JP5666415B2 - Driving circuit of electroabsorption optical modulator - Google Patents

Driving circuit of electroabsorption optical modulator Download PDF

Info

Publication number
JP5666415B2
JP5666415B2 JP2011240754A JP2011240754A JP5666415B2 JP 5666415 B2 JP5666415 B2 JP 5666415B2 JP 2011240754 A JP2011240754 A JP 2011240754A JP 2011240754 A JP2011240754 A JP 2011240754A JP 5666415 B2 JP5666415 B2 JP 5666415B2
Authority
JP
Japan
Prior art keywords
voltage
final stage
drive signal
stage transistor
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011240754A
Other languages
Japanese (ja)
Other versions
JP2013097218A (en
Inventor
平林 文人
文人 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2011240754A priority Critical patent/JP5666415B2/en
Publication of JP2013097218A publication Critical patent/JP2013097218A/en
Application granted granted Critical
Publication of JP5666415B2 publication Critical patent/JP5666415B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Electronic Switches (AREA)

Description

本発明は、電界吸収型光変調器に与える駆動信号の直流電圧可変に伴う駆動信号波形の劣化を防止するための技術に関する。   The present invention relates to a technique for preventing a drive signal waveform from being deteriorated due to a change in DC voltage of a drive signal applied to an electroabsorption optical modulator.

現在、光通信システムでは、高速に光変調を行うことができる変調器として、半導体素子の電界吸収効果を利用した電界吸収型(Electro Absorption)光変調器(以下、EA変調器という)が使用されている。   Currently, in an optical communication system, an electro absorption type optical modulator (hereinafter referred to as an EA modulator) using an electroabsorption effect of a semiconductor element is used as a modulator capable of performing optical modulation at high speed. ing.

電界吸収効果とは、電界が印加された半導体のバンド構造が変化し、光の吸収量が変化する効果であり、具体的には、レーザダイオード等からの連続光を受けたEA変調用の半導体素子に逆バイアス電圧を印加すると半導体素子の光吸収量が増加して、光は透過しなくなり(オフ状態)、逆バイアス電圧の印加を止めると、半導体素子の光吸収量が減少して光は透過する(オン状態)ので、逆バイアス電圧からゼロバイアスまでの範囲でレベルが変化する駆動信号を半導体素子に供給することで、強度変調された光信号を出力させることができる。   The electroabsorption effect is an effect in which the band structure of a semiconductor to which an electric field is applied changes and the amount of light absorption changes. Specifically, the EA modulation semiconductor receives continuous light from a laser diode or the like. When a reverse bias voltage is applied to the element, the light absorption amount of the semiconductor element increases and light is not transmitted (OFF state). When the reverse bias voltage is stopped, the light absorption amount of the semiconductor element decreases and light is not transmitted. Since it is transmitted (ON state), an optical signal whose intensity is modulated can be output by supplying a drive signal whose level changes in the range from the reverse bias voltage to zero bias to the semiconductor element.

この電界吸収効果を利用したEA変調器を高速に駆動するための駆動回路として、従来では、図6に示すように、変調用のデータ信号dをプリアンプ11で増幅し、その増幅した信号d′をドライバ回路12によってさらに増幅してEA変調器1に供給している。   As a drive circuit for driving the EA modulator using the electroabsorption effect at high speed, conventionally, as shown in FIG. 6, a modulation data signal d is amplified by a preamplifier 11, and the amplified signal d ′ is amplified. Is further amplified by the driver circuit 12 and supplied to the EA modulator 1.

EA変調器1の変調特性は、例えば図7のようにバイアス電圧が負(逆バイアス)の範囲内で傾斜した特性となっており、その変調特性に対応して−Va〜−Vbの振幅の駆動信号DをEA変調器1に与えることで、強度が明レベルと暗レベルの間を遷移する変調光Pが出力される。   The modulation characteristic of the EA modulator 1 is a characteristic in which the bias voltage is inclined within a negative (reverse bias) range as shown in FIG. 7, for example, and the amplitude of −Va to −Vb corresponds to the modulation characteristic. By supplying the drive signal D to the EA modulator 1, the modulated light P whose intensity changes between the light level and the dark level is output.

このEA変調器1の変調特性は、周囲の温度等などの影響を受けてシフト(図7で左右に)し、これによって変調光Pの明暗のレベルが変化し、特に、変調特性がバイアス電圧の正方向にシフトすると、明レベルの低下が顕著となり、所望の消光比が得られない。   The modulation characteristic of the EA modulator 1 is shifted (left and right in FIG. 7) due to the influence of the ambient temperature and the like, thereby changing the level of light and darkness of the modulated light P. In particular, the modulation characteristic is bias voltage. If the light is shifted in the positive direction, the decrease in the light level becomes remarkable and the desired extinction ratio cannot be obtained.

