JP5662836B2 - Synchronous control device and synchronous control method - Google Patents

Synchronous control device and synchronous control method Download PDF

Info

Publication number
JP5662836B2
JP5662836B2 JP2011037939A JP2011037939A JP5662836B2 JP 5662836 B2 JP5662836 B2 JP 5662836B2 JP 2011037939 A JP2011037939 A JP 2011037939A JP 2011037939 A JP2011037939 A JP 2011037939A JP 5662836 B2 JP5662836 B2 JP 5662836B2
Authority
JP
Japan
Prior art keywords
drive system
error
operation amount
deviation
synchronous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011037939A
Other languages
Japanese (ja)
Other versions
JP2012175875A (en
Inventor
ブラック センジャル
ブラック センジャル
英二 社本
英二 社本
森 達也
達也 森
吉川 真治
真治 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Murata Machinery Ltd
Tokai National Higher Education and Research System NUC
Original Assignee
Nagoya University NUC
Murata Machinery Ltd
Tokai National Higher Education and Research System NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Murata Machinery Ltd, Tokai National Higher Education and Research System NUC filed Critical Nagoya University NUC
Priority to JP2011037939A priority Critical patent/JP5662836B2/en
Publication of JP2012175875A publication Critical patent/JP2012175875A/en
Application granted granted Critical
Publication of JP5662836B2 publication Critical patent/JP5662836B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は複数の駆動系に対する同期制御に関する。   The present invention relates to synchronous control for a plurality of drive systems.

複数の駆動系を同期制御することがある。例えば複数の駆動系により、対象物を姿勢を保ちながら移動させる、あるいは対象物を所定の軌跡に従って移動させる場合、駆動系への同期制御が必要である。2個のモータに対する同期制御について、特許文献1は、モータ間での回転位置の偏差を一方のモータ、例えばモータM2へフィードバックし、モータM2での目標位置からの誤差に対するゲインを小さくすることを記載している。そして2個のモータM1,M2が同じ対象物に取り付けられている場合、対象物の剛性等により、結果的にモータM1,M2が同期する。また特許文献2は、遅れている側のモータに合わせるように、進んでいる側のモータを制御することを記載している。   A plurality of drive systems may be controlled synchronously. For example, when the object is moved while maintaining the posture by a plurality of drive systems, or the object is moved according to a predetermined trajectory, synchronous control to the drive system is necessary. Regarding synchronous control for two motors, Patent Document 1 discloses that a deviation of a rotational position between motors is fed back to one motor, for example, a motor M2, and a gain for an error from a target position in the motor M2 is reduced. It is described. When the two motors M1 and M2 are attached to the same object, the motors M1 and M2 are synchronized as a result due to the rigidity of the object. Japanese Patent Application Laid-Open No. H10-228688 describes controlling the motor on the advancing side so as to match the motor on the lagging side.

特許文献1,2の同期制御は、2個のモータを同期させるための一般的な解決手法というよりは、特定の状況でのみ有効な個別的な解決手法というべきものである。発明者は複数個の駆動系を同期制御するための汎用性の有る手法を検討し、この発明に至った。   The synchronization control in Patent Literatures 1 and 2 should be an individual solution method that is effective only in a specific situation, rather than a general solution method for synchronizing two motors. The inventor studied a versatile method for synchronously controlling a plurality of drive systems, and reached the present invention.

JP4323542BJP4323542B JP2002-362709AJP2002-362709A

この発明の課題は、駆動系の特性等により制限されることなく、複数の駆動系間の制御誤差の偏差を小さくすることにある。   An object of the present invention is to reduce the deviation of a control error between a plurality of drive systems without being limited by the characteristics of the drive systems.

この発明は、同じ特性の第1の駆動系と第2の駆動系を同期制御する同期制御装置において、
第1の駆動系に対する目標位置の指令と第1の駆動系側の位置との間の第1の誤差を解消するように、第1の駆動系を動作させるための第1の操作量を発生させる第1のPID制御器と、
第2の駆動系に対する目標位置の指令と第2の駆動系側の位置との間の第2の誤差を解消するように、第2の駆動系を動作させるための第2の操作量を発生させる第2のPID制御器と、
前記第1の誤差と前記第2の誤差との偏差を入力とし、前記偏差に比例する成分と、前記偏差の時間微分値に比例する成分とから成り、前記偏差の積分値に基づく成分を含まない操作量を発生させるPD制御器から成る同期制御器と、
第1の操作量と同期制御器からの操作量との和に基づき、第1の駆動系を制御する第1の制御手段と、
第2の操作量と同期制御器からの操作量との差に基づき、第2の駆動系を制御する第2の制御手段とを備え
第1の誤差をex、その時間微分をex'、第2の誤差をey、その時間微分をey'として、第1の駆動系へ誤差eyに基づいてKpxy・ey+Kdxy・ey'から成る操作量が加えられ、かつ第2の駆動系へ誤差exに基づいてKpxy・ex+Kdxy・ex'から成る操作量が加えられ、ここにKpxyは比例誤差への制御ゲイン、Kdxyは微分誤差への制御ゲインであることを特徴とする。
The present invention relates to a synchronous control device that synchronously controls a first drive system and a second drive system having the same characteristics .
A first operation amount for operating the first drive system is generated so as to eliminate the first error between the target position command for the first drive system and the position on the first drive system side. A first PID controller,
A second operation amount for operating the second drive system is generated so as to eliminate the second error between the target position command for the second drive system and the position on the second drive system side. A second PID controller,
A deviation between the first error and the second error is input, and includes a component proportional to the deviation and a component proportional to a time differential value of the deviation, and includes a component based on an integral value of the deviation. A synchronous controller consisting of a PD controller that generates no manipulated variable ;
First control means for controlling the first drive system based on the sum of the first operation amount and the operation amount from the synchronous controller;
Second control means for controlling the second drive system based on the difference between the second operation amount and the operation amount from the synchronous controller ;
The first drive error is ex, the time derivative is ex ', the second error is ey, the time derivative is ey', and the operation amount consisting of Kpxy · ey + Kdxy · ey 'based on the error ey to the first drive system And an operation amount consisting of Kpxy · ex + Kdxy · ex ′ is added to the second drive system based on the error ex, where Kpxy is a control gain to a proportional error, and Kdxy is a control gain to a differential error characterized in that there.

