JP5660654B2 - Method to prevent soil growth in the gas phase inside an oil quench tower - Google Patents

Method to prevent soil growth in the gas phase inside an oil quench tower Download PDF

Info

Publication number
JP5660654B2
JP5660654B2 JP2009129480A JP2009129480A JP5660654B2 JP 5660654 B2 JP5660654 B2 JP 5660654B2 JP 2009129480 A JP2009129480 A JP 2009129480A JP 2009129480 A JP2009129480 A JP 2009129480A JP 5660654 B2 JP5660654 B2 JP 5660654B2
Authority
JP
Japan
Prior art keywords
gas phase
polymerization inhibitor
growth
tower
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009129480A
Other languages
Japanese (ja)
Other versions
JP2010275233A (en
Inventor
淳一 中嶋
淳一 中嶋
武揚 加藤
武揚 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hakuto Co Ltd
Original Assignee
Hakuto Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hakuto Co Ltd filed Critical Hakuto Co Ltd
Priority to JP2009129480A priority Critical patent/JP5660654B2/en
Publication of JP2010275233A publication Critical patent/JP2010275233A/en
Application granted granted Critical
Publication of JP5660654B2 publication Critical patent/JP5660654B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

本発明は、エチレン、プロピレン等のオレフィン類を製造するプロセスにおけるオイルクエンチ塔内部の気相部における汚れの成長を防止する方法に関するものである。   The present invention relates to a method for preventing the growth of dirt in a gas phase portion inside an oil quench tower in a process for producing olefins such as ethylene and propylene.

石油化学工業におけるオレフィン類の製造は、通常ナフサの熱分解によって行われる。ナフサは熱分解炉で希釈スチームと共に800〜850℃で熱分解され、分解炉出口で350〜400℃まで急冷された後、オイルクエンチ塔(ガソリンフラクショネーター、ガソリン精留塔ともいわれる)へ送られる。塔底より導入されるフィードガスは、塔の下段、中段、上段より循環供給されるプロセス液であるクエンチ油と向流接触させることにより冷却され、フィードガス中に存在する成分は、その成分の沸点に応じて液化、凝縮分離される。   Production of olefins in the petrochemical industry is usually carried out by thermal decomposition of naphtha. Naphtha is pyrolyzed at 800-850 ° C with dilute steam in a pyrolysis furnace, rapidly cooled to 350-400 ° C at the outlet of the cracking furnace, and then sent to an oil quench tower (also called a gasoline fractionator or gasoline rectification tower). It is done. The feed gas introduced from the bottom of the column is cooled by making countercurrent contact with quench oil, which is a process liquid circulated from the lower, middle, and upper stages of the column, and the components present in the feed gas are Liquefaction and condensation are separated according to the boiling point.

一方、オイルクエンチ塔内では、冷却効率ならびに分離向上をはかるため、塔内に棚段(トレイ)を多数設置している。棚段には、ガスが上部へ移動するための細かい穴を多数設けた棚板(シーブトレイ)や、穴の部分にキャップを付けてガスが凝縮液を通過するときに泡立たせることで気液接触面積をさらに増やす棚板(バブルキャップトレイ)等が採用されている。フィードガス中には、シクロペンタジエン、シクロヘキサジエン、スチレン、メチルスチレン、ジビニルベンゼン、インデン等のエチレン性不飽和化合物が含まれており、これらの化合物がオイルクエンチ塔内で熱重合し、ポリマーとなることで様々な障害を引き起こす。例えば、ポリマーの生成によりオイルクエンチ塔の塔底液の粘度が上昇し、熱回収プロセスで熱効率が低下するという問題がある。また、塔内で生成したポリマーは、気相部にある装置の棚板や塔壁に付着し、成長することにより液の流れの抵抗となり、目的とする凝縮分離効率が得られず、冷却効率の低下を招く。さらに、汚れの成長が進行すると棚板の穴が完全に閉塞して塔内の圧力が上昇し、処理可能なフィードガス量が制限され、最悪の場合には一旦操業を停止して、塔内を洗浄する必要があった。   On the other hand, in the oil quench tower, in order to improve cooling efficiency and separation, a large number of trays (tray) are installed in the tower. The shelves are equipped with shelves with a lot of fine holes for gas to move upward, and caps are attached to the holes so that the gas bubbles when it passes through the condensate for gas-liquid contact. A shelf board (bubble cap tray) or the like that further increases the area is employed. The feed gas contains ethylenically unsaturated compounds such as cyclopentadiene, cyclohexadiene, styrene, methylstyrene, divinylbenzene, and indene. These compounds are thermally polymerized in an oil quench tower to form a polymer. Cause various obstacles. For example, there is a problem that the viscosity of the bottom liquid of the oil quench tower rises due to the formation of the polymer, and the thermal efficiency is lowered in the heat recovery process. In addition, the polymer produced in the tower adheres to the shelf and wall of the equipment in the gas phase section and grows, resulting in resistance to liquid flow. Cause a decline. In addition, as the growth of dirt progresses, the holes in the shelf are completely blocked, the pressure in the tower rises, the amount of feed gas that can be processed is limited, and in the worst case, the operation is temporarily stopped and the inside of the tower is stopped. Needed to be washed.