また、変調特性は、EA変調器の製造バラツキによる固体差も存在するので、同じ駆動信号で、均一な光出力特性を得るのが難しいという問題もある。   Further, there is a problem that it is difficult to obtain a uniform light output characteristic with the same drive signal because there is a solid difference due to manufacturing variations of the EA modulator.

そのために、従来では変調特性の温度変動や製造バラツキによる個体差に合わせて、駆動信号Dの直流電圧VDC(動作点電圧)を可変させて、変調光のレベルが一定となるように調整している。 For this purpose, conventionally, the direct current voltage V DC (operating point voltage) of the drive signal D is varied in accordance with individual differences due to temperature variation of the modulation characteristics and manufacturing variations, and adjusted so that the level of the modulated light becomes constant. ing.

例えば、図6の例では、ドライバ回路12の終段トランジスタTRの出力端子(この場合コレクタと負荷抵抗RLの接続点)を、抵抗Raを介して可変電源14に接続し、この可変電源14によって駆動信号Dの直流電圧VDCを変化させている(図中Reはエミッタ抵抗である)。 For example, in the example of FIG. 6, the output terminal of the final stage transistor TR of the driver circuit 12 (in this case, the connection point between the collector and the load resistor RL) is connected to the variable power source 14 via the resistor Ra. The DC voltage VDC of the drive signal D is changed (In the figure, Re is an emitter resistance).

なお、このように、EA変調器1に入力される駆動信号の直流分を調整する技術は、例えば次の特許文献1に開示されている。   A technique for adjusting the direct current component of the drive signal input to the EA modulator 1 is disclosed in, for example, the following Patent Document 1.

特開2004−61556号公報JP 2004-61556 A

上記特許文献1では、駆動信号の交流成分と直流電圧とを、交流通過用のコンデンサと直流通過用のコイルとからなるバイアスT回路を介してEA変調器に与えているため、回路が複雑化するとともに、扱うデータ信号がNRZ方式の場合、同一レベルのデータが連続するとバイアスT回路のC結合による波形の劣化を招く。   In Patent Document 1, the AC component and the DC voltage of the drive signal are applied to the EA modulator via a bias T circuit including a capacitor for passing AC and a coil for passing DC, so that the circuit is complicated. At the same time, when the data signal to be handled is the NRZ system, if the data of the same level continues, the waveform is degraded due to the C coupling of the bias T circuit.

これに対し、前述したようにドライバ回路12の終段トランジスタTRの信号出力用の特定端子(コレクタ)の電圧を直接EA変調器1に供給する直結方式では、C結合による波形劣化は原理的に発生しない利点がある。   On the other hand, in the direct connection method in which the voltage of the specific terminal (collector) for signal output of the final stage transistor TR of the driver circuit 12 is directly supplied to the EA modulator 1 as described above, the waveform deterioration due to C coupling is in principle. There is an advantage that does not occur.

しかしながら、前記したように、ドライバ回路12の終段トランジスタTRの信号出力用の特定端子の電圧のみを外部から変化させる方式は、その終段トランジスタTRの動作点(この場合コレクタ・エミッタ間電圧)をも変動させることになり、それによる駆動信号Dの波形劣化が生じる。   However, as described above, the method of changing only the voltage at the specific terminal for signal output of the final stage transistor TR of the driver circuit 12 from the outside is the operating point of the final stage transistor TR (in this case, the collector-emitter voltage). As a result, the waveform of the drive signal D is degraded.

図8、図9はその様子を示す図である。図8は、トランジスタTRの典型的なI−VCE特性のグラフ上に、信号D出力時の負荷曲線を示した図であり、動作点Pbを中心にしたBの負荷曲線のように、コレクタ・エミッタ間電圧が適正な軌跡を描く動作であれば、図9の(b)のように、駆動信号の波形(アイパターン)に顕著な劣化は生じないが、図8のAのように、負荷曲線が低電圧側にあると、飽和領域に入り、図9の(a)のように駆動信号の波形のジッタが増加し、図8のCのように、負荷曲線が高電圧側にあると、図9の(c)のように、アンダーシュートが生じてしまう。 8 and 9 are diagrams showing this state. FIG. 8 is a diagram showing a load curve at the time of signal D output on a graph of a typical I C -V CE characteristic of the transistor TR. Like a load curve of B around the operating point Pb, If the collector-emitter voltage draws an appropriate trajectory, the drive signal waveform (eye pattern) does not significantly deteriorate as shown in FIG. 9B, but as shown in FIG. When the load curve is on the low voltage side, it enters the saturation region, the jitter of the waveform of the drive signal increases as shown in FIG. 9A, and the load curve becomes on the high voltage side as shown in FIG. If so, an undershoot occurs as shown in FIG.

