JP5663251B2 - Beam light emitter / receiver - Google Patents

Beam light emitter / receiver Download PDF

Info

Publication number
JP5663251B2
JP5663251B2 JP2010211712A JP2010211712A JP5663251B2 JP 5663251 B2 JP5663251 B2 JP 5663251B2 JP 2010211712 A JP2010211712 A JP 2010211712A JP 2010211712 A JP2010211712 A JP 2010211712A JP 5663251 B2 JP5663251 B2 JP 5663251B2
Authority
JP
Japan
Prior art keywords
light
prism
region
reflection
projecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010211712A
Other languages
Japanese (ja)
Other versions
JP2012068350A (en
Inventor
宏明 猪俣
宏明 猪俣
幹也 大塚
幹也 大塚
達也 松原
達也 松原
洋己 渡部
洋己 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumita Optical Glass Manufacturing Co Ltd
Nippon Signal Co Ltd
Original Assignee
Sumita Optical Glass Manufacturing Co Ltd
Nippon Signal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumita Optical Glass Manufacturing Co Ltd, Nippon Signal Co Ltd filed Critical Sumita Optical Glass Manufacturing Co Ltd
Priority to JP2010211712A priority Critical patent/JP5663251B2/en
Publication of JP2012068350A publication Critical patent/JP2012068350A/en
Application granted granted Critical
Publication of JP5663251B2 publication Critical patent/JP5663251B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ビーム光投受光装置に関し、特に、光ビームを用いて対象物までの距離を計測する光測距装置等において用いられるビーム光投受光装置に関する。   The present invention relates to a beam light projecting / receiving device, and more particularly to a beam light projecting / receiving device used in an optical distance measuring device or the like that measures a distance to an object using a light beam.

従来、監視対象の領域内の物体までの距離を計測するために、空間内を多次元的に走査するようにレーザ光等の光ビームを射出し、光ビームを射出してから物体からの反射光が受光されるまでの時間を計測して物体までの距離を計測するように構成された光測距装置が知られている。このような光測距装置においては、レーザ光等の光ビームを射出する光源部と、対象領域内を多次元的に走査するよう光源部から射出された光ビームを反射し走査するスキャンミラーと、物体からの反射光を受光する受光素子と、を含んで構成されるビーム光投受光装置を備えている。   Conventionally, in order to measure the distance to an object in the monitored region, a light beam such as a laser beam is emitted so as to scan the space in a multidimensional manner, and the light beam is emitted and then reflected from the object. There is known an optical distance measuring device configured to measure a time until light is received and measure a distance to an object. In such an optical distance measuring device, a light source unit that emits a light beam such as a laser beam, a scan mirror that reflects and scans the light beam emitted from the light source unit so as to scan the target region in a multidimensional manner, A beam light projecting / receiving device including a light receiving element that receives reflected light from the object.

このようなビーム光投受光装置として、特許文献1に記載されたような同軸系タイプと称されるものが知られている。この同軸系タイプは、光源部から射出されたレーザ光が光源部からスキャンミラーを経て対象領域内に照射されるまでの投光光路と、空間内の物体で反射された反射光が物体からスキャンミラーを経て受光素子に至るまでの戻り光路とが途中まで互いに重なっているタイプである。   As such a beam light projecting / receiving device, what is called a coaxial type as described in Patent Document 1 is known. In this coaxial system type, the projection light path from when the laser beam emitted from the light source unit passes through the scan mirror to the target area and the reflected light reflected by the object in the space is scanned from the object. This is a type in which return optical paths from the mirror to the light receiving element overlap each other halfway.

特許文献1では、対象領域内の物体に照射されたレーザ光の入射方向と同じ方向に反射した戻り光を、スキャンミラーにより反射させ、スキャンミラーで反射した戻り光の光路上に配した投受光分離部材により、スキャンミラーで反射した戻り光の光路を、前記投受光分離部材からスキャンミラーに向かう投光ビームの光路から分離して戻り光を受光素子に導くようにしている。   In Patent Document 1, return light reflected in the same direction as the incident direction of laser light applied to an object in a target region is reflected by a scan mirror, and is sent and received on the optical path of the return light reflected by the scan mirror. The separating member separates the optical path of the return light reflected by the scan mirror from the optical path of the light projecting beam from the light projecting / receiving separation member to the scan mirror so as to guide the return light to the light receiving element.

特開2010−91763号公報JP 2010-91763 A

しかしながら、特許文献1に記載されたビーム光投受光装置では、投光ビームの光路から分離する戻り光の光路の方向が光源部の配置方向と異なる方向であるため、光源部と受光素子を離れて配置しなければならなかった。また、複数のミラーやプリズムによる反射、屈折を利用して、投光ビームの光路と戻り光の光路の分離を行う構成であるため、部品点数が多くなり、それぞれのミラーやプリズム毎にその反射面の配置や調整を行う必要があるので、ビーム光投受光装置のコンパクト化や組立て調整作業の容易化等について改善の余地があった。   However, in the beam light projecting / receiving device described in Patent Document 1, the direction of the return light path separated from the light path of the light projecting beam is different from the direction in which the light source section is arranged. Had to be placed. In addition, since the optical path of the projection beam is separated from the optical path of the return light by using reflection and refraction by a plurality of mirrors and prisms, the number of parts increases, and the reflection of each mirror or prism is reflected. Since it is necessary to arrange and adjust the surface, there is room for improvement in terms of downsizing the light beam projector / receiver and facilitating assembly and adjustment work.

本発明は上記問題点に着目してなされたもので、より一層の装置のコンパクト化及び組立て調整作業の容易化を図ることができるビーム光投受光装置を提供することを目的とする。   The present invention has been made paying attention to the above-described problems, and an object thereof is to provide a beam light projecting / receiving device capable of further downsizing the apparatus and facilitating assembly and adjustment work.

このため、請求項1に記載した本発明のビーム光投受光装置は、光源の投光ビームを反射走査するスキャンミラーと、物体で反射しスキャンミラーで反射した戻り光を受光する受光素子とを備え、投光ビームと戻り光のどちらか一方を反射する反射面となる領域と他方を透過する領域とを外側表面に設けると共に、前記透過した他方の光を反射する反射面を設けた1つのプリズムで形成した投受光分離部材で、光源の投光ビームの光路と戻り光の光路とを分離することを特徴とする。 Therefore, the beam light projecting / receiving device according to the first aspect of the present invention includes a scan mirror that reflects and scans the light projection beam of the light source, and a light receiving element that receives the return light reflected by the object and reflected by the scan mirror. Provided with a reflection surface for reflecting one of the projected beam and the return light and a region for transmitting the other on the outer surface, and a reflection surface for reflecting the other transmitted light. A light projecting / receiving separation member formed by a prism separates the light path of the light projecting beam from the light source and the light path of the return light .

かかる構成では、光ビームを反射する反射面となる領域と光ビームを透過する領域とを外側表面に設けると共に、透過した光ビームを反射する反射面を設けた1つのプリズムで、スキャンミラーへ向かう投光ビームの光路と、物体で反射しスキャンミラーで反射した戻り光の光路と、を互いに分離するようになる。 In such a configuration, a region serving as a reflection surface that reflects the light beam and a region that transmits the light beam are provided on the outer surface, and a single prism provided with a reflection surface that reflects the transmitted light beam is directed to the scan mirror. the optical path of the projected beam, comprising an optical path of the return light reflected by the scan mirror is reflected by the object body to be separated from each other.

また、請求項2に記載した本発明のビーム光投受光装置は、光源の投光ビームを反射走査するスキャンミラーと、物体で反射しスキャンミラーで反射した戻り光を受光する受光素子とを備え、少なくとも1つのプリズムで構成され、前記プリズムの外側表面に投光ビームと戻り光のどちらか一方を反射する外側反射面となる領域と他方を透過する領域とを設けると共に、前記透過した他方の光を反射する内側反射面を設けて形成した投受光分離部材で、光源の投光ビームの光路と戻り光の光路とを分離することを特徴とする。 According to a second aspect of the present invention , there is provided a beam light projecting / receiving device according to the present invention , comprising: a scan mirror that reflects and scans the light projection beam of the light source; and a light receiving element that receives the return light reflected by the object and reflected by the scan mirror. And an outer surface of the prism which is provided with a region serving as an outer reflecting surface that reflects one of the projection beam and the return light, and a region that transmits the other, and the other of the transmitted light. A light projecting / receiving separation member formed by providing an inner reflection surface for reflecting light separates the light path of the light projecting beam from the light source and the light path of the return light .

