JP5660627B2 - Multi-core single-mode optical fiber and optical cable - Google Patents

Multi-core single-mode optical fiber and optical cable Download PDF

Info

Publication number
JP5660627B2
JP5660627B2 JP2011225745A JP2011225745A JP5660627B2 JP 5660627 B2 JP5660627 B2 JP 5660627B2 JP 2011225745 A JP2011225745 A JP 2011225745A JP 2011225745 A JP2011225745 A JP 2011225745A JP 5660627 B2 JP5660627 B2 JP 5660627B2
Authority
JP
Japan
Prior art keywords
core
wavelength
optical fiber
range
mode optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011225745A
Other languages
Japanese (ja)
Other versions
JP2013088458A (en
Inventor
中島 和秀
和秀 中島
幸弘 五藤
幸弘 五藤
松井 隆
隆 松井
深井 千里
千里 深井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2011225745A priority Critical patent/JP5660627B2/en
Publication of JP2013088458A publication Critical patent/JP2013088458A/en
Application granted granted Critical
Publication of JP5660627B2 publication Critical patent/JP5660627B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

本発明は単一モード光通信に供する、単一モード光ファイバおよび光ケーブルに関する。   The present invention relates to a single mode optical fiber and an optical cable for single mode optical communication.

データ通信の急速な普及に伴い、伝送容量の更なる拡大に対する要望は年々高まる一方にある。このため、様々な多重化技術を用いることにより、光ファイバ1心当たりの伝送容量を拡大する検討が行われている。例えば、非特許文献1や非特許文献2には、同一のクラッド断面内に複数のコアを配置することにより、光ファイバ1心当たりの空間多重効率を向上させる多コア光ファイバ技術が開示されている。   With the rapid spread of data communication, the demand for further expansion of transmission capacity is increasing year by year. For this reason, studies are being made to increase the transmission capacity per optical fiber by using various multiplexing techniques. For example, Non-Patent Document 1 and Non-Patent Document 2 disclose multi-core optical fiber technology that improves the spatial multiplexing efficiency per optical fiber core by arranging a plurality of cores in the same cladding cross section. .

しかしながら、非特許文献1や非特許文献2に開示された多コア光ファイバ技術では、クラッドの外径が125μm以上に拡大されており、従来の単一コア単一モード光ファイバ技術で用いられている入出力技術は、構造寸法上の不整合により適用できないという課題があった。また、クラッドの外径を125μm以上に拡大したことに伴い、曲げ、引張り、捻り等により発生する光ファイバの破断確率が増大するという課題もあった。   However, in the multi-core optical fiber technology disclosed in Non-Patent Document 1 and Non-Patent Document 2, the outer diameter of the cladding is expanded to 125 μm or more, and is used in the conventional single-core single-mode optical fiber technology. The input / output technology that has been used has a problem that it cannot be applied due to structural mismatch. In addition, as the outer diameter of the clad is increased to 125 μm or more, there is a problem that the probability of breakage of the optical fiber generated by bending, pulling, twisting, or the like increases.

更に、非特許文献1に開示された多コア光ファイバ技術では、遮断波長、ゼロ分散波長、およびモードフィールド径の特性が、また、非特許文献2に開示された多コア光ファイバ技術では、ゼロ分散波長、およびモードフィールド径の特性が、それぞれ非特許文献3に開示された汎用単一コア単一モード光ファイバの伝送特性と異なるため、上述の汎用単一コア単一モード光ファイバとの併用による光伝送路の構築が困難となるといった課題があった。   Furthermore, in the multi-core optical fiber technology disclosed in Non-Patent Document 1, the characteristics of the cutoff wavelength, the zero dispersion wavelength, and the mode field diameter are zero. Since the characteristics of the dispersion wavelength and the mode field diameter are different from the transmission characteristics of the general-purpose single-core single-mode optical fiber disclosed in Non-Patent Document 3, respectively, the combined use with the above-described general-purpose single-core single-mode optical fiber There has been a problem that it becomes difficult to construct an optical transmission line by means of the above.

本発明は以上のような背景に鑑みてなされたものであり、その目的とするところは、従来の汎用単一コア単一モード光ファイバと同等のクラッド外径および伝送特性を維持しつつ、空間多重効率の向上を可能とする多芯単一モード光ファイバおよび光ケーブルを提供することにある。   The present invention has been made in view of the background as described above, and its object is to maintain a cladding outer diameter and transmission characteristics equivalent to those of a conventional general-purpose single-core single-mode optical fiber while maintaining space. An object of the present invention is to provide a multi-core single mode optical fiber and an optical cable that can improve the multiplexing efficiency.

