toughness and fatigue properties of magnetic stainless steel deteriorate.

Cu:0.05乃至4.00質量%
Cuは、非磁性ステンレス鋼の延性を高め、冷間加工性を向上させる成分として、Niの代わりに適量添加することができる。但し、4.00質量%を超える多量のCuを添加すると、非磁性ステンレス鋼が脆化しやすくなるため、Cuは、0.05乃至4.00質量%の範囲で添加することができる。
Cu: 0.05 to 4.00 mass%
Cu can be added in an appropriate amount in place of Ni as a component that improves the ductility of the nonmagnetic stainless steel and improves the cold workability. However, if a large amount of Cu exceeding 4.00% by mass is added, the nonmagnetic stainless steel tends to become brittle, so Cu can be added in the range of 0.05 to 4.00% by mass.

Mo:0.05乃至2.00質量%
Moは、耐食性を高める成分として添加することができるが、2.00質量%を超える多量のMoを添加すると、粗大な炭化物を生成するようになり、靱性が低下しやすくなるため、Moは、0.05乃至2.00質量%の範囲で添加することができる。
Mo: 0.05 to 2.00% by mass
Mo can be added as a component that enhances corrosion resistance. However, when a large amount of Mo exceeding 2.00% by mass is added, coarse carbides are generated, and the toughness tends to decrease. It can be added in the range of 0.05 to 2.00% by mass.

W:0.05乃至2.00質量%
Wは、Moと同様に、耐食性を高める成分として、0.05乃至2.00質量%の範囲で添加することができる。多量に添加すると、Moと同様に、粗大な炭化物を生成するようになり、靱性が低下しやすくなるため、Wは、0.05乃至2.00質量%の範囲で添加することができる。
W: 0.05 to 2.00% by mass
W, like Mo, can be added in the range of 0.05 to 2.00% by mass as a component that improves corrosion resistance. If added in a large amount, coarse carbides are generated as in the case of Mo, and the toughness tends to be lowered. Therefore, W can be added in the range of 0.05 to 2.00% by mass.

Nb:0.01乃至1.00質量%
Nbは、炭窒化物を生成して、結晶粒を微細化し、強度を高める成分として添加することができるが、1.00質量%を超える多量のNbを添加すると、粗大な炭化物を生成するようになり、靱性が低下しやすくなるため、Nbは、0.01乃至1.00質量%の範囲で添加することができる。
Nb: 0.01 to 1.00% by mass
Nb can be added as a component that generates carbonitrides, refines crystal grains, and increases strength. However, when a large amount of Nb exceeding 1.00% by mass is added, coarse carbides are generated. Nb can be added in the range of 0.01 to 1.00% by mass.

Ti:0.01乃至1.00質量%
Tiは、Nbと同様に、炭窒化物を生成して、結晶粒を微細化し、強度を高める成分として添加することができる。しかし、多量に添加すると、Nbと同様に、粗大な炭化物を生成するようになり、靱性が低下しやすくなるため、Tiは、0.01乃至1.00質量%の範囲で添加することができる。
Ti: 0.01 to 1.00% by mass
Ti, like Nb, can be added as a component that generates carbonitrides, refines crystal grains, and increases strength. However, if added in a large amount, coarse carbides are generated similarly to Nb, and the toughness tends to be lowered, so Ti can be added in the range of 0.01 to 1.00% by mass. .

B:0.0005乃至0.0200質量%
Bは、熱間加工性を高めるために0.0005乃至0.0200質量%の範囲で添加することができる。0.0200質量%を超える多量のBを添加すると、熱間加工性が低下する。
B: 0.0005 to 0.0200 mass%
B can be added in the range of 0.0005 to 0.0200 mass% in order to improve hot workability. When a large amount of B exceeding 0.0200 mass% is added, hot workability is lowered.

Mg:0.0005乃至0.0200質量%
Mgは、Bと同様に、熱間加工性を高めるために添加することができる。多量のMgを添加すると、Bと同様に、熱間加工性が低下する。
Mg: 0.0005 to 0.0200 mass%
Mg, like B, can be added to improve hot workability. When a large amount of Mg is added, the hot workability decreases as in the case of B.