このような問題を解決するため、オイルクエンチ塔の塔底液の粘度上昇を抑制する方法として、スルホン酸、あるいはその塩類と重合禁止剤を併用する方法(特許文献1)、中段に熱回収プロセスを有するガソリン精留塔において、熱回収プロセス液の循環液量と温度を制御する方法(特許文献2)、さらに、エチレン性不飽和モノマーを含む炭化水素流中での汚損および粘度上昇を抑制する方法(特許文献3)が開示されているが、これらの方法は、プロセス液中の重合抑制には効果があるものの、いずれの方法も本発明が対象とする気相部における汚れの成長防止には著しい効果がなかった。   In order to solve such problems, as a method of suppressing the increase in the viscosity of the bottom liquid of the oil quench tower, a method of using sulfonic acid or a salt thereof together with a polymerization inhibitor (Patent Document 1), a heat recovery process in the middle stage In a gasoline fractionation column having a heat recovery process liquid (Patent Document 2) for controlling the circulating amount and temperature of the heat recovery process liquid, and further suppressing fouling and viscosity increase in a hydrocarbon stream containing an ethylenically unsaturated monomer Although the methods (Patent Document 3) are disclosed, these methods are effective in suppressing polymerization in the process liquid, but both methods prevent the growth of dirt in the gas phase part to which the present invention is directed. Had no significant effect.

特開平7−166152号公報JP 7-166152 A 特開2002−309271号公報JP 2002-309271 A 特開2006−500439号公報JP 2006-500399 A

本発明は、オレフィン類製造プロセスのオイルクエンチ塔内の気相部における汚れの成長を効率的に防止する方法を提供することを目的とし、詳しくはオイルクエンチ塔内部の気相部にある棚段や塔壁に発生する汚れの成長を効率的に防止する方法を提供することを目的とする。   An object of the present invention is to provide a method for efficiently preventing the growth of dirt in a gas phase portion in an oil quench tower of an olefin production process, and more specifically, a shelf in the gas phase portion in the oil quench tower. Another object of the present invention is to provide a method for efficiently preventing the growth of dirt generated on the tower wall.

本発明者らは、オレフィン類製造プロセスのオイルクエンチ塔内部の気相部にある棚段や塔壁に付着する汚れの発生状況を検討し、また、その汚れの詳細分析を実施したところ、汚れ成分の中に低沸点のジエン系化合物が含まれていることを見出し、汚れの発生メカニズムが棚段、特に棚段裏側の気相凝縮部や気相凝縮温度帯の塔壁において気相に含まれる一部のジエン化合物が凝縮して重合が発生し、そこを基点として重合物(汚れ)が成長するという推定から、汚れ生成を防止するために鋭意検討を実施した結果、該ジエン化合物を含むプロセス蒸気の凝縮液に有効量の重合禁止剤を効率的に存在させることによって汚れの成長を防止する方法を見出し、本発明を完成するに至った。   The inventors of the present invention have examined the occurrence of dirt adhering to the plates and tower walls in the gas phase inside the oil quench tower of the olefin production process, and conducted a detailed analysis of the dirt. It is found that diene compounds with low boiling point are contained in the components, and the generation mechanism of dirt is contained in the gas phase at the shelf, especially the gas phase condensing part on the back side of the shelf and the tower wall in the gas phase condensation temperature zone As a result of diligent investigations to prevent the generation of dirt from the assumption that some diene compounds are condensed and polymerization occurs and the polymer (soil) grows from that point, the diene compound is contained. The inventors have found a method for preventing the growth of dirt by efficiently presenting an effective amount of a polymerization inhibitor in the condensate of process vapor, and have completed the present invention.