かかる構成では、プリズムの外側表面に設けた外側反射面とプリズムの外側表面に設けた光ビームを透過する領域を透過した光ビームを反射する内側反射面のいずれか一方の反射面で、投光ビームをスキャンミラー方向に反射し、他方の反射面で、スキャンミラーからの戻り光を受光素子方向に反射することで、スキャンミラーへ向かう投光ビームの光路と、物体で反射しスキャンミラーで反射した戻り光の光路と、を互いに分離するようになる。 In such a configuration, light is projected on either the outer reflecting surface provided on the outer surface of the prism or the inner reflecting surface that reflects the light beam transmitted through the light transmitting region provided on the outer surface of the prism. reflects the beam to the scan mirror direction, on the other reflecting surface, by reflecting the return light from the scan mirror to the light receiving element direction, and the optical path of the projected beam of light toward the scan mirror at scan mirror is reflected by the object body The optical path of the reflected return light is separated from each other.

請求項1に記載した本発明のビーム光投受光装置によれば、投光ビームと戻り光のどちらか一方を反射する反射面となる領域と他方を透過する領域とを外側表面に設けると共に、透過した他方の光を反射する反射面を設けた1つのプリズムで形成した投受光分離部材で、光源の投光ビームの光路と戻り光の光路とを分離する構成としたので、戻り光を反射する反射面を、その反射方向が光源と同じ方向側になるよう形成すれば、光源と受光素子を並べて配置することができ、ビーム光投受光装置を小型化できる。また、投光ビームの光路と戻り光の光路をプリズム1つで分離するので、従来装置に比べて部品点数を少なくでき、装置の小型化と組立て調整作業を容易化できる。 According to the beam light projecting / receiving device of the present invention described in claim 1, the outer surface is provided with a region serving as a reflection surface that reflects one of the light projecting beam and the return light and a region transmitting the other. The projecting / receiving separation member formed by a single prism provided with a reflecting surface for reflecting the other transmitted light separates the light path of the light projecting beam and the light path of the return light, so that the return light is reflected. If the reflecting surface to be formed is formed so that the reflection direction is the same direction as the light source, the light source and the light receiving element can be arranged side by side, and the beam light projecting and receiving device can be downsized. Further, since the optical path of the projection beam and the optical path of the return light are separated by one prism, the number of parts can be reduced as compared with the conventional apparatus, and the apparatus can be downsized and the assembly adjustment work can be facilitated.

請求項2に記載した本発明のビーム光投受光装置によれば、少なくとも1つのプリズムで構成され、そのプリズムの外側表面に投光ビームと戻り光のどちらか一方を反射する外側反射面となる領域と他方を透過する領域とを設けると共に、透過した他方の光を反射する内側反射面を設けて形成した投受光分離部材で、光源の投光ビームの光路と戻り光の光路とを分離する構成としたので、戻り光を反射する外側反射面又は内側反射面を、その反射方向が光源と同じ方向側になるよう形成すれば、光源と受光素子を並べて配置することができ、ビーム光投受光装置を小型化できる。また、投光ビームの光路と戻り光の光路とを、プリズムの外側反射面と内側反射面を用いて分離することにより、従来装置に比べて部品点数を少なくでき、組立て調整作業を容易化できる。 According to the beam light projecting / receiving device of the present invention described in claim 2, the light beam projecting / receiving device is constituted by at least one prism, and the outer surface of the prism becomes an outer reflecting surface for reflecting either the light projecting beam or the return light. A light projecting / receiving separation member formed by providing a region and a region that transmits the other and an inner reflection surface that reflects the other transmitted light separates the light path of the light projecting beam and the light path of the return light. Since the outer reflection surface or inner reflection surface that reflects the return light is formed so that the reflection direction is the same direction as the light source, the light source and the light receiving element can be arranged side by side, and the beam light projection The light receiving device can be downsized. Also, by separating the optical path of the projection beam and the optical path of the return light by using the outer reflection surface and the inner reflection surface of the prism, the number of parts can be reduced as compared with the conventional device, and the assembly adjustment work can be facilitated. .

本発明のビーム光投受光装置を適用する光測距装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the optical ranging apparatus to which the beam light projector / receiver of this invention is applied. 本発明のビーム光投受光装置の第1実施形態を示す概略構成図である。It is a schematic block diagram which shows 1st Embodiment of the beam light projector / receiver of this invention. 第1実施形態における投受光分離部材(プリズム)の斜視図である。It is a perspective view of the light projection / reception separation member (prism) in 1st Embodiment. コーナーキューブによる光軸調整例を説明するための図である。It is a figure for demonstrating the example of the optical axis adjustment by a corner cube. 本発明のビーム光投受光装置の第2実施形態を示す概略構成図である。It is a schematic block diagram which shows 2nd Embodiment of the beam light projector / receiver of this invention. 本発明のビーム光投受光装置の第3実施形態を示す概略構成図である。It is a schematic block diagram which shows 3rd Embodiment of the beam light projector / receiver of this invention. 第3実施形態における投受光分離部材(プリズム)の斜視図である。It is a perspective view of the light projection / reception separation member (prism) in 3rd Embodiment. 第3実施形態における投受光分離部材(プリズム)の変形例の斜視図である。It is a perspective view of the modification of the light projection / reception separation member (prism) in 3rd Embodiment. 本発明のビーム光投受光装置の第4実施形態を示す概略構成図である。It is a schematic block diagram which shows 4th Embodiment of the beam light projector / receiver of this invention. 第4実施形態における投受光分離部材(プリズム)の斜視図である。It is a perspective view of the light projection / reception separation member (prism) in 4th Embodiment. 本発明のビーム光投受光装置の第5実施形態を示す概略構成図である。It is a schematic block diagram which shows 5th Embodiment of the beam light projector / receiver of this invention. 第5実施形態における投受光分離部材(プリズム)の斜視図である。It is a perspective view of the light projection / reception separation member (prism) in 5th Embodiment.

以下、本発明の実施形態を図面に基づいて説明する。
まず、本発明のビーム光投受光装置の詳細を説明する前に、本発明のビーム光投受光装置の適用例として、光測距装置について説明する。
図1は、光測距装置の概略構成を示すブロック図である。
図1において、光測距装置1は、投光ビーム(レーザパルス)を対象領域内でリサージュ走査、又はラスタ走査して前記対象領域内に存在する物体までの距離を計測(測距)し、計測結果に基づく距離画像を生成して出力(表示)する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, before explaining the details of the beam projection / reception apparatus of the present invention, an optical distance measuring apparatus will be described as an application example of the beam projection / reception apparatus of the present invention.
FIG. 1 is a block diagram showing a schematic configuration of the optical distance measuring device.
In FIG. 1, an optical distance measuring device 1 measures (measures) a distance to an object existing in the target region by performing a Lissajous scan or a raster scan with a projection beam (laser pulse) in the target region. A distance image based on the measurement result is generated and output (displayed).