P:0.02乃至0.20質量%
Pは、非磁性ステンレス鋼の被削性を向上させるために0.02乃至0.20質量%の範囲で添加することができる。0.20質量%を超える多量のPを添加すると、非磁性ステンレス鋼が脆化する。
P: 0.02 to 0.20 mass%
P can be added in the range of 0.02 to 0.20 mass% in order to improve the machinability of the nonmagnetic stainless steel. When a large amount of P exceeding 0.20% by mass is added, the nonmagnetic stainless steel becomes brittle.

S:0.005乃至0.300質量%
Sは、Pと同様に、非磁性ステンレス鋼の被削性を向上させるために0.005乃至0.300質量%の範囲で添加することができる。0.300質量%を超える多量のSを添加すると、非磁性ステンレス鋼が脆化する。
S: 0.005 to 0.300 mass%
S, like P, can be added in the range of 0.005 to 0.300 mass% in order to improve the machinability of nonmagnetic stainless steel. When a large amount of S exceeding 0.300 mass% is added, the nonmagnetic stainless steel becomes brittle.

Se:0.005乃至0.200質量%
Seは、P及びSと同様に、非磁性ステンレス鋼の被削性を向上させるために0.005乃至0.200質量%の範囲で添加することができる。0.200質量%を超える多量のSeを添加すると、非磁性ステンレス鋼が脆化する。
Se: 0.005 to 0.200 mass%
Se, like P and S, can be added in the range of 0.005 to 0.200 mass% in order to improve the machinability of the nonmagnetic stainless steel. When a large amount of Se exceeding 0.200% by mass is added, the nonmagnetic stainless steel becomes brittle.

以下、本発明の実施例の効果について、本発明の範囲から外れる比較例と比較して説明する。先ず、種々の組成を有する共試材を作製した。この供試材の組成を表1−1乃至表2−2に示す。なお、表1−1乃至表1−3に示す供試材No.1乃至No.34は、その組成が本発明の範囲を満足する実施例であり、表2−1及び表2−2に示す供試材No.35乃至No.56は、その組成が本発明の範囲を満足しない比較例である。なお、表1−2及び表1−3において、Cu、Mo、W、Nb、Ti、B、Mg、P、S及びTeの含有量の空欄は、その含有量が不純物レベルであることを意味する。即ち、量産炉においては、例えばC、Mo及びW等が、C:0.1質量%以下、Mo:0.05質量%以下及びW:0.05質量%以下程度の不可避的不純物レベルで混入することがある。各供試材について、その組成から算出されるMd30値を表3−1及び表3−2に示す。なお、Md30値とは、固溶化熱処理後の準安定オーステナイト相が冷間加工によりマルテンサイト相に変態する加工誘起マルテンサイト変態のしやすさを示すパラメータであり、単層のオーステナイト相に対して0.3の引張歪みを与えたときに、組織の50%がマルテンサイトに変態する温度として、下記数式5のように定義されている。即ち、Md値が小さいほど、例えば−100以下であれば、オーステナイト組織が安定的であり、透磁率が高いマルテンサイトに変態しにくくなり、非磁性を維持することができる。   Hereinafter, the effect of the Example of this invention is demonstrated compared with the comparative example which remove | deviates from the scope of the present invention. First, co-test materials having various compositions were prepared. The composition of this test material is shown in Table 1-1 to Table 2-2. In addition, specimen No. shown in Table 1-1 thru | or Table 1-3. 1 to No. No. 34 is an example whose composition satisfies the scope of the present invention, and specimens No. 34 and No. 2-2 shown in Table 2-1 and Table 2-2. 35 thru | or No. 56 is a comparative example whose composition does not satisfy the scope of the present invention. In Tables 1-2 and 1-3, a blank in the content of Cu, Mo, W, Nb, Ti, B, Mg, P, S, and Te means that the content is at an impurity level. To do. That is, in a mass production furnace, for example, C, Mo, W, etc. are mixed at an inevitable impurity level of C: 0.1 mass% or less, Mo: 0.05 mass% or less, and W: 0.05 mass% or less. There are things to do. About each sample material, Md30 value computed from the composition is shown to Table 3-1 and Table 3-2. The Md30 value is a parameter indicating the ease of work-induced martensite transformation in which the metastable austenite phase after solution heat treatment is transformed into a martensite phase by cold working. The temperature at which 50% of the structure is transformed into martensite when a tensile strain of 0.3 is applied is defined as in the following formula 5. That is, the smaller the Md value is, for example, −100 or less, the austenite structure is stable, and it is difficult to transform into martensite having a high magnetic permeability, so that nonmagnetism can be maintained.