本発明の多芯単一モード光ファイバでは、従来の単一コア単一モード光ファイバと同等となる、直径125μm±1μmのクラッド部に、屈折率がクラッド部よりも高い2個、または3個、または4個のコア部を等間隔の距離Λに、かつコア部の中心からクラッド部の外周までの距離がr以上となるように配置し、前記距離Λおよびrと、前記コア部の規格化周波数Vとの関係を好適となるように制御することにより、前記課題を解決する手段としている。   In the multi-core single mode optical fiber of the present invention, two or three higher refractive indexes than those of the cladding part are provided in the cladding part having a diameter of 125 μm ± 1 μm, which is equivalent to the conventional single core single mode optical fiber. Or the four core parts are arranged at equal distances Λ, and the distance from the center of the core part to the outer periphery of the cladding part is not less than r, and the distances Λ and r and the standard of the core part By controlling the relationship with the conversion frequency V so as to be suitable, the above-described problem is solved.

本発明の多芯単一モード光ファイバによれば、従来の汎用単一コア単一モード光ファイバと同等のクラッド外径を保持し、かつ従来の汎用単一コア単一モード光ファイバと同等の実効遮断波長、ゼロ分散波長、および曲げ損失特性を実現したまま、空間利用効率を2〜4倍に拡大できるといった効果を奏する。   According to the multi-core single mode optical fiber of the present invention, the clad outer diameter equivalent to that of the conventional general-purpose single-core single-mode optical fiber is maintained, and the same as that of the conventional general-purpose single-core single-mode optical fiber. While realizing the effective cutoff wavelength, zero dispersion wavelength, and bending loss characteristics, the space utilization efficiency can be increased by 2 to 4 times.

また、本発明の多芯単一モード光ファイバによれば、従来の汎用単一コア単一モード光ファイバと同等のクラッド外径を保持したことにより、従来の汎用単一コア単一モード光ファイバ技術で用いられている入出力技術も適用可能となるといった効果も奏する。   In addition, according to the multi-core single mode optical fiber of the present invention, since the clad outer diameter equivalent to that of the conventional general single core single mode optical fiber is maintained, the conventional general single core single mode optical fiber is provided. There is also an effect that the input / output technology used in the technology can be applied.

また、本発明の多芯単一モード光ファイバによれば、従来の汎用単一コア単一モード光ファイバと同等の実効遮断波長、ゼロ分散波長、および曲げ損失特性を実現したことにより、従来の汎用単一コア単一モード光ファイバと混在した光伝送路の設計も容易に行えるといった効果も奏する。   In addition, according to the multi-core single mode optical fiber of the present invention, an effective cutoff wavelength, a zero dispersion wavelength, and a bending loss characteristic equivalent to those of a conventional general-purpose single core single mode optical fiber are realized. The optical transmission line mixed with the general-purpose single core single mode optical fiber can also be easily designed.

更に、本発明の多芯単一モード光ファイバによれば、従来の汎用単一コア単一モード光ファイバの範囲となるモードフィールド径特性を有するようにしたことにより、従来の汎用単一コア単一モード光ファイバとの接続損失を低減し、多芯および単一コア光ファイバの混在による光伝送路の構築をより容易にするといった効果も奏する。   Furthermore, according to the multi-core single mode optical fiber of the present invention, it has a mode field diameter characteristic that falls within the range of the conventional general single core single mode optical fiber. The effects of reducing the connection loss with the one-mode optical fiber and facilitating the construction of the optical transmission line by mixing the multicore and single core optical fibers are also achieved.

加えて、本発明の多芯単一モード光ファイバによれば、従来の汎用単一コア単一モード光ファイバと同等のクラッド外径、並びに従来の汎用単一コア単一モード光ファイバと同等の実効遮断波長、ゼロ分散波長、および曲げ損失特性を実現するコア間距離Λおよびコア部の中心からクラッド部の外周までの最小距離rの構造条件を、モードフィールド径およびコア部の規格化周波数Vの関係により導出したことにより、任意の屈折率分布を有するコアを用いた多芯単一モード光ファイバに対しても適用できるといった効果も奏する。   In addition, according to the multi-core single-mode optical fiber of the present invention, the cladding outer diameter equivalent to that of the conventional general-purpose single-core single-mode optical fiber and the same as that of the conventional general-purpose single-core single-mode optical fiber The structural conditions of the inter-core distance Λ and the minimum distance r from the center of the core part to the outer periphery of the clad part to realize the effective cutoff wavelength, the zero dispersion wavelength, and the bending loss characteristics, the mode field diameter and the normalized frequency V of the core part By deriving from this relationship, there is also an effect that it can be applied to a multi-core single mode optical fiber using a core having an arbitrary refractive index distribution.