光測距装置1は、例えば複数の動作モードで動作可能に構成されており、図1に示すように、情報入力部3と、電磁駆動型のスキャンミラー5と、スキャンミラー5を駆動する駆動部7と、投光ビームを出射する光源部9と、出射された投光ビームの光路とその反射光(戻り光)の光路を分離する投受光分離部材11と、投光ビームと分離された反射光(戻り光)を受光する受光部13と、投光ビームを反射した物体までの距離を計測する測距部15と、測距部15による計測結果に基づいて距離画像を生成する画像生成部17と、生成された距離画像を出力(表示)する表示部19と、を備える。そして、光源部9、スキャンミラー5、投受光分離部材11及び受光部13を備えて構成されるビーム光投受光装置に、後述する本発明のビーム光投受光装置を適用する。   The optical distance measuring device 1 is configured to be operable in, for example, a plurality of operation modes. As shown in FIG. 1, the information input unit 3, an electromagnetically driven scan mirror 5, and a drive for driving the scan mirror 5. The light source unit 9 that emits the projection light beam, the light projecting / receiving separation member 11 that separates the optical path of the emitted light projection beam and the reflected light (return light), and the light projection beam. A light receiving unit 13 that receives reflected light (return light), a distance measuring unit 15 that measures a distance to an object that reflects the projected beam, and an image generator that generates a distance image based on the measurement result of the distance measuring unit 15 And a display unit 19 that outputs (displays) the generated distance image. The beam light projector / receiver of the present invention to be described later is applied to a beam light projector / receiver configured to include the light source unit 9, the scan mirror 5, the light projecting / receiving separation member 11 and the light receiving unit 13.

情報入力部3には、例えばユーザによって光測距装置1の動作に関する情報、例えば、光測距装置1の動作モードを選択するモード選択指令が入力される。選択可能な動作モードには、例えば、基本となる「通常計測モード」、通常計測モードよりも計測位置を多くして対象領域について詳細な測距を行う「詳細計測モード」、対象領域の一部について詳細な測距を行う「部分詳細モード」及び通常計測モードよりも対象領域についての測距完了時間が短い「高速計測モード」等がある。   For example, the user inputs information related to the operation of the optical distance measuring device 1, for example, a mode selection command for selecting an operation mode of the optical distance measuring device 1 to the information input unit 3. Selectable operation modes include, for example, the basic “normal measurement mode”, “detailed measurement mode” that increases the number of measurement positions compared to the normal measurement mode, and performs detailed distance measurement on the target area, and part of the target area There are a “partial detail mode” for performing detailed distance measurement and a “high-speed measurement mode” for which the distance measurement completion time for the target area is shorter than that in the normal measurement mode.

スキャンミラー5は、ミラーを有する可動部が互いに直交する2つの方向に揺動可能に形成されており、ミラー面に入射される投光ビーム(パルス光)を空間領域内で二次元走査、より具体的にはリサージュ走査、又はラスタ走査することが可能である。このようなスキャンミラー5としては、例えば、本出願人により提案された特許第2722314号公報に記載の二次元走査型の半導体ガルバノミラー(以下単に「二次元ガルバノミラー」という)を用いることができる。この二次元ガルバノミラーは、2つの駆動コイル(内側駆動コイルと外側駆動コイル)にそれぞれ流れる各電流(交流電流)と、1対又は2対の永久磁石による静磁界と、によって2つの可動部(外側可動部及び内側可動部)にローレンツ力が作用し、その結果、内側可動部が二次元方向に揺動する。内側可動部が揺動することによってミラー面に入射される投光ビームが対象領域内でリサージュ走査、又はラスタ走査される。尚、リサージュ走査又はラスタ走査を実現するスキャンミラーとして、2つの一次元ガルバノミラーを使用し、2つの一次元ガルバノミラーを、それぞれのミラーを有する可動部が互いに直交する方向に揺動するよう配置することで、リサージュ走査、又はラスタ走査を行うようにしてもよい。   The scan mirror 5 is formed so that a movable part having a mirror can swing in two directions orthogonal to each other, and a projection beam (pulsed light) incident on the mirror surface is two-dimensionally scanned in a spatial region. Specifically, Lissajous scanning or raster scanning is possible. As such a scan mirror 5, for example, a two-dimensional scanning semiconductor galvanometer mirror (hereinafter simply referred to as “two-dimensional galvanometer mirror”) described in Japanese Patent No. 2722314 proposed by the present applicant can be used. . This two-dimensional galvanometer mirror has two movable parts (according to each current (alternating current) flowing through two drive coils (inner drive coil and outer drive coil) and a static magnetic field generated by one or two pairs of permanent magnets). Lorentz force acts on the outer movable portion and the inner movable portion, and as a result, the inner movable portion swings in a two-dimensional direction. As the inner movable portion swings, the light projection beam incident on the mirror surface is subjected to Lissajous scanning or raster scanning within the target region. Note that two one-dimensional galvanometer mirrors are used as scan mirrors for realizing Lissajous scanning or raster scanning, and the two one-dimensional galvanometer mirrors are arranged so that the movable parts having the respective mirrors swing in directions orthogonal to each other. By doing so, Lissajous scanning or raster scanning may be performed.

駆動部7は、駆動信号(交流電流)をスキャンミラー5に供給して内側可動部(及び外側可動部)を揺動駆動する。駆動部7は、内側駆動コイルに駆動信号を供給すると共に外側駆動コイルに駆動信号を供給する駆動回路71と、2つの駆動信号の位相差を変更する位相差変更部72と、2つの駆動信号の大きさ(振幅)を調整して内側可動部の揺動振幅を変更する振幅変更部73と、を備える。   The drive unit 7 supplies a drive signal (alternating current) to the scan mirror 5 to drive the inner movable unit (and the outer movable unit) to swing. The drive unit 7 includes a drive circuit 71 that supplies a drive signal to the inner drive coil and a drive signal to the outer drive coil, a phase difference changing unit 72 that changes a phase difference between the two drive signals, and two drive signals. An amplitude changing unit 73 that adjusts the amplitude (amplitude) of the inner movable unit to change the swing amplitude of the inner movable unit.

駆動回路71は、位相差変更部72から位相差を入力すると共に振幅変更部73から各駆動信号の大きさを入力し、入力した大きさの各駆動信号を入力した位相差でスキャンミラー5に供給する。ここで、各駆動信号の周波数は、二次元ガルバノミラーの共振周波数と同一又はその近傍の周波数に設定されている。   The driving circuit 71 inputs the phase difference from the phase difference changing unit 72 and the magnitude of each driving signal from the amplitude changing unit 73, and inputs the driving signal of the inputted magnitude to the scan mirror 5 by the phase difference inputted. Supply. Here, the frequency of each drive signal is set to a frequency that is the same as or close to the resonance frequency of the two-dimensional galvanometer mirror.

位相差変更部72は、情報入力部3を介して入力されたモード選択指令に応じて2つの駆動信号の位相差を設定し、設定した位相差を駆動回路71に出力する。   The phase difference changing unit 72 sets the phase difference between the two drive signals in accordance with the mode selection command input via the information input unit 3, and outputs the set phase difference to the drive circuit 71.

振幅変更部73は、各駆動信号の大きさ(振幅)を調整してスキャンミラー5の内側可動部の揺動振幅を変更する。具体的には、振幅変更部73は、情報入力部3を介して入力されたモード選択指令に応じて各駆動信号の大きさをそれぞれ設定し、設定した大きさを駆動回路71に出力する。内側可動部の揺動振幅を小さくすればスキャンミラー5によるリサージュ走査、又はラスタ走査範囲は小さくなり、内側可動部の揺動振幅を大きくすればスキャンミラー5によるリサージュ走査、又はラスタ走査範囲は大きくなる。   The amplitude changing unit 73 adjusts the magnitude (amplitude) of each drive signal to change the swing amplitude of the inner movable part of the scan mirror 5. Specifically, the amplitude changing unit 73 sets the magnitude of each drive signal according to the mode selection command input via the information input unit 3, and outputs the set magnitude to the drive circuit 71. If the oscillation amplitude of the inner movable portion is reduced, the Lissajous scanning or raster scanning range by the scan mirror 5 is reduced, and if the oscillation amplitude of the inner movable portion is increased, the Lissajous scanning or raster scanning range by the scan mirror 5 is increased. Become.

光源部9は、スキャンミラー5の内側可動部に形成されたミラーに向かって投光ビームを出射するものであり、光源91と、光源91の駆動を制御する光源制御部92と、投光光学系93と、を含む。   The light source unit 9 emits a light projection beam toward a mirror formed on the inner movable portion of the scan mirror 5, and includes a light source 91, a light source control unit 92 that controls driving of the light source 91, and light projection optics. A system 93.