またこの発明は、同じ特性の第1の駆動系と第2の駆動系を同期制御する同期制御方法において、
第1の駆動系に対する目標位置の指令と第1の駆動系側の位置との間の第1の誤差を解消するように、第1の駆動系を動作させるための第1の操作量を発生させるステップと、
第2の駆動系に対する目標位置の指令と第2の駆動系側の位置との間の第2の誤差を解消するように、第2の駆動系を動作させるための第2の操作量を発生させるステップと、
前記第1の誤差と前記第2の誤差との偏差を入力とし、前記偏差に比例する成分と、前記偏差の時間微分値に比例する成分とから成り、前記偏差の積分値に基づく成分を含まない操作量をPD制御器から成る同期制御器により発生させるステップと、
第1の操作量と同期制御器からの操作量との和に基づき、第1の駆動系を制御するステップと、
第2の操作量と同期制御器からの操作量との差に基づき、第2の駆動系を制御するステップとを行うことにより、
第1の誤差をex、その時間微分をex'、第2の誤差をey、その時間微分をey'として、第1の駆動系へ誤差eyに基づいてKpxy・ey+Kdxy・ey'から成る操作量を加え、かつ第2の駆動系へ誤差exに基づいてKpxy・ex+Kdxy・ex'から成る操作量を加えることを特徴とする。ここにKpxyは比例誤差への制御ゲイン、Kdxyは微分誤差への制御ゲインである。
The present invention also provides a synchronous control method for synchronously controlling a first drive system and a second drive system having the same characteristics .
A first operation amount for operating the first drive system is generated so as to eliminate the first error between the target position command for the first drive system and the position on the first drive system side. Step to
A second operation amount for operating the second drive system is generated so as to eliminate the second error between the target position command for the second drive system and the position on the second drive system side. Step to
A deviation between the first error and the second error is input, and includes a component proportional to the deviation and a component proportional to a time differential value of the deviation, and includes a component based on an integral value of the deviation. Generating a non- operating amount by a synchronous controller comprising a PD controller ;
Controlling the first drive system based on the sum of the first operation amount and the operation amount from the synchronous controller;
By performing a step of controlling the second drive system based on the difference between the second operation amount and the operation amount from the synchronous controller ,
The first drive error is ex, the time derivative is ex ', the second error is ey, the time derivative is ey', and the operation amount consisting of Kpxy · ey + Kdxy · ey 'based on the error ey to the first drive system And an operation amount of Kpxy · ex + Kdxy · ex ′ is added to the second drive system based on the error ex . Here, Kpxy is a control gain for proportional error, and Kdxy is a control gain for differential error.

この発明では、駆動系等の種類を選ばない汎用の同期制御として、複数の駆動系間の制御誤差の偏差を小さくすることができる。また第1及び第2の操作量と、同期制御器からの操作量との割合により、個々の駆動系を目標値通りに制御することを優先するか、複数の駆動系間の同期を優先するかを調整できる。なおこの明細書において、同期制御装置に関する記載はそのまま同期制御方法にも当てはまり、逆に同期制御方法に関する記載はそのまま同期制御装置にも当てはまる。また「第1の操作量と同期制御器からの操作量とに基づき」等の記載は、例えばこれらの操作量の和を用いることを意味するが、これに限るものではない。駆動系は例えば電機モータであるが、これに限るものではない。   In the present invention, as a general-purpose synchronous control that does not select the type of drive system or the like, a deviation in control error between a plurality of drive systems can be reduced. Moreover, priority is given to controlling each drive system according to a target value or priority is given to synchronization between a plurality of drive systems, depending on the ratio between the first and second manipulated variables and the manipulated variable from the synchronization controller. Can be adjusted. In this specification, the description related to the synchronization control device also applies to the synchronization control method as it is, and conversely, the description related to the synchronization control method also applies to the synchronization control device as it is. In addition, description such as “based on the first operation amount and the operation amount from the synchronous controller” means that, for example, the sum of these operation amounts is used, but is not limited thereto. The drive system is, for example, an electric motor, but is not limited thereto.