本発明の多芯単一モード光ファイバの断面構造を示す概念図である。It is a conceptual diagram which shows the cross-section of the multi-core single mode optical fiber of this invention. 本発明の多芯単一モード光ファイバの断面構造を示す概念図である。It is a conceptual diagram which shows the cross-section of the multi-core single mode optical fiber of this invention. 本発明の多芯単一モード光ファイバの断面構造を示す概念図である。It is a conceptual diagram which shows the cross-section of the multi-core single mode optical fiber of this invention. 本発明の多芯単一モード光ファイバにおいて、波長1550nmで10km伝送後の隣接コア間のクロストークを−30dB以下とする最小コア間距離Λを、波長1310nmのモードフィールド径および波長1310nmの規格化周波数Vの関数として示した図面である。In the multi-core single-mode optical fiber of the present invention, the minimum inter-core distance Λ for which the crosstalk between adjacent cores after transmission of 10 km at a wavelength of 1550 nm is −30 dB or less is standardized with a mode field diameter of 1310 nm and a wavelength of 1310 nm 3 is a diagram showing a function of frequency V. 本発明の多芯単一モード光ファイバにおいて、波長1625nmにおける閉じ込め損失を0.01dB/km以下とするコア部の中心からクラッド部の外周までの距離rを、波長1310nmのモードフィールド径および波長1310nmの規格化周波数Vの関数として示した図面である。In the multi-core single mode optical fiber of the present invention, the distance r from the center of the core part to the confinement loss at a wavelength of 1625 nm of 0.01 dB / km or less to the outer periphery of the cladding part is set to a mode field diameter of 1310 nm and a wavelength of 1310 nm. 3 is a diagram showing the normalized frequency V as a function. 本発明の多芯単一モード光ファイバにおける、最小コア間距離Λとコア部の中心からクラッド部の外周までの最大距離r-maxとの関係を、コア数の関数として示した図面である。6 is a diagram showing the relationship between the minimum inter-core distance Λ and the maximum distance r-max from the center of the core part to the outer periphery of the cladding part as a function of the number of cores in the multicore single-mode optical fiber of the present invention.

以下、本発明の多芯単一モード光ファイバおよび光ケーブルの実施の形態について図面を用いて説明する。   Hereinafter, embodiments of the multi-core single mode optical fiber and the optical cable of the present invention will be described with reference to the drawings.

図1乃至図3は本発明の多芯単一モード光ファイバの断面構造を示した概念図である。本発明の多芯単一モード光ファイバは、屈折率が均一で直径Dが125μm±1μmであるクラッド部1と、屈折率が前記クラッド部1よりも高い2個(図1)、または3個(図2)、または4個(図3)のコア部2とを有する。   1 to 3 are conceptual views showing a cross-sectional structure of a multi-core single mode optical fiber according to the present invention. The multi-core single mode optical fiber of the present invention has a clad part 1 having a uniform refractive index and a diameter D of 125 μm ± 1 μm, and two (FIG. 1) or three having a higher refractive index than the clad part 1 (FIG. 2) or four core parts 2 (FIG. 3).

ここで、前記各コア部2は前記クラッド部1断面内に隣接するコア部2との中心間の距離Λが等間隔となるように、また、前記コア部2の中心からクラッド部1の外周までの最小距離がrとなるように配置される。   Here, each core part 2 is arranged such that the distance Λ between the centers of the core part 2 and the adjacent core part 2 in the cross section of the clad part 1 is equal, and from the center of the core part 2 to the outer periphery of the clad part 1. It arrange | positions so that the minimum distance to may become r.

尚、波長λにおける前記コア部2の規格化周波数Vは、当該コア部2の直径を2a、屈折率をn1とし、前記クラッド部1の屈折率をn2として、
V≡(2πa/λ)・(n1 2−n2 21/2 (1)
により定義される。
The normalized frequency V of the core part 2 at the wavelength λ is 2a as the diameter of the core part 2, n 1 as the refractive index, and n 2 as the refractive index of the cladding part 1.
V≡ (2πa / λ) ・ (n 1 2 −n 2 2 ) 1/2 (1)
Defined by

図4は本発明の多芯単一モード光ファイバにおいて、波長1550nmで10km伝送後の隣接コア間のクロストークを−30dB以下とする最小コア間距離Λを、波長1310nmのモードフィールド径および波長1310nmの規格化周波数Vの関数として示した図面である。ここで、図中の実線が最小コア間距離Λを示す。また、点線、破線、および一点鎖線は、それぞれ実効遮断波長、曲げ損失、およびゼロ分散波長条件を示す。   FIG. 4 shows a multicore single-mode optical fiber according to the present invention, in which the minimum inter-core distance Λ for which the crosstalk between adjacent cores after transmission of 10 km at a wavelength of 1550 nm is −30 dB or less is set to a mode field diameter of 1310 nm and a wavelength of 1310 nm. It is drawing shown as a function of the normalized frequency V. Here, the solid line in the figure indicates the minimum inter-core distance Λ. A dotted line, a broken line, and an alternate long and short dash line indicate an effective cutoff wavelength, a bending loss, and a zero dispersion wavelength condition, respectively.

