JP5661066B2 - Method for treating incinerated ash containing radioactive material and treated solids - Google Patents

Method for treating incinerated ash containing radioactive material and treated solids Download PDF

Info

Publication number
JP5661066B2
JP5661066B2 JP2012120693A JP2012120693A JP5661066B2 JP 5661066 B2 JP5661066 B2 JP 5661066B2 JP 2012120693 A JP2012120693 A JP 2012120693A JP 2012120693 A JP2012120693 A JP 2012120693A JP 5661066 B2 JP5661066 B2 JP 5661066B2
Authority
JP
Japan
Prior art keywords
incinerated ash
radioactive
ash containing
shirasu balloon
cesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012120693A
Other languages
Japanese (ja)
Other versions
JP2013246081A (en
Inventor
和利 野上
和利 野上
Original Assignee
株式会社 フュー・テクノロジー
株式会社 フュー・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 フュー・テクノロジー, 株式会社 フュー・テクノロジー filed Critical 株式会社 フュー・テクノロジー
Priority to JP2012120693A priority Critical patent/JP5661066B2/en
Publication of JP2013246081A publication Critical patent/JP2013246081A/en
Application granted granted Critical
Publication of JP5661066B2 publication Critical patent/JP5661066B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Description

本発明は、主に比較的低レベルの放射性物質を含む廃棄物等を焼却した際に排出される焼却灰の処理方法及び処理固形物に係り、特に、放射性物質として放射性セシウム及び/またはその化合物を含む焼却灰に対して有効な放射性物質を含有した焼却灰の処理方法及び処理固形物に関する。   The present invention relates to a method for treating incinerated ash discharged mainly when waste containing a relatively low level of radioactive material is incinerated, and to a treated solid substance, and in particular, radioactive cesium and / or a compound thereof as a radioactive material. The present invention relates to a method for treating incinerated ash containing a radioactive substance effective for incinerated ash containing, and a treated solid matter.

平成23年(2011年)の「東日本大震災」では福島第1原発の事故で放射性物質が飛散したことから、例えば瓦礫などの廃棄物の焼却処理においては、焼却灰にこれら飛散に係る放射性物質を含み、その濃度が基準値を超えるとその処理や保管が必要になる。
その対策として、従来、例えば、セメントで固化する方法が知られている。これは、焼却灰,セメントに水を加えてこれを混練し、常態下で放置して凝固固化する。比較的固化処理費が安価で、耐熱,耐火性が大きく、強度も高いことから放射性物質の拡散を防止できる(例えば、特開平9−101398号公報(特許文献1)参照)。
また、従来においては、例えば、ガラスで固化する方法も知られている。これは、ガラス材料と焼却灰を混合し、高周波誘導加熱炉で1300℃以上の高温で溶融し、その後冷却する。ガラスは不燃性で、耐熱,耐火性が大きく、また、耐薬品性にも優れ、放射性物質の拡散を確実に防止できる(例えば、特開2003−107192号公報(特許文献2)参照)。
In the 2011 Great East Japan Earthquake in 2011, radioactive materials were scattered in the accident at the Fukushima Daiichi nuclear power plant. For example, in the incineration treatment of waste such as rubble, radioactive materials related to these scattering were put into incineration ash. If the concentration exceeds the reference value, it must be processed and stored.
Conventionally, for example, a method of solidifying with cement is known as a countermeasure. This is made by adding water to incinerated ash and cement, kneading them, and leaving them under normal conditions to solidify and solidify. Since the cost of the solidification treatment is relatively low, the heat resistance and the fire resistance are large, and the strength is high, diffusion of radioactive substances can be prevented (see, for example, JP-A-9-101398 (Patent Document 1)).
Conventionally, for example, a method of solidifying with glass is also known. In this method, a glass material and incinerated ash are mixed, melted at a high temperature of 1300 ° C. or higher in a high frequency induction heating furnace, and then cooled. Glass is nonflammable, has high heat resistance and fire resistance, is excellent in chemical resistance, and can reliably prevent the diffusion of radioactive substances (see, for example, JP-A-2003-107192 (Patent Document 2)).