この発明では、前記同期制御装置は、前記偏差に比例する成分と、偏差の時間微分値に比例する成分とから成る操作量を第1及び第2の制御手段側へ出力する。このようにすると、偏差に比例する成分により偏差を解消し、偏差の時間微分値に比例する成分により偏差の時間微分値を解消し、全体として偏差の絶対値を小さく保つことができる。 In the present invention, the synchronous control device outputs an operation amount composed of a component proportional to the deviation and a component proportional to the time differential value of the deviation to the first and second control means. In this way, the deviation can be eliminated by the component proportional to the deviation, the time differential value of the deviation can be eliminated by the component proportional to the time differential value of the deviation, and the absolute value of the deviation can be kept small as a whole.

特に好ましくは、前記第1の駆動系と前記第2の駆動系は同じ性能で、かつ対象物に対して対称に配置され、前記同期制御器から、第1の制御手段及び第2の制御手段に対して、正負の符号を逆転した操作量が入力される。正負の符号を逆転した操作量が入力されるとは、同期制御器で符号を逆転することの他に、第1の制御手段または第2の制御手段で符号を逆転することを含んでいる。第1の駆動系と第2の駆動系が同じ性能で、対象物に対して対称に配置されている場合、偏差を解消するための操作量を、第1の制御手段と第2の制御手段とで符号を逆にすればよい。言い換えると、1つの操作量を第1の制御手段でも第2の制御手段でも符号を変えて共通に用いるので、偏差を解消するための操作量の発生が簡単になる。
Particularly preferably, the first drive system and the second drive system have the same performance and are arranged symmetrically with respect to the object, and the first control means and the second control means are provided from the synchronous controller. On the other hand, an operation amount obtained by reversing the positive and negative signs is input. The input of an operation amount obtained by reversing the positive / negative sign includes not only reversing the sign by the synchronous controller but also reversing the sign by the first control means or the second control means. When the first drive system and the second drive system have the same performance and are arranged symmetrically with respect to the object, the first control means and the second control means are used as the operation amount for eliminating the deviation. And the sign may be reversed. In other words, since one operation amount is used in common by changing the sign in both the first control means and the second control means, generation of an operation amount for eliminating the deviation is simplified.

実施例のブロック図Example block diagram 実施例の同期制御器のブロック図Block diagram of synchronous controller of embodiment 実施例での同期制御を行列で表す図The figure which represents the synchronous control in an Example with a matrix 複数の同期制御器を用いる参考例のブロック図Block diagram of a reference example using multiple synchronous controllers 3個のモータを同期制御する変形例のブロック図Block diagram of a modification for synchronously controlling three motors 実施例の同期制御方法を示すフローチャートThe flowchart which shows the synchronous control method of an Example 実験でのモータの目標位置を示す図Diagram showing target position of motor in experiment 図7の目標位置で、2番目のモータ側に外乱を与えた際の制御結果を示し、1)は2個のモータを同期制御した際の各モータの目標位置からの偏差を、2)は同期制御しなかった際の各モータの目標位置からの偏差を、3)はモータ間の偏差を示す。Fig. 7 shows the control results when a disturbance is applied to the second motor side at the target position in Fig. 7. 1) shows the deviation from the target position of each motor when two motors are controlled synchronously. The deviation from the target position of each motor when the synchronous control is not performed, and 3) shows the deviation between the motors. 2番目のモータに周期的な外乱を与えた際の制御結果を示し、2個のモータを同期制御した際の各モータの目標位置からの誤差と、同期制御しなかった際の各モータの目標位置からの誤差、及び同期制御した際としなかった際のモータ間の偏差を示す。The control result when a periodic disturbance is given to the second motor is shown, the error from the target position of each motor when the two motors are synchronously controlled, and the target of each motor when the synchronous control is not performed An error from the position and a deviation between the motors when the synchronous control is not performed are shown.

以下に本発明を実施するための最適実施例を示す。この発明の範囲は、特許請求の範囲の記載に基づき、明細書の記載とこの分野での周知技術とを参酌し、当業者の理解に従って定められるべきである。   In the following, an optimum embodiment for carrying out the present invention will be shown. The scope of the present invention should be determined according to the understanding of those skilled in the art based on the description of the scope of the claims, taking into account the description of the specification and well-known techniques in this field.

図1〜図9に実施例とその変形とを示す。図1は、実施例の同期制御装置の構成を示し、M1,M2は制御対象のサーボ制御形のモータで、2は目標位置発生装置で、例えば時間の関数として2つの目標位置xr,yrを発生する。なおx,y,z等の記号は直交座標系等での座標を表すのではなく、モータM1側の位置をx、モータM2側の位置をyとして表している。また添字rは目標値であることを表している。ここでは目標位置xr,yrに従ってモータM1,M2が動作するように制御するが、目標位置ではなく目標速度又は目標トルクに従ってモータM1,M2が動作するように制御しても良い。加減算器20で目標位置xrと実際の位置xとの誤差exを求め、PID制御器4に入力して操作量としての出力uxを得る。同様に、加減算器21で目標位置yrと実際の位置yとの誤差eyを求め、PID制御器5に入力して操作量としての出力uyを得る。PID制御器4,5は良く知られたものである。また制御対象はモータに限らず、空気圧機器、油圧機器、内燃エンジン等でも良い。 1 to 9 show an embodiment and its modifications. FIG. 1 shows the configuration of a synchronous control apparatus according to an embodiment, wherein M1 and M2 are servo controlled motors to be controlled, 2 is a target position generator, and two target positions xr and yr as a function of time, for example. Occur. Symbols such as x, y, and z do not represent coordinates in an orthogonal coordinate system or the like, but represent a position on the motor M1 side as x and a position on the motor M2 side as y. The subscript r represents the target value. Here, the motors M1 and M2 are controlled to operate according to the target positions xr and yr, but the motors M1 and M2 may be controlled to operate according to the target speed or target torque instead of the target position. The adder / subtractor 20 obtains an error ex between the target position xr and the actual position x, and inputs it to the PID controller 4 to obtain an output ux as an operation amount. Similarly, the adder / subtractor 21 obtains an error ey between the target position yr and the actual position y and inputs it to the PID controller 5 to obtain an output uy as an operation amount. PID controllers 4 and 5 are well known. The control target is not limited to a motor, and may be a pneumatic device, a hydraulic device, an internal combustion engine, or the like.