すなわち、請求項1に係る発明は、塔中段に熱回収プロセスを有する、オレフィン類製造プロセスのオイルクエンチ塔の気相部において、熱回収されたプロセス液であるクエンチ油の戻り配管に、常圧での沸点が100〜200℃であるモノアルキルヒドロキシルアミンならびにジアルキルヒドロキシルアミンより選ばれる一種以上の重合禁止剤を注入することにより、プロセス蒸気の凝縮液中に1ppm〜1000ppm重合禁止剤を存在させることを特徴とするオイルクエンチ塔気相部の汚れ成長防止方法である。
That is, in the invention according to claim 1, in the gas phase part of the oil quench tower of the olefins production process having a heat recovery process in the middle stage of the tower, the return line of the quench oil which is the heat recovered process liquid is connected to the normal pressure. presence by boiling to inject one or more polymerization inhibitors selected from monoalkyl hydroxylamine and dialkyl hydroxylamine is 100 to 200 ° C., the polymerization inhibitor 1ppm~1000ppm the condensate of process steam in It is a method for preventing soil growth in a gas phase part of an oil quench tower.

本発明により、オイルクエンチ塔の気相部における汚れの成長を効率的に防止することができるため、オイルクエンチ塔の連続運転を可能とし、プラント全体の安定操業に寄与することができる。   According to the present invention, it is possible to efficiently prevent the growth of dirt in the gas phase part of the oil quench tower, so that the oil quench tower can be continuously operated and contribute to the stable operation of the entire plant.

本発明の汚れ成長防止試験に用いたSUS製オートクレーブの概略図Schematic of a SUS autoclave used in the soil growth prevention test of the present invention

本発明の汚れの成長防止方法は、塔中段に熱回収プロセスを有するオイルクエンチ塔の気相部において、プロセス蒸気の凝縮液中に汚れの成長を防止するための有効量の重合禁止剤を存在させることを特徴とするオイルクエンチ塔気相部の汚れ防止方法である。
In the method for preventing the growth of dirt of the present invention, an effective amount of a polymerization inhibitor for preventing the growth of dirt is present in the condensate of the process vapor in the gas phase part of the oil quench tower having a heat recovery process in the middle stage of the tower. Ru contamination prevention method der oil quenching tower gas phase, characterized in that to.

オイルクエンチ塔の気相部においてプロセス蒸気の凝縮は凝縮温度帯にある塔壁や棚段で起こり、特に凝縮温度帯にある棚段の裏側では、上昇してきた多量のプロセス蒸気が棚段裏側に衝突してエチレン性不飽和化合物を含む凝縮液の絶え間ない供給があり、該エチレン性不飽和化合物の重合による汚れの発生、及び汚れの成長が活発である。   In the gas phase part of the oil quench tower, condensation of process vapor occurs on the tower wall or shelf in the condensation temperature zone, and especially on the back side of the shelf in the condensation temperature zone, a large amount of process vapor that has risen on the back side of the shelf. There is a constant supply of condensate that collides and contains ethylenically unsaturated compounds, and the generation of soil due to the polymerization of the ethylenically unsaturated compounds and the growth of soil are active.

このように汚れの発生、及び汚れの成長が活発である棚段の裏側の凝縮液に重合禁止剤を存在させるためには、該棚段の下部に存在するプロセス液にプロセス蒸気と同様な挙動を示す特定の重合禁止剤を添加し、そのプロセス液から蒸発するプロセス蒸気とともに特定の重合禁止剤を凝縮液中に供給することによって、凝縮液中に該重合禁止剤の有効量を維持することができる。棚段の裏側のみならず、プロセス蒸気の凝縮温度帯にある塔壁における汚れなどの成長防止についても、この方法が適用できる。   In order for the polymerization inhibitor to be present in the condensate on the back side of the shelf where the generation of soil and the growth of soil is active in this way, the process liquid existing at the bottom of the shelf behaves similarly to process steam. Maintaining an effective amount of the polymerization inhibitor in the condensate by adding a specific polymerization inhibitor that indicates and supplying the specific polymerization inhibitor into the condensate along with the process vapor evaporating from the process liquid. Can do. This method can be applied not only to the rear side of the shelf but also to prevent the growth of dirt on the tower wall in the process vapor condensation temperature zone.