このため、ドライバ回路12の特定端子の直流電圧の可変範囲が大きく制限されてしまい、EA変調器1の動作点の可変制御を十分行えないという問題があった。   For this reason, the variable range of the DC voltage at the specific terminal of the driver circuit 12 is greatly limited, and there is a problem that the variable control of the operating point of the EA modulator 1 cannot be performed sufficiently.

本発明は、この問題を解決し、EA変調器に供給する駆動信号の直流電圧可変に伴う駆動信号波形の劣化を防止した駆動回路を提供することを目的としている。   An object of the present invention is to provide a drive circuit that solves this problem and prevents the deterioration of the drive signal waveform associated with variable DC voltage of the drive signal supplied to the EA modulator.

前記目的を達成するために、本発明の請求項1の電界吸収型光変調器の駆動回路は、
変調用のデータ信号を受けて増幅し、電界吸収型光変調器(1)を変調駆動するための駆動信号を終段トランジスタの特定端子と負荷抵抗との接続点から出力する駆動回路(21)において、
前記終段トランジスタの前記特定端子の直流電圧と、該特定端子とともに該終段トランジスタの動作点を決定する別の端子の直流電圧とを同一方向に連動変化させて、前記終段トランジスタの動作点の変動を抑制しつつ、前記電界吸収型光変調器に出力する前記駆動信号の直流電圧を変化させる電圧連動可変手段(30)を備えたことを特徴としている。
In order to achieve the above object, a drive circuit for an electroabsorption optical modulator according to claim 1 of the present invention comprises:
A drive circuit (21) that receives and amplifies the modulation data signal and outputs a drive signal for modulating and driving the electroabsorption optical modulator (1) from a connection point between the specific terminal of the final stage transistor and the load resistor. In
An operating point of the final stage transistor is changed in conjunction with a DC voltage of the specific terminal of the final stage transistor and a DC voltage of another terminal that determines the operating point of the final stage transistor together with the specific terminal in the same direction. And a voltage interlocking variable means (30) for changing the DC voltage of the drive signal output to the electroabsorption optical modulator while suppressing the fluctuation of the electric field.

このように、本発明の電界吸収型光変調器の駆動回路は、ドライバ回路の終段トランジスタの出力用の特定端子の直流電圧と、他の端子の直流電圧とを、同一方向に連動可変させて、終段トランジスタの動作点の変動を抑制しつつ、電界吸収型光変調器に与える駆動信号の直流電圧を変化させる電圧連動可変手段を有しているから、駆動信号の直流電圧可変に伴う駆動信号波形の劣化が防止され、波形劣化の無い変調光を出力させることができる。   As described above, the drive circuit for the electroabsorption optical modulator of the present invention makes the DC voltage of the specific terminal for output of the final stage transistor of the driver circuit and the DC voltage of the other terminals interlocked and variably set in the same direction. In addition, since it has voltage interlocking variable means for changing the DC voltage of the drive signal applied to the electroabsorption optical modulator while suppressing the fluctuation of the operating point of the final stage transistor, it accompanies the variable DC voltage of the drive signal. Deterioration of the drive signal waveform is prevented, and modulated light without waveform deterioration can be output.

本発明のシングル駆動型の実施形態の構成図Configuration diagram of a single drive type embodiment of the present invention 実施形態の要部の回路例を示す図The figure which shows the circuit example of the principal part of embodiment 本発明の差動駆動型の実施形態の構成図Configuration diagram of differential drive type embodiment of the present invention 分布型の増幅回路を用いた実施形態を示す図The figure which shows embodiment using a distributed amplifier circuit 差動カスコード型の増幅回路を用いた実施形態を示す図The figure which shows embodiment using a differential cascode type amplifier circuit 従来の駆動回路を示す図The figure which shows the conventional drive circuit EA変調器の変調特性の例を示す図The figure which shows the example of the modulation | alteration characteristic of an EA modulator 駆動回路の終段トランジスタの動作点を示す図The figure which shows the operating point of the last stage transistor of the drive circuit 動作点に対応する駆動信号波形の例を示す図The figure which shows the example of the drive signal waveform corresponding to an operating point

以下、図面に基づいて本発明の実施の形態を説明する。
図1は、本発明を適用した駆動回路を用いたEA変調装置20の全体構成図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an overall configuration diagram of an EA modulator 20 using a drive circuit to which the present invention is applied.

このEA変調装置20は、前述したEA変調器1と駆動回路21によって構成されている。EA変調器1は、前記したように、半導体素子の光に対する電界吸収効果を用いたものであり、例えば半導体レーザ等から出力さた連続光Pinを受け、駆動回路21からの駆動信号Dのレベルに応じてオン(透過)、オフ(遮断)して、変調光Poutを出力する。   The EA modulator 20 is composed of the EA modulator 1 and the drive circuit 21 described above. As described above, the EA modulator 1 uses the electroabsorption effect on the light of the semiconductor element. For example, the EA modulator 1 receives the continuous light Pin output from a semiconductor laser or the like, and receives the level of the drive signal D from the drive circuit 21. In response to this, it is turned on (transmitted) and turned off (blocked), and the modulated light Pout is output.