Figure 0005667504
Figure 0005667504

表1−1乃至表2−2に示す実施例及び比較例の各供試材について、各溶鋼を所定の鋳型に流し込んでインゴットに成形した後、熱間鍛造(鍛造加熱温度:1150℃)により直径が44mmの棒鋼に鍛造し、その後、棒鋼を熱間圧延により断面形状が24mm角(24mm×24mm)の棒状の部材に成形して硬さ試験用の試験片に供した。その後、試験片に、電気マッフル炉により、処理温度1150℃で1時間保持する固溶化処理を施し、固溶化処理後の試験片のロックウェル硬さ(HRB硬さ)を測定した。各試験片の固溶化処理後のHRB硬さを表3−1及び表3−2に示す。   About each sample material of the Example and comparative example shown in Table 1-1 thru | or 2-2, after casting each molten steel into a predetermined | prescribed casting_mold | template and shape | molding in an ingot, it is by hot forging (forging heating temperature: 1150 degreeC). The steel bar was forged into a steel bar having a diameter of 44 mm, and then the steel bar was formed into a bar-shaped member having a cross-sectional shape of 24 mm square (24 mm × 24 mm) by hot rolling and used as a specimen for a hardness test. Thereafter, the test piece was subjected to a solution treatment that was held at a treatment temperature of 1150 ° C. for 1 hour using an electric muffle furnace, and the Rockwell hardness (HRB hardness) of the test piece after the solution treatment was measured. Tables 3-1 and 3-2 show the HRB hardness after the solution treatment of each test piece.

その後、固溶化処理後の素材を各評価試験用の試験片に粗加工し、時効処理温度を650℃、700℃として8時間時効処理を施した後、各評価試験用の試験片に仕上げ加工して評価試験に供した。即ち、650℃、700℃の時効処理後のHRC硬さを、ロックウェル硬度計で測定した。この測定結果を表3−1及び表3−2に示す。   After that, the material after the solution treatment is roughly processed into test pieces for each evaluation test, subjected to aging treatment at 650 ° C. and 700 ° C. for 8 hours, and then finished into test pieces for each evaluation test. And subjected to an evaluation test. That is, the HRC hardness after aging treatment at 650 ° C. and 700 ° C. was measured with a Rockwell hardness meter. The measurement results are shown in Table 3-1 and Table 3-2.