誤差ex、eyの偏差α(α=ex−ey)を加減算器30で求め、同期制御器10に入力して出力βを求め、加減算器40で出力uxと出力βを加算した操作量vxによりモータM1を制御する。同様に加減算器41で出力uxから出力βを減算した操作量vyによりモータM2を制御する。なお45はモータM1を制御する電流増幅器、46はモータM2を制御する電流増幅器である。また位置x,yはモータM1,M2のエンコーダ等により求めても、レーザ距離計等の位置センサ又はリニアスケールにより求めても良い。   The deviation α between the errors ex and ey (α = ex−ey) is obtained by the adder / subtractor 30 and input to the synchronous controller 10 to obtain the output β. The adder / subtractor 40 adds the output ux and the output β to the manipulated variable vx. Controls the motor M1. Similarly, the motor M2 is controlled by the operation amount vy obtained by subtracting the output β from the output ux by the adder / subtractor 41. Reference numeral 45 is a current amplifier for controlling the motor M1, and 46 is a current amplifier for controlling the motor M2. Further, the positions x and y may be obtained by an encoder of the motors M1 and M2, or may be obtained by a position sensor such as a laser distance meter or a linear scale.

図2に同期制御器10の構造を示し、積分器32は偏差αを積分し、微分器33は偏差αを微分する。増幅器34で偏差αの積分値に比例する操作量を発生させ、増幅器35で偏差αに比例する操作量を発生させ、増幅器36で偏差αの微分値に比例する操作量を発生させる。加減算器37でこれらの出力を加算し、同期制御器10の出力βとする。また反転増幅器38でβの符号を逆転し、−βを出力する。なお実施例ではアナログ回路等で制御器10を実現するように説明しているが、これは説明を簡単にするためで、マイクロコンピュータ、DSP(デジタルシグナルプロセッサ)等により、制御器10と加減算器20,21等を実現しても良い。ただし実施例では、積分器32と増幅器34は設けない。 FIG. 2 shows the structure of the synchronous controller 10. The integrator 32 integrates the deviation α, and the differentiator 33 differentiates the deviation α. An operational amount proportional to the integral value of the deviation α is generated by the amplifier 34, an operational amount proportional to the deviation α is generated by the amplifier 35, and an operational amount proportional to the differential value of the deviation α is generated by the amplifier 36. These outputs are added by the adder / subtractor 37 to obtain the output β of the synchronous controller 10. Inverting amplifier 38 reverses the sign of β and outputs -β. In the embodiment, the controller 10 is described as being realized by an analog circuit or the like. However, this is for the sake of simplicity, and the controller 10 and the adder / subtractor are configured by a microcomputer, DSP (digital signal processor), or the like. 20, 21, etc. may be realized. However, in the embodiment, the integrator 32 and the amplifier 34 are not provided.

図2とはやや異なるが、偏差αに比例する出力と偏差αの微分値に比例する出力とを加算する。偏差αに比例する出力と、微分値に比例する出力と、積分値に比例する出力とを加算しても良いが、このようなものは特許請求の範囲には含まれない。また図1および図2で、PID制御器4、5の制御ゲインを大きくして同期制御器10のゲイン(すなわち増幅器34〜36のゲイン)を小さくすると、モータM1,M2の同期よりも、モータM1,M2が各々の目標位置xr,yrに忠実に動作することを重視する制御となる。逆に、PID制御器4、5の制御ゲインを小さくして同期制御器10のゲイン(すなわち増幅器34〜36のゲイン)を大きくすると同期を重視する制御となる。さらに増幅器34のゲインを大きくすると、モータM1,M2の出力間のオフセットを小さくでき、増幅器35のゲインを大きくすると、偏差αを解消するための比例制御が強くなる。また増幅器36のゲインを大きくすると、偏差αの変化率に基づく同期制御が強くなる。 Although slightly different from FIG. 2, an output proportional to the deviation α and an output proportional to the differential value of the deviation α are added. Although an output proportional to the deviation α, an output proportional to the differential value, and an output proportional to the integral value may be added, such a thing is not included in the scope of claims. 1 and 2, when the control gain of the PID controllers 4 and 5 is increased and the gain of the synchronous controller 10 (that is, the gains of the amplifiers 34 to 36) is reduced, the motor is more effective than the synchronization of the motors M1 and M2. The control emphasizes that M1 and M2 operate faithfully to the respective target positions xr and yr. Conversely, if the control gain of the PID controllers 4 and 5 is reduced and the gain of the synchronization controller 10 (that is, the gains of the amplifiers 34 to 36) is increased, the control emphasizing synchronization is performed. When the gain of the amplifier 34 is further increased, the offset between the outputs of the motors M1 and M2 can be reduced. When the gain of the amplifier 35 is increased, the proportional control for eliminating the deviation α is strengthened. Further, when the gain of the amplifier 36 is increased, the synchronous control based on the rate of change of the deviation α becomes stronger.