このような特定の重合禁止剤としては、オイルクエンチ塔の気相側への重合禁止剤の移行を考慮し、常圧での沸点が100℃〜200℃の範囲のものが好ましい。沸点がこの範囲外の重合禁止剤も用いることができるが、気相側への該重合禁止剤の移行比率が低いため、汚れが発生している部位より下部の位置にあるプロセス液に添加する重合禁止剤の濃度を高く保つ必要が生じ、常圧での沸点が100℃〜200℃の範囲の重合禁止剤に比べて、添加量対効果の効率が劣る。   Such a specific polymerization inhibitor is preferably one having a boiling point in the range of 100 ° C. to 200 ° C. in consideration of transfer of the polymerization inhibitor to the gas phase side of the oil quench tower. Although a polymerization inhibitor having a boiling point outside this range can also be used, it is added to the process liquid at a position below the site where the contamination is generated because the migration ratio of the polymerization inhibitor to the gas phase side is low. It is necessary to keep the concentration of the polymerization inhibitor high, and the efficiency of the addition amount is inferior compared to the polymerization inhibitor having a boiling point in the range of 100 ° C. to 200 ° C. at normal pressure.

常圧での沸点が100℃〜200℃の範囲に該当する化合物としては、ジエチルヒドロキシルアミン、ジメチルヒドロキシルアミン、メチルエチルヒドロキシルアミン、ジプロピルヒドロキシルアミン、ジブチルヒドロキシルアミン、ジペンチルヒドロキシルアミン、ジイソプロピルヒドロキシルアミン、モノイソプロピルヒドロキシルアミン等のモノアルキルヒドロキシルアミン及びジアルキルヒドロキシルアミンが挙げられ、中でもジメチルヒドロキシルアミン、ジエチルヒドロキシルアミン、モノイソプロピルヒドロキシルアミンが好ましい。これらの重合禁止剤は、1種、または、2種以上を組み合わせて用いる。また本発明の効果を損なわない範囲でその他の重合禁止剤と併用してもよい。   Examples of the compound having a boiling point of 100 ° C. to 200 ° C. at normal pressure include diethylhydroxylamine, dimethylhydroxylamine, methylethylhydroxylamine, dipropylhydroxylamine, dibutylhydroxylamine, dipentylhydroxylamine, diisopropylhydroxylamine, Examples thereof include monoalkylhydroxylamine such as monoisopropylhydroxylamine and dialkylhydroxylamine, among which dimethylhydroxylamine, diethylhydroxylamine and monoisopropylhydroxylamine are preferable. These polymerization inhibitors are used alone or in combination of two or more. Moreover, you may use together with another polymerization inhibitor in the range which does not impair the effect of this invention.

上記の特定の重合禁止剤の注入箇所は、汚れが発生している部位より下部の位置にあるプロセス液であれば特に制限はないが、重合禁止剤の到達効率の点から、問題となっている汚れの直近の下部であることが望ましく、塔中段のプロセス液を一部抜き出して熱回収しているプロセスでは、熱回収されたプロセス液であるクエンチ油の戻り配管に、該重合禁止剤を注入することが好ましい。   The above-mentioned specific polymerization inhibitor injection site is not particularly limited as long as it is a process liquid at a position below the site where the contamination is generated, but it is a problem from the point of arrival efficiency of the polymerization inhibitor. In the process where a part of the process liquid in the middle column of the column is extracted and heat recovered, the polymerization inhibitor is placed in the return pipe of the quench oil that is the heat recovered process liquid. It is preferable to inject.

上記の特定の重合禁止剤の添加にあたっては、原液であっても、また、溶剤やプロセス液、あるいは水に溶解させた状態で添加しても良い。該重合禁止剤を2種以上組み合わせて用いる場合は各有効成分をそれぞれ別個に添加しても良く、また、所定量の割合で混合した一液製剤として添加しても良い。この場合においても、上記の溶剤やプロセス液、あるいは水に溶解させた状態で添加しても良い。   In the addition of the specific polymerization inhibitor, it may be a stock solution or may be added in a state dissolved in a solvent, a process solution, or water. When two or more polymerization inhibitors are used in combination, each active ingredient may be added separately, or may be added as a one-part preparation mixed at a predetermined ratio. Also in this case, it may be added in a state dissolved in the above-mentioned solvent, process liquid, or water.