駆動回路21は、プリアンプ22、ドライバ回路25および電圧連動可変手段30によって構成されている。なお、ここではプリアンプ22、ドライバ回路25を区別して図示しているが、これらは同一半導体基板上に形成された集積回路でもよい。   The drive circuit 21 includes a preamplifier 22, a driver circuit 25, and voltage interlocking variable means 30. Here, the preamplifier 22 and the driver circuit 25 are illustrated separately, but these may be integrated circuits formed on the same semiconductor substrate.

プリアンプ22は、入力されるデータ信号dを増幅し、その増幅したデータ信号d′を信号ドライバ回路25に入力する。   The preamplifier 22 amplifies the input data signal d and inputs the amplified data signal d ′ to the signal driver circuit 25.

ドライバ回路25は、プリアンプ22の出力信号d′をさらに増幅して、シングルエンドの駆動信号Dを終段トランジスタTRの特定端子(この場合、コレクタ端子)と負荷抵抗RLの接続点から出力する。この駆動信号Dは、前記したように、EA変調器1の変調特性に対応した振幅を有しているものとする(図中Reはエミッタ抵抗である)。   The driver circuit 25 further amplifies the output signal d ′ of the preamplifier 22 and outputs a single-ended drive signal D from a connection point between the specific terminal (in this case, the collector terminal) of the final stage transistor TR and the load resistor RL. As described above, the drive signal D has an amplitude corresponding to the modulation characteristic of the EA modulator 1 (Re in the figure is an emitter resistance).

電圧連動可変手段30は、駆動回路21の終段トランジスタ、即ち、ドライバ回路25の終段トランジスタTRの特定端子(コレクタ端子)の直流電圧Vと、この特定端子(コレクタ端子)とともにこの終段トランジスタTRの動作点を決定する他の端子(この場合エミッタ端子)の直流電圧Vとを同一方向にほぼ同一電圧連動可変させて、終段トランジスタTRの動作点(コレクタ・エミッタ間電圧)の変動を抑制しつつ、駆動信号Dの直流電圧を変化させるものである。なお、バイポーラトランジスタは、動作時のベース・エミッタ間の直流電圧VBEが一定であるので、ここではベース直流電圧を変えることで間接的にエミッタの直流電圧Vを可変させている。 The voltage interlocking variable means 30 includes the DC voltage V C at the specific terminal (collector terminal) of the final stage transistor of the drive circuit 21, that is, the final stage transistor TR of the driver circuit 25, and the final stage together with the specific terminal (collector terminal). a DC voltage V E of the other terminal for determining the operating point of the transistor TR (in this case emitter terminal) by approximately the same voltage interlock variable in the same direction, the operating point of the final stage transistor TR of (collector-emitter voltage) The DC voltage of the drive signal D is changed while suppressing the fluctuation. Incidentally, the bipolar transistor, because the DC voltage V BE between the base and emitter during operation is constant, here indirectly by varying the DC voltage V E of the emitter by varying the base direct voltage.

図1では、電圧連動可変手段30の理解しやすい構成として、終段トランジスタTRのコレクタに接続した抵抗Raと、ベースに接続した抵抗Rbを、固定電源−V′に接続された連動型可変抵抗器(半導体による構成であってよい)VR1、VR2に低出力インピーダンスの電圧バッファBUF1、BUF2を介して接続し、その連動型可変抵抗器VR1、VR2を、図示しない制御系(例えばEA変調器1の動作点の変動を抑制する制御系)による自動制御や手動操作により、連動可変させる構成となっている。   In FIG. 1, as an easily understandable configuration of the voltage interlocking variable means 30, a resistor Ra connected to the collector of the final stage transistor TR and a resistor Rb connected to the base are connected to a fixed power source -V '. Are connected to VR1 and VR2 via voltage buffers BUF1 and BUF2 having low output impedance, and interlocked variable resistors VR1 and VR2 are connected to a control system (not shown) (for example, EA modulator 1). The control system is configured to be interlocked and variable by automatic control or manual operation using a control system that suppresses fluctuations in the operating point.

電圧連動可変手段30の構成は任意であり、例えば図2のように、抵抗Ra、Rbの一端同士を接続し、その接続点と電圧可変器(半導体による構成でよい)VR3との間を電圧バッファBUF3を介して接続して、電圧可変器VR3の自動制御や手動操作により、終段トランジスタTRのコレクタ直流電圧とベース直流電圧とを連動可変させる構成でもよい。   The configuration of the voltage interlocking variable means 30 is arbitrary. For example, as shown in FIG. 2, one end of resistors Ra and Rb is connected to each other, and a voltage is connected between the connection point and a voltage variabler (which may be configured by a semiconductor) VR3. A configuration in which the collector DC voltage and the base DC voltage of the final stage transistor TR are linked and varied by automatic control or manual operation of the voltage variable VR3 by connecting via the buffer BUF3.