図3は実施例での制御を行列により表し、sはラプラス変換でのパラメータである。各行列での非対角項は、モータM1,M2の同期制御、即ち誤差ex,ey間の偏差αを小さくするための制御ゲインを表す。対角項は、モータM1,M2間の同期ではなく、誤差ex,ey自体を小さくするための制御ゲインを表す。またモータM1,M2が同じで、モータM1とモータM2とが対象物に対し対称に配置されている場合、各行列は対称行列として、Kpxy=Kpyx,
Kdxy=Kdyx とし、さらに Kixy=Kiyx=0 とすることが好ましい。Kixy=Kiyx=0とするのは、同じモータM1,M2が対象物に対し対称に配置されているので、両者間に何らかの定常的な外力が働かない限り、定常的な偏差(オフセット)は元々小さいからである。
FIG. 3 shows the control in the embodiment by a matrix, and s is a parameter in Laplace transform. The off-diagonal term in each matrix represents a synchronous gain of the motors M1 and M2, that is, a control gain for reducing the deviation α between the errors ex and ey. The diagonal term represents not the synchronization between the motors M1 and M2, but the control gain for reducing the errors ex and ey themselves. When the motors M1 and M2 are the same and the motor M1 and the motor M2 are arranged symmetrically with respect to the object, each matrix is a symmetric matrix, and Kpxy = Kpyx,
It is preferable that Kdxy = Kdyx, and Kixy = Kiyx = 0. Kixy = Kiyx = 0 means that the same motors M1 and M2 are arranged symmetrically with respect to the object, so that a steady deviation (offset) is originally present unless some steady external force acts between them. Because it is small.

例えば、対象物の左右両側にそれぞれ第1、第2の部材が設けられ、モータM1が第1の部材を、モータM2が第2の部材を駆動し、対象物が所定の軌跡に沿って移動することが重要な場合がある。この場合、軌跡からの偏差に前記の偏差αが対応する。このような場合への参考例を図4に示す。なおこの場合、モータM1,M2は一般に同じモータではない。またモータM1,M2が対象物から受ける抗力、対象物の慣性等も共通ではないので、別個の同期制御器10,10'を設ける。さらに誤差ex,eyの大きさを適当に正規化するため、例えば増幅器24で誤差eyを増幅する。図4の参考例を図3行列により考えると、各行列は非対称行列で、各行列の4個の成分は全て異なる。他の点では、図4の参考例は図1,図2の実施例と同等である。ただし図4の参考例は特許請求の範囲には含まれない。 For example, first and second members are provided on both the left and right sides of the object, the motor M1 drives the first member, the motor M2 drives the second member, and the object moves along a predetermined trajectory. It may be important to do that. In this case, the deviation α corresponds to the deviation from the locus. A reference example for such a case is shown in FIG. In this case, the motors M1 and M2 are generally not the same motor. In addition, since the drags received by the motors M1 and M2 from the object and the inertia of the objects are not common, separate synchronous controllers 10 and 10 'are provided. Further, in order to properly normalize the magnitudes of the errors ex and ey, the error ey is amplified by the amplifier 24, for example. If the reference example of FIG. 4 is considered by FIG. 3 matrix, each matrix is an asymmetric matrix and all four components of each matrix differ. In other respects, the reference example of FIG. 4 is equivalent to the embodiment of FIGS. However, the reference example of FIG. 4 is not included in the scope of claims.

図5は3個のモータM1,M2,M3を同期制御する変形例を示し、4個以上のモータを制御する場合も同様である。モータM1,M2は図1と同様に制御し、モータM3に対し、加減算器22で目標位置zrと実際の位置zとの偏差を求め、PID制御器6等の制御器により誤差ezを解消するように出力uzを発生させる。αxy=ex−ey,αyz=ey−ez,αzx=ez−exの3種類の偏差を解消するための出力βxy,βyz,βzxを同期制御器10,11,12で発生させる。出力βxy,βyz,βzxを加減算器40',41',42'で出力ux.uy,uzと加減算した操作量vx,vy,vzにより、電流増幅器45〜47を介してモータM1,M2,M3を制御する。なお同期制御器11,12の構造は同期制御器10と同様である。またモータM1,M2,M3が同じではない場合等は、図4で2個の同期制御器10,10'を設けているように、各同期制御器10,11,12に代えて各々2個の同期制御器を設け、かつ誤差ex,ey,ezの大きさを適当に正規化して偏差を求めると良い。   FIG. 5 shows a modification in which three motors M1, M2, and M3 are synchronously controlled, and the same applies to the case of controlling four or more motors. The motors M1 and M2 are controlled in the same manner as in FIG. 1, the deviation between the target position zr and the actual position z is obtained by the adder / subtractor 22 with respect to the motor M3, and the error ez is eliminated by a controller such as the PID controller 6. To generate output uz. Outputs .beta.xy, .beta.yz, and .beta.zx for eliminating the three types of deviations .alpha.xy = ex-ey, .alpha.yz = ey-ez, and .alpha.zx = ez-ex are generated by the synchronous controllers 10, 11, and 12. Outputs βxy, βyz, βzx are output by adders / subtractors 40 ', 41', 42 '. The motors M1, M2, and M3 are controlled via the current amplifiers 45 to 47 by the operation amounts vx, vy, and vz added and subtracted from uy and uz. The structure of the synchronization controllers 11 and 12 is the same as that of the synchronization controller 10. When the motors M1, M2, M3 are not the same, two synchronous controllers 10, 11, 12 are provided instead of the two synchronous controllers 10, 11, 12 as shown in FIG. It is preferable to obtain a deviation by providing a synchronous controller and normalizing the magnitudes of the errors ex, ey, and ez appropriately.