非特許文献3によれば、従来の汎用単一コア単一モード光ファイバの実効遮断波長は1260nm以下、曲げ損失は波長1625nm、曲げ半径30mm、巻き回数100回で0.1dB以下、ゼロ分散波長特性は1300〜1324nmとして推奨されており、図4の点線より左側、破線より右側、および一点鎖線で囲まれる領域で、上述の遮断波長、曲げ損失、およびゼロ分散波長特性を満たすことが可能となる。即ち、図4の点線、破線および一点鎖線の全てで囲まれる領域において、従来の単一コア単一モード光ファイバと同等の実効遮断波長、曲げ損失、およびゼロ分散波長特性を実現することが可能となる。   According to Non-Patent Document 3, the conventional general-purpose single-core single-mode optical fiber has an effective cutoff wavelength of 1260 nm or less, a bending loss of 1625 nm, a bending radius of 30 mm, a winding number of 100 turns, 0.1 dB or less, and zero dispersion wavelength characteristics. Is recommended as 1300 to 1324 nm, and it is possible to satisfy the above-described cutoff wavelength, bending loss, and zero dispersion wavelength characteristics in the region surrounded by the dashed line on the left side of FIG. . In other words, in the region surrounded by all of the dotted line, broken line, and alternate long and short dash line in FIG. 4, it is possible to realize the effective cutoff wavelength, bending loss, and zero dispersion wavelength characteristics equivalent to those of the conventional single core single mode optical fiber. It becomes.

また、非特許文献3によれば、従来の汎用単一コア単一モード光ファイバの波長1310nmにおけるモードフィールド径は8.6〜9.5μm±0.6μmであることが推奨されている、ここで、モードフィールド径の偏差は接続点における接続損失の増加を招くことが知られている。   According to Non-Patent Document 3, it is recommended that the mode field diameter of a conventional general-purpose single-core single-mode optical fiber at a wavelength of 1310 nm is 8.6 to 9.5 μm ± 0.6 μm. It is known that the deviation in diameter leads to an increase in connection loss at the connection point.

従って、図4より、規格化周波数Vが2.32〜2.67の範囲において、モードフィールド径が8.0〜10.1μmの範囲となるようにコア部2の直径と比屈折率差とを制御し、かつ最小コア間距離Λを40〜50μmの範囲とすることにより、汎用単一コア単一モード光ファイバと同等の実効遮断波長、曲げ損失、およびゼロ分散波長特性を実現し、かつ隣接コア間のクロストークを−30dB以下に低減することが可能となる。   Therefore, as shown in FIG. 4, when the normalized frequency V is in the range of 2.32 to 2.67, the diameter of the core portion 2 and the relative refractive index difference are controlled so that the mode field diameter is in the range of 8.0 to 10.1 μm, and the minimum core By setting the distance Λ to be in the range of 40 to 50 μm, the effective cut-off wavelength, bending loss, and zero dispersion wavelength characteristics equivalent to those of general-purpose single-core single-mode optical fibers are achieved, and crosstalk between adjacent cores is reduced. It becomes possible to reduce to -30 dB or less.

図5は本発明の多芯単一モード光ファイバにおいて、波長1625nmにおける閉じ込め損失を0.01dB/km以下とする最小クラッド外周までの距離rを、波長1310nmのモードフィールド径および波長1310nmの規格化周波数Vの関数として示した図面である。図中の点線、破線、および一点鎖線は、それぞれ図4と同一の実効遮断波長、曲げ損失、およびゼロ分散波長条件を示す。   FIG. 5 shows the distance r to the minimum cladding outer periphery where the confinement loss at a wavelength of 1625 nm is 0.01 dB / km or less, the mode field diameter of the wavelength of 1310 nm, and the normalized frequency of the wavelength of 1310 nm in the multi-core single mode optical fiber of the present invention. FIG. Dotted lines, broken lines, and alternate long and short dash lines in the figure indicate the same effective cutoff wavelength, bending loss, and zero dispersion wavelength conditions as in FIG.

図5より、規格化周波数Vが2.32〜2.67の範囲において、モードフィールド径が8.0〜10.1μmの範囲となるようにコア部2の直径と比屈折率差とを制御し、かつ最小クラッド外周までの距離rを33〜38μmの範囲とすることにより、汎用単一コア単一モード光ファイバと同等の実効遮断波長、曲げ損失、およびゼロ分散波長特性を実現し、かつ波長1625nmにおける閉じ込め損失を0.01dB/km以下に低減することが可能となる。   From FIG. 5, the diameter and relative refractive index difference of the core part 2 are controlled so that the mode field diameter is in the range of 8.0 to 10.1 μm in the range of the normalization frequency V from 2.32 to 2.67, and to the minimum cladding outer periphery. By setting the distance r in the range of 33 to 38 μm, an effective cut-off wavelength, bending loss, and zero dispersion wavelength characteristics equivalent to those of a general-purpose single-core single mode optical fiber are realized, and a confinement loss at a wavelength of 1625 nm is 0.01. It becomes possible to reduce to dB / km or less.