このように構成された駆動回路21では、駆動信号Dの直流電圧を変化させるために終段トランジスタTRのコレクタ直流電圧Vを変化させると、それと連動して、ベース直流電圧Vも同一方向に同一電圧変化し、それによりベース・エミッタ間の直流電圧VBE分低いエミッタ直流電圧Vも、同一方向に同一電圧変化するので、終段トランジスタTRの動作点(コレクタ・エミッタ間電圧)を、常に前記した図8のBの状態に保持することができ、波形劣化のない駆動信号DをEA変調器1に供給することができる。 In the driving circuit 21 constructed in this manner, varying the collector current voltage V C of the final-stage transistor TR in order to change the DC voltage of the drive signal D, therewith interlocked, the base direct voltage V B is also the same direction the same voltage change to it by the base-current voltage V bE partial lower emitter DC voltage V E of the emitter also, since the same voltage change in the same direction, the operating point of the final stage transistor TR (the collector-emitter voltage) 8 can always be maintained in the state of B in FIG. 8, and the drive signal D without waveform deterioration can be supplied to the EA modulator 1.

前記実施形態はシングル駆動型の例であったが、図3に、差動駆動型の回路例を示す。この差動駆動型の場合、差動入力されるデータ信号d(+)、d(-)が差動型のプリアンプ22に入力されて増幅され、その出力信号d(+)′、d(-)′が、差動型のドライバ回路25のトランジスタTR1、TR2と抵抗R1、R2からなるエミッタホロアに入力される。これらのトランジスタTR1、TR2のエミッタは、差動接続された二つの終段トランジスタTR3、TR4のベースに接続され、これらの終段トランジスタTR3、TR4が、両エミッタホロアから出力されるデータ信号を増幅する。   Although the above embodiment is an example of a single drive type, FIG. 3 shows an example of a circuit of a differential drive type. In the differential drive type, the differentially input data signals d (+) and d (−) are input to the differential type preamplifier 22 and amplified, and the output signals d (+) ′ and d (− ) ′ Is input to an emitter follower including transistors TR1 and TR2 and resistors R1 and R2 of the differential driver circuit 25. The emitters of these transistors TR1 and TR2 are connected to the bases of two terminal transistors TR3 and TR4 that are differentially connected, and these terminal transistors TR3 and TR4 amplify the data signals output from both emitter followers. .

終段トランジスタTR3、TR4のコレクタには負荷抵抗RL1、RL2が接続され、エミッタは共通の電流源Iに接続されており、それぞれのベースに位相が反転した信号を受け、その入力と位相が反転した信号をコレクタに発生する。ここでは、駆動信号Dはシングルエンドなので、一方の終段トランジスタTR3のコレクタから駆動信号Dを出力している。   Load resistors RL1 and RL2 are connected to the collectors of the final stage transistors TR3 and TR4, and the emitters are connected to a common current source I. Each base receives a signal whose phase is inverted, and its input and phase are inverted. Generated signal to the collector. Here, since the drive signal D is single-ended, the drive signal D is output from the collector of one final stage transistor TR3.

ここで、ドライバ回路25の終段トランジスタTR3、TR4のコレクタには、前記したように、駆動信号Dの直流電圧を可変するための抵抗Ra1、Ra2が接続されている。また、入力側のトランジスタTR1、TR2のベースにも前記同様の抵抗Rb1、Rb2が接続されており、これらの抵抗は前記した連動電圧可変器VR1、VR2あるいは共通の電圧可変器VR3に接続されていて、連動電圧可変器VR1、VR2の連動可変あるいは電圧可変器VR3の可変により、終段トランジスタTR3、TR4のコレクタ直流電圧Vが変化するとともに、トランジスタTR1、TR2のベース直流電圧Vおよびエミッタ直流電圧Vが同一方向に同一電圧変化する。その結果、終段ドランジスタTR3、TR4のベース直流電圧、エミッタ直流電圧も同一方向に同一電圧変化することになり、終段トランジスタTR3、TR4の動作点の変動が抑制された状態で、終段トランジスタTR3、TR4のコレクタ直流電圧Vを変化させることができ、前記した動作点変動による波形劣化は起こらない。 Here, as described above, the resistors Ra1 and Ra2 for changing the DC voltage of the drive signal D are connected to the collectors of the final stage transistors TR3 and TR4 of the driver circuit 25. Also, the same resistors Rb1 and Rb2 are connected to the bases of the transistors TR1 and TR2 on the input side, and these resistors are connected to the above-mentioned interlocking voltage variable devices VR1 and VR2 or the common voltage variable device VR3. Te, by interlocking the variable or variable voltage variable device VR3 interlocking voltage changer VR1, VR2, the collector DC voltage V C of the final stage transistor TR3, TR4 are changed, the transistors TR1, TR2 the base DC voltage V B and the emitter DC voltage V E is the same voltage change in the same direction. As a result, the base DC voltage and the emitter DC voltage of the final stage transistors TR3 and TR4 also change in the same direction in the same direction. TR3, it is possible to change the collector current voltage V C of the TR4, waveform deterioration does not occur by the operating point change.