図6に、図1,図2の実施例での同期制御方法を示す。ステップ1で、目標位置発生器から目標位置xr,yr等を出力する(ステップ1)。目標位置xr,yrは、動作の開始時から終了時までのデータを予め作成し、1制御周期毎にxr,yrを各1データずつ出力しても良い。あるいは各制御周期毎に、その都度、目標位置xr,yrを発生させても良い。また目標位置の代わりに目標速度又は目標トルクを出力しても良い。   FIG. 6 shows a synchronization control method in the embodiment of FIGS. In step 1, target positions xr, yr, etc. are output from the target position generator (step 1). For the target position xr, yr, data from the start to the end of the operation may be created in advance, and xr, yr may be output for each control cycle. Alternatively, the target positions xr and yr may be generated for each control cycle. Further, a target speed or a target torque may be output instead of the target position.

ステップ2で、目標位置xr,yrと実際の位置x,yとの誤差ex,eyに基づき、PID制御等により、操作量ux,uyを発生させる。そしてステップ3で、偏差α(α=ex-ey)に基づき、PD制御あるいは比例制御等により操作量βを発生させる。ux+βによりモータM1を、uy−βによりモータM2を制御する(ステップ4)。以上のステップを動作が終了するまで繰り返す(ステップ5)。   In step 2, the manipulated variables ux and uy are generated by PID control or the like based on the errors ex and ey between the target position xr, yr and the actual position x, y. In step 3, an operation amount β is generated by PD control or proportional control based on the deviation α (α = ex-ey). The motor M1 is controlled by ux + β, and the motor M2 is controlled by uy−β (step 4). The above steps are repeated until the operation is completed (step 5).

図8に、図1の実施例による制御結果を示し、同じモータM1,M2により別々ではあるが同等の負荷を駆動した。図7の位置指令に従ってモータM1.M2を動作させ、モータM2にのみ外乱を加えた。同期制御器10を設けない際の制御結果を非同期制御とし、実施例での制御を同期制御とする。同期制御でも非同期制御でも、Kpxx=Kpyy=3.76,Kixx=Kipyy=5,Kdxx=Kdyy=0.135とした。同期制御では非対角項として、Kpxy=Kpyx=-1.23,Kdxy=Kdyx=-0.12,Kixy=Kiyx=0 とし、非同期制御では非対角項の値は全て0である。同期制御では偏差αの絶対値の最大値が非同期制御の場合の約2/3に減少し、モータM2側の誤差の絶対値の最大値も、非同期制御よりも小さくなった。   FIG. 8 shows a control result according to the embodiment of FIG. 1, and the same motors M1 and M2 drive separate but equivalent loads. According to the position command in FIG. M2 was operated and disturbance was applied only to the motor M2. The control result when the synchronous controller 10 is not provided is asynchronous control, and the control in the embodiment is synchronous control. In both synchronous control and asynchronous control, Kpxx = Kpyy = 3.76, Kixx = Kipyy = 5, and Kdxx = Kdyy = 0.135. In the synchronous control, Kpxy = Kpyx = −1.23, Kdxy = Kdyx = −0.12, and Kixy = Kiyx = 0 as non-diagonal terms. In the asynchronous control, all values of non-diagonal terms are zero. In the synchronous control, the maximum absolute value of the deviation α is reduced to about 2/3 that in the asynchronous control, and the maximum absolute value of the error on the motor M2 side is also smaller than that in the asynchronous control.

図9の実験では、図8の実験に用いたのと同じ系で、モータM2のみに周期的な外乱(時刻1秒目〜8秒目)を加えた。制御ゲインは図8の場合と同一である。同期制御では、モータM1がモータM2に同期するように、言い換えるとモータM2と同じ誤差を持つように動作し、偏差は非同期制御よりも小さくなっている。   In the experiment of FIG. 9, a periodic disturbance (time 1 second to 8 seconds) was applied only to the motor M2 in the same system used in the experiment of FIG. The control gain is the same as in FIG. In the synchronous control, the motor M1 operates so as to be synchronized with the motor M2, in other words, to have the same error as the motor M2, and the deviation is smaller than that of the asynchronous control.