また、700℃の時効処理温度で時効処理を施した各実施例及び比較例の試験片については、以下の条件により、延性、耐食性及び非磁性を評価した。即ち、各供試材をJIS Z2201に規定された14A号試験片に加工し、JIS Z2241に規定された引張試験方法により、引張強さ及び絞り(延性)を測定した。そして、各時効処理温度において、900MPa以上(HRC:28.0以上)の引張強度が得られた場合に、引張強度が良好と判定した。また、絞りが40%以上であった場合に、延性が極めて良好(◎)、絞りが30%以上40%未満であった場合に、延性が良好(○)、絞りが30%未満であった場合に、延性が不良(×)と評価した。耐食性については、JIS Z2371に規定された塩水噴霧試験方法により、直径20mm、長さ15mmに加工した試験片に対して5%NaClを35℃の温度条件で8時間噴霧し、試験片の断面に生成された島状の錆の個数をレイティングナンバ法により目視で評価した。即ち、円形断面のエッジから生じたものを除き、試験片の円形断面内に生成した錆を、JIS H8502に規定されたレイティングナンバ標準図表と照合し、各試験片の断面における錆の発生状態を点数評価した。そして、レイティングナンバが8点以上(試験片の断面における面積腐食率が0.25%以下)であったものを耐食性が極めて良好(◎)、レイティングナンバが6点以上8点未満(面積腐食率が0.25%を超え1.00%以下)であったものを耐食性が良好(○)と評価した。非磁性については、表面スケールの影響を受けないように、各試験片の横断面における透磁率を透磁率計で計測した。そして、透磁率が1.02以下であり、且つMd30値が−100以下であったものを非磁性が良好(○)と評価した。   Moreover, about the test piece of each Example and comparative example which performed the aging treatment at 700 degreeC aging temperature, ductility, corrosion resistance, and nonmagnetic were evaluated on condition of the following. That is, each specimen was processed into a No. 14A test piece specified in JIS Z2201, and the tensile strength and drawing (ductility) were measured by the tensile test method specified in JIS Z2241. And when each tensile strength of 900 MPa or more (HRC: 28.0 or more) was obtained at each aging treatment temperature, it was determined that the tensile strength was good. Also, when the aperture was 40% or more, the ductility was very good ((), when the aperture was 30% or more and less than 40%, the ductility was good (◯), and the aperture was less than 30%. In some cases, the ductility was evaluated as poor (x). For corrosion resistance, 5% NaCl was sprayed for 8 hours at a temperature of 35 ° C. on a test piece processed to a diameter of 20 mm and a length of 15 mm according to the salt spray test method specified in JIS Z2371, and the cross section of the test piece was applied. The number of island-like rusts produced was visually evaluated by the rating number method. That is, the rust generated in the circular cross section of the test piece, excluding those generated from the edge of the circular cross section, was checked against the rating number standard chart specified in JIS H8502, and the occurrence of rust in the cross section of each test piece was checked. The score was evaluated. And when the rating number is 8 or more (area corrosion rate in the cross section of the test piece is 0.25% or less), the corrosion resistance is very good ((), and the rating number is 6 or more and less than 8 points (area corrosion rate) Of 0.25% to 1.00% or less) was evaluated as having good corrosion resistance (O). For non-magnetism, the permeability in the cross section of each test piece was measured with a permeability meter so as not to be affected by the surface scale. And the thing whose magnetic permeability was 1.02 or less and whose Md30 value was -100 or less was evaluated as favorable non-magnetic ((circle)).

Figure 0005667504
Figure 0005667504

Figure 0005667504
Figure 0005667504

Figure 0005667504
Figure 0005667504

Figure 0005667504
Figure 0005667504

Figure 0005667504
Figure 0005667504

Figure 0005667504
Figure 0005667504

Figure 0005667504
Figure 0005667504

表3−1に示すように、実施例No.1乃至No.34の非磁性ステンレス鋼は、各組成が本発明の範囲を満足するので、本発明の範囲を満足しない組成を有する比較例No.35乃至56に比して、耐食性が高く、非磁性及び延性が向上した。この実施例No.1乃至No.34のうち、実施例No.11、No.12及びNo.31は、Cuを適量含有するため、非磁性ステンレス鋼の延性が向上した。また、実施例No.13乃至No.16及びNo.32は、Mo又はWを適量含有することにより、非磁性ステンレス鋼の耐食性が向上した。実施例No.17乃至No.20及びNo.33は、Nb又はTiを適量含有することにより、非磁性ステンレス鋼の引張強度が向上した。   As shown in Table 3-1, Example No. 1 to No. Since each composition of the nonmagnetic stainless steel No. 34 satisfies the scope of the present invention, Comparative Example No. 34 having a composition that does not satisfy the scope of the present invention. Compared to 35 to 56, the corrosion resistance is high, and the nonmagnetic property and ductility are improved. In this Example No. 1 to No. 34, no. 11, no. 12 and no. Since 31 contains an appropriate amount of Cu, the ductility of nonmagnetic stainless steel was improved. In addition, Example No. 13 to No. 16 and no. No. 32 contained a suitable amount of Mo or W, thereby improving the corrosion resistance of the nonmagnetic stainless steel. Example No. 17-No. 20 and no. No. 33 contained an appropriate amount of Nb or Ti, thereby improving the tensile strength of nonmagnetic stainless steel.