光源91は、例えば半導体レーザであり、光源制御部92からの駆動信号によって発光してレーザ光を投光ビームとして出射する。   The light source 91 is, for example, a semiconductor laser, and emits laser light as a projection beam by emitting light according to a drive signal from the light source control unit 92.

光源制御部92は、情報入力部3を介して入力されたモード選択指令に応じて光源91の発光タイミング、即ち、投光ビームの出射タイミングを制御する。光源制御部92は、例えば動作モード毎に対象領域内の計測位置と時刻(タイミング)とが関連付けられた発光タイミングテーブルを備えており、動作モードに応じて予め設定されたタイミング(計測位置)で光源91を発光させる。   The light source control unit 92 controls the light emission timing of the light source 91, that is, the emission timing of the light projection beam in accordance with the mode selection command input via the information input unit 3. The light source control unit 92 includes a light emission timing table in which, for example, a measurement position in the target region and time (timing) are associated with each operation mode, and at a timing (measurement position) set in advance according to the operation mode. The light source 91 is caused to emit light.

投光光学系93は、光源91が発した投光ビームを好ましい状態とするものであり、光源91が発した投光ビームを平行光に変換する。   The light projecting optical system 93 makes the light projecting beam emitted from the light source 91 a preferable state, and converts the light projecting beam emitted from the light source 91 into parallel light.

投受光分離部材11は、光源91が発した投光ビームをスキャンミラー5方向に反射し、対象領域内の物体で反射しスキャンミラー5で反射した戻り光を受光部13方向に反射することにより、スキャンミラー5へ向かう投光ビームの光路と、スキャンミラー5で反射した戻り光の光路と、を互いに分離する。   The light projecting / receiving separation member 11 reflects the light projecting beam emitted from the light source 91 in the direction of the scan mirror 5 and reflects the return light reflected by the object in the target region and reflected by the scan mirror 5 in the direction of the light receiving unit 13. The optical path of the projection beam toward the scan mirror 5 and the optical path of the return light reflected by the scan mirror 5 are separated from each other.

そして、光源部9から出射された投光ビームは、投受光分離部材11でスキャンミラー5方向に反射され、スキャンミラー5のミラーで反射されて対象領域内に投光されリサージュ走査、又はラスタ走査される。   The light projecting beam emitted from the light source unit 9 is reflected by the light projecting / receiving separation member 11 in the direction of the scan mirror 5, reflected by the mirror of the scan mirror 5, and projected into the target region, and Lissajous scanning or raster scanning. Is done.

受光部13は、光源部9から出射されて対象領域内に存在する物体によって反射された反射光(戻り光)を受光して検知するものであり、受光光学系131と、受光素子132と、を含む。   The light receiving unit 13 receives and detects reflected light (returned light) emitted from the light source unit 9 and reflected by an object existing in the target region, and includes a light receiving optical system 131, a light receiving element 132, including.

受光光学系131は、対象領域内に存在する物体によって反射され、投受光分離部材11で投光ビームと分離された反射光(戻り光)を受光素子132上に集光させるものである。   The light receiving optical system 131 focuses the reflected light (returned light) reflected by the object existing in the target region and separated from the light projection beam by the light projecting / receiving separation member 11 on the light receiving element 132.

受光素子132は、対象領域内に存在する物体によって反射された反射光(戻り光)を、受光光学系131を介して受光するもので、例えばフォトセンサを用いることができる。   The light receiving element 132 receives reflected light (returned light) reflected by an object existing in the target region via the light receiving optical system 131, and for example, a photo sensor can be used.

測距部15は、光源部9による投光ビームの出射タイミングと、受光部13による反射光(戻り光)の受光タイミングと、を入力し、両者の時間差(光飛行時間)に基づいて投光ビームを反射した物体までの距離を計測する。測距部15による距離の計測は、対象領域内の各計測位置において、即ち、光源部9からの投光ビームの出射毎に行なわれ、その計測結果が画像生成部17に出力される。   The distance measuring unit 15 inputs the emission timing of the light projection beam from the light source unit 9 and the light reception timing of the reflected light (return light) from the light receiving unit 13, and projects light based on the time difference between them (light flight time). Measure the distance to the object that reflected the beam. The distance measurement by the distance measurement unit 15 is performed at each measurement position in the target area, that is, every time the projection beam is emitted from the light source unit 9, and the measurement result is output to the image generation unit 17.

画像生成部17は、測距部15によって計測された距離に基づいて各計測位置の画素値を決定し、対象領域についての距離画像を生成する。生成される距離画像は、例えば、計測された距離毎に色が異なる画像、即ち、対象領域内に存在する物体についてはその奥行き距離が反映された三次元的な画像となる。そして、画像生成部17で生成された距離画像は表示部19に出力される。表示部19は、ディスプレイを備え、画像生成部17から出力された距離画像を表示する。この距離画像によって対象領域内に存在する物体を認識できることは勿論、物体の位置、物体までの距離、物体の姿勢の変化なども検出することが可能となる。   The image generation unit 17 determines a pixel value at each measurement position based on the distance measured by the distance measurement unit 15 and generates a distance image for the target region. The generated distance image is, for example, an image having a different color for each measured distance, that is, a three-dimensional image in which the depth distance of an object existing in the target region is reflected. The distance image generated by the image generation unit 17 is output to the display unit 19. The display unit 19 includes a display and displays the distance image output from the image generation unit 17. The distance image can recognize an object existing in the target area, as well as a change in the position of the object, the distance to the object, the posture of the object, and the like.

次に、上述の光測距装置に適用する本発明に係るビーム光投受光装置について説明する。
図2及び図3に本発明に係るビーム光投受光装置の第1実施形態を示す。
図2は、本実施形態のビーム光投受光装置の概略構成図であり、本実施形態のビーム光投受光装置200は、例えば半導体レーザでレーザ光を投光ビームとして出射する光源210と、光源210からの投光ビームを平行光に変換するコリメートレンズ220と、光源210から出射された投光ビームの光路と対象領域内の物体からの反射光(戻り光)の光路を分離する投受光分離部材230と、スキャンミラー240と、投受光分離部材230で投光ビームと分離された戻り光を集光する集光レンズ250と、集光レンズ250で受光面に集光される戻り光を受光する受光素子260と、を備える。尚、270は、光測距装置等に適用する場合等に、スキャンミラー240の汚れ防止や保護のために、スキャンミラー前方で筐体等に取付けるカバーガラスを示す。ここで、光源210、コリメートレンズ220、投受光分離部材230、スキャンミラー240、集光レンズ250及び受光素子260は、図1の光測距装置1において、光源部9の光源91、投光光学系93、投受光分離部材11、スキャンミラー5、受光部13の受光光学系131、受光素子132に、それぞれ対応するものである。
Next, the light beam projecting / receiving device according to the present invention applied to the above-described optical distance measuring device will be described.
2 and 3 show a first embodiment of a beam light projecting / receiving device according to the present invention.
FIG. 2 is a schematic configuration diagram of the beam light projecting / receiving device according to the present embodiment. The beam light projecting / receiving device 200 according to the present embodiment includes, for example, a light source 210 that emits laser light as a light projecting beam with a semiconductor laser, and a light source separating the benzalkonium Li formate lens 220 converts the light projection beam into parallel light from 210, the optical path of the reflected light from the object light path and the target area of projected beam emitted from the light source 210 (returning light) The light projecting / receiving separation member 230, the scan mirror 240, the condensing lens 250 for condensing the return light separated from the light projection beam by the light projecting / receiving separation member 230, and the return condensed on the light receiving surface by the condensing lens 250. And a light receiving element 260 that receives light. Reference numeral 270 denotes a cover glass that is attached to a housing or the like in front of the scan mirror to prevent or protect the scan mirror 240 when applied to an optical distance measuring device or the like. Here, the light source 210, the collimating lens 220, the light projecting / receiving separation member 230, the scan mirror 240, the condensing lens 250, and the light receiving element 260 are the light source 91 of the light source unit 9 and the light projecting optics in the optical distance measuring device 1 of FIG. This corresponds to the system 93, the light projecting / receiving separation member 11, the scan mirror 5, the light receiving optical system 131 of the light receiving unit 13, and the light receiving element 132, respectively.