特開平9−101398号公報JP-A-9-101398 特開2003−107192号公報JP 2003-107192 A

ところで、上記従来の焼却灰をセメントで固化する方法にあっては、焼却灰が酸性の場合にはセメントの固化反応を阻害するので、アルカリで酸度調整する前処理が必要になり、工数増になって処理が煩雑になるという問題がある。また、セメントの固化体は、経年変化により強度低下が生じ、水透過性もあるので水溶性の塩類が溶出することがある等の欠点がある。
一方、ガラスによる固化方法にあっては、1300℃以上の高温を付与するために例えば高周波誘導加熱炉等の特殊な装置が必要になり、また、セシウムが気化するので飛散対策防止施設で回収した高濃度のセシウム処理工程が必要になり、あるいは、添加剤も必要になることから、コスト高になるという欠点がある。
By the way, in the conventional method of solidifying the incineration ash with cement, when the incineration ash is acidic, the solidification reaction of the cement is inhibited, so a pretreatment to adjust the acidity with alkali is necessary, which increases the number of steps. There is a problem that the processing becomes complicated. Further, the solidified cement has drawbacks such as a decrease in strength due to secular change and water permeability, so that water-soluble salts may be eluted.
On the other hand, in the solidification method using glass, a special device such as a high-frequency induction heating furnace is required to give a high temperature of 1300 ° C. or higher, and since cesium is vaporized, it was collected at a facility for preventing scattering. Since a high concentration cesium treatment step is required or an additive is also required, there is a disadvantage that the cost is increased.

本発明は上記の問題点に鑑みて為されたもので、比較的低温で加熱して固化できるようにし、コストダウンを図るとともに、放射性物質を確実に封じ込めて、しかも、耐熱性,耐薬品性等の機能に優れ、経年変化の極めて少ない耐久性のある処理固形物にすることを図った放射性物質を含有した焼却灰の処理方法及び処理固形物を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems, and can be solidified by heating at a relatively low temperature to reduce costs, and to reliably contain radioactive substances, and to have heat resistance and chemical resistance. It is an object of the present invention to provide a method for treating incinerated ash containing a radioactive substance which is excellent in functions such as the above, and has a durability which is extremely small with respect to aging, and a treated solid.

このような目的を達成するため、本発明は、放射性物質を含有した焼却灰を処理する方法において、上記焼却灰に、シラスバルーンの粉末を混合する混合工程と、該混合工程で得られた混合物を加熱して溶融若しくは半溶融する加熱工程と、その後、冷却する冷却工程とを備えた構成としている。   In order to achieve such an object, the present invention provides a method for treating incineration ash containing a radioactive substance, a mixing step of mixing shirasu balloon powder with the incineration ash, and a mixture obtained in the mixing step. It is set as the structure provided with the heating process which heats and melts or semi-melts, and the cooling process cooled after that.

シラスバルーンは、シラスを800℃〜1200℃で急速に加熱処理し、発泡させることにより得られる微細で約8MPaの圧力で略60%破壊する中空構造体である。そのため、900℃〜1000℃の比較的低温の温度で液状化し、特に、セシウム化合物は例えば塩化セシウムでは645℃から液状化するので放射性物質を取り込んで封じ込めることができる。このため、加熱設備として、従来のガラス固化法のような高周波誘導加熱炉を用いなくてもよく、また、気化したセシウム対策施設等の特殊な装置を用い、気化して回収した高濃度セシウム処理工程を設ける必要もないことから、それだけ、処理が簡易になりコストダウンを図ることができる。また、放射性物質がシラスバルーンの溶融または半溶融物に取り込まれるので確実に封じ込められ、しかも、耐熱性,耐薬品性等の機能に優れ、経年変化が極めて少ない耐久性の高い処理固形物を生成することができる。   A shirasu balloon is a hollow structure that is obtained by subjecting a shirasu to a rapid heat treatment at 800 ° C. to 1200 ° C. and foaming the shirasu at a pressure of about 8 MPa. Therefore, it is liquefied at a relatively low temperature of 900 ° C. to 1000 ° C., and in particular, cesium compounds are liquefied from 645 ° C., for example, with cesium chloride, so that radioactive substances can be taken in and contained. For this reason, it is not necessary to use a high-frequency induction heating furnace as in the conventional vitrification method as a heating facility, and a high concentration cesium treatment recovered by vaporization using a special apparatus such as a vaporized cesium countermeasure facility Since there is no need to provide a process, the process can be simplified and the cost can be reduced. In addition, radioactive materials are contained in the melt or semi-melt of Shirasu balloons, so that they can be reliably contained, and they have excellent functions such as heat resistance and chemical resistance. can do.

そして、必要に応じ、上記混合工程で、煉瓦原料の粉末を混合する構成としている。煉瓦原料を用いるので、それだけ、安価に処理することができる。また、煉瓦原料を用いるので、より一層、耐熱性,耐薬品性等の機能に優れ、経年変化が極めて少ない耐久性の高い処理固形物を生成することができる。   And it is set as the structure which mixes the powder of a brick raw material at the said mixing process as needed. Since brick material is used, it can be processed at low cost. Further, since the brick raw material is used, it is possible to produce a highly durable treated solid material that is further excellent in functions such as heat resistance and chemical resistance and has very little secular change.