ここで、非特許文献4によれば、コア直径が2aでコアの屈折率がn1であるステップ型コアの規格化周波数Vとモードフィールド径2Wは、
W/a=0.62+1.619V-1.5+2.879V-6 (2)
により記述できることが開示されている。
Here, according to Non-Patent Document 4, the normalized frequency V and mode field diameter 2W of a step-type core having a core diameter of 2a and a core refractive index of n 1 are:
W / a = 0.62 + 1.619V -1.5 + 2.879V -6 (2)
It is disclosed that it can be described by.

また、非特許文献5によれば、上述のステップ型屈折率分布における規格化周波数Vは、任意の屈折率分布に対する拡張規格化周波数Tとして、
2=2(2π/λ)2∫{n2(r)−n2(∞)}rdr (3)
に書き直せることが開示されている。
Further, according to Non-Patent Document 5, the standardized frequency V in the above-described step-type refractive index distribution is the extended standardized frequency T for an arbitrary refractive index distribution,
T 2 = 2 (2π / λ) 2 ∫ {n 2 (r) −n 2 (∞)} rdr (3)
It is disclosed that it can be rewritten.

ここで、n(r)は半径rの点における屈折率、n(∞)はクラッドの屈折率を表す。従って、図4および図5に開示した、モードフィールド径と規格化周波数Vに対する最小コア間距離Λの関係、およびモードフィールド径と規格化周波数Vに対する最小クラッド外周までの距離rの関係は、任意の屈折率分布を有するコア部2に対しても適用することが可能である。   Here, n (r) represents the refractive index at the point of radius r, and n (∞) represents the refractive index of the cladding. Therefore, the relationship between the mode field diameter and the minimum inter-core distance Λ with respect to the normalized frequency V and the relationship between the mode field diameter and the normalized frequency V with respect to the distance r to the minimum cladding outer circumference disclosed in FIGS. The present invention can also be applied to the core portion 2 having a refractive index distribution of

図6は本発明の多芯単一モード光ファイバにおいてクラッド部の直径Dを125μmとする、最小コア間距離Λとコア部の中心からクラッド部の外周までの最大距離r-maxとの関係を、コア数の関数として示した図面である。なお、図中、実線、破線、および一点鎖線はそれぞれ、コア部が2個、3個、および4個の場合を示す。   FIG. 6 shows the relationship between the minimum inter-core distance Λ and the maximum distance r-max from the center of the core part to the outer periphery of the clad part when the diameter D of the clad part is 125 μm in the multi-core single mode optical fiber of the present invention. FIG. 2 is a drawing showing the number of cores as a function. In the figure, the solid line, the broken line, and the alternate long and short dash line indicate cases where there are two, three, and four core parts, respectively.

図6から、同一クラッド部内に2個のコア部を配置する場合、最小コア間距離Λを50μmに設定すると、r-maxは37μm程度とする必要があり、図4および図5に示した全ての条件を同時に満たすことが困難となる。そこで、最小コア間距離Λを40〜49μm±1μmの範囲、クラッド外周までの距離rを33〜37μm±1μmの範囲、コア部の規格化周波数Vを2.32〜2.67の範囲、モードフィールド径を8.0〜10.1μmの範囲にそれぞれ設定することにより、汎用単一コア単一モード光ファイバと同等の遮断波長、曲げ損失、およびゼロ分散波長特性を有し、かつクラッドの外径が125μm±1μmとなる2芯単一モード光ファイバを実現することが可能となる。   From FIG. 6, when two core parts are arranged in the same clad part, if the minimum inter-core distance Λ is set to 50 μm, the r-max needs to be about 37 μm, and all those shown in FIG. 4 and FIG. It becomes difficult to satisfy these conditions simultaneously. Therefore, the minimum inter-core distance Λ is in the range of 40 to 49 μm ± 1 μm, the distance r to the outer circumference of the cladding is in the range of 33 to 37 μm ± 1 μm, the normalized frequency V of the core is in the range of 2.32 to 2.67, and the mode field diameter is 8.0. By setting each in the range of ˜10.1 μm, it has the same cutoff wavelength, bending loss, and zero dispersion wavelength characteristics as a general-purpose single-core single-mode optical fiber, and the outer diameter of the cladding is 125 μm ± 1 μm A two-core single mode optical fiber can be realized.

同様に3個のコア部を配置する場合には、最小コア間距離Λを40〜42μm±1μmの範囲、クラッド外周までの距離rを33〜37μm±1μmの範囲、コア部の規格化周波数Vを2.48〜2.59の範囲、モードフィールド径を8.0〜8.5μmの範囲にそれぞれ設定することにより、汎用単一コア単一モード光ファイバと同等の遮断波長、曲げ損失、およびゼロ分散波長特性を有し、かつクラッドの外径が125μm±1μmとなる3芯単一モード光ファイバを実現することが可能となる。   Similarly, when three core parts are arranged, the minimum inter-core distance Λ is in the range of 40 to 42 μm ± 1 μm, the distance r to the cladding outer periphery is in the range of 33 to 37 μm ± 1 μm, and the normalized frequency V of the core part Has a cutoff wavelength, bending loss, and zero dispersion wavelength characteristics equivalent to a general-purpose single-core single-mode optical fiber by setting the mode field to 2.48 to 2.59 and the mode field diameter to 8.0 to 8.5 μm. In addition, it is possible to realize a three-core single mode optical fiber having an outer diameter of the cladding of 125 μm ± 1 μm.