前記投受光分離部材230は、光源210から出射されコリメートレンズ220で平行光に変換された投光ビームをスキャンミラー240方向に反射する反射面を有し、また、対象領域内の物体で投光ビームの入射方向に反射されスキャンミラー240で反射された反射光(戻り光)を受光素子260方向に反射する反射面を有し、スキャンミラー240へ向かう投光ビームの光路(図2中、実線で示す)と、対象領域内の物体で反射しスキャンミラー240で反射した戻り光の光路(図2中、点線で示す)と、を互いに分離する。   The light projecting / receiving separation member 230 has a reflecting surface that reflects the light projecting beam emitted from the light source 210 and converted into parallel light by the collimator lens 220 toward the scan mirror 240, and is projected by an object in the target region. An optical path of a light projecting beam toward the scan mirror 240 (shown by a solid line in FIG. 2) has a reflection surface that reflects the reflected light (returned light) reflected in the beam incident direction and reflected by the scan mirror 240 toward the light receiving element 260. And the optical path of the return light reflected by the object in the target area and reflected by the scan mirror 240 (indicated by a dotted line in FIG. 2) are separated from each other.

前記投受光分離部材230は、具体的には、図3に示すように、例えば5つの面A〜Eを持つ5角形状の1つのプリズムで形成されている。前記プリズム230は、外側表面の1つである例えばA面に、投光ビームをスキャンミラー240方向に反射する反射領域231と、戻り光(反射光)を透過する透過領域232が形成されている。反射領域231は、投光ビームが略100%反射するように鏡面反射面で且つ散乱光等が発生しないようにコーティングを施してあり、外側反射面となる。透過領域232は、戻り光が略100%透過するよう無反射コーティングを施してある。また、プリズム230は、透過領域232を透過した戻り光をプリズム230内部においてD面で受光素子260方向に反射するよう形成されている。この際、D面で反射されB面を透過して受光素子260に向かう戻り光が、光源210からコリメートレンズ220を介してスキャンミラー240に向かう投光ビームと平行になるように、A面及びB面に対するD面の角度を決定する。   Specifically, as shown in FIG. 3, the light projecting / receiving separation member 230 is formed of, for example, one pentagonal prism having five surfaces A to E. In the prism 230, for example, a reflection area 231 that reflects the projection beam in the direction of the scan mirror 240 and a transmission area 232 that transmits the return light (reflection light) are formed on the A surface, which is one of the outer surfaces. . The reflection region 231 is a mirror-reflecting surface so that the projected beam is reflected approximately 100%, and is coated so that scattered light or the like is not generated, and becomes an outer reflecting surface. The transmissive region 232 is provided with a non-reflective coating so that almost 100% of the return light is transmitted. The prism 230 is formed so that the return light transmitted through the transmission region 232 is reflected in the direction of the light receiving element 260 on the D surface inside the prism 230. At this time, the return light reflected from the D surface, transmitted through the B surface, and directed to the light receiving element 260 is parallel to the light projection beam from the light source 210 to the scan mirror 240 via the collimator lens 220. The angle of the D surface with respect to the B surface is determined.

本実施形態では、前記反射領域231(外側反射面)が、光源210から出射されコリメートレンズ220で平行光に変換された投光ビームをスキャンミラー240方向に反射する反射面であり、前記D面が、対象領域内の物体で投光ビームの入射方向に反射されスキャンミラー240で反射された戻り光を受光素子260方向に反射する反射面である。   In the present embodiment, the reflection region 231 (outer reflection surface) is a reflection surface that reflects the projection beam emitted from the light source 210 and converted into parallel light by the collimator lens 220 toward the scan mirror 240, and the D surface. Is a reflecting surface that reflects the return light reflected by the object in the target region in the incident direction of the projection beam and reflected by the scan mirror 240 toward the light receiving element 260.

かかるビーム光投受光装置では、光源210から出射された投光ビームは、図2に実線で示すように、コリメートレンズ220で平行光に変換され、プリズム230の反射領域231(外側反射面)でスキャンミラー240の方向に反射される。更に、スキャンミラー240で反射され、カバーガラス270を透過して装置外部の対象領域に投光され、スキャンミラー240の揺動動作により対象領域内で走査される。対象領域内に存在する物体で投光ビーム方向に反射した戻り光は、図2に点線で示すように、投光ビームの光路と同軸、即ち、略重なるようにしてカバーガラス270を透過し、スキャンミラー240で反射してプリズム230のA面に向かい、プリズム230のA面の透過領域232を透過する。戻り光を、プリズム230のA面の透過領域232を透過させることで、投光ビームの光路と戻り光の光路を分離する。投光ビームと分離された戻り光は、プリズム230の内部を進行しD面(内側反射面)で受光素子260方向に反射され、プリズム230のB面を透過し、集光レンズ250を介して集光されて受光素子260で受光される。   In such a beam projection / reception device, the projection beam emitted from the light source 210 is converted into parallel light by the collimator lens 220 as shown by a solid line in FIG. 2, and is reflected by the reflection region 231 (outer reflection surface) of the prism 230. Reflected in the direction of the scan mirror 240. Further, the light is reflected by the scan mirror 240, passes through the cover glass 270, is projected onto the target area outside the apparatus, and is scanned within the target area by the swinging operation of the scan mirror 240. The return light reflected in the direction of the light projecting beam by the object existing in the target region passes through the cover glass 270 so as to be coaxial with the optical path of the light projecting beam, that is, substantially overlap, as shown by a dotted line in FIG. The light is reflected by the scan mirror 240, travels toward the A surface of the prism 230, and passes through the transmission region 232 on the A surface of the prism 230. The return light is transmitted through the transmission area 232 on the A surface of the prism 230, so that the optical path of the projection beam and the return light are separated. The return light separated from the projection beam travels through the prism 230, is reflected by the D surface (inner reflection surface) toward the light receiving element 260, passes through the B surface of the prism 230, and passes through the condenser lens 250. The light is condensed and received by the light receiving element 260.

本実施形態のビーム光投受光装置によれば、プリズム230の外側表面であるA面に投光ビームをスキャンミラー240の方向に反射する外側反射面(反射領域231)を形成し、同じA面に戻り光を透過させる透過領域232を形成すると共に、A面と対面するD面を内側反射面として、透過した戻り光を受光素子260の方向に反射するよう構成して、投光ビームの光路と戻り光の光路を1つのプリズム230で分離するようにしたので、ビーム光投受光装置の部品点数を減らすことができると共に、投受光の光軸調整等における調整部品を少なくでき、装置の小型化と調整作業の容易化を図れる。更に、プリズム230のD面を、その反射方向が光源210と同じ方向側で、且つ、光源210からプリズム230側に向かう投光ビームとプリズム230から受光素子260方向に向かう戻り光が平行となるように形成すれば、光源210と受光素子260を並べて配置できるので、より一層の装置全体の小型化を図ることができる。   According to the beam light projecting / receiving device of the present embodiment, the outer reflection surface (reflection region 231) for reflecting the projection beam in the direction of the scan mirror 240 is formed on the A surface which is the outer surface of the prism 230, and the same A surface. A transmission region 232 for transmitting the return light is formed, and the D surface facing the A surface is used as an inner reflection surface so that the transmitted return light is reflected in the direction of the light receiving element 260, so that the optical path of the light projection beam Since the optical path of the return light is separated by one prism 230, the number of parts of the beam light projecting / receiving device can be reduced, and the number of adjustment parts for adjusting the optical axis of the projecting / receiving light can be reduced. And easy adjustment work. Further, on the D surface of the prism 230, the reflection direction is the same direction as the light source 210, and the light projecting beam from the light source 210 toward the prism 230 and the return light from the prism 230 toward the light receiving element 260 are parallel. If formed in this manner, the light source 210 and the light receiving element 260 can be arranged side by side, so that the size of the entire apparatus can be further reduced.