本発明における重合禁止剤の有効量は、気相部の凝縮液に対して1ppm〜1000ppm、好ましくは10ppm〜1000ppmである。その濃度を維持するように、汚れが発生している部位より下部の位置にあるプロセス液に重合禁止剤を添加する。気相部の凝縮液に対して1ppm未満では充分な効果が期待出来ず、また1000ppmより多いと効果としては充分であるが、添加量の割には効果が上がらず、経済的にみて好ましくない。   The effective amount of the polymerization inhibitor in the present invention is 1 ppm to 1000 ppm, preferably 10 ppm to 1000 ppm, with respect to the condensate in the gas phase. In order to maintain the concentration, a polymerization inhibitor is added to the process liquid at a position below the site where dirt is generated. If it is less than 1 ppm with respect to the condensate in the gas phase, it is not possible to expect a sufficient effect, and if it exceeds 1000 ppm, the effect is sufficient, but the effect is not improved for the amount of addition, which is not preferable from an economical viewpoint. .

実施例によって、本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。   The present invention will be described in more detail by way of examples, but the present invention is not limited to the following examples.

(テストに用いた重合禁止剤、及び常温における沸点)
DMHA:ジメチルヒドロキシルアミン (Aldrich社 試薬) 101℃
DEHA:ジエチルヒドロキシルアミン(東京化成工業 試薬) 133℃
IPHA:モノイソプロピルヒドロキシルアミン(ANGUS社製)163℃
TBC:4−t−ブチルカテコール(東京化成工業 試薬) 285℃
BHT:ブチルヒドロキシルトルエン(東京化成工業 試薬) 265℃
PDA:N,N´−ジ−sec−ブチル−p−フェニレンジアミン(日揮ユニバーサル株式会社製:商品名UOP No.5) 320℃
QM:2,6−ジ−t−ブチルシクロヘキサ−2,5−ジエノン(チバスペシャリティーケミカルズ:商品名プロスタブ 6007) 200℃以上
DBSA:ドデシルベンゼンスルホン酸(テイカ株式会社製:商品名 テイカパワーB−121) 200℃以上
(Polymerization inhibitor used for testing and boiling point at room temperature)
DMHA: Dimethylhydroxylamine (Aldrich reagent) 101 ° C
DEHA: diethylhydroxylamine (Tokyo Chemical Industry Reagent) 133 ° C
IPHA: monoisopropylhydroxylamine (manufactured by ANGUS) 163 ° C.
TBC: 4-t-butylcatechol (Tokyo Chemical Industry Reagent) 285 ° C
BHT: Butylhydroxyl toluene (Tokyo Chemical Industry Reagent) 265 ° C
PDA: N, N′-di-sec-butyl-p-phenylenediamine (manufactured by JGC Universal Co., Ltd .: trade name UOP No. 5) 320 ° C.
QM: 2,6-di-t-butylcyclohexa-2,5-dienone (Ciba Specialty Chemicals: trade name Prostub 6007) 200 ° C. or higher DBSA: dodecylbenzene sulfonic acid (trade name, Takeca Power B) -121) 200 ° C or higher