また、同様に4個のコア部を配置する場合には、最小コア間距離Λを40〜41.5μm±1μmの範囲、クラッド外周までの距離rを33μm±1μmの範囲、コア部の規格化周波数Vを2.50〜2.58の範囲、モードフィールド径を8.0〜8.3μmの範囲にそれぞれ設定することにより、汎用単一コア単一モード光ファイバと同等の遮断波長、曲げ損失、およびゼロ分散波長特性を有し、かつクラッドの外径が125μm±1μmとなる4芯単一モード光ファイバを実現することが可能となる。   Similarly, when four core parts are arranged, the minimum inter-core distance Λ is in the range of 40 to 41.5 μm ± 1 μm, the distance r to the outer periphery of the cladding is in the range of 33 μm ± 1 μm, and the normalized frequency of the core part By setting V in the range of 2.50 to 2.58 and the mode field diameter in the range of 8.0 to 8.3 μm, it has the same cutoff wavelength, bending loss, and zero dispersion wavelength characteristics as a general-purpose single-core single-mode optical fiber. In addition, it is possible to realize a four-core single mode optical fiber having a cladding outer diameter of 125 μm ± 1 μm.

以上に説明したように、本発明の多芯単一モード光ファイバによれば、従来の汎用単一コア単一モード光ファイバと同等の125μm±1μmのクラッド外径と、1260nm以下の実効遮断波長と、1300〜1324nmのゼロ分散波長と、波長1625nm、曲げ半径30mmで0.1dB/100巻き以下の曲げ損失特性とを有し、かつ空間多重効率を2〜4倍にまで拡大することが可能となる。   As described above, according to the multi-core single mode optical fiber of the present invention, the cladding outer diameter of 125 μm ± 1 μm equivalent to the conventional general-purpose single core single mode optical fiber and the effective cutoff wavelength of 1260 nm or less And a zero dispersion wavelength of 1300 to 1324 nm, a bending loss characteristic of a wavelength of 1625 nm, a bending radius of 30 mm and 0.1 dB / 100 turns or less, and the spatial multiplexing efficiency can be expanded to 2 to 4 times. Become.

1:クラッド部、2:コア部。   1: Clad part, 2: Core part.

"Effective Space Division Multiplexing by Multi-Core Fibers", K. Imamura, et al., in Proc. ECOC'10, P1.09 (2010)."Effective Space Division Multiplexing by Multi-Core Fibers", K. Imamura, et al., In Proc. ECOC'10, P1.09 (2010). "Multi-core holey fibers for the long-distance (>100 km) ultra large capacity transmission", K. Imamura, et al., in Proc. OFC'09, OTuC3 (2009)."Multi-core holey fibers for the long-distance (> 100 km) ultra large capacity transmission", K. Imamura, et al., In Proc. OFC'09, OTuC3 (2009). "Characteristics of a single-mode optical fibre and cable", ITU-T, Recommendation G.652."Characteristics of a single-mode optical fiber and cable", ITU-T, Recommendation G.652. "Loss analysis of single-mode fiber splices", D. Marcuse, Bell Sys. Tech. J, vol. 56, no. 5, p. 703 (1976)."Loss analysis of single-mode fiber splices", D. Marcuse, Bell Sys. Tech. J, vol. 56, no. 5, p. 703 (1976). "光ファイバとファイバ形デバイス", 川上, 他, 培風館, (1996)."Optical fibers and fiber-type devices", Kawakami, et al., Baifukan, (1996).

Claims (4)