また、光源210、プリズム230、スキャンミラー240、受光素子260等の各光学部材の配置や形状が決まっていれば、コーナーキューブ等の再帰反射装置を用いて組立て調整工程の大幅な削減が図れる。例えば、プリズム230とスキャンミラー240がない状態で、まず、始めに光源210と受光素子260を並べて配置する。そして、図4のように投光ビームの投光方向にコーナーキューブ300を置いて、投光ビームをコーナーキューブ300に向けて投光し、コーナーキューブ300からの反射光が受光素子260で受光できるように受光素子260の配置を調整する。これにより、投光ビームと反射光(戻り光)を略平行にできる。その後、プリズム230とスキャンミラー240を予め決めてある位置にセットすれば、光軸調整は略完了するので、組立て作業工程の大幅な削減が図れる。   If the arrangement and shape of the optical members such as the light source 210, the prism 230, the scan mirror 240, and the light receiving element 260 are determined, the assembly adjustment process can be greatly reduced using a retroreflective device such as a corner cube. For example, first, the light source 210 and the light receiving element 260 are arranged side by side without the prism 230 and the scan mirror 240. Then, as shown in FIG. 4, the corner cube 300 is placed in the projection direction of the projection beam, the projection beam is projected toward the corner cube 300, and the reflected light from the corner cube 300 can be received by the light receiving element 260. Thus, the arrangement of the light receiving elements 260 is adjusted. Thereby, a light projection beam and reflected light (return light) can be made substantially parallel. After that, if the prism 230 and the scan mirror 240 are set at predetermined positions, the optical axis adjustment is substantially completed, so that the assembly work process can be greatly reduced.

上記実施形態では、投光ビームを反射領域231(外側反射面)で反射させ、戻り光をプリズム230のD面(内側反射面)で反射させる構成であるが、図5に示す第2実施形態のように、逆に、投光ビームをプリズム230のD面(内側反射面)でスキャンミラー240の方向に反射させ、戻り光を反射領域231(外側反射面)で受光素子260の方向に反射させる構成としてもよい。かかる構成の第2実施形態の場合も、第1実施形態と同様の効果を得ることができる。尚、図5において、第1実施形態と同一要素には同一符号を付してある。   In the above embodiment, the light projection beam is reflected by the reflection region 231 (outer reflection surface) and the return light is reflected by the D surface (inner reflection surface) of the prism 230, but the second embodiment shown in FIG. Conversely, the projection beam is reflected by the D surface (inner reflection surface) of the prism 230 in the direction of the scan mirror 240, and the return light is reflected by the reflection region 231 (outer reflection surface) in the direction of the light receiving element 260. A configuration may be adopted. In the case of the second embodiment having such a configuration, the same effect as that of the first embodiment can be obtained. In FIG. 5, the same elements as those in the first embodiment are denoted by the same reference numerals.

ただし、プリズム230の内側反射面では略全反射となるので、信号レベルが投光ビームに比べて低い戻り光を、プリズム230の内側反射面で反射させて受光素子260で受光する構成である第1実施形態の方が望ましい。   However, since the inner reflection surface of the prism 230 is substantially totally reflected, return light having a signal level lower than that of the projection beam is reflected by the inner reflection surface of the prism 230 and received by the light receiving element 260. One embodiment is preferred.

図6及び図7に本発明に係るビーム光投受光装置の第3実施形態を示す。尚、第1実施形態と同一要素には同一符号を付してある。
図6は、本実施形態のビーム光投受光装置の概略構成図であり、本実施形態のビーム光投受光装置200は、プリズム230のA面の略中央部に、図7に示すように矩形形状の反射領域231を形成し、A面の反射領域231を除く部分に透過領域232を形成したものである。尚、反射領域231の形状は、図8に示すような円形形状にしてもよい。
6 and 7 show a third embodiment of the light beam projector / receiver according to the present invention. In addition, the same code | symbol is attached | subjected to the same element as 1st Embodiment.
FIG. 6 is a schematic configuration diagram of the light beam projecting / receiving device according to the present embodiment. The light beam projecting / receiving device 200 according to the present embodiment has a rectangular shape as shown in FIG. A reflection region 231 having a shape is formed, and a transmission region 232 is formed in a portion excluding the reflection region 231 on the A surface. The shape of the reflection region 231 may be a circular shape as shown in FIG.

かかる第3実施形態によれば、第1実施形態と同様の効果に加えて、透過領域232の面積が増加するため、プリズム230内部における内側反射面(D面)で受光素子260方向に反射される戻り光の光量が増大できる。   According to the third embodiment, in addition to the same effects as in the first embodiment, the area of the transmission region 232 increases, so that the inner reflection surface (D surface) inside the prism 230 is reflected toward the light receiving element 260. The amount of return light can be increased.

図9及び図10に本発明に係るビーム光投受光装置の第4実施形態を示す。尚、第1実施形態と同一要素には同一符号を付してある。
図9は、本実施形態のビーム光投受光装置の概略構成図であり、本実施形態のビーム光投受光装置200は、反射領域231と透過領域232をプリズム230の外側表面の2つの面に分けて形成するようにしたものである。即ち、図10に示すように、プリズム230に新たな面Fを形成して6角形状とし、反射領域231(外側反射面)をA面に形成し、透過領域232を隣接するF面に形成し、F面の透過領域232を透過した戻り光を、プリズム230の内側反射面であるD面で受光素子260に向けて反射する構成である。
9 and 10 show a fourth embodiment of the beam light projecting and receiving apparatus according to the present invention. In addition, the same code | symbol is attached | subjected to the same element as 1st Embodiment.
FIG. 9 is a schematic configuration diagram of the light beam projecting / receiving device 200 according to the present embodiment. The light beam projecting / receiving device 200 according to the present embodiment has a reflection region 231 and a transmission region 232 on two surfaces of the outer surface of the prism 230. They are formed separately. That is, as shown in FIG. 10, a new surface F is formed on the prism 230 to have a hexagonal shape, the reflective region 231 (outer reflective surface) is formed on the A surface, and the transmissive region 232 is formed on the adjacent F surface. Then, the return light transmitted through the transmission region 232 on the F surface is reflected toward the light receiving element 260 by the D surface which is the inner reflection surface of the prism 230.

かかる第4実施形態によれば、投光ビームの反射領域231と戻り光の透過領域232が異なる面にあるため、信号レベルが戻り光に比べて格段に高い投光ビームが透過領域232を透過する戻り光の光路側に漏れ難くなるので、投光/受光のアイソレーション特性を向上できる。   According to the fourth embodiment, since the reflection region 231 of the projection beam and the transmission region 232 of the return light are on different surfaces, the projection beam whose signal level is significantly higher than that of the return light is transmitted through the transmission region 232. Therefore, it is difficult for the return light to leak to the optical path side, so that the isolation characteristics of light projection / light reception can be improved.

尚、図6の第3実施形態や図9の第4実施形態の各構成の場合も、図5の第2実施形態のように、投光ビームをプリズム230の内側反射面(D面)でスキャンミラー240の方向に反射させ、戻り光を反射領域231(外側反射面)で受光素子260の方向に反射させる構成としてもよいが、投光ビームと戻り光の信号レベルを考慮すれば、図6や図9の構成の方が望ましい。   In the case of each configuration of the third embodiment in FIG. 6 and the fourth embodiment in FIG. 9, the light projection beam is reflected on the inner reflection surface (D surface) of the prism 230 as in the second embodiment in FIG. 5. A configuration may be adopted in which the reflected light is reflected in the direction of the scan mirror 240 and the return light is reflected in the direction of the light receiving element 260 by the reflection region 231 (outside reflection surface). 6 and FIG. 9 are preferable.