なお、ここでは、回路のバランスを保持させるために、駆動信号出力用の終段トランジスタTR3だけでなく、これと対をなす終段トランジスタTR4についてもコレクタ直流電圧Vを可変させて、それに合わせてベース直流電圧Vも連動させていたが、回路のアンバランスが問題にならない場合には、抵抗Ra2またはRb2を省略して、終段トランジスタTR4のベース直流電圧Vまたはコレクタ直流電圧Vを可変しない(固定した)回路としてもよい。 Here, in order to hold the balance of the circuit, not only the final stage transistor TR3 of the drive signal output, by varying the collector current voltage V C also the final stage transistor TR4 which forms a pair therewith, accordingly had also in conjunction base direct voltage V B Te, when the unbalance of the circuit is not a problem, skip resistor Ra2 or Rb2, based DC voltage of the final stage transistor TR4 V B or collector DC voltage V C It is good also as a circuit which does not change (fixed).

また、ここではドライバ回路25の前段にプリアンプ22を設けていたが、入力するデータ信号の直流レベルや振幅が上記構成のドライバ回路25に対応していれば、プリアンプを省略できる。   Here, the preamplifier 22 is provided in front of the driver circuit 25. However, if the DC level and amplitude of the input data signal correspond to the driver circuit 25 having the above configuration, the preamplifier can be omitted.

また、前記実施形態は、終段トランジスタがバイポーラ型であったが、電界効果トランジスタ(FET)を用いた場合でも本発明を適用可能である。FETを用いたソース接地型の増幅器の場合の動作点は、ドレイン・ソース間電圧となり、その動作点の変動により波形劣化が生じるので、ドレイン直流電圧の可変に対してソース直流電圧を連動可変させることで動作点変動を抑制しつつ、駆動信号の直流電圧を可変させることができる。   In the above embodiment, the final stage transistor is a bipolar type. However, the present invention can be applied even when a field effect transistor (FET) is used. In the case of a grounded source amplifier using an FET, the operating point is the drain-source voltage, and waveform deterioration occurs due to fluctuations in the operating point. Therefore, the source DC voltage is varied in conjunction with the variation of the drain DC voltage. As a result, the DC voltage of the drive signal can be varied while suppressing fluctuations in the operating point.

また、前記実施形態は、単一のドライバ回路25で増幅した駆動信号DをEA変調器1に与えていたが、単一のドライバ回路25でEA変調器1の駆動に必要な振幅の駆動信号を得ることができない場合、図4に示すような分布型(あるいは進行波型)の増幅回路を用いてもよい。   In the above embodiment, the drive signal D amplified by the single driver circuit 25 is given to the EA modulator 1. However, the drive signal having the amplitude necessary for driving the EA modulator 1 by the single driver circuit 25. 4 cannot be obtained, a distributed (or traveling wave) amplifier circuit as shown in FIG. 4 may be used.

この分布型の増幅回路は、プリアンプ22の出力信号が差動型の伝送路40を介して、所定間隔Lで設けられた複数のドライバ回路25(1)〜25(N)に入力され、各ドライバ回路で増幅された信号が出力側の伝送路50で同相合波されることで、広帯域な信号を高出力に増幅できる(図中、符号40a、40bは一対の主線路である)。   In this distributed amplifier circuit, the output signal of the preamplifier 22 is input to a plurality of driver circuits 25 (1) to 25 (N) provided at a predetermined interval L via a differential transmission path 40. A signal amplified by the driver circuit is in-phase multiplexed in the output-side transmission line 50, so that a broadband signal can be amplified to a high output (in the figure, reference numerals 40a and 40b are a pair of main lines).