屈折率が均一で直径が125μm±1μmであるクラッド部と、屈折率が前記クラッド部よりも高い2個のコア部とを有し、
前記各コア部をその中心間距離がΛとなるように配置し、
前記コア部の中心間距離Λを40〜49μm±1μmの範囲、前記コア部の中心から前記クラッド部の外周上の最も近い位置までの距離rを33〜37μm±1μmの範囲、前記コア部の規格化周波数Vを2.32〜2.67の範囲、前記コア部の波長1310nmにおけるモードフィールド径を8.0〜10.1μmの範囲にそれぞれ設定し、
波長1625nm、曲げ半径30mmで0.1dB/100巻き以下の曲げ損失特性と、1260nm以下の実効遮断波長特性と、1300〜1324nmのゼロ分散波長特性とを有し、
波長1550nmにおける10km伝送後の前記2個のコア部間でのクロストークが−30dB以下となる
ことを特徴とする多芯単一モード光ファイバ。
A clad part having a uniform refractive index and a diameter of 125 μm ± 1 μm, and two core parts having a refractive index higher than that of the clad part;
The core parts are arranged such that the distance between the centers is Λ,
Center distance Λ the range of 40~49μm ± 1μm of the core portion, the closest distance r the range of 33~37μm ± 1μm position to on outer periphery of the center from the cladding portion of the core portion, the core portion The normalization frequency V is set in the range of 2.32 to 2.67, and the mode field diameter of the core portion at the wavelength of 1310 nm is set in the range of 8.0 to 0.1 μm.
It has a bending loss property of 0.1 dB / 100 or less at a wavelength of 1625 nm, a bending radius of 30 mm, an effective cutoff wavelength property of 1260 nm or less, and a zero dispersion wavelength property of 1300 to 1324 nm.
A multi-core single mode optical fiber characterized in that the crosstalk between the two core portions after 10 km transmission at a wavelength of 1550 nm is -30 dB or less.
屈折率が均一で直径が125μm±1μmであるクラッド部と、屈折率が前記クラッド部よりも高い3個のコア部とを有し、
前記各コア部を前記クラッド部断面内に隣接するコア部との中心間の距離Λが等間隔となるように配置し、
前記コア部の中心間距離Λを40〜42μm±1μmの範囲、前記コア部の中心から前記クラッド部の外周上の最も近い位置までの距離rを33〜37μm±1μmの範囲、前記コア部の規格化周波数Vを2.48〜2.59の範囲、前記コア部の波長1310nmにおけるモードフィールド径を8.0〜8.5μmの範囲にそれぞれ設定し、
波長1625nm、曲げ半径30mmで0.1dB/100巻き以下の曲げ損失特性と、1260nm以下の実効遮断波長特性と、1300〜1324nmのゼロ分散波長特性とを有し、
波長1550nmにおける10km伝送後の前記3個のコア部間でのクロストークが−30dB以下となる
ことを特徴とする多芯単一モード光ファイバ。
A clad part having a uniform refractive index and a diameter of 125 μm ± 1 μm, and three core parts having a refractive index higher than that of the clad part;
The core parts are arranged so that the distances Λ between the centers of the core parts adjacent to each other in the cross section of the clad part are equal.
Center distance Λ the range of 40~42μm ± 1μm of the core portion, the closest distance r the range of 33~37μm ± 1μm position to on outer periphery of the center from the cladding portion of the core portion, the core portion The normalization frequency V is set in the range of 2.48 to 2.59, and the mode field diameter of the core portion at the wavelength of 1310 nm is set in the range of 8.0 to 8.5 μm.
It has a bending loss property of 0.1 dB / 100 or less at a wavelength of 1625 nm, a bending radius of 30 mm, an effective cutoff wavelength property of 1260 nm or less, and a zero dispersion wavelength property of 1300 to 1324 nm.
A multi-core single mode optical fiber characterized in that the crosstalk between the three core portions after 10 km transmission at a wavelength of 1550 nm is -30 dB or less.
屈折率が均一で直径が125μm±1μmであるクラッド部と、屈折率が前記クラッド部よりも高い4個のコア部とを有し、
前記各コア部を前記クラッド部断面内に隣接するコア部との中心間の距離Λが等間隔となるように配置し、
前記コア部の中心間距離Λを40〜41.5μm±1μmの範囲、前記コア部の中心から前記クラッド部の外周上の最も近い位置までの距離rを33μm±1μmの範囲、前記コア部の規格化周波数Vを2.50〜2.58の範囲、前記コア部の波長1310nmにおけるモードフィールド径を8.0〜8.3μmの範囲にそれぞれ設定し、
波長1625nm、曲げ半径30mmで0.1dB/100巻き以下の曲げ損失特性と、1260nm以下の実効遮断波長特性と、1300〜1324nmのゼロ分散波長特性とを有し、
波長1550nmにおける10km伝送後の前記4個のコア部間でのクロストークが−30dB以下となる
ことを特徴とする多芯単一モード光ファイバ。
A clad part having a uniform refractive index and a diameter of 125 μm ± 1 μm, and four core parts having a refractive index higher than that of the clad part;
The core parts are arranged so that the distances Λ between the centers of the core parts adjacent to each other in the cross section of the clad part are equal.
Range 40~41.5μm ± 1μm distance between the centers Λ of the core portion, from the center of the core portion range of distance r of 33μm ± 1μm to the nearest position on the outer periphery of the cladding portion, the core portion The normalized frequency V is set in a range of 2.50 to 2.58, and the mode field diameter of the core portion at a wavelength of 1310 nm is set in a range of 8.0 to 8.3 μm.
It has a bending loss property of 0.1 dB / 100 or less at a wavelength of 1625 nm, a bending radius of 30 mm, an effective cutoff wavelength property of 1260 nm or less, and a zero dispersion wavelength property of 1300 to 1324 nm.
A multi-core single mode optical fiber characterized in that crosstalk between the four core portions after 10 km transmission at a wavelength of 1550 nm is -30 dB or less.
請求項1乃至3のいずれかに記載の多芯単一モード光ファイバを少なくとも1本用いたことを特徴とする光ケーブル。   An optical cable using at least one multi-core single-mode optical fiber according to any one of claims 1 to 3.
JP2011225745A 2011-10-13 2011-10-13 Multi-core single-mode optical fiber and optical cable Active JP5660627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011225745A JP5660627B2 (en) 2011-10-13 2011-10-13 Multi-core single-mode optical fiber and optical cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011225745A JP5660627B2 (en) 2011-10-13 2011-10-13 Multi-core single-mode optical fiber and optical cable