図11及び図12に本発明に係るビーム光投受光装置の第5実施形態を示す。尚、第1実施形態と同一要素には同一符号を付してある。
図11は、本実施形態のビーム光投受光装置の第5実施形態を示す概略構成図であり、本実施形態のビーム光投受光装置200は、投受光分離部材を、図10に示すプリズム230に、スキャンミラー240からの戻り光を透過する透過領域332と、受光素子260の方向に透過した戻り光を反射する内側反射面(D1面)と、を有する別のプリズム330を結合して構成したものである。即ち、図12に示すように、プリズム330は、5つの面B1〜E1とG1を持つ5角形状で、プリズム330を図12に示すようにプリズム230に結合したときに、プリズム330のB1面〜E1面の各面を、プリズム230のB面〜E面の各面とそれぞれ面一となるように形成し、G1面をプリズム230のF面と段差を有するように形成し、このG1面に、無反射コーティングを施して戻り光が透過する透過領域332を形成し、この透過領域332を透過した戻り光を、プリズム330内部でD1面を内側反射面として受光素子260の方向に反射するように形成する。
11 and 12 show a fifth embodiment of the light beam projecting / receiving device according to the present invention. In addition, the same code | symbol is attached | subjected to the same element as 1st Embodiment.
FIG. 11 is a schematic configuration diagram showing a fifth embodiment of the beam projection / reception apparatus according to the present embodiment. The beam projection / reception apparatus 200 according to the present embodiment includes a prism 230 shown in FIG. Further, another prism 330 having a transmission region 332 that transmits the return light from the scan mirror 240 and an inner reflection surface (D1 surface) that reflects the return light transmitted in the direction of the light receiving element 260 is combined. It is a thing. That is, as shown in FIG. 12, the prism 330 has a pentagonal shape having five surfaces B1 to E1 and G1, and when the prism 330 is coupled to the prism 230 as shown in FIG. The surfaces E1 to E1 are formed so as to be flush with the surfaces B to E of the prism 230, and the G1 surface is formed to have a step difference from the F surface of the prism 230. Then, a non-reflective coating is applied to form a transmission region 332 through which the return light is transmitted, and the return light transmitted through the transmission region 332 is reflected in the prism 330 toward the light receiving element 260 with the D1 surface as an inner reflection surface. To form.

かかる第5実施形態によれば、第実施形態と同様に、投光ビームの反射領域231と戻り光の透過領域232、332が異なる面にあるため、信号レベルが戻り光に比べて格段に高い投光ビームが透過領域232を透過する戻り光の光路側に漏れ難くなり、投光/受光のアイソレーション特性を向上できる。加えて、透過領域面積が増大するので、受光素子260方向に反射する戻り光の光量が増大し、受光素子260の受光量を増大することができる。 According to the fifth embodiment, similar to the fourth embodiment, since the reflection region 231 of the projection beam and the transmission regions 232 and 332 of the return light are on different surfaces, the signal level is much higher than that of the return light. A high light projection beam hardly leaks to the optical path side of the return light transmitted through the transmission region 232, and the isolation characteristics of light projection / light reception can be improved. In addition, since the area of the transmissive region increases, the amount of return light reflected toward the light receiving element 260 increases, and the amount of light received by the light receiving element 260 can be increased.

尚、上述した各実施形態において、投光ビームの光路と戻り光の光路の途中に位置するプリズム230のA面、B面、D面やプリズム330のD1面の各々に適当な凸状又は凹状の曲率をつけることで、光源210側のコリメートレンズ220や受光素子260側の集光レンズ250を省略することが可能であり、これにより、部品点数を更に削減することが可能となり、光軸調整部品の削減で光軸調整作業をより一層容易化できるようになる。 In each of the above-described embodiments, an appropriate convex shape or concave shape is provided on each of the A surface, the B surface, the D surface of the prism 230 and the D1 surface of the prism 330 located in the middle of the optical path of the projection beam and the optical path of the return light. With this curvature, it is possible to omit the collimating lens 220 on the light source 210 side and the condensing lens 250 on the light receiving element 260 side, thereby further reducing the number of components and adjusting the optical axis. The optical axis adjustment work can be further facilitated by reducing the number of parts.

尚、本発明のビーム光投受光装置は、光測距装置だけでなく、光ビームを照射し物体からの戻り光を受光して物体の存在、位置、大きさ等を検出するようなあらゆる装置の同軸系タイプのビーム光投受光装置として適用できることは言うまでもない。   The beam light projecting / receiving device of the present invention is not only an optical distance measuring device, but also any device that detects the presence, position, size, etc. of an object by irradiating a light beam and receiving return light from the object. Needless to say, the present invention can be applied as a coaxial light beam projecting / receiving device.

1 光測距装置
200 ビーム光投受光装置
210 光源
230、330 プリズム(投受光分離部材)
231 反射領域(外側反射面)
232、332 透過領域
D、D1 内側反射面
240 スキャンミラー
260 受光素子
DESCRIPTION OF SYMBOLS 1 Optical ranging device 200 Beam light projector / receiver 210 Light source 230, 330 Prism (projection / reception separation member)
231 Reflection area (outer reflection surface)
232, 332 Transmission region D, D1 Inner reflection surface 240 Scan mirror 260 Light receiving element

Claims (11)