また、必要に応じ、上記混合物を所定形状の成形物に成形する成形工程を備え、上記加熱工程において、上記成形物を焼成する構成としている。これにより、処理固形物が所定形状に形成されるので、例えば、建築資材などとして利用することができ、極めて有用になる。また、例えば、直方体ブロック状にしておけば、積み重ねが容易になり、保管する場合も容易になる。   Further, if necessary, a molding process for molding the mixture into a molded product having a predetermined shape is provided, and the molded product is fired in the heating process. Thereby, since a processing solid substance is formed in a predetermined shape, it can be used as, for example, a building material and is extremely useful. For example, if it is made a rectangular parallelepiped block shape, stacking becomes easy, and it becomes easy to store.

更に、必要に応じ、上記放射性物質は放射性セシウム及び/またはその化合物を含み、上記加熱工程において、塩化セシウムの沸点未満の温度で加熱する構成としている。焼却灰中においては、主に塩化セシウムの生成が考えられる。塩化セシウムの融点は645℃、沸点が1295℃である。そのため、この沸点未満の温度で加熱するので、塩化セシウムが気化することがなく、セシウムの放散を防止することができる。
そして、必要に応じ、上記混合物の水を除く全重量を500としたとき、上記焼却灰,シラスバルーン及び煉瓦原料の混合重量比(焼却灰:シラスバルーン:煉瓦原料)を、(100:10:390),(100:20:380),(100:30:370),(100:40:360),(100:50:350),(100:60:340),(100:70:330),(100:80:320),(100:90:310),(100:100:300)の何れかに設定した構成としている。
Furthermore, if necessary, the radioactive substance contains radioactive cesium and / or a compound thereof, and is heated at a temperature lower than the boiling point of cesium chloride in the heating step. In the incineration ash, the generation of cesium chloride can be considered. Cesium chloride has a melting point of 645 ° C. and a boiling point of 1295 ° C. Therefore, since heating is performed at a temperature lower than the boiling point, cesium chloride is not vaporized and cesium can be prevented from being diffused.
And if necessary, when the total weight of the mixture excluding water is 500, the mixing weight ratio of the incineration ash, shirasu balloon and brick material (incineration ash: shirasu balloon: brick material) is (100: 10: 390), (100: 20: 380), (100: 30: 370), (100: 40: 360), (100: 50: 350), (100: 60: 340), (100: 70: 330) , (100: 80: 320), (100: 90: 310), or (100: 100: 300).

そしてまた、上記目的を達成するため、本発明は、上記の放射性物質を含有した焼却灰の処理方法によって処理されて形成された処理固形物にある。これにより、放射性物質をシラスバルーンの溶融または半溶融物に取り込んで確実に封じ込め、しかも、耐熱性,耐薬品性等の機能に優れ、経年変化が極めて少ない耐久性の高い処理固形物になる。   And in order to achieve the said objective, this invention exists in the processing solid substance formed by processing by the processing method of the incineration ash containing said radioactive substance. As a result, the radioactive substance is taken into the melt or semi-melt of the shirasu balloon and is securely contained, and it becomes a highly durable treated solid having excellent functions such as heat resistance and chemical resistance and having very little secular change.

本発明によれば、シラスバルーンを用いたので、900℃〜1100℃程度の比較的低温の温度で放射性物質を取り込んで封じ込めることができる。このため、加熱設備として、従来のガラス固化法のような高周波誘導加熱炉、気化したセシウム飛散防止施設等の特殊な装置を用いなくてもよく、また、回収したセシウムが高濃度であっても特殊化処理工程を必要としなくてよく、それだけ、処理が簡易になりコストダウンを図ることができる。また、放射性物質をシラスバルーンの溶融または半溶融物に取り込んで確実に封じ込めることができ、しかも、耐熱性,耐薬品性等機能に優れ、経年変化が極めて少ない耐久性の高い処理固形物を生成することができる。   According to the present invention, since the shirasu balloon is used, the radioactive substance can be taken in and contained at a relatively low temperature of about 900 ° C. to 1100 ° C. For this reason, there is no need to use a special apparatus such as a high-frequency induction heating furnace such as a conventional vitrification method or a vaporized cesium scattering prevention facility as a heating facility, and even if the recovered cesium has a high concentration. There is no need for a special processing step, and accordingly, the processing is simplified and the cost can be reduced. In addition, radioactive materials can be reliably contained in molten or semi-melted shirasu balloons, and they have excellent durability such as heat resistance and chemical resistance. can do.

本発明の放射性物質を含有した焼却灰の処理方法を示す工程図である。It is process drawing which shows the processing method of the incineration ash containing the radioactive substance of this invention. 本発明の実施例1〜10を示し、各実施例における混合物の成分の重量比を示す表図である。 It is a table | surface which shows Examples 1-10 of this invention, and shows the weight ratio of the component of the mixture in each Example .