実施例には以下の特徴がある。
1) 複数個のモータを同期制御できる。Kpxy,Kdxy等の同期制御用のゲインをチューニングすることにより、個々のモータを指令に忠実に動作させるか、複数個のモータ間の偏差を小さくするかを調整できる。
2) 制御の手法に汎用性があり、任意の対象に適用できる。
3) 3個以上のモータの同期制御にも容易に拡張できる。
4) 油圧、空気圧、内燃エンジン等のモータ以外の駆動系にも適用できる。
5) 同じ特性の2個のモータを対象物に対し対称に配置する場合、積分ゲインでの非対角項は0にでき、比例ゲインと微分ゲインでの非対角項は Kpxy=Kpyx,Kdxy=Kdyx と単純化できる。
6) PID制御器4,5,6等はPD制御器その他任意の制御器に変更でき、ベースとなる非同期制御の部分は制御方式を選ばない。
The embodiment has the following characteristics.
1) Multiple motors can be controlled synchronously. By tuning the gain for synchronous control such as Kpxy and Kdxy, it is possible to adjust whether each motor operates faithfully to the command or to reduce the deviation between a plurality of motors.
2) The control method is versatile and can be applied to any target.
3) Can easily be extended to synchronous control of 3 or more motors.
4) Applicable to drive systems other than motors such as hydraulic, pneumatic and internal combustion engines.
5) When two motors with the same characteristics are arranged symmetrically with respect to the target, the off-diagonal term in integral gain can be set to 0, and the off-diagonal terms in proportional gain and differential gain are Kpxy = Kpyx, Kdxy = Can be simplified as Kdyx.
6) PID controllers 4, 5, 6 etc. can be changed to PD controllers and other arbitrary controllers, and the control method is not chosen for the base asynchronous control part.

2 目標位置発生器
4〜6 PID制御器
10〜12 同期制御器
20〜22 加減算器
24 増幅器
30,37 加減算器
32 積分器
33 微分器
34〜36 増幅器
38 反転増幅器
40,41 加減算器
40,41 加減算器
45〜47 電流増幅器

M1〜M3 モータ
2 Target position generators 4-6 PID controllers 10-12 Synchronous controllers 20-22 Adder / subtractor 24 Amplifier 30, 37 Adder / subtractor 32 Integrator 33 Differentiator 34-36 Amplifier 38 Inverting amplifier 40, 41 Adder / subtractor 40, 41 Adder / Subtractor 45-47 Current Amplifier

M1-M3 motor

Claims (2)

同じ特性の第1の駆動系と第2の駆動系を同期制御する同期制御装置において、
第1の駆動系に対する目標位置の指令と第1の駆動系側の位置との間の第1の誤差を解消するように、第1の駆動系を動作させるための第1の操作量を発生させる第1のPID制御器と、
第2の駆動系に対する目標位置の指令と第2の駆動系側の位置との間の第2の誤差を解消するように、第2の駆動系を動作させるための第2の操作量を発生させる第2のPID制御器と、
前記第1の誤差と前記第2の誤差との偏差を入力とし、前記偏差に比例する成分と、前記偏差の時間微分値に比例する成分とから成り、前記偏差の積分値に基づく成分を含まない操作量を発生させるPD制御器から成る同期制御器と、
第1の操作量と同期制御器からの操作量との和に基づき、第1の駆動系を制御する第1の制御手段と、
第2の操作量と同期制御器からの操作量との差に基づき、第2の駆動系を制御する第2の制御手段とを備え
第1の誤差をex、その時間微分をex'、第2の誤差をey、その時間微分をey'として、第1の駆動系へ誤差eyに基づいてKpxy・ey+Kdxy・ey'から成る操作量が加えられ、かつ第2の駆動系へ誤差exに基づいてKpxy・ex+Kdxy・ex'から成る操作量が加えられ、ここにKpxyは比例誤差への制御ゲイン、Kdxyは微分誤差への制御ゲインであることを特徴とする、同期制御装置。
In the synchronous control device for synchronously controlling the first drive system and the second drive system having the same characteristics ,
A first operation amount for operating the first drive system is generated so as to eliminate the first error between the target position command for the first drive system and the position on the first drive system side. A first PID controller,
A second operation amount for operating the second drive system is generated so as to eliminate the second error between the target position command for the second drive system and the position on the second drive system side. A second PID controller,
A deviation between the first error and the second error is input, and includes a component proportional to the deviation and a component proportional to a time differential value of the deviation, and includes a component based on an integral value of the deviation. A synchronous controller consisting of a PD controller that generates no manipulated variable ;
First control means for controlling the first drive system based on the sum of the first operation amount and the operation amount from the synchronous controller;
Second control means for controlling the second drive system based on the difference between the second operation amount and the operation amount from the synchronous controller ;
The first drive error is ex, the time derivative is ex ', the second error is ey, the time derivative is ey', and the operation amount consisting of Kpxy · ey + Kdxy · ey 'based on the error ey to the first drive system And an operation amount consisting of Kpxy · ex + Kdxy · ex ′ is added to the second drive system based on the error ex, where Kpxy is a control gain to a proportional error, and Kdxy is a control gain to a differential error A synchronization control device, characterized in that there is.
同じ特性の第1の駆動系と第2の駆動系を同期制御する同期制御方法において、
第1の駆動系に対する目標位置の指令と第1の駆動系側の位置との間の第1の誤差を解消するように、第1の駆動系を動作させるための第1の操作量を発生させるステップと、
第2の駆動系に対する目標位置の指令と第2の駆動系側の位置との間の第2の誤差を解消するように、第2の駆動系を動作させるための第2の操作量を発生させるステップと、
前記第1の誤差と前記第2の誤差との偏差を入力とし、前記偏差に比例する成分と、前記偏差の時間微分値に比例する成分とから成り、前記偏差の積分値に基づく成分を含まない操作量をPD制御器から成る同期制御器により発生させるステップと、
第1の操作量と同期制御器からの操作量との和に基づき、第1の駆動系を制御するステップと、
第2の操作量と同期制御器からの操作量との差に基づき、第2の駆動系を制御するステップとを行うことにより、
第1の誤差をex、その時間微分をex'、第2の誤差をey、その時間微分をey'として、第1の駆動系へ誤差eyに基づいてKpxy・ey+Kdxy・ey'から成る操作量を加え、かつ第2の駆動系へ誤差exに基づいてKpxy・ex+Kdxy・ex'から成る操作量を加えることを特徴とする、同期制御方法。
(ここにKpxyは比例誤差への制御ゲイン、Kdxyは微分誤差への制御ゲインである)
In a synchronous control method for synchronously controlling a first drive system and a second drive system having the same characteristics ,
A first operation amount for operating the first drive system is generated so as to eliminate the first error between the target position command for the first drive system and the position on the first drive system side. Step to
A second operation amount for operating the second drive system is generated so as to eliminate the second error between the target position command for the second drive system and the position on the second drive system side. Step to
A deviation between the first error and the second error is input, and includes a component proportional to the deviation and a component proportional to a time differential value of the deviation, and includes a component based on an integral value of the deviation. Generating a non- operating amount by a synchronous controller comprising a PD controller ;
Controlling the first drive system based on the sum of the first operation amount and the operation amount from the synchronous controller;
By performing a step of controlling the second drive system based on the difference between the second operation amount and the operation amount from the synchronous controller ,
The first drive error is ex, the time derivative is ex ', the second error is ey, the time derivative is ey', and the operation amount consisting of Kpxy · ey + Kdxy · ey 'based on the error ey to the first drive system And an operation amount of Kpxy · ex + Kdxy · ex ′ is added to the second drive system based on the error ex .
(Here, Kpxy is a control gain for proportional error, and Kdxy is a control gain for differential error)
JP2011037939A 2011-02-24 2011-02-24 Synchronous control device and synchronous control method Active JP5662836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011037939A JP5662836B2 (en) 2011-02-24 2011-02-24 Synchronous control device and synchronous control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011037939A JP5662836B2 (en) 2011-02-24 2011-02-24 Synchronous control device and synchronous control method