光源の投光ビームを反射走査するスキャンミラーと、物体で反射しスキャンミラーで反射した戻り光を受光する受光素子とを備え、投光ビームと戻り光のどちらか一方を反射する反射面となる領域と他方を透過する領域とを外側表面に設けると共に、前記透過した他方の光を反射する反射面を設けた1つのプリズムで形成した投受光分離部材で、光源の投光ビームの光路と戻り光の光路とを分離するビーム光投受光装置。A scan mirror that reflects and scans the light projecting beam of the light source and a light receiving element that receives the return light reflected by the object and reflected by the scan mirror, and becomes a reflection surface that reflects either the light projection beam or the return light A light projecting / receiving separation member formed of one prism provided with a reflecting surface for reflecting the other light transmitted through the outer surface and a region that transmits the other light, and returns to the light path of the light projecting beam of the light source Beam light projector / receiver that separates the optical path of light. 光源の投光ビームを反射走査するスキャンミラーと、物体で反射しスキャンミラーで反射した戻り光を受光する受光素子とを備え、少なくとも1つのプリズムで構成され、前記プリズムの外側表面に投光ビームと戻り光のどちらか一方を反射する外側反射面となる領域と他方を透過する領域とを設けると共に、前記透過した他方の光を反射する内側反射面を設けて形成した投受光分離部材で、光源の投光ビームの光路と戻り光の光路とを分離するビーム光投受光装置。A scan mirror that reflects and scans the light projection beam of the light source and a light receiving element that receives the return light reflected by the object and reflected by the scan mirror, and is composed of at least one prism, and the light projection beam is formed on the outer surface of the prism. A light projecting / receiving separation member formed by providing an outer reflection surface that reflects one of the return light and a region that transmits the other, and an inner reflection surface that reflects the other transmitted light, A beam light projecting / receiving device that separates an optical path of a light projecting beam from a light source and an optical path of return light. 前記プリズムは、外側表面に、光ビームの反射領域と光ビームの透過領域を有すると共に、前記透過領域を透過した光ビームをプリズム内部で反射させる反射面を有する構成とし、前記外側表面の前記反射領域を外側反射面とし、透過した光ビームをプリズム内部で反射させる反射面を内側反射面とし、前記外側反射面と前記内側反射面のいずれか一方の反射面で、前記投光ビームをスキャンミラー方向に反射し、他方の反射面で、前記スキャンミラーからの戻り光を受光素子方向に反射するよう構成した請求項1又は2に記載のビーム光投受光装置。   The prism has a light beam reflection region and a light beam transmission region on the outer surface, and a reflection surface for reflecting the light beam transmitted through the transmission region inside the prism, and the reflection on the outer surface. The region is defined as an outer reflecting surface, the reflecting surface that reflects the transmitted light beam inside the prism is defined as an inner reflecting surface, and the projected beam is scanned by either the outer reflecting surface or the inner reflecting surface. The beam light projecting / receiving device according to claim 1, wherein the light reflecting / receiving device is configured to reflect in the direction and reflect the return light from the scan mirror toward the light receiving element by the other reflecting surface. 前記プリズムの前記外側反射面と前記内側反射面を、光源からプリズムに向かう投光ビームの投光光路とプリズムから受光素子に向かう戻り光の戻り光路とが、互いに略平行になるように形成した請求項に記載のビーム光投受光装置。 The outer reflection surface and the inner reflection surface of the prism are formed so that a light projecting light path of a light projecting beam from the light source to the prism and a return light path of the return light from the prism to the light receiving element are substantially parallel to each other. The beam light projector / receiver according to claim 3 . 前記反射領域と透過領域を、プリズムの外側表面の同じ面に形成した請求項3又は4に記載のビーム光投受光装置。   The beam light projecting / receiving device according to claim 3 or 4, wherein the reflection region and the transmission region are formed on the same surface of the outer surface of the prism. 前記同じ面の略中央部に前記反射領域を形成し、前記反射領域を除く部分に前記透過領域を形成するようにした請求項5に記載のビーム光投受光装置。   6. The beam light projecting / receiving device according to claim 5, wherein the reflection region is formed in a substantially central portion of the same surface, and the transmission region is formed in a portion excluding the reflection region. 前記反射領域を円形形状にした請求項6に記載のビーム光投受光装置。   The beam light projecting / receiving device according to claim 6, wherein the reflection region has a circular shape. 前記反射領域と透過領域を、プリズムの外側表面の2つの面に分けて形成した請求項3又は4に記載のビーム光投受光装置。   The beam light projector / receiver according to claim 3 or 4, wherein the reflection region and the transmission region are formed by dividing the reflection region and the transmission region into two surfaces of an outer surface of the prism. 前記投受光分離部材は、前記外側反射面と前記内側反射面を有するプリズムに、前記スキャンミラーからの戻り光を受光素子方向に反射する反射面を設けた別のプリズムを結合して構成したことを特徴とする請求項2に記載のビーム光投受光装置。   The light projecting / receiving separation member is configured by combining a prism having the outer reflection surface and the inner reflection surface with another prism provided with a reflection surface that reflects the return light from the scan mirror toward the light receiving element. The beam light projector / receiver according to claim 2. 前記投受光分離部材は、外側表面に投光ビームをスキャンミラー方向に反射する外側反射面となる反射領域とスキャンミラーからの戻り光を透過させる透過領域とを有すると共に、前記透過領域を透過した戻り光をプリズム内部で受光素子方向に反射する内側反射面を有するプリズムに、前記透過領域と段差を有しスキャンミラーからの戻り光を透過させる透過領域と、当該透過領域を透過した戻り光をプリズム内部で受光素子方向に反射する内側反射面と、を有する別のプリズムを結合して構成した請求項9に記載のビーム光投受光装置。   The light projecting / receiving separation member has a reflection region serving as an outer reflection surface that reflects the projection beam in the direction of the scan mirror on the outer surface and a transmission region that transmits the return light from the scan mirror, and transmitted through the transmission region. A prism having an inner reflection surface that reflects the return light in the direction of the light receiving element inside the prism, a transmission region that has a step with the transmission region and transmits the return light from the scan mirror, and the return light that has passed through the transmission region. The beam light projecting / receiving device according to claim 9, wherein another prism having an inner reflection surface that reflects toward the light receiving element inside the prism is coupled. 前記光源からの投光ビームの出射タイミングと前記受光素子における戻り光の受光タイミングとに基づいて前記対象領域内の物体までの距離を計測する光測距装置に用いる請求項1〜10のいずれか1つに記載のビーム光投受光装置。   The optical distance measuring device according to any one of claims 1 to 10, wherein the optical distance measuring device is configured to measure a distance to an object in the target region based on an emission timing of a light projection beam from the light source and a light reception timing of return light from the light receiving element. The beam light projector / receiver described in one.
JP2010211712A 2010-09-22 2010-09-22 Beam light emitter / receiver Active JP5663251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010211712A JP5663251B2 (en) 2010-09-22 2010-09-22 Beam light emitter / receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010211712A JP5663251B2 (en) 2010-09-22 2010-09-22 Beam light emitter / receiver

Publications (2)

Publication Number Publication Date
JP2012068350A JP2012068350A (en) 2012-04-05
JP5663251B2 true JP5663251B2 (en) 2015-02-04

Family

ID=46165727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010211712A Active JP5663251B2 (en) 2010-09-22 2010-09-22 Beam light emitter / receiver

Country Status (1)

Country Link
JP (1) JP5663251B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017075806A (en) * 2015-10-13 2017-04-20 浜松ホトニクス株式会社 Distance measurement device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6417198B2 (en) * 2014-11-28 2018-10-31 リコーインダストリアルソリューションズ株式会社 Two-dimensional scanning type laser beam projection apparatus and laser radar apparatus
JP2016035403A (en) * 2014-08-01 2016-03-17 シャープ株式会社 Laser ranging device
US10067222B2 (en) 2014-08-01 2018-09-04 Funai Electric Co., Ltd. Laser rangefinder
JP7029309B2 (en) * 2018-02-13 2022-03-03 株式会社トプコン Reflective prism and surveying target
CN109164465B (en) * 2018-08-29 2023-04-28 西安电子科技大学 Coaxial optical system for measuring cloud height based on micropulse laser radar
JP6656438B1 (en) * 2019-01-30 2020-03-04 キヤノン株式会社 Optical device, in-vehicle system and mobile device including the same
US11561288B2 (en) 2019-04-18 2023-01-24 Canon Kabushiki Kaisha Optical apparatus, on-board system, and movement apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3252401B2 (en) * 1991-06-19 2002-02-04 株式会社ニコン Distance measuring device
JPH10232305A (en) * 1997-02-20 1998-09-02 Sony Corp Compound prism and optical disk driving device
JP2000098033A (en) * 1998-09-28 2000-04-07 Sokkia Co Ltd Light wave range finder
JP2001050723A (en) * 1999-08-11 2001-02-23 Minolta Co Ltd Distance measuring equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017075806A (en) * 2015-10-13 2017-04-20 浜松ホトニクス株式会社 Distance measurement device

Also Published As

Publication number Publication date
JP2012068350A (en) 2012-04-05

Similar Documents

Publication Publication Date Title
JP5663251B2 (en) Beam light emitter / receiver
US11275157B2 (en) Object detecting apparatus, object detecting method, and design method of object detecting apparatus
JP6367273B2 (en) Scan depth engine
JP5702059B2 (en) Optical distance measuring device
US20200081258A1 (en) Beam angle sensor in virtual/augmented reality system
US9689667B2 (en) System, method and computer program for receiving a light beam
US8641195B2 (en) Image forming apparatus for projecting an image to guide an individual
US20200355801A1 (en) Transmitting device for a lidar scanner having a scanning mirror covered by a cover element
JP2020511666A (en) LIDAR-based 3D imaging with structured light and integrated illumination and detection
US20120327391A1 (en) Display apparatus
JP2004069611A (en) Optical wave distance measurement device
CN105143820A (en) Depth scanning with multiple emitters
EP3475726B1 (en) Systems and methods for light beam position detection
JP2011089874A (en) Distance image data acquisition device
CN104221058A (en) Gimbaled scanning mirror array
CA2582399A1 (en) Large size image projection
JP2012093245A (en) Laser surveying instrument
JP2009014791A (en) Optical scanner, image display device, and retina scanning image display device
JP5710279B2 (en) Optical distance measuring device
JP6685569B1 (en) Optical scanning device, object detection device, optical scanning method, object detection method, and program
WO2018168507A1 (en) Electromagnetic wave detecting device, program, and electromagnetic wave detecting system
JP2018036543A (en) Scanner mirror
CN110476083A (en) There are two the scanners of the scanning element of sequence for tool
KR102275104B1 (en) Electromagnetic wave detection device, program, and information acquisition system
KR102323317B1 (en) Lidar sensors and methods for lidar sensors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140527

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141208

R150 Certificate of patent or registration of utility model

Ref document number: 5663251

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250