(汚れ成長防止試験)
図1に示す100mlのSUS製オートクレーブに、エチレンプラントから得られた熱分解油10g、スチレンモノマー 10g、イソプレン10gを混合し、表1に示す所定量の重合禁止剤を添加したものを試験液とし、オートクレーブの底部に仕込んだ。その後、オートクレーブの底から一定の位置の気相部にステンレス製の金網籠を設置し、同様にエチレンプラントから得られた重合物をキシレンで洗浄し、105℃で1時間乾燥させたものを約50mg秤量して籠に入れた。135℃に設定したオイルバスにオートクレーブを設置し、24時間放置した。放置後、オートクレーブを室温まで冷却し、金網上の重合物をキシレンで洗浄し、105℃で1時間乾燥させた後、重量を測定した。試験前後の重量変化から重合物成長倍数を求めた。この重合物成長倍数が小さいほど、気相部における汚れの成長防止効果が大きいことを示している。一方、凝縮液中の重合禁止剤濃度は、上記試験の金網籠の代わりに浅いトレー(皿)を設置し、その中に重合物は入れないで、上記と同一条件での試験を上記試験と平行して行い、試験後、トレーに溜まった凝縮液を採取し、ヒドロキシルアミン類については水抽出した後、比色法により、その他の重合禁止剤は、ガスクロマトグラフィーにより測定した。その結果を表1に示す。
(Dirt growth prevention test)
A test solution is prepared by mixing 10 g of pyrolysis oil obtained from an ethylene plant, 10 g of styrene monomer, and 10 g of isoprene in a 100 ml SUS autoclave shown in FIG. 1 and adding a predetermined amount of a polymerization inhibitor shown in Table 1. , Charged to the bottom of the autoclave. After that, a stainless steel wire netting was installed in the gas phase part at a fixed position from the bottom of the autoclave. Similarly, the polymer obtained from the ethylene plant was washed with xylene and dried at 105 ° C. for 1 hour. 50 mg was weighed and placed in a basket. The autoclave was installed in an oil bath set at 135 ° C. and left for 24 hours. After standing, the autoclave was cooled to room temperature, the polymer on the wire mesh was washed with xylene, dried at 105 ° C. for 1 hour, and the weight was measured. The polymer growth multiple was determined from the weight change before and after the test. This indicates that the smaller the polymer growth multiple, the greater the effect of preventing the growth of dirt in the gas phase. On the other hand, the concentration of the polymerization inhibitor in the condensate was determined by placing a shallow tray (dish) in place of the wire mesh jar in the above test and placing the polymer in it, and testing under the same conditions as above. In parallel, after the test, the condensate collected in the tray was collected, and the hydroxylamines were extracted with water, followed by a colorimetric method, and other polymerization inhibitors were measured by gas chromatography. The results are shown in Table 1.

Figure 0005660654
Figure 0005660654

表1の実施例1〜11に示す通り、プロセス蒸気の凝縮液中の重合禁止剤濃度が1ppm以上存在することによって、気相部にある汚れの成長を防止できることが明白であり、特に、凝縮液中の重合禁止剤濃度が10ppm以上存在する実施例1〜5、実施例7〜9、実施例11では重合物成長倍数が1.4倍以下であり、気相部にある汚れの成長防止効果が高いことが判る。更に、常温における沸点が100〜200℃である実施例5と実施例11に対して、常温における沸点が200℃以上である参考例2と参考例3の結果を比較すると、実施例5と実施例11では試験液中の重合禁止剤100ppm濃度の添加によって、凝縮液中の重合禁止剤濃度12〜15ppmが得られるのに対して、参考例2と参考例3では同程度の凝縮液中の重合禁止剤濃度を得るためには試験液中に2000〜4000ppmの重合禁止剤濃度が必要であり、本発明の方法では常温における沸点が100〜200℃の重合禁止剤を用いるほうが効率的であることが判る。 As shown in Examples 1 to 11 of Table 1, it is clear that the presence of a polymerization inhibitor concentration in the condensate of the process vapor of 1 ppm or more can prevent the growth of dirt in the gas phase, and in particular, condensation examples 1 to 5 a polymerization inhibitor concentration in the liquid is present above 10 ppm, examples 7-9, not more than 1.4 times the polymerization product growth multiples in example 11, contamination growth in gas phase It can be seen that the prevention effect is high. Furthermore, when the results of Reference Example 2 and Reference Example 3 having a boiling point of 200 ° C. or more are compared with Example 5 and Example 11 having a boiling point of 100 to 200 ° C. at normal temperature, Example 5 and Example 11 were compared. In Example 11, the addition of 100 ppm concentration of the polymerization inhibitor in the test solution gives a polymerization inhibitor concentration of 12 to 15 ppm in the condensate, whereas in Reference Example 2 and Reference Example 3 , the same concentration in the condensate is obtained. In order to obtain the polymerization inhibitor concentration, a polymerization inhibitor concentration of 2000 to 4000 ppm is required in the test solution, and it is more efficient to use a polymerization inhibitor having a boiling point of 100 to 200 ° C. at room temperature in the method of the present invention. I understand that.