以下、添付図面に基づいて、本発明の実施の形態に係る放射性物質を含有した焼却灰の処理方法及び処理固形物について詳細に説明する。
実施の形態に係る放射性物質を含有した焼却灰の処理方法は、図1に示すように、焼却灰に、シラスバルーンの粉末,煉瓦原料の粉末を混合して混合物を得る混合工程(1)と、混合物に水を加えて所定形状の成形物に成形する成形工程(2)と、この成形工程で得られた成形物を焼成し、混合物を加熱して溶融若しくは半溶融する加熱工程(3)と、その後、この成形物を冷却して処理固形物とする冷却工程(4)とを備えている。
Hereinafter, based on an accompanying drawing, the processing method and processing solid thing of incineration ash containing a radioactive substance concerning an embodiment of the invention are explained in detail.
As shown in FIG. 1, the method for treating incinerated ash containing a radioactive substance according to the embodiment includes a mixing step (1) in which a mixture of shirasu balloon powder and brick raw material powder is mixed with incinerated ash. A molding step (2) for adding water to the mixture to form a molded product having a predetermined shape, and a heating step (3) for firing the molded product obtained in the molding step and heating or melting or semi-melting the mixture And a cooling step (4) after which the molded product is cooled to form a treated solid.

実施の形態に係る処理方法が対象とする焼却灰は、主には、ゴミ処理場から出る例えば瓦礫などの比較的低レベルの放射性物質を含む廃棄物等を焼却した際に排出されるもので、特に、放射性物質として放射性セシウム及び/またはその化合物を含む焼却灰である。焼却灰の中でも、飛灰には放射性セシウム及び/またはその化合物が多く含まれる。尚、例えば、原子力関連施設,医療機関,研究機関等から発生する廃棄物を、減容のために焼却する際に生じる焼却灰を対象とすることもできる。   The incineration ash targeted by the treatment method according to the embodiment is mainly discharged when incineration of waste or the like containing a relatively low level of radioactive material such as rubble from a garbage disposal site. In particular, incinerated ash containing radioactive cesium and / or a compound thereof as a radioactive substance. Among incineration ash, fly ash contains a lot of radioactive cesium and / or its compounds. In addition, for example, incineration ash generated when incinerating waste generated from nuclear facilities, medical institutions, research institutions, etc. for volume reduction can be targeted.

シラスバルーンは、シラスを800℃〜1200℃で急速に加熱処理し、発泡させることにより得られる微細な中空構造体である。原料となるシラスは、火山噴出物及びこれに由来する2次堆積物の総称であり、その化学組成は採取場所により多少の相違があるものの、通常、SiO2 (64〜75重量%)、Al23 (11〜16重量%)、Fe23 (1〜4重量%)、CaO(1〜4重量%)、Na2 O(1〜4重量%)、K2 O(1〜4重量%)、MgO(0.4〜1重量%)、TiO2 (0.1〜4重量%)等からなる。900℃から液状化するものが用いられる。 The shirasu balloon is a fine hollow structure obtained by subjecting a shirasu to a rapid heat treatment at 800 ° C. to 1200 ° C. to cause foaming. Shirasu as a raw material is a general term for volcanic ejecta and secondary deposits derived from it, and although its chemical composition varies slightly depending on the sampling location, it is usually SiO 2 (64-75% by weight), Al 2 O 3 (11-16 wt%), Fe 2 O 3 (1-4 wt%), CaO (1-4 wt%), Na 2 O (1-4 wt%), K 2 O (1-4) % By weight), MgO (0.4 to 1% by weight), TiO 2 (0.1 to 4% by weight) and the like. What liquefies from 900 degreeC is used.

シラスバルーンは、平均粒径が1μm〜1000μmのものを用いる。平均粒径が大きすぎると焼却灰との混合性が悪くなる。望ましくは、10μm〜600μm、より望ましくは、20μm〜400μm、特に望ましくは、30μm〜200μmである。
また、シラスバルーンは、かさ比重が0.05〜0.6のものを用いる。望ましくは、0.1〜0.5、より望ましくは、0.15〜0.4 、特に望ましくは、0.15〜0.3である。
A shirasu balloon having an average particle diameter of 1 μm to 1000 μm is used. If the average particle size is too large, the mixing property with the incinerated ash is deteriorated. The thickness is desirably 10 μm to 600 μm, more desirably 20 μm to 400 μm, and particularly desirably 30 μm to 200 μm.
A shirasu balloon having a bulk specific gravity of 0.05 to 0.6 is used. Desirably, it is 0.1 to 0.5, more desirably 0.15 to 0.4, and particularly desirably 0.15 to 0.3.