比較例No.35は、Cr及びNの含有量が本発明の範囲未満であったため、耐食性が低下し、比[N]/Xの値が本発明の範囲を超えたため、延性が低下した。この比較例No.35は、Cr量が少なかったものの、他の元素により−100以下のMd30値が得られ、非磁性は良好であった。また、比較例No.35は、Nの含有量が本発明の範囲未満であったものの、C及びVの含有量が多く、引張強度の低下も見られなかった。比較例No.36は、Nの含有量が少なく、比[N]/Xの値が本発明の範囲未満であったため、引張強度が低下した。この比較例No.36は、Nの含有量が本発明の範囲未満であったものの、Cr及びSiの含有量が多く、耐食性の低下は見られなかった。   Comparative Example No. In No. 35, since the contents of Cr and N were less than the range of the present invention, the corrosion resistance was lowered, and the ratio [N] / X exceeded the range of the present invention, so the ductility was lowered. This Comparative Example No. Although the amount of Cr was small, the Md30 value of −100 or less was obtained with other elements, and the nonmagnetic property was good. Comparative Example No. In No. 35, although the N content was less than the range of the present invention, the C and V contents were large, and no decrease in tensile strength was observed. Comparative Example No. No. 36 had a low N content, and the ratio [N] / X was less than the range of the present invention, so the tensile strength decreased. This Comparative Example No. In No. 36, although the N content was less than the range of the present invention, the Cr and Si contents were large, and no deterioration in corrosion resistance was observed.

比較例No.37、No.38及びNo.40は、Nの含有量が少なく、比[N]/Xの値が本発明の範囲未満であったため、引張強度が低下し、Cr及びNの不足により、耐食性が劣化した。このうち、比較例No.38及びNo.40は、Cr量不足により、Md30値が大きくなって非磁性が劣化した一方、比較例No.37は、Cr量は少なかったものの、他の元素により、−100以下のMd30値が得られ、非磁性は良好であった。また、比較例No.40は、Alの含有量が本発明の範囲を超えたため、延性が低下した。比較例No.39及びNo.41は、Crの含有量が本発明の範囲未満であったため、耐食性が劣化し、Md30値が大きくなって非磁性も劣化した。   Comparative Example No. 37, no. 38 and no. In No. 40, the N content was small and the ratio [N] / X was less than the range of the present invention, so the tensile strength decreased, and the corrosion resistance deteriorated due to the lack of Cr and N. Of these, Comparative Example No. 38 and no. No. 40 has a large Md30 value due to insufficient Cr amount, and nonmagnetic properties deteriorated. Although the amount of Cr was small, Md30 value of −100 or less was obtained by other elements, and the nonmagnetic property was good. Comparative Example No. In No. 40, since the Al content exceeded the range of the present invention, the ductility decreased. Comparative Example No. 39 and no. In No. 41, since the Cr content was less than the range of the present invention, the corrosion resistance was deteriorated, the Md30 value was increased, and the nonmagnetic property was also deteriorated.

比較例No.42は、Nの含有量が少なく、N及びCの総量も本発明の範囲未満であり、比[N]/Xの値も本発明の範囲未満であったため、引張強度が低下し、また、Md30値が大きくなって非磁性も劣化した。比較例No.43は、Cの含有量が本発明の範囲未満であったため、引張強度が低下した。一方、比較例No.44は、Cの含有量が多かったため、延性が低下した。   Comparative Example No. No. 42 has a low N content, the total amount of N and C is also less than the range of the present invention, and the ratio [N] / X is also less than the range of the present invention. The Md30 value increased and the non-magnetic property also deteriorated. Comparative Example No. In No. 43, the C content was less than the range of the present invention, so the tensile strength was lowered. On the other hand, Comparative Example No. Since No. 44 had much C content, ductility fell.