この場合、プリアンプ22の出力が供給される差動型の伝送路40の終端抵抗Rz1、Rz2を前記した電圧可変用の抵抗Rbとして兼用し、出力側の伝送路50の一端に電圧可変用の抵抗Raを接続して、駆動信号Dの直流電圧を変化させるとともに、各ドライバ回路25(1)〜25(N)の終段トランジスタTR(1)〜TR(N)のベース直流電圧Vも前記同様に同一方向に変化させて、その動作点を適正状態に保持する。この回路の場合、各ドライバ回路25(1)〜25(N)の終段トランジスタTR(1)〜TR(N)の負荷抵抗は、出力側の伝送路50の他端に接続された終端抵抗Rz3である。 In this case, the termination resistors Rz1 and Rz2 of the differential transmission line 40 to which the output of the preamplifier 22 is supplied are also used as the voltage variable resistor Rb, and one end of the output-side transmission line 50 is connected to one end of the output-side transmission line 50. The resistor Ra is connected to change the DC voltage of the drive signal D, and the base DC voltage V B of the final stage transistors TR (1) to TR (N) of the driver circuits 25 (1) to 25 (N) is also changed. Similarly to the above, the operating point is changed in the same direction and the operating point is maintained in an appropriate state. In the case of this circuit, the load resistance of the final stage transistors TR (1) to TR (N) of the driver circuits 25 (1) to 25 (N) is the termination resistance connected to the other end of the transmission line 50 on the output side. Rz3.

なお、上記実施形態では、エミッタ接地型回路の終段トランジスタのコレクタから駆動信号を出力させる例について説明したが、コレクタ接地型やドレイン接地型、あるいは、カスコード型の場合でも本発明を適用できる。   In the above embodiment, the example in which the drive signal is output from the collector of the final stage transistor of the grounded emitter circuit has been described. However, the present invention can also be applied to a grounded collector type, a grounded drain type, or a cascode type.

図5に、差動カスコード型のドライバ回路25の構成例を示す。この回路は、前記した差動型のドライバ回路のトランジスタTR3、TR4のコレクタと負荷抵抗RL1、RL2の間に、トランジスタTR5、TR6によるベース接地回路が挿入されたものであり、一般的に、エミッタ接地回路単独の構成より広帯域な特性を得ることができることで知られている。   FIG. 5 shows a configuration example of the differential cascode driver circuit 25. In this circuit, a grounded base circuit using transistors TR5 and TR6 is inserted between the collectors of the transistors TR3 and TR4 and the load resistors RL1 and RL2 of the differential driver circuit described above. It is known that a wider band characteristic can be obtained than the configuration of the ground circuit alone.

この差動カスコード型のドライバ回路25の場合、二つの終段トランジスタTR5、TR6の少なくとも一方(ここではトランジスタTR5)のコレクタ端子に接続した抵抗Ra1と、二つの終段トランジスタTR5、TR6のベース端子の接続点に接続した抵抗Rb3とを、前記した電圧連動可変手段30に接続して、前記同様に、駆動信号Dの直流電圧の可変に終段トランジスタTR5、TR6のベース直流電圧Vを連動させ、動作点変動による波形劣化を防止する。なお、この回路の場合、トランジスタTR3、TR4のベース直流電圧についても、電圧連動可変手段30に接続された抵抗Rb1、Rb2を介して、上記終段トランジスタTR5、TR6の各電圧と連動させて、カスコード回路全体の動作点の変動を抑制しているが、このトランジスタTR3、TR4のベース電圧の連動可変は省略することも可能である。 In the case of the differential cascode driver circuit 25, a resistor Ra1 connected to the collector terminal of at least one of the two final stage transistors TR5 and TR6 (here, the transistor TR5) and the base terminals of the two final stage transistors TR5 and TR6. of a resistor Rb3 which is connected to the connection point, connected to a voltage interlock adjusting means 30 described above, the same manner, interlocking the variably final stage transistor TR5, TR6 base DC voltage V B of the DC voltage of the drive signal D To prevent waveform deterioration due to operating point fluctuations. In the case of this circuit, the base DC voltage of the transistors TR3 and TR4 is also linked to the voltages of the final stage transistors TR5 and TR6 via the resistors Rb1 and Rb2 connected to the voltage interlocking variable means 30, Although the fluctuation of the operating point of the entire cascode circuit is suppressed, it is possible to omit the interlocking variation of the base voltages of the transistors TR3 and TR4.

1……EA変調器、20……EA変調装置、21……駆動回路、22……プリアンプ、25……ドライバ回路、30……電圧連動可変手段、40……伝送路、50……伝送路   DESCRIPTION OF SYMBOLS 1 ... EA modulator, 20 ... EA modulator, 21 ... Drive circuit, 22 ... Preamplifier, 25 ... Driver circuit, 30 ... Voltage interlocking variable means, 40 ... Transmission path, 50 ... Transmission path

Claims (1)