煉瓦原料は、所謂煉瓦用粘土であり、一般的な鉱物組成は、石英(SiO2)、長石、粘土からなる。長石は主にカリ長石(K2O・Al23・6SiO2)、ソーダ長石(K2O・Al23・6SiO2)である。粘土は主にカオリナイト(Al23・2SiO2・2H2O)あるいはハロイサイト(Al23・2SiO2・4H2O)である。
煉瓦原料は、平均粒径が1μm〜5000μmのものを用いる。また、煉瓦原料は、かさ比重が1.5〜3のものを用いる。
The brick raw material is so-called brick clay, and the general mineral composition is composed of quartz (SiO 2 ), feldspar, and clay. Feldspar mainly potash feldspar (K 2 O · Al 2 O 3 · 6SiO 2), soda feldspar (K 2 O · Al 2 O 3 · 6SiO 2). The clay is mainly kaolinite (Al 2 O 3 .2SiO 2 .2H 2 O) or halloysite (Al 2 O 3 .2SiO 2 .4H 2 O).
A brick material having an average particle diameter of 1 μm to 5000 μm is used. Moreover, a brick raw material with a bulk specific gravity of 1.5-3 is used.

次に、各工程について説明する。
(1)混合工程
焼却灰(飛灰)に、シラスバルーンの粉末,煉瓦原料の粉末の混合物を作成する。混合物に水を加える。混合攪拌機に入れて、5〜6MPsの圧力で混練した。
Next, each step will be described.
(1) Mixing step A mixture of shirasu balloon powder and brick raw material powder is prepared on incineration ash (fly ash). Add water to the mixture. It put into the mixing stirrer and knead | mixed with the pressure of 5-6MPs.

(2)成形工程
水を加えて混合した混合物を、成形型に入れ、加圧機により6MPaの圧力で成型する。例えば、直方体状のブロック(例えば、幅100mm×長さ150mm×厚さ70mm)の成形物に成形した。
(2) Molding process The mixture obtained by adding water and mixing is put into a mold and molded by a pressure machine at a pressure of 6 MPa. For example, it was molded into a molded product having a rectangular parallelepiped block (for example, width 100 mm × length 150 mm × thickness 70 mm).

(3)加熱工程
この加熱においては、焼成窯を用いた、焼成窯は、プロパンガス窯(幅500mm×奥
400mm×高500mm)の倒焔式強制燃焼で1300℃まで可能なバーナーを備えて構成される。
(3) Heating process In this heating, the firing kiln using a firing kiln is configured with a burner capable of up to 1300 ° C. by overturning forced combustion in a propane gas kiln (width 500 mm × depth 400 mm × height 500 mm). Is done.

焼成温度(加熱温度)は、塩化セシウムの沸点未満の温度に設定した。焼却灰中においては、主に塩化セシウムの生成が考えられる。塩化セシウムの融点は645℃、沸点が1295℃である。よって、加熱温度を1295℃以上に設定すると、塩化セシウムが気化して放散するので好ましくない。一方、シラスバルーンは900℃程度から液状化する。そのため、加熱温度を、900℃〜1200℃、望ましくは、950℃〜1100℃に設定する。実施の形態では、1000℃に設定した。   The firing temperature (heating temperature) was set to a temperature below the boiling point of cesium chloride. In the incineration ash, the generation of cesium chloride can be considered. Cesium chloride has a melting point of 645 ° C. and a boiling point of 1295 ° C. Therefore, setting the heating temperature to 1295 ° C. or higher is not preferable because cesium chloride is vaporized and diffused. On the other hand, the shirasu balloon is liquefied from about 900 ° C. Therefore, the heating temperature is set to 900 ° C. to 1200 ° C., desirably 950 ° C. to 1100 ° C. In the embodiment, the temperature is set to 1000 ° C.

即ち、成形物を、焼成窯に入れ、1000℃で5時間焼成した。そのため、この沸点未満の温度で加熱するので、塩化セシウムが気化することがなく、セシウムの放散を防止することができる。尚、水分の蒸発温度(100℃)では、塩化セシウムは液状化しないので、蒸気にセシウムが混入することはない。
そして、シラスバルーンは、900℃〜1000℃の比較的低温の温度で液状化し、放射性物質を取り込んで封じ込めることができる。このため、加熱設備として、従来のガラス固化法のような高周波誘導加熱炉、気化したセシウム対策等の特殊な装置を用いなくてもよく、それだけ、処理が簡易になりコストダウンを図ることができる。また、放射性物質がシラスバルーンの溶融または半溶融物に取り込まれるので確実に封じ込められる。
That is, the molded product was placed in a firing kiln and fired at 1000 ° C. for 5 hours. Therefore, since heating is performed at a temperature lower than the boiling point, cesium chloride is not vaporized and cesium can be prevented from being diffused. At the moisture evaporation temperature (100 ° C.), cesium chloride is not liquefied, so cesium is not mixed into the vapor.
The shirasu balloon can be liquefied at a relatively low temperature of 900 ° C. to 1000 ° C., and the radioactive material can be taken in and contained. For this reason, it is not necessary to use a high-frequency induction heating furnace such as a conventional glass solidification method or a special apparatus such as a countermeasure against vaporized cesium as heating equipment, and the processing can be simplified and the cost can be reduced. . In addition, since the radioactive substance is taken into the melt or semi-melt of the shirasu balloon, it is surely contained.