比較例No.45は、Crの含有量が本発明の範囲未満であったため、耐食性が劣化し、Nの含有量が多く、C及びNの総量及び比[N]/Xの値も本発明の範囲を超えたため、延性が低下した。この比較例No.45も、Cr量は少なかったものの、他の元素により、−100以下のMd30値が得られ、非磁性は良好であった。比較例No.46は、Crの含有量が本発明の範囲を超えたため、引張強度が低下した。比較例No.47は、Nの含有量が本発明の範囲未満であったため、引張強度が低下し、耐食性も劣化した。また、Md30値が大きくなって非磁性が劣化した。比較例No.48は、N量が過多となり、延性が低下した。   Comparative Example No. No. 45, since the Cr content was less than the range of the present invention, the corrosion resistance deteriorated, the N content was large, and the total amount of C and N and the value of the ratio [N] / X exceeded the range of the present invention. As a result, the ductility decreased. This Comparative Example No. No. 45 also had a small amount of Cr, but with other elements, an Md30 value of −100 or less was obtained, and the nonmagnetic property was good. Comparative Example No. In No. 46, the Cr content exceeded the range of the present invention, so the tensile strength decreased. Comparative Example No. In No. 47, since the N content was less than the range of the present invention, the tensile strength decreased and the corrosion resistance also deteriorated. In addition, the Md30 value increased and the nonmagnetic property deteriorated. Comparative Example No. In No. 48, the amount of N was excessive, and the ductility decreased.

比較例No.49は、V量が少なく、引張強度が低下した一方、比較例No.50は、V量が過多となり、延性が低下した。比較例No.51及びNo.52は、非磁性ステンレス鋼の各成分の夫々の含有量は本発明の範囲を満足するものの、比較例No.51は、C及びNの総量が少なく、引張強度が低下した一方、比較例No.52は、C及びNの総量が過多となり、延性が低下した。   Comparative Example No. No. 49 had a small amount of V and a reduced tensile strength. In No. 50, the amount of V was excessive and the ductility decreased. Comparative Example No. 51 and no. No. 52 is a comparative example No. 52, although the content of each component of the nonmagnetic stainless steel satisfies the scope of the present invention. No. 51 had a small total amount of C and N, and the tensile strength decreased. In No. 52, the total amount of C and N was excessive, and the ductility decreased.

比較例No.53は、非磁性ステンレス鋼の各成分の夫々の含有量は本発明の範囲を満足するものの、N及びCrの含有量により定義される比[N]/Xの値が本発明の範囲未満であったため、非磁性ステンレス鋼の引張強度が低下した。一方、比較例No.54は、比[N]/Xの値が本発明の範囲を超えていたため、非磁性ステンレス鋼の延性が低下した。   Comparative Example No. 53, the content of each component of the nonmagnetic stainless steel satisfies the range of the present invention, but the ratio [N] / X defined by the content of N and Cr is less than the range of the present invention. As a result, the tensile strength of the nonmagnetic stainless steel decreased. On the other hand, Comparative Example No. For No. 54, the value of the ratio [N] / X exceeded the range of the present invention, so the ductility of the nonmagnetic stainless steel was lowered.

比較例No.55は、非磁性ステンレス鋼の各成分の夫々の含有量は本発明の範囲を満足するものの、C、N及びVの含有量により定義される比[V]/Yの値が本発明の範囲未満であったため、非磁性ステンレス鋼の引張強度が低下した。比較例No.56は、比[V]/Yの値が本発明の範囲の範囲を超えたため、非磁性ステンレス鋼の延性が低下した。   Comparative Example No. 55, the content of each component of nonmagnetic stainless steel satisfies the scope of the present invention, but the ratio [V] / Y defined by the contents of C, N and V is within the scope of the present invention. Therefore, the tensile strength of the nonmagnetic stainless steel was lowered. Comparative Example No. In No. 56, since the value of the ratio [V] / Y exceeded the range of the present invention, the ductility of the nonmagnetic stainless steel was lowered.