表1の比較例1〜8に示す通り、プロセス蒸気の凝縮液中の重合禁止剤濃度が1ppm以下では、気相部にある汚れの成長を防止できない。比較例1〜3の結果から、本発明の方法において常温における沸点が100〜200℃の重合禁止剤を用いても、プロセス蒸気の凝縮液中の重合禁止剤濃度が1ppm以下の場合は、気相部にある汚れの成長防止効果は非常に小さく、その重合物成長倍数は無添加と大差が無い。常温における沸点が200℃以上である比較例4〜8においても、凝縮液中の重合禁止剤濃度が1ppm以下の場合は、気相部にある汚れの成長防止効果はほとんど無い。   As shown in Comparative Examples 1 to 8 in Table 1, when the concentration of the polymerization inhibitor in the condensate of process vapor is 1 ppm or less, the growth of dirt in the gas phase cannot be prevented. From the results of Comparative Examples 1 to 3, even when a polymerization inhibitor having a boiling point of 100 to 200 ° C. at room temperature is used in the method of the present invention, if the polymerization inhibitor concentration in the condensate of process vapor is 1 ppm or less, The effect of preventing the growth of dirt at the phase part is very small, and the growth factor of the polymer is not much different from that of no addition. Even in Comparative Examples 4 to 8 having a boiling point of 200 ° C. or higher at normal temperature, when the concentration of the polymerization inhibitor in the condensate is 1 ppm or less, there is almost no effect of preventing the growth of dirt in the gas phase.

以上のように、オレフィン類製造プロセスのオイルクエンチ塔の気相部において、プロセス蒸気の凝縮液中に汚れの成長を防止するための有効量の重合禁止剤を存在させることによって、オイルクエンチ塔気相部の汚れの成長を防止でき、上記有効量として1ppm以上、特に10ppm以上が好ましく、また、常温における沸点が100〜200℃の重合禁止剤を汚れが発生している部位の下部のプロセス液中に添加することによって、効率よく凝縮液中に有効量の重合禁止剤を存在させることができることが明白になった。本発明の方法に特に適した重合禁止剤は、常圧での沸点が100〜200℃であるモノアルキルヒドロキシルアミンならびにジアルキルヒドロキシルアミンより選ばれる一種以上である。
As described above, the presence of an effective amount of a polymerization inhibitor for preventing the growth of dirt in the condensate of the process vapor in the gas phase part of the oil quench tower of the olefin production process, The above-mentioned effective amount is preferably 1 ppm or more, particularly preferably 10 ppm or more, and a polymerization inhibitor having a boiling point of 100 to 200 ° C. at room temperature is a process liquid below the site where the stain is generated. It has become clear that an effective amount of a polymerization inhibitor can be effectively present in the condensate by adding it into the condensate. The polymerization inhibitor particularly suitable for the method of the present invention is at least one selected from monoalkylhydroxylamines and dialkylhydroxylamines having a boiling point of 100 to 200 ° C. at normal pressure.

Claims (1)

塔中段に熱回収プロセスを有する、オレフィン類製造プロセスのオイルクエンチ塔の気相部において、熱回収されたプロセス液であるクエンチ油の戻り配管に、常圧での沸点が100〜200℃であるモノアルキルヒドロキシルアミンならびにジアルキルヒドロキシルアミンより選ばれる一種以上の重合禁止剤を注入することにより、プロセス蒸気の凝縮液中に1ppm〜1000ppm重合禁止剤を存在させることを特徴とするオイルクエンチ塔気相部の汚れ成長防止方法。
In the gas phase part of the oil quench tower of the olefin production process, which has a heat recovery process in the middle of the tower , the boiling point at normal pressure is 100 to 200 ° C. in the return pipe of the quench oil that is the heat recovered process liquid by injecting one or more polymerization inhibitors selected from monoalkyl hydroxylamine and dialkyl hydroxylamines, oil quenching tower gas for causing the condensate of process steam is present the polymerization inhibitor 1ppm~1000ppm A method for preventing the growth of dirt at the phase.
JP2009129480A 2009-05-28 2009-05-28 Method to prevent soil growth in the gas phase inside an oil quench tower Active JP5660654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009129480A JP5660654B2 (en) 2009-05-28 2009-05-28 Method to prevent soil growth in the gas phase inside an oil quench tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009129480A JP5660654B2 (en) 2009-05-28 2009-05-28 Method to prevent soil growth in the gas phase inside an oil quench tower

Publications (2)

Publication Number Publication Date
JP2010275233A JP2010275233A (en) 2010-12-09
JP5660654B2 true JP5660654B2 (en) 2015-01-28

Family

ID=43422538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009129480A Active JP5660654B2 (en) 2009-05-28 2009-05-28 Method to prevent soil growth in the gas phase inside an oil quench tower

Country Status (1)

Country Link
JP (1) JP5660654B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017127988A1 (en) * 2016-01-25 2017-08-03 深圳市广昌达石油添加剂有限公司 Scale inhibitor for oil refining technology process and preparation method therefor
JP6145903B1 (en) * 2016-03-11 2017-06-14 株式会社片山化学工業研究所 Antifouling methods in petrochemical processes.