(4)冷却工程
焼成窯から成形物を取り出し、常態温で5時間以上冷却した。これにより、処理固形物が作成された。
(4) Cooling step The molded product was taken out from the firing kiln and cooled at normal temperature for 5 hours or more. This created a treated solid.

このように作成された処理固形物は、焼却灰,シラスバルーン及び煉瓦原料で形成されるので、耐熱性,耐薬品性等の機能に優れ、経年変化が極めて少ない耐久性の高いものとなる。特に、煉瓦原料を用いるので、より一層、これらの機能の向上が図られる。また、処理固形物が所定形状(実施の形態では直方体ブロック状)に形成されるので、例えば、建築資材などとして利用することができ、極めて有用になる。また、積み重ねが容易になり、保管する場合も容易になる。   Since the treated solid material thus produced is formed of incinerated ash, shirasu balloons, and brick raw materials, it has excellent functions such as heat resistance and chemical resistance, and has high durability with very little secular change. In particular, since brick materials are used, these functions can be further improved. Moreover, since the treatment solid is formed in a predetermined shape (in the embodiment, a rectangular parallelepiped block shape), it can be used as, for example, a building material and is extremely useful. In addition, stacking is facilitated and storage is facilitated.

次に、実施例1〜10を示す。実施例では、焼却灰として、岩手県K市の瓦礫焼却施設の飛灰を用いた。シラスバルーンとして、平均粒径が190μm以下のものを用いた。煉瓦原料として、JIS−SK34(かさ比重2.1)のものを用いた。各実施例において、これらの原料を、図2に示す重量比で混合した。水の重量比は50とした。そして、上記の実施の形態に係る処理方法に従って処理固形物を作製した。   Next, Examples 1 to 10 are shown. In the examples, fly ash from a rubble incineration facility in K city, Iwate Prefecture was used as the incineration ash. A shirasu balloon having an average particle diameter of 190 μm or less was used. As a brick material, a material of JIS-SK34 (bulk specific gravity 2.1) was used. In each Example, these raw materials were mixed at a weight ratio shown in FIG. The weight ratio of water was 50. And the processing solid substance was produced according to the processing method which concerns on said embodiment.

次に、試験例について説明する。上記の実施例1〜10において、焼却灰及び処理固形物について、放射性核種測定を行った。結果は、飛灰の放射性セシウムがトータルで1280Bq/Kgあったものが、処理固形物では、大幅に下がり、その効果が極めて高いことが分かった。 Next, test examples will be described. In said Examples 1-10, the radionuclide measurement was performed about the incineration ash and the processing solid substance. The result is that radioactive cesium fly ash had 1280Bq / Kg in total, the process solids, down to atmospheric width, the effect was found to be extremely high.

尚、上記実施の形態では、本発明を主に比較的低レベルの放射性物質を含む焼却灰に適用した例で説明したが、本発明を高レベル,中レベルの放射性物質を含む焼却灰に適用してよいことは勿論である。
また、焼却灰においても、産業廃棄物処理施設から出る焼却灰、ゴミ処理場から出る焼却灰、バイオマス発電設備から出る焼却灰等、どのような施設から出る焼却灰であってもよい。
In the embodiment above Symbol embodiment, the present invention has been described in example applied to the incineration ash containing mainly relatively low levels of radioactive material, the present invention high level, the ash containing radioactive materials of the middle level Of course, it may be applied.
Incineration ash may also be incineration ash from any facility such as incineration ash from an industrial waste treatment facility, incineration ash from a garbage disposal site, or incineration ash from a biomass power generation facility.