変調用のデータ信号を受けて増幅し、電界吸収型光変調器(1)を変調駆動するための駆動信号を終段トランジスタの特定端子と負荷抵抗との接続点から出力する駆動回路(21)において、
前記終段トランジスタの前記特定端子の直流電圧と、該特定端子とともに該終段トランジスタの動作点を決定する別の端子の直流電圧とを同一方向に連動変化させて、前記終段トランジスタの動作点の変動を抑制しつつ、前記電界吸収型光変調器に出力する前記駆動信号の直流電圧を変化させる電圧連動可変手段(30)を備えたことを特徴とする電界吸収型光変調器の駆動回路。
A drive circuit (21) that receives and amplifies the modulation data signal and outputs a drive signal for modulating and driving the electroabsorption optical modulator (1) from a connection point between the specific terminal of the final stage transistor and the load resistor. In
An operating point of the final stage transistor is changed in conjunction with a DC voltage of the specific terminal of the final stage transistor and a DC voltage of another terminal that determines the operating point of the final stage transistor together with the specific terminal in the same direction. A drive circuit for an electroabsorption optical modulator comprising voltage interlocking variable means (30) for changing a DC voltage of the drive signal output to the electroabsorption optical modulator while suppressing fluctuations .
JP2011240754A 2011-11-02 2011-11-02 Driving circuit of electroabsorption optical modulator Active JP5666415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011240754A JP5666415B2 (en) 2011-11-02 2011-11-02 Driving circuit of electroabsorption optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011240754A JP5666415B2 (en) 2011-11-02 2011-11-02 Driving circuit of electroabsorption optical modulator

Publications (2)

Publication Number Publication Date
JP2013097218A JP2013097218A (en) 2013-05-20
JP5666415B2 true JP5666415B2 (en) 2015-02-12

Family

ID=48619200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011240754A Active JP5666415B2 (en) 2011-11-02 2011-11-02 Driving circuit of electroabsorption optical modulator

Country Status (1)

Country Link
JP (1) JP5666415B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110235322A (en) * 2016-12-09 2019-09-13 弗劳恩霍夫应用研究促进协会 Laser aid and method for manufacturing laser aid

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52131140A (en) * 1976-04-26 1977-11-02 Takeyasu Isaburou Automatic drive current controlling circuit
JPH05335847A (en) * 1992-05-29 1993-12-17 Pioneer Electron Corp Current mirror circuit
JPH08316580A (en) * 1995-05-18 1996-11-29 Fujitsu Ltd Drive circuit for electroabsorption modulator and optical transmitter employing modulator
JPH11231270A (en) * 1998-02-17 1999-08-27 Hitachi Ltd Optical modulator driving circuit and optical transmission equipment
JP2003316449A (en) * 2002-04-19 2003-11-07 Nes:Kk Temperature control circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110235322A (en) * 2016-12-09 2019-09-13 弗劳恩霍夫应用研究促进协会 Laser aid and method for manufacturing laser aid
US10958037B2 (en) 2016-12-09 2021-03-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Laser arrangement and method for producing a laser arrangement
CN110235322B (en) * 2016-12-09 2021-05-28 弗劳恩霍夫应用研究促进协会 Laser device and method for producing a laser device

Also Published As

Publication number Publication date
JP2013097218A (en) 2013-05-20

Similar Documents

Publication Publication Date Title
JP5337886B2 (en) DC coupled laser driving circuit and semiconductor laser element driving method
US20170257171A1 (en) Method And System For Split Voltage Domain Transmitter Circuits
US9519162B2 (en) Optical modulator having a plurality of modulator segments
JP6413265B2 (en) Optical modulator drive circuit
US9991965B2 (en) Driver circuit for an electro-absorption or micro-ring modulator and optical transmitter comprising such driver circuit
US8150270B2 (en) Compact high-speed modulator driver method and apparatus
JP5630325B2 (en) Variable gain differential amplifier circuit
US20090245813A1 (en) Modulator driver with multi-channel active alignment
US10642076B2 (en) Drive circuit
US7965792B2 (en) Modulation-index adjustable amplitude shift keying transmitter
US9973165B2 (en) Variable gain amplifier and driver implementing the same
JP2010258405A (en) Laser diode drive circuit, and optical transmitter
JP2014099762A (en) Amplification circuit
JP5666415B2 (en) Driving circuit of electroabsorption optical modulator
US20090243718A1 (en) High-speed modulator driver circuit with enhanced drive capability
JP2019216346A (en) Transimpedance amplifier circuit and variable gain amplifier
US9991878B2 (en) Cross-point shifting techniques
US7684452B1 (en) Enhancing the transition rate of a laser
US10564450B1 (en) Electrical amplifier and electro-optical device comprising an electrical amplifier
US20100289594A1 (en) Modulator driver circuit having chirped components
US20020094000A1 (en) Method of controlling the turn off characteristics of a VCSEL diode
TW200529524A (en) Laser diode driving circuit
JP5487580B2 (en) Amplifier circuit
JP5948817B2 (en) Drive circuit and optical transmitter
US7893760B2 (en) Amplifier circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141210

R150 Certificate of patent or registration of utility model

Ref document number: 5666415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250