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2008054A4 (en) * 1986-09-30 1989-07-16 Petrolite Corp COMPLEX ANTI-INCRUSTATION COMPOSITIONS OF MIXED BASE AND ITS USE.
JPS6413041A (en) * 1987-07-07 1989-01-17 Hakuto Kagaku Kk Agent for suppressing growth of polymer in olefin-production apparatus
JPH0386792A (en) * 1989-08-30 1991-04-11 Hakutou Kagaku Kk Stainproofing agent for dilution steam-generating system in ethylene production process
JP3545440B2 (en) * 1993-12-16 2004-07-21 伯東株式会社 Viscosity increase inhibitor for aromatic unsaturated compound and method thereof
JP3187345B2 (en) * 1997-07-29 2001-07-11 伯東株式会社 Method for preventing contamination of olefins production or purification process
EP1517978A1 (en) * 2002-06-26 2005-03-30 Dorf Ketal Chemicals India Pvt. Ltd. Method of removal of carbonyl compounds along with acid gases from cracked gas in ethylene process
JP2004099765A (en) * 2002-09-10 2004-04-02 Mitsui Chemicals Inc Pretreatment method in petroleum refining/petrochemical plant
JP4936503B2 (en) * 2005-09-02 2012-05-23 伯東株式会社 Dirt prevention method

Also Published As

Publication number Publication date
JP2010275233A (en) 2010-12-09

Similar Documents

Publication Publication Date Title
WO1987004179A1 (en) Method for controlling fouling of hydrocarbon compositions containing olefinic compounds
JP6608837B2 (en) Use of neutralizing agents in olefin or styrene production
KR20010034553A (en) Polymerization-inhibiting composition, polymerization inhibitor and method for inhibiting polymerization
JP6762957B2 (en) Production of tert-butyl ester of aliphatic carboxylic acid
JP5660654B2 (en) Method to prevent soil growth in the gas phase inside an oil quench tower
JP5329220B2 (en) Improved process for recovery of butadiene by solvent extraction.
KR20170110139A (en) Methods for controlling the HI concentration in the residue stream
BRPI0901627B1 (en) method for minimizing apparatus corrosion during distillation of aqueous (meth) acrylic acid in the presence of dissolved copper
BRPI0620778A2 (en) process for the production and purification of vinyl aromatic monomers
JPH0386792A (en) Stainproofing agent for dilution steam-generating system in ethylene production process
JP4936503B2 (en) Dirt prevention method
JP2022031354A (en) Composition for controlling and suppressing polymerization of monomer, and method for using and preparing the same
JP3859435B2 (en) Method for preventing contamination of ethylene production equipment
CN113979827A (en) Efficient low-scale polymerization inhibition process for extracting and separating carbon five by DMF (dimethyl formamide) method
ITRM990795A1 (en) PROCEDURE TO PREVENT THE FORMATION OF POLYMER FOULING IN THE TREATMENT OF HYDROCARBON CHARGES CONTAINING OLEFINS.
JP4227099B2 (en) Bubble reduction method in primary fractionator
CA1227449A (en) Composition for minimizing fouling of heat exchangers and other hydrocarbon processing equipment
JPWO2006051941A1 (en) Method for inhibiting polymerization of copolymer containing divinylbenzene and aromatic vinyl compound
US4002554A (en) Process of minimizing or preventing fouling
CN109563419A (en) Inhibit the method for polymerization in process water
RU2467812C1 (en) Method of removing polymer deposition from rectification equipment
KR102295415B1 (en) Method for preventing fouling in petrochemical process
JP3846219B2 (en) Operation method of rectification tower
JPS6150929B2 (en)
Kolmetz et al. Design guidelines for chemical treatments in distillation columns

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141128

R150 Certificate of patent or registration of utility model

Ref document number: 5660654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250