上述もしたが、福島第1原発の事故で放射性物質が飛散したことから、瓦礫などの廃棄物の焼却処理においては、焼却灰にこれら飛散に係る放射性物質を含み、その濃度が基準値を超えることがあり得るが、その場合には、本発明の処理方法は、比較的低温で加熱して固化できるので、コストダウンを図ることができ、また、放射性物質を確実に封じ込めて、しかも、耐熱性,耐薬品性等の機能に優れ、経年変化の極めて少ない耐久性のある処理固形物とすることができることから、極めて有用になる。   As mentioned above, since radioactive materials were scattered in the accident at Fukushima Daiichi Nuclear Power Plant, incineration of waste such as debris contained radioactive materials related to these scattering in the incineration ash, and the concentration exceeded the standard value. In this case, however, the treatment method of the present invention can be solidified by heating at a relatively low temperature, so that the cost can be reduced, and the radioactive substance can be reliably contained and heat-resistant. It is extremely useful because it can be made into a solid treated with excellent durability, chemical resistance, and the like, and can be a durable treated solid with very little secular change.

(1)混合工程
(2)成形工程
(3)加熱工程
(4)冷却工程
(1) Mixing step (2) Molding step (3) Heating step (4) Cooling step

Claims (3)

放射性セシウム及び/またはその化合物を含む放射性物質を含有した焼却灰を処理する方法において、
上記焼却灰に、シラスバルーンの粉末及び煉瓦原料の粉末を混合する混合工程と、該混合工程で得られた混合物を所定形状の成形物に成形する成形工程と、該成形工程で得られた成形物を塩化セシウムの沸点未満の温度で加熱しシラスバルーンを溶融若しくは半溶融して焼成する加熱工程と、その後、冷却する冷却工程とを備えたことを特徴とする放射性物質を含有した焼却灰の処理方法。
In a method for treating incinerated ash containing radioactive substances including radioactive cesium and / or compounds thereof ,
Mixing step of mixing shirasu balloon powder and brick raw material powder into the incinerated ash, molding step of molding the mixture obtained in the mixing step into a molded product of a predetermined shape, and molding obtained in the molding step Of incinerated ash containing radioactive material, characterized in that it comprises a heating step in which the product is heated at a temperature below the boiling point of cesium chloride to melt or semi-melt the shirasu balloon and then cooled. Processing method.
上記混合物の水を除く全重量を500としたとき、上記焼却灰,シラスバルーン及び煉瓦原料の混合重量比(焼却灰:シラスバルーン:煉瓦原料)を、(100:10:390),(100:20:380),(100:30:370),(100:40:360),(100:50:350),(100:60:340),(100:70:330),(100:80:320),(100:90:310),(100:100:300)の何れかに設定したことを特徴とする請求項1記載の放射性物質を含有した焼却灰の処理方法。  When the total weight of the mixture excluding water is 500, the mixing weight ratio of the incineration ash, shirasu balloon and brick raw material (incineration ash: shirasu balloon: brick raw material) is (100: 10: 390), (100: 20: 380), (100: 30: 370), (100: 40: 360), (100: 50: 350), (100: 60: 340), (100: 70: 330), (100: 80: 320), (100: 90: 310), or (100: 100: 300). The method for treating incinerated ash containing radioactive material according to claim 1. 上記請求項1または2何れかに記載の放射性物質を含有した焼却灰の処理方法によって処理されて形成された処理固形物。 A treated solid formed by being treated by the method for treating incinerated ash containing the radioactive substance according to claim 1 .
JP2012120693A 2012-05-28 2012-05-28 Method for treating incinerated ash containing radioactive material and treated solids Active JP5661066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012120693A JP5661066B2 (en) 2012-05-28 2012-05-28 Method for treating incinerated ash containing radioactive material and treated solids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012120693A JP5661066B2 (en) 2012-05-28 2012-05-28 Method for treating incinerated ash containing radioactive material and treated solids

Publications (2)

Publication Number Publication Date
JP2013246081A JP2013246081A (en) 2013-12-09
JP5661066B2 true JP5661066B2 (en) 2015-01-28

Family

ID=49845968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012120693A Active JP5661066B2 (en) 2012-05-28 2012-05-28 Method for treating incinerated ash containing radioactive material and treated solids

Country Status (1)

Country Link
JP (1) JP5661066B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6509713B2 (en) * 2015-11-16 2019-05-08 株式会社東芝 Method and apparatus for treating radioactive material adsorbent

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4817645B1 (en) * 1970-03-06 1973-05-31
FR2479541A1 (en) * 1980-03-27 1981-10-02 Gagneraud Pere Fils Entr METHOD FOR BLOCKING ALKALI AND ALKALINE-EARTH RADIO-ACTIVE ELEMENTS
JPS6038700A (en) * 1983-08-10 1985-02-28 東京電力株式会社 Method of melting and solidifying radioactive waste incinerated ash
JPH0640157B2 (en) * 1985-08-06 1994-05-25 高知大学長 Radioactive waste solidification method
JP2647660B2 (en) * 1987-09-11 1997-08-27 義之 大串 Waste ion exchange resin treatment method
JP3071513B2 (en) * 1991-09-24 2000-07-31 株式会社コベルコ科研 Solidification method of radioactive ceramic waste
JPH07251143A (en) * 1994-03-14 1995-10-03 Baba Isao Method for instantly caking incinerated ash
JP3764528B2 (en) * 1996-07-11 2006-04-12 財団法人電力中央研究所 Plasma melting treatment method for radioactive solid waste and plasma melting treatment equipment used therefor
JPH1096800A (en) * 1996-09-24 1998-04-14 Central Res Inst Of Electric Power Ind Melting processing method for low level radioactive waste
KR19990007639A (en) * 1998-10-15 1999-01-25 이기강 Ceramic composition using solid waste and its manufacturing method
JP3541882B2 (en) * 2000-08-07 2004-07-14 川崎重工業株式会社 Low-level radioactive solid waste volume reduction method
JP3898116B2 (en) * 2001-11-15 2007-03-28 株式会社トヨシステムプラント Inorganic foam and method for producing inorganic foam
KR20050058478A (en) * 2002-08-23 2005-06-16 제임스 하디 인터내셔널 파이낸스 비.브이. Synthetic hollow microspheres
JP4297417B2 (en) * 2003-07-16 2009-07-15 三菱重工業株式会社 Method for immobilizing radioactive elements
JP3931171B2 (en) * 2003-12-08 2007-06-13 昌祥 田畑 Firing cured body and manufacturing method thereof
JP2006117450A (en) * 2004-10-20 2006-05-11 Miyazaki Takasago Kogyo Kk Method of producing high water-absorbing, water-permeable and water-retentive brick, and high water-absorbing, water-permeable and water-retentive brick
JP4944276B2 (en) * 2008-11-10 2012-05-30 エーエルデー・バキューム・テクノロジーズ・ゲーエムベーハー Matrix material of graphite and inorganic binder suitable for final disposal of radioactive waste, and use thereof
JP5030042B1 (en) * 2011-11-30 2012-09-19 株式会社関東管財 Containment treatment methods for soil and sludge contaminated by high-concentration radioactive materials
JP5973157B2 (en) * 2011-12-08 2016-08-23 日本碍子株式会社 Treatment method for radioactive cesium contaminants
JP6515435B2 (en) * 2012-03-30 2019-05-22 Next Innovation合同会社 Method for producing crust-like composition

Also Published As

Publication number Publication date
JP2013246081A (en) 2013-12-09

Similar Documents

Publication Publication Date Title
KR101322438B1 (en) Method for confining a substance by vitrification
JP5973157B2 (en) Treatment method for radioactive cesium contaminants
JP5175995B1 (en) Method for removing radioactive cesium from soil
JP6628282B2 (en) Method for removing radioactive cesium and method for producing fired product
Yatsenko et al. Investigation of the influence of foaming agents' type and ratio on the foaming and reactionary abilities of foamed slag glass
JP5232327B2 (en) Method for packaging radioactive waste in synthetic rock form
Zhao et al. Preparation of glass–ceramics from high-chlorine MSWI fly ash by one-step process
Malinina et al. Glass ceramics for incinerator ash immobilization
Liu et al. Effects of CaO and MgO contents on the properties of lightweight aggregate produced from municipal solid wastes
JP5661066B2 (en) Method for treating incinerated ash containing radioactive material and treated solids
CN102015135B (en) Method of detoxifying asbestos-containing solid waste
JP2016023995A (en) Method for immobilizing radioactive cesium in surface soil contaminated with radioactive cesium
Hu et al. Recycling technology—artificial lightweight aggregates synthesized from sewage sludge and its ash at lowered comelting temperature
JP5677608B1 (en) Removal method of radioactive cesium
Yue et al. Preparation and bloating mechanism of porous ultra-lightweight ceramsite by dehydrated sewage sludge and Yellow River sediments
JP6349167B2 (en) Radiocesium separation and concentration method
JP6335463B2 (en) Radioactive cesium separation and concentration method, radioactive cesium separation and concentration device, radioactive cesium removal method, and radioactive cesium removal device
TWI559329B (en) A method for removing radioactive cesium, and a method for producing a calcined product
JP2007308310A (en) Method for producing inorganic consolidated material involving rendering lead glass harmless
JP2016145728A (en) Method for removing radioactive cesium and separation accelerator-containing slurry
JP2007040872A (en) Processing method of radioactive waste and its sintered body
JP5677610B1 (en) Radiocesium separation promoter
JP4575761B2 (en) Refractory material for inner wall of furnace and waste combustion melting furnace
Hu et al. Co-melting technology in resource recycling of sludge derived from stone processing
JPWO2009005081A1 (en) Vitrification method of asbestos

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140106

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20140107

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141202

R150 Certificate of patent or registration of utility model

Ref document number: 5661066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250