Claims (3)

C:0.20乃至0.55質量%、Cr:15.0質量%を超え20.0質量%以下、N:0.025乃至0.25質量%、V:1.0乃至2.5質量%、Mn:4.50乃至9.50質量%、Ni:3.0乃至10.0質量%、Si:0.01乃至1.00質量%及びAl:0.001乃至0.050質量%を含有し、残部がFe及び不可避的不純物からなる非磁性ステンレス鋼であって、C及びNの含有量は、総量で0.3乃至0.6質量%であり、Cr、N、C及びVの含有量を夫々[Cr]、[N]、[C]及び[V]としたときに、Nの含有量[N]は、下記数式で表される数値Xに対する比[N]/Xが0.4乃至3.0であり、Vの含有量[V]は、下記数式で表される数値Yに対する比[V]/Yが0.7乃至1.5であることを特徴とする非磁性ステンレス鋼。
Figure 0005667504
C: 0.20 to 0.55 mass%, Cr: more than 15.0 mass% and 20.0 mass% or less, N: 0.025 to 0.25 mass%, V: 1.0 to 2.5 mass %, Mn: 4.50 to 9.50 mass%, Ni: 3.0 to 10.0 mass%, Si: 0.01 to 1.00 mass%, and Al: 0.001 to 0.050 mass% It is a non-magnetic stainless steel containing the balance of Fe and inevitable impurities, and the total content of C and N is 0.3 to 0.6% by mass, and Cr, N, C and V When the contents are [Cr], [N], [C], and [V], the ratio [N] / X of the N content [N] to the numerical value X represented by the following formula is 0. .4 to 3.0, and the V content [V] is such that the ratio [V] / Y to the numerical value Y represented by the following formula is 0.7 to 1.5. Non-magnetic stainless steel characterized by and.
Figure 0005667504
更に、Cu:0.05乃至4.00質量%、Mo:0.05乃至2.00質量%、W:0.05乃至2.00質量%、Nb:0.01乃至1.00質量%、Ti:0.01乃至1.00質量%、B:0.0005乃至0.0200質量%及びMg:0.0005乃至0.0200質量%からなる群から選択された成分を1種又は2種以上含有することを特徴とする請求項1に記載の非磁性ステンレス鋼。 Further, Cu: 0.05 to 4.00 mass%, Mo: 0.05 to 2.00 mass%, W: 0.05 to 2.00 mass%, Nb: 0.01 to 1.00 mass%, One or more components selected from the group consisting of Ti: 0.01 to 1.00 mass%, B: 0.0005 to 0.0200 mass%, and Mg: 0.0005 to 0.0200 mass% The nonmagnetic stainless steel according to claim 1, which is contained. 更に、P:0.02乃至0.20質量%、S:0.005乃至0.300質量%及びSe:0.005乃至0.200質量%からなる群から選択された成分を1種又は2種以上含有することを特徴とする請求項1又は2に記載の非磁性ステンレス鋼。 Further, one or two components selected from the group consisting of P: 0.02 to 0.20 mass%, S: 0.005 to 0.300 mass%, and Se: 0.005 to 0.200 mass% are used. The nonmagnetic stainless steel according to claim 1, wherein the nonmagnetic stainless steel contains at least one species.
JP2011089666A 2011-04-14 2011-04-14 Nonmagnetic stainless steel Expired - Fee Related JP5667504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011089666A JP5667504B2 (en) 2011-04-14 2011-04-14 Nonmagnetic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011089666A JP5667504B2 (en) 2011-04-14 2011-04-14 Nonmagnetic stainless steel

Publications (2)

Publication Number Publication Date
JP2012219367A JP2012219367A (en) 2012-11-12
JP5667504B2 true JP5667504B2 (en) 2015-02-12

Family

ID=47271213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011089666A Expired - Fee Related JP5667504B2 (en) 2011-04-14 2011-04-14 Nonmagnetic stainless steel

Country Status (1)