Publications (2)

Publication Number Publication Date
JP2012175875A JP2012175875A (en) 2012-09-10
JP5662836B2 true JP5662836B2 (en) 2015-02-04

Family

ID=46978221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011037939A Active JP5662836B2 (en) 2011-02-24 2011-02-24 Synchronous control device and synchronous control method

Country Status (1)

Country Link
JP (1) JP5662836B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5642828B2 (en) 2013-03-28 2014-12-17 ファナック株式会社 Synchronous control device for synchronizing two axes with each other
JP5815784B2 (en) * 2014-04-08 2015-11-17 ファナック株式会社 Servo controller for reducing synchronization error in synchronous machining

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07200062A (en) * 1993-12-29 1995-08-04 Toshiba Corp Servo controller
JP5013607B2 (en) * 2007-10-26 2012-08-29 アイダエンジニアリング株式会社 Two-axis synchronous drive control device and servo press and die cushion device using this device
JP2011086892A (en) * 2009-10-19 2011-04-28 Canon Inc Position controller, exposure apparatus, and method of manufacturing device

Also Published As

Publication number Publication date
JP2012175875A (en) 2012-09-10

Similar Documents

Publication Publication Date Title
KR101033766B1 (en) Servo control device
JP5447810B2 (en) Motor drive device and torque ripple removal method
JP2004280772A (en) Servo motor drive control device
US9757834B2 (en) Track control apparatus
JP5366840B2 (en) Trajectory control device
JP2006195914A (en) Position controller, measurement device and machining device
US10126734B2 (en) Servo control apparatus for driving plurality of motors
JP5389251B2 (en) Parallel drive system
JP2016163370A (en) Motor control device
JP4223517B2 (en) Winding field synchronous machine controller
JP5662836B2 (en) Synchronous control device and synchronous control method
JP5943875B2 (en) Motor control device
JP2006190074A (en) Synchronization control apparatus
JP4771078B2 (en) Motor control device
JP2016149918A (en) Motor control apparatus
JP5845433B2 (en) Motor drive device
Lian et al. Robust adaptive control of linear induction motors with unknown end-effect and secondary resistance
JP4134599B2 (en) Synchronous control device
JP6390735B1 (en) Control system
JP6391489B2 (en) Motor control device
JP2005269758A (en) Motor controller
JP5063981B2 (en) Electric motor position control device
JP2015126649A (en) Servo control device
JP4020660B2 (en) Servo control system
Suzumura et al. Three-degree-of-freedom control and its application to motion control systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141205

R150 Certificate of patent or registration of utility model

Ref document number: 5662836

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250