Publications (2)

Publication Number Publication Date
JP2013088458A JP2013088458A (en) 2013-05-13
JP5660627B2 true JP5660627B2 (en) 2015-01-28

Family

ID=48532463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011225745A Active JP5660627B2 (en) 2011-10-13 2011-10-13 Multi-core single-mode optical fiber and optical cable

Country Status (1)

Country Link
JP (1) JP5660627B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9057817B2 (en) * 2013-04-15 2015-06-16 Corning Incorporated Low diameter optical fiber
CN104360434B (en) * 2014-11-12 2017-02-01 长飞光纤光缆股份有限公司 Single mode fiber with ultralow-attenuation large effective area
JP6560806B1 (en) * 2018-11-21 2019-08-14 日本電信電話株式会社 Multi-core optical fiber, multi-core optical fiber design method, and optical transmission method
JP7172634B2 (en) * 2019-01-18 2022-11-16 日本電信電話株式会社 Multi-core optical fiber and design method
JPWO2022034662A1 (en) * 2020-08-12 2022-02-17
JP2022066053A (en) 2020-10-16 2022-04-28 住友電気工業株式会社 Multi-core optical fiber and multi-core optical fiber cable
CN114111642B (en) * 2021-11-16 2024-03-26 哈尔滨工程大学 Double-air-hole three-core optical fiber bending sensor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05341147A (en) * 1992-06-12 1993-12-24 Asahi Chem Ind Co Ltd Multi-core type single mode optical fiber and transmission using it
JP4555760B2 (en) * 2005-09-22 2010-10-06 ナガセケムテックス株式会社 Filler composition and method for producing hole assist fiber using the same
JP5059797B2 (en) * 2009-02-25 2012-10-31 日本電信電話株式会社 Optical fiber, optical fiber design method, and optical wavelength division multiplexing communication system
WO2010119930A1 (en) * 2009-04-16 2010-10-21 古河電気工業株式会社 Multi-core optical fiber
JP5281161B2 (en) * 2009-07-08 2013-09-04 株式会社フジクラ Optical fiber communication system
JPWO2011024808A1 (en) * 2009-08-28 2013-01-31 株式会社フジクラ Multi-core fiber
JP2011209702A (en) * 2010-03-10 2011-10-20 Sumitomo Electric Ind Ltd Multi-core optical fiber

Also Published As

Publication number Publication date
JP2013088458A (en) 2013-05-13

Similar Documents

Publication Publication Date Title
JP5660627B2 (en) Multi-core single-mode optical fiber and optical cable
Takenaga et al. Reduction of crosstalk by trench-assisted multi-core fiber
US8737793B2 (en) Multi-core optical fiber and method of manufacturing the same
JP5916525B2 (en) Multi-core fiber
CN106575013B (en) Multi-core optical fiber, optical cable and optical connector
JP5415728B2 (en) Multi-core holey fiber and optical transmission system
JP5522696B2 (en) 4-core single-mode optical fiber and optical cable
JP6177994B2 (en) Multi-core fiber
US9709729B2 (en) Multicore fiber with different-mode interaction section
Sakamoto et al. Crosstalk suppressed hole-assisted 6-core fiber with cladding diameter of 125 μm
JP6453166B2 (en) Multi-core optical fiber, optical fiber manufacturing method, and optical fiber cable manufacturing method
JP2012118495A (en) Multi-core fiber
WO2016190228A1 (en) Multi-core fiber
CN106597603B (en) Novel few-mode optical fiber
US9541704B2 (en) Multi-core optical fiber and multi-core optical fiber cable
US20190033512A1 (en) Optical device
JP4130424B2 (en) Hole assisted optical fiber
JP5697159B2 (en) High-strength optical fiber for passive optical transmission systems
Sasaki et al. Large-effective-area uncoupled 10-core fiber with two-pitch layout
CN113325510B (en) Multi-core optical fiber and optical cable easy to branch
Watanabe et al. High density and low cross talk design of heterogeneous multi-core fiber with air hole assisted double cladding
JP2013195800A (en) Multi-core fiber
JP5771569B2 (en) Optical fiber
JP2012255935A (en) Optical fiber and optical fiber cable using the same
KR101788628B1 (en) Ribbon fiber composed of downsized single-mode fibers

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131113

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140207

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141127

R150 Certificate of patent or registration of utility model

Ref document number: 5660627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150