Country Link
JP (1) JP5667504B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7009707B2 (en) 2018-05-10 2022-01-26 エルジー・ケム・リミテッド Reverse osmosis membrane, its manufacturing method and water treatment module
KR20220067919A (en) * 2020-11-18 2022-05-25 주식회사 포스코 Non-magnetic steel having excellent High strength property and manufacturing method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103602918B (en) * 2013-11-18 2016-01-20 乐山力盾铸钢有限公司 A kind of High-strength wear-resistant corrosion-resistant antimagnetic stainless steel
JP6504870B2 (en) * 2015-03-25 2019-04-24 山陽特殊製鋼株式会社 Nonmagnetic corrosion resistant steel with excellent resistance to hydrogen embrittlement
JP7339123B2 (en) * 2019-10-30 2023-09-05 山陽特殊製鋼株式会社 High hardness hydrogen embrittlement resistant steel

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864362A (en) * 1981-10-14 1983-04-16 Kubota Ltd High hardness nonmagnetic alloy
SE506886C2 (en) * 1990-02-26 1998-02-23 Sandvik Ab Vanadium-alloyed precipitable, non-magnetic austenitic steel
JP3222039B2 (en) * 1995-06-27 2001-10-22 山陽特殊製鋼株式会社 Austenitic precipitation hardening non-magnetic steel
JPH1143743A (en) * 1997-07-23 1999-02-16 Sanyo Special Steel Co Ltd Precipitation hardening non-magnetic steel excellent in machinability and rolling fatigue life characteristic
JPH1143742A (en) * 1997-07-23 1999-02-16 Sanyo Special Steel Co Ltd Precipitation hardening non-magnetic steel excellent in machinability and rolling fatigue life characteristic

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7009707B2 (en) 2018-05-10 2022-01-26 エルジー・ケム・リミテッド Reverse osmosis membrane, its manufacturing method and water treatment module
KR20220067919A (en) * 2020-11-18 2022-05-25 주식회사 포스코 Non-magnetic steel having excellent High strength property and manufacturing method thereof
KR102491305B1 (en) * 2020-11-18 2023-01-20 주식회사 포스코 Non-magnetic steel having excellent High strength property and manufacturing method thereof

Also Published As

Publication number Publication date
JP2012219367A (en) 2012-11-12

Similar Documents

Publication Publication Date Title
JP5327106B2 (en) Press member and manufacturing method thereof
JP6190367B2 (en) Duplex stainless steel
US10597760B2 (en) High-strength steel material for oil well and oil well pipes
CA2785318C (en) Austenite steel material having superior ductility
JP6711434B2 (en) Abrasion resistant steel plate and manufacturing method thereof
EP3594374A1 (en) Austenitic abrasion-resistant steel sheet
JP2012184500A (en) High tensile strength steel sheet having excellent low temperature toughness in weld heat-affected zone, and method for producing the same
RU2763027C1 (en) Forged part made of bainite steel and its manufacturing method
JPWO2014038200A1 (en) Thick high-strength steel excellent in welding heat affected zone CTOD characteristics and method for producing the same
JP6294972B2 (en) Duplex stainless steel
KR20150055073A (en) Austenitic stainless steel
JPWO2013111407A1 (en) Case-hardened steel with low heat treatment distortion
JP5667504B2 (en) Nonmagnetic stainless steel
KR101903181B1 (en) Duplex stainless steel with improved corrosion resistance and formability and method of manufacturing the same
KR101623242B1 (en) Duplex stainless steel with supper corrosion resistance and manufacturing method thereof
JP5843127B2 (en) Manufacturing method of high strength nonmagnetic austenitic stainless steel
JP5406686B2 (en) Non-magnetic steel
JP5729827B2 (en) High strength non-magnetic steel
JP6388967B2 (en) Duplex stainless steel
KR20180117129A (en) Rolled wire rod
JPH07197196A (en) High manganese non-magnetic cast body
JPWO2014203302A1 (en) Precipitation hardening type stainless steel and stainless steel parts, and method for producing precipitation hardening type stainless steel
JP7253479B2 (en) high strength steel plate
JP7205067B2 (en) Non-heat treated steel for induction hardening
JP7205066B2 (en) Non-heat treated steel for induction hardening

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141212

R150 Certificate of patent or registration of utility model

Ref document number: 5667504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees