JP5659703B2 - Elastic-plastic brace anti-seismic structure - Google Patents

Elastic-plastic brace anti-seismic structure Download PDF

Info

Publication number
JP5659703B2
JP5659703B2 JP2010245984A JP2010245984A JP5659703B2 JP 5659703 B2 JP5659703 B2 JP 5659703B2 JP 2010245984 A JP2010245984 A JP 2010245984A JP 2010245984 A JP2010245984 A JP 2010245984A JP 5659703 B2 JP5659703 B2 JP 5659703B2
Authority
JP
Japan
Prior art keywords
elastic
plastic
brace
boiler
connecting member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010245984A
Other languages
Japanese (ja)
Other versions
JP2012097816A (en
Inventor
敬太 中川
敬太 中川
健次 石井
健次 石井
奈月 山口
奈月 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2010245984A priority Critical patent/JP5659703B2/en
Publication of JP2012097816A publication Critical patent/JP2012097816A/en
Application granted granted Critical
Publication of JP5659703B2 publication Critical patent/JP5659703B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Dampers (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は、弾塑性ブレース防震構造に関するものである。   The present invention relates to an elastic-plastic brace seismic isolation structure.

一般に、地震による構造物の被害を低減するために、従来、種々の方式の防震構造が提案されている。   In general, various types of earthquake-proof structures have been proposed in order to reduce damage to structures caused by earthquakes.

例えば、火力発電所に用いられるボイラには、水管で構成されるボイラ本体(防震すべき構造物)の炉壁の熱膨張を逃がすために、支持架構(固定部材)から吊り下げて支持するようにした吊り下げ式ボイラが多用されているが、このように大重量のボイラ本体を吊り下げて支持する吊り下げ式ボイラにおいては、地震発生時にボイラ本体と支持架構が異なる動きをするため、相対振動に対する防震対策が必要となる。   For example, a boiler used in a thermal power plant is supported by being suspended from a support frame (fixed member) in order to release the thermal expansion of the furnace wall of the boiler body (structure to be seismically isolated) composed of water pipes. In such a suspended boiler that suspends and supports a heavy heavy boiler body, the boiler body and the support frame move differently when an earthquake occurs. Seismic measures against vibration are required.

このため、従来、ボイラの熱膨張に起因する変位は拘束せずに許容し、地震時の揺れに起因する変位は拘束し、且つ大地震に対しては揺れ止め装置部分を塑性変形させることで地震エネルギーを吸収し、支持架構及び基礎への影響を軽減する対策が講じられている。 この種の吊り下げ式ボイラの防震構造としては、支持鉄骨に、ボイラ本体の振動方向前後から挟むタイプレートを配置し、該タイプレートと前記ボイラ本体との間を複数の弾塑性エレメントで連結するようにしたもの(特許文献1参照)がある。   For this reason, conventionally, the displacement caused by the thermal expansion of the boiler is allowed without being restricted, the displacement caused by the shaking at the time of the earthquake is restricted, and the anti-sway device part is plastically deformed against a large earthquake. Measures have been taken to absorb seismic energy and reduce the impact on support frames and foundations. As a seismic-proof structure of this type of suspended boiler, a tie plate sandwiched from the front and back of the vibration direction of the boiler body is arranged on the support steel frame, and the tie plate and the boiler body are connected by a plurality of elastic-plastic elements. There is something like that (see Patent Document 1).

尚、吊り下げ式ボイラではないが、排熱回収ボイラにおける架構支持構造においては、バックステーに固定された外側支持金具と、内部トラスに固定された内側支持金具とからなり、それぞれ熱膨張による伸び方向に摺動外面と摺動内面とを有し、該摺動外面と摺動内面とが互いに接するように嵌合させたスライド支持金具により、熱膨張差によるバックステーの変形を低減するようにしたものもある。   Although it is not a suspended boiler, the frame support structure in the exhaust heat recovery boiler is composed of an outer support bracket fixed to the backstay and an inner support bracket fixed to the inner truss, each of which is expanded by thermal expansion. The sliding support bracket having a sliding outer surface and a sliding inner surface in the direction and fitted so that the sliding outer surface and the sliding inner surface are in contact with each other, so as to reduce the deformation of the backstay due to the difference in thermal expansion Some have done.

特開平05−322104号公報JP 05-322104 A

しかしながら、特許文献1のように支持鉄骨にタイプレートを配置し、このタイプレートとボイラ本体との間を複数の弾塑性エレメントで連結した構成においては、ボイラ本体の揺れ方向に対して弾塑性部材の曲げ力(剪断力)によって防震するものであるため、大きな地震力に対して防震するためには多数の弾塑性部材を備える必要があり、更に、弾塑性部材は複雑な形状を有するために加工作業が大変であり、加工工数、取付けのための作業時間が増加し、コストが増加するという問題がある。   However, in a configuration in which a tie plate is disposed on a supporting steel frame as in Patent Document 1 and the tie plate and the boiler body are connected by a plurality of elastic plastic elements, an elastic-plastic member is provided with respect to the swing direction of the boiler body. It is necessary to have a large number of elastic-plastic members in order to prevent a large earthquake force, and because the elastic-plastic members have a complicated shape There is a problem that the processing work is difficult, the processing man-hours, the work time for installation increase, and the cost increases.

又、前述の如き排熱回収ボイラにおける架構支持構造においては、地震については考慮されていないため、地震発生時に、外側支持金具の摺動外面と内側支持金具の摺動内面とが互いに離反して再び接触した場合、大きな衝撃力が発生し、バックステーに対する外側支持金具の取付部や内部トラスに対する内側支持金具の取付部に過大な負荷がかかる可能性があった。   Moreover, in the frame support structure in the exhaust heat recovery boiler as described above, the earthquake is not taken into consideration, so that when the earthquake occurs, the sliding outer surface of the outer support bracket and the sliding inner surface of the inner support bracket are separated from each other. When the contact is made again, a large impact force is generated, and there is a possibility that an excessive load is applied to the mounting portion of the outer support bracket with respect to the backstay and the mounting portion of the inner support bracket with respect to the internal truss.

本発明は、斯かる実情に鑑み、小型で簡略な構造にて構造物の熱膨張に起因する変位を許容しつつ地震力を確実に吸収し得、且つ地震発生時に大きな衝撃力が発生して連結部材に過大な負荷がかかることを防止し得る弾塑性ブレース防震構造を提供しようとするものである。   In view of such circumstances, the present invention can absorb a seismic force reliably while allowing a displacement due to the thermal expansion of a structure with a small and simple structure, and a large impact force is generated when an earthquake occurs. It is an object of the present invention to provide an elastic-plastic brace seismic isolation structure that can prevent an excessive load from being applied to a connecting member.

本発明は、構造物の地震による荷重を支持する固定部材又は構造物側保持部材のいずれか一方を取り囲んで配置される連結部材と、
該連結部材を介して線対称の位置に配置され、各一端が連結部材に固定され、各他端が前記固定部材又は構造物側保持部材のいずれか他方に固定された弾塑性ブレースとを有し、
前記線対称に配置された弾塑性ブレースにより構造物側保持部材から連結部材を介して固定部材に伝えられる地震による荷重の伝達が、一方の弾塑性ブレースの圧縮と他方の弾塑性ブレースの引張とにより同時に行われるよう構成した弾塑性ブレース防震構造であって、
前記固定部材又は構造物側保持部材のいずれか一方と連結部材との間に、該固定部材又は構造物側保持部材のいずれか一方と連結部材との隙間を埋め且つ前記構造物の熱膨張に伴う前記固定部材の軸線方向への相対移動を案内するガイド手段を介装し
前記ガイド手段を、前記固定部材の軸線方向と直角な方向へ延びるローラ軸を中心に転動自在なガイドローラによって構成したことを特徴とする弾塑性ブレース防震構造にかかるものである。
The present invention includes a connecting member disposed so as to surround either one of a fixing member or a structure-side holding member that supports a load caused by an earthquake of a structure;
There are elastic plastic braces arranged at line-symmetric positions via the connecting member, each end fixed to the connecting member, and each other end fixed to either the fixing member or the structure side holding member. And
The transmission of the load caused by the earthquake transmitted from the structure-side holding member to the fixing member via the connecting member by the elastic-plastic braces arranged in line symmetry is the compression of one elastic-plastic brace and the tension of the other elastic-plastic brace. Is an elastoplastic brace anti-seismic structure configured to be performed simultaneously,
A gap between either the fixing member or the structure-side holding member and the connecting member is filled between one of the fixing member or the structure-side holding member and the connecting member, and thermal expansion of the structure is performed. Interposing a guide means for guiding relative movement in the axial direction of the fixing member involved ,
The guide means is an elastic-plastic brace anti-seismic structure characterized by comprising a guide roller that can roll around a roller shaft extending in a direction perpendicular to the axial direction of the fixed member .

上記手段によれば、以下のような作用が得られる。   According to the above means, the following operation can be obtained.

地震が発生していない通常時に、構造物が熱膨張して固定部材の軸線方向へ相対移動すると、構造物側保持部材と固定部材との相対移動は、前記固定部材の軸線方向と直角な方向へ延びるローラ軸を中心に転動自在なガイドローラからなるガイド手段によって案内されるので、構造物の熱膨張は許容される。 When the structure is thermally expanded and moves relatively in the axial direction of the fixed member at normal times when no earthquake occurs, the relative movement between the structure-side holding member and the fixed member is perpendicular to the axial direction of the fixed member. The structure is allowed to thermally expand because it is guided by guide means composed of a guide roller that can roll around a roller shaft extending to the center .

一方、地震が発生して固定部材と構造物側保持部材が水平方向へ相対移動した場合、構造物の荷重が連結部材及び弾塑性ブレースを介して固定部材に伝えられるが、この時の荷重の伝達は、線対称に配置された弾塑性ブレースによって、一方の弾塑性ブレースが引張荷重を受けるときには他方の弾塑性ブレースが圧縮荷重を受けるように同時に伝えられ、該弾塑性ブレースには圧縮荷重と引張荷重が繰り返し作用することになり、弾塑性ブレースが延び変形或いは座屈変形することによって防震が行われる。   On the other hand, when an earthquake occurs and the fixing member and the structure-side holding member move relative to each other in the horizontal direction, the load of the structure is transmitted to the fixing member via the connecting member and the elastic-plastic brace. Transmission is transmitted simultaneously by an elastic-plastic brace arranged in line symmetry so that when one elastic-plastic brace receives a tensile load, the other elastic-plastic brace receives a compressive load. The tensile load is repeatedly applied, and the elastoplastic brace extends and deforms or buckles, thereby preventing the earthquake.

ここで、仮に、ガイド手段が設けられていないと、前記構造物の熱膨張を許容するために、前記固定部材又は構造物側保持部材のいずれか一方と連結部材との間に隙間をあけておく必要があることから、該固定部材又は構造物側保持部材のいずれか一方と連結部材とが互いに接触し、大きな衝撃力が発生し、連結部材に過大な負荷がかかる虞があるが、前記固定部材又は構造物側保持部材のいずれか一方と連結部材との間にはガイド手段が介装され、前記隙間が埋められているため、地震発生時にも、大きな衝撃力が発生せず、連結部材に過大な負荷がかかる心配もない。   Here, if no guide means is provided, a gap is provided between one of the fixing member or the structure-side holding member and the connecting member in order to allow thermal expansion of the structure. Since either the fixing member or the structure-side holding member and the connecting member are in contact with each other and a large impact force is generated, an excessive load may be applied to the connecting member. A guide means is interposed between either the fixing member or the structure-side holding member and the connecting member, and the gap is filled, so that a large impact force is not generated even in the event of an earthquake. There is no worry of overloading the members.

本発明の弾塑性ブレース防震構造によれば、小型で簡略な構造にて構造物の熱膨張に起因する変位を許容しつつ地震力を確実に吸収し得、且つ地震発生時に大きな衝撃力が発生して連結部材に過大な負荷がかかることを防止し得るという優れた効果を奏し得る。   According to the elastic-plastic brace seismic isolation structure of the present invention, a small and simple structure can absorb a seismic force while allowing displacement due to thermal expansion of the structure, and a large impact force is generated when an earthquake occurs. And the outstanding effect that it can prevent that an excessive load is applied to a connection member can be show | played.

構造物として吊り下げ式ボイラのボイラ本体の防震に適用した本発明の弾塑性ブレース防震構造の実施例を示す全体概要構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole schematic block diagram which shows the Example of the elastic-plastic brace seismic-proof structure of this invention applied to the earthquake-proof of the boiler main body of a suspension type boiler as a structure. 本発明の弾塑性ブレース防震構造の実施例を示す平断面図であって、図1のII−II矢視相当図である。It is a plane sectional view showing the example of the elastic-plastic brace seismic isolation structure of the present invention, and is a view corresponding to II-II in FIG. 本発明の弾塑性ブレース防震構造の実施例を示す側断面図であって、(a)は図2のIII−III矢視相当図、(b)は構造物が熱膨張した状態を示す図である。It is a sectional side view which shows the Example of the elastic-plastic brace seismic isolation structure of this invention, Comprising: (a) is a III-III arrow equivalent view of FIG. 2, (b) is a figure which shows the state which the structure thermally expanded. is there. 本発明の弾塑性ブレース防震構造の実施例におけるガイド手段を示す斜視図である。It is a perspective view which shows the guide means in the Example of the elastic-plastic brace anti-seismic structure of this invention. (a)は弾塑性ブレースを組み立てる状態を示す斜視図、(b)は組み立てた弾塑性ブレースの斜視図、(c)は図5(b)のVc−Vc断面図である。(A) is a perspective view which shows the state which assembles an elastic-plastic brace, (b) is a perspective view of the assembled elastic-plastic brace, (c) is Vc-Vc sectional drawing of FIG.5 (b). 弾塑性ブレースの詳細構成を示す側面図である。It is a side view which shows the detailed structure of an elastic-plastic brace. 本発明の弾塑性ブレース防震構造の参考例を示す平断面図であって、図1のII−II矢視相当図である。It is a plane sectional view which shows the reference example of the elastic-plastic brace seismic-proof structure of this invention, Comprising: It is the II-II arrow equivalent view of FIG. 本発明の弾塑性ブレース防震構造の参考例を示す側断面図であって、(a)は図7のVIII−VIII矢視相当図、(b)は構造物が熱膨張した状態を示す図である。It is a sectional side view which shows the reference example of the elastic-plastic brace seismic-proof structure of this invention, Comprising: (a) is a VIII-VIII arrow equivalent figure of FIG. 7, (b) is a figure which shows the state which the structure expanded thermally. is there.

以下、本発明の実施の形態を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1〜図6は構造物として吊り下げ式ボイラのボイラ本体の防震に適用した本発明の弾塑性ブレース防震構造の実施例であって、図1に示す防震すべき構造物であるボイラ本体1は、その地震による荷重を支持する固定部材としてのボイラ架構2によって吊り下げられ、該ボイラ架構2は、前記ボイラ本体1を取り囲むように立設される複数の架構鉄骨柱3と、該架構鉄骨柱3間を接続する水平方向へ延びる横鉄骨4とによって高強度に形成されている。   1 to 6 show an embodiment of the elastoplastic brace seismic isolation structure of the present invention applied to the seismic isolation of a boiler body of a suspended boiler as a structure. Is suspended by a boiler frame 2 as a fixing member for supporting a load caused by the earthquake, and the boiler frame 2 includes a plurality of frame steel columns 3 standing so as to surround the boiler body 1 and the frame steel frame. It is formed with high strength by the horizontal steel frame 4 extending in the horizontal direction connecting the columns 3.

前記ボイラ本体1には、構造物側保持部材としてのボイラ鉄骨柱5を一体に設け、該ボイラ鉄骨柱5を取り囲んで連結部材6を配置すると共に、該連結部材6を介してボイラ鉄骨柱5の鉛直な軸線Oを中心に線対称の位置に弾塑性ブレース10を配置し、該各弾塑性ブレース10の一端を連結部材6に固定し、各弾塑性ブレース10の他端を前記固定部材としてのボイラ架構2の架構鉄骨柱3に固定し、前記線対称に配置された弾塑性ブレース10によりボイラ鉄骨柱5から連結部材6を介して架構鉄骨柱3に伝えられる地震による荷重の伝達が、一方の弾塑性ブレース10の圧縮と他方の弾塑性ブレース10の引張とにより同時に行われるよう構成してある。   The boiler body 1 is integrally provided with a boiler steel column 5 as a structure-side holding member, and a connecting member 6 is disposed so as to surround the boiler steel column 5, and the boiler steel column 5 is interposed via the connecting member 6. An elastic-plastic brace 10 is arranged at a line-symmetrical position about the vertical axis O of the above-mentioned, one end of each elastic-plastic brace 10 is fixed to the connecting member 6, and the other end of each elastic-plastic brace 10 is used as the fixing member. The transmission of the load due to the earthquake transmitted from the boiler steel column 5 to the frame steel column 3 via the connecting member 6 by the elastic-plastic braces 10 fixed to the frame steel column 3 of the boiler frame 2 of the above-described line symmetry, The elasto-plastic brace 10 is compressed and the other elasto-plastic brace 10 is pulled simultaneously.

前記弾塑性ブレース10は、図5(a)、図5(b)、図5(c)、及び図6に示す如く、断面十字フィン状の低降伏点鋼材からなる荷重受部11と、一般鋼材によって前記荷重受部11よりも各フィンの幅寸法及び厚みを大きく形成して前記荷重受部11の一端に溶接固定した端部部材12と、前記荷重受部11の他端に溶接固定した端部部材13とからなる芯材14を有している。   As shown in FIGS. 5A, 5B, 5C, and 6, the elastoplastic brace 10 includes a load receiving portion 11 made of a low yield point steel material having a cross-shaped cross-section, An end member 12 which is formed by welding a width and thickness of each fin larger than that of the load receiving portion 11 and is welded and fixed to one end of the load receiving portion 11 and is fixed to the other end of the load receiving portion 11 by welding. It has a core member 14 composed of an end member 13.

更に、図5(a)〜図5(c)に示すように、前記芯材14の四隅部には、前記端部部材12,13の各フィンの幅と同等の幅を有する山形鋼(L字状断面)からなる座屈防止材15を配置してあり、該座屈防止材15は、前記端部部材12と端部部材13の一部に跨がる長さを有している。又、前記荷重受部11の各フィンの外側には前記端部部材12,13のフィンの厚さと同等の厚さを有するスペーサ16を配置してあり、前記座屈防止材15によって端部部材12,13の一部とスペーサ16を挟み込み、締結部材としての組立ボルト・ナット17(高力ボルト・ナット)で締め付けることにより、前記荷重受部11と端部部材12,13とスペーサ16とを一体に組み立てるようにしてある。更に又、前記座屈防止材15の一端が前記端部部材12の一部に組立ボルト・ナット17によって取り付けられる位置には、長孔18が形成されている。   Further, as shown in FIGS. 5A to 5C, angle steel (L) having a width equal to the width of each fin of the end members 12 and 13 is formed at the four corners of the core member 14. The buckling prevention material 15 which consists of a character-shaped cross section is arrange | positioned, and this buckling prevention material 15 has the length which straddles a part of the said end member 12 and the end member 13. As shown in FIG. Spacers 16 having a thickness equivalent to the fins of the end members 12 and 13 are arranged outside the fins of the load receiving portion 11, and the end members are supported by the buckling prevention member 15. 12 and 13 are sandwiched between the spacer 16 and tightened with an assembly bolt / nut 17 (high-strength bolt / nut) as a fastening member, so that the load receiving portion 11, the end members 12, 13 and the spacer 16 are connected. It is designed to be assembled together. Further, a long hole 18 is formed at a position where one end of the buckling prevention member 15 is attached to a part of the end member 12 by an assembly bolt and nut 17.

従って、前記座屈防止材15により端部部材12,13の一部とスペーサ16を挟んだ状態で前記組立ボルト・ナット17による締め付けを行うと、図5(c)に示すように、前記荷重受部11と座屈防止材15との間には隙間Sが形成されているため、前記端部部材12,13間に引張又は圧縮の荷重が作用した場合には、前記荷重受部11が引張変形又は圧縮変形するようにしてある。この時、前記座屈防止材15は長孔18によって前記荷重受部11の長さの変化は許容し、前記荷重受部11が座屈しようとする荷重に対しては座屈防止材15が抵抗するようにしてある。   Therefore, when the assembly bolts and nuts 17 are tightened in a state in which a part of the end members 12 and 13 and the spacer 16 are sandwiched by the buckling prevention member 15, as shown in FIG. Since a gap S is formed between the receiving portion 11 and the buckling prevention member 15, when a tensile or compressive load acts between the end members 12 and 13, the load receiving portion 11 is Tensile deformation or compression deformation is performed. At this time, the buckling prevention material 15 allows a change in the length of the load receiving portion 11 due to the long hole 18, and the buckling prevention material 15 against the load that the load receiving portion 11 is to buckle. I try to resist.

又、前記一方の端部部材12の延長方向端面には、図5(b)及び図6に示す如く、前記端部部材12と同一の断面形状の一般鋼で形成した短い連結駒19を配置してあり、該連結駒19は、各フィンを挟むように配置した連結プレート20と組立ボルト・ナット17によって前記端部部材12に対し着脱可能に取り付けるようにしてある。   In addition, a short connecting piece 19 made of general steel having the same cross-sectional shape as the end member 12 is disposed on the end surface in the extending direction of the one end member 12 as shown in FIGS. The connecting piece 19 is detachably attached to the end member 12 by a connecting plate 20 and an assembly bolt / nut 17 arranged so as to sandwich each fin.

前記弾塑性ブレース10の一方の端部に取り付けた連結駒19の先端を、前記架構鉄骨柱3に対し溶接により固定すると共に、前記弾塑性ブレース10の他方の端部部材13の先端を、連結部材6の後述するスライド板21に対し溶接により固定するようにしてある。   The tip of the connecting piece 19 attached to one end of the elastoplastic brace 10 is fixed to the frame steel column 3 by welding, and the tip of the other end member 13 of the elastoplastic brace 10 is connected to the end. The member 6 is fixed to a slide plate 21 described later by welding.

一方、前記連結部材6は、図2に示す如く、前記ボイラ鉄骨柱5の前後幅(図2では上下の幅)よりも大きい幅を有したスライド板21を備え、該スライド板21の前後端部の相互間を、図6に示す如く、上下の締結ボルト22及びナット23により着脱可能に締結してなる構成を有しており、前記スライド板21とボイラ鉄骨柱5との間に隙間が形成されるようにナット23の締め付けを行っている。   On the other hand, as shown in FIG. 2, the connecting member 6 includes a slide plate 21 having a width larger than the front-rear width of the boiler steel column 5 (the vertical width in FIG. 2). As shown in FIG. 6, the parts are detachably fastened by upper and lower fastening bolts 22 and nuts 23, and there is a gap between the slide plate 21 and the boiler steel column 5. The nut 23 is tightened so as to be formed.

そして、前記ボイラ鉄骨柱5と連結部材6のスライド板21との間に、該ボイラ鉄骨柱5と連結部材6のスライド板21との隙間を埋め且つ前記構造物としてのボイラ本体1の熱膨張に伴う前記架構鉄骨柱3の軸線方向への相対移動を案内するガイド手段24を介装してある。   And between the said boiler steel column 5 and the slide plate 21 of the connection member 6, the clearance gap between this boiler steel column 5 and the slide plate 21 of the connection member 6 is filled, and the thermal expansion of the boiler main body 1 as said structure is carried out. The guide means 24 which guides the relative movement to the axial direction of the frame steel column 3 accompanying this is interposed.

本実施例の場合、前記ガイド手段24は、図2、図3(a)、図3(b)及び図4に示す如く、上下方向へ延びるベースプレート25と、該ベースプレート25から側方へ張り出すように所要間隔をあけて配設されるブラケット26と、該ブラケット26間に掛け渡すように前記架構鉄骨柱3の軸線方向と直角な方向へ延びるローラ軸27を中心に転動自在なガイドローラ28とから構成し、前記ベースプレート25をボイラ鉄骨柱5に溶接にて取り付けるようにしてある。   In the case of the present embodiment, the guide means 24 has a base plate 25 that extends in the vertical direction and projects from the base plate 25 to the side as shown in FIGS. 2, 3 (a), 3 (b), and 4. The bracket 26 is disposed at a required interval as described above, and the guide roller is rotatable about a roller shaft 27 extending in a direction perpendicular to the axial direction of the frame steel column 3 so as to be spanned between the brackets 26. 28, and the base plate 25 is attached to the boiler steel column 5 by welding.

尚、前記ガイドローラ28は、図3(a)、図3(b)及び図4に示す例では、上下七段に配置してあるが、この段数は前記ボイラ本体1の熱膨張量に応じて適宜選定することができ、又、各段におけるガイドローラ28は、その軸線方向へ複数に分割する形で配設するようにしても良い。   In the example shown in FIGS. 3 (a), 3 (b), and 4, the guide roller 28 is arranged in seven upper and lower stages. The number of stages depends on the amount of thermal expansion of the boiler body 1. In addition, the guide roller 28 in each stage may be arranged so as to be divided into a plurality of parts in the axial direction.

次に、上記実施例の作用を説明する。   Next, the operation of the above embodiment will be described.

地震が発生していない通常時に、構造物としてのボイラ本体1が熱膨張して、固定部材としてのボイラ架構2の架構鉄骨柱3の軸線方向へ相対移動すると、構造物側保持部材としてのボイラ鉄骨柱5と架構鉄骨柱3との相対移動は、図3(a)に示す状態から、連結部材6のスライド板21に対しガイド手段24のガイドローラ28がローラ軸27を中心に転動することによって、図3(b)に示すように円滑に案内されるので、構造物としてのボイラ本体1の熱膨張は許容される。   When the boiler body 1 as a structure thermally expands and moves relative to the axial direction of the frame steel column 3 of the boiler frame 2 as a fixed member at a normal time when no earthquake occurs, the boiler as a structure-side holding member The relative movement between the steel column 5 and the frame steel column 3 is such that the guide roller 28 of the guide means 24 rolls around the roller shaft 27 with respect to the slide plate 21 of the connecting member 6 from the state shown in FIG. As a result, the guide is smoothly guided as shown in FIG. 3B, so that thermal expansion of the boiler body 1 as a structure is allowed.

一方、地震が発生して、前記固定部材としてのボイラ架構2の架構鉄骨柱3と、前記構造物側保持部材としてのボイラ鉄骨柱5が水平方向へ相対移動した場合、構造物としてのボイラ本体1の荷重が連結部材6及び弾塑性ブレース10を介して架構鉄骨柱3に伝えられるが、この時の荷重の伝達は、線対称に配置された弾塑性ブレース10によって、一方の弾塑性ブレース10が引張荷重を受けるときには他方の弾塑性ブレース10が圧縮荷重を受けるように同時に伝えられ、該弾塑性ブレース10には圧縮荷重と引張荷重が繰り返し作用することになり、弾塑性ブレース10が延び変形或いは座屈変形することによって防震が行われる。因みに、上記において、引張荷重と圧縮荷重を同時に受ける線対称の弾塑性ブレース10は、低降伏点鋼材からなる荷重受部11が圧縮荷重で座屈する耐力に比して、引張荷重による延びの耐力の方が大きくなっており、延びの耐力に座屈の耐力が加算された大きい耐荷重によってボイラ本体1の揺れを効果的に防震することができる。このように、線対称の弾塑性ブレース10で引張荷重と圧縮荷重を同時に受けるようにしたことで耐力が高まるため、弾塑性ブレース10は断面寸法を小さくした小型のものとすることができる。   On the other hand, when an earthquake occurs and the frame steel column 3 of the boiler frame 2 as the fixing member and the boiler steel column 5 as the structure-side holding member relatively move in the horizontal direction, the boiler body as the structure 1 is transmitted to the frame steel column 3 via the connecting member 6 and the elastoplastic brace 10, and the transmission of the load at this time is performed by the elastoplastic brace 10 arranged in line symmetry. Is subjected to a compressive load at the same time so that the other elastic-plastic brace 10 receives a compressive load, and the compressive load and the tensile load act repeatedly on the elastic-plastic brace 10, and the elastic-plastic brace 10 extends and deforms. Alternatively, seismic isolation is performed by buckling deformation. Incidentally, in the above, the axisymmetric elastoplastic brace 10 that receives the tensile load and the compressive load at the same time is more resistant to the extension due to the tensile load than the load resistance 11 of the low yield point steel material buckled by the compressive load. Is larger, and the vibration of the boiler body 1 can be effectively damped by a large load resistance obtained by adding the buckling strength to the extension strength. As described above, since the proof strength is increased by simultaneously receiving the tensile load and the compressive load with the axisymmetric elastic-plastic brace 10, the elastic-plastic brace 10 can be made small in size with a reduced cross-sectional dimension.

ここで、仮に、ガイド手段24が設けられていないと、前記構造物としてのボイラ本体1の熱膨張を許容するために、前記ボイラ鉄骨柱5と連結部材6との間に隙間をあけておく必要があることから、該ボイラ鉄骨柱5と連結部材6とが互いに接触し、大きな衝撃力が発生し、連結部材6に過大な負荷がかかる虞があるが、前記ボイラ鉄骨柱5と連結部材6との間にはガイド手段24が介装され、該ガイド手段24のガイドローラ28により前記隙間が埋められているため、地震発生時にも、大きな衝撃力が発生せず、連結部材6に過大な負荷がかかる心配もない。   Here, if the guide means 24 is not provided, a gap is left between the boiler steel column 5 and the connecting member 6 in order to allow thermal expansion of the boiler body 1 as the structure. Since there is a need, the boiler steel column 5 and the connecting member 6 come into contact with each other, a large impact force may be generated, and an excessive load may be applied to the connecting member 6, but the boiler steel column 5 and the connecting member Since the guide means 24 is interposed between them and the gap is filled by the guide roller 28 of the guide means 24, a large impact force is not generated even in the event of an earthquake, and the connecting member 6 is excessively large. There is no need to worry about heavy loads.

こうして、小型で簡略な構造にて構造物としてのボイラ本体1の熱膨張に起因する変位を許容しつつ地震力を確実に吸収し得、且つ地震発生時に大きな衝撃力が発生して連結部材6に過大な負荷がかかることを防止し得る。   Thus, the connecting member 6 can absorb the seismic force reliably while allowing the displacement due to the thermal expansion of the boiler body 1 as a structure with a small and simple structure, and generates a large impact force when the earthquake occurs. It is possible to prevent an excessive load from being applied.

図7、図8(a)及び図8(b)は本発明の弾塑性ブレース防震構造の参考例であって、図中、図1〜図6と同一の符号を付した部分は同一物を表わしており、基本的な構成は図1〜図6に示すものと同様であるが、本参考例の特徴とするところは、図7、図8(a)及び図8(b)に示す如く、ボイラ鉄骨柱5の左右両側面に、断面C字状で且つ内面側に上下方向へ延びる案内路29aが形成されたガイドフレーム29を連結部材として取り付けると共に、弾塑性ブレース10の一端に、前記案内路29aに沿って上下方向へ摺動自在となるよう前記ガイドフレーム29に嵌合するスライド片30を取り付けることにより、ガイド手段24を構成した点にある。   FIG. 7, FIG. 8 (a) and FIG. 8 (b) are reference examples of the elastic-plastic brace seismic-proof structure of the present invention. In the figure, the same reference numerals as those in FIGS. Although the basic configuration is the same as that shown in FIGS. 1 to 6, the features of this reference example are as shown in FIGS. 7, 8 (a) and 8 (b). A guide frame 29 having a C-shaped cross section and a guide path 29a extending in the vertical direction on the inner surface side is attached as a connecting member on both left and right side surfaces of the boiler steel column 5, and at one end of the elastoplastic brace 10, The guide means 24 is configured by attaching a slide piece 30 fitted to the guide frame 29 so as to be slidable in the vertical direction along the guide path 29a.

次に、上記参考例の作用を説明する。   Next, the operation of the reference example will be described.

地震が発生していない通常時に、構造物としてのボイラ本体1が熱膨張して、固定部材としてのボイラ架構2の架構鉄骨柱3の軸線方向へ相対移動すると、構造物側保持部材としてのボイラ鉄骨柱5と架構鉄骨柱3との相対移動は、図8(a)に示す状態から、弾塑性ブレース10の一端に取り付けられたスライド片30に対しガイド手段24のガイドフレーム29が摺動することによって、図8(b)に示すように円滑に案内されるので、構造物としてのボイラ本体1の熱膨張は許容される。   When the boiler body 1 as a structure thermally expands and moves relative to the axial direction of the frame steel column 3 of the boiler frame 2 as a fixed member at a normal time when no earthquake occurs, the boiler as a structure-side holding member The relative movement between the steel column 5 and the frame steel column 3 is such that the guide frame 29 of the guide means 24 slides with respect to the slide piece 30 attached to one end of the elastic-plastic brace 10 from the state shown in FIG. Thus, as shown in FIG. 8 (b), it is guided smoothly, so that thermal expansion of the boiler body 1 as a structure is allowed.

一方、地震が発生して、前記固定部材としてのボイラ架構2の架構鉄骨柱3と、前記構造物側保持部材としてのボイラ鉄骨柱5が水平方向へ相対移動した場合、構造物としてのボイラ本体1の荷重が連結部材としてのガイドフレーム29及び一端にスライド片30が取り付けられた弾塑性ブレース10を介して架構鉄骨柱3に伝えられるが、この時の荷重の伝達は、線対称に配置された弾塑性ブレース10によって、一方の弾塑性ブレース10が引張荷重を受けるときには他方の弾塑性ブレース10が圧縮荷重を受けるように同時に伝えられ、該弾塑性ブレース10には圧縮荷重と引張荷重が繰り返し作用することになり、弾塑性ブレース10が延び変形或いは座屈変形することによって防震が行われる。因みに、上記において、引張荷重と圧縮荷重を同時に受ける線対称の弾塑性ブレース10は、低降伏点鋼材からなる荷重受部11が圧縮荷重で座屈する耐力に比して、引張荷重による延びの耐力の方が大きくなっており、延びの耐力に座屈の耐力が加算された大きい耐荷重によってボイラ本体1の揺れを効果的に防震することができる。このように、線対称の弾塑性ブレース10で引張荷重と圧縮荷重を同時に受けるようにしたことで耐力が高まるため、弾塑性ブレース10は断面寸法を小さくした小型のものとすることができる。   On the other hand, when an earthquake occurs and the frame steel column 3 of the boiler frame 2 as the fixing member and the boiler steel column 5 as the structure-side holding member relatively move in the horizontal direction, the boiler body as the structure 1 is transmitted to the frame steel column 3 via a guide frame 29 as a connecting member and an elastoplastic brace 10 having a slide piece 30 attached to one end. The transmission of the load at this time is arranged line-symmetrically. When one elastic-plastic brace 10 receives a tensile load, the other elastic-plastic brace 10 is simultaneously transmitted so that the other elastic-plastic brace 10 receives a compressive load. The elastic-plastic brace 10 is repeatedly subjected to a compressive load and a tensile load. As a result, the elastoplastic brace 10 extends and deforms or buckles, so that the vibration is prevented. Incidentally, in the above, the axisymmetric elastoplastic brace 10 that receives the tensile load and the compressive load at the same time is more resistant to the extension due to the tensile load than the load resistance 11 of the low yield point steel material buckled by the compressive load. Is larger, and the vibration of the boiler body 1 can be effectively damped by a large load resistance obtained by adding the buckling strength to the extension strength. As described above, since the proof strength is increased by simultaneously receiving the tensile load and the compressive load with the axisymmetric elastic-plastic brace 10, the elastic-plastic brace 10 can be made small in size with a reduced cross-sectional dimension.

ここで、前記ボイラ鉄骨柱5と弾塑性ブレース10との間にはガイド手段24が介装され、該ガイド手段24のガイドフレーム29とスライド片30との隙間は小さく設定することができるため、地震発生時にも、衝撃力を抑えることが可能となり、連結部材としてのガイドフレーム29に過大な負荷がかかる心配もない。   Here, a guide means 24 is interposed between the boiler steel column 5 and the elastoplastic brace 10, and the gap between the guide frame 29 and the slide piece 30 of the guide means 24 can be set small. Even when an earthquake occurs, it is possible to suppress the impact force, and there is no fear that an excessive load is applied to the guide frame 29 as a connecting member.

こうして、図7、図8(a)及び図8(b)に示す参考例においても、小型で簡略な構造にて構造物としてのボイラ本体1の熱膨張に起因する変位を許容しつつ地震力を確実に吸収し得、且つ地震発生時に大きな衝撃力が発生して連結部材としてのガイドフレーム29に過大な負荷がかかることを防止し得る。   Thus, also in the reference examples shown in FIGS. 7, 8A and 8B, the seismic force while allowing displacement due to the thermal expansion of the boiler body 1 as a structure with a small and simple structure. Can be reliably absorbed, and it is possible to prevent an excessive load from being applied to the guide frame 29 as a connecting member due to the generation of a large impact force when an earthquake occurs.

尚、本発明の弾塑性ブレース防震構造は、上述の実施例にのみ限定されるものではなく、固定部材としてのボイラ架構の架構鉄骨柱と、構造物側保持部材としてのボイラ鉄骨柱との位置関係を入れ替え、固定部材の側に連結部材を配置し、該連結部材に一端が固定される弾塑性ブレースの他端を構造物側保持部材に固定する形式のものにも適用可能なこと等、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The elastic-plastic brace seismic isolation structure of the present invention is not limited to the above-described embodiment, and the positions of the steel frame column of the boiler frame as a fixing member and the boiler steel column as a structure-side holding member Replacing the relationship, arranging a connecting member on the side of the fixing member, and being applicable to the type of fixing the other end of the elastic-plastic brace whose one end is fixed to the connecting member to the structure-side holding member, etc. In addition, it goes without saying that various changes can be made without departing from the scope of the present invention.

1 ボイラ本体(構造物)
2 ボイラ架構(固定部材)
3 架構鉄骨柱(固定部材)
5 ボイラ鉄骨柱(構造物側保持部材)
6 連結部材
10 弾塑性ブレース
11 荷重受部
15 座屈防止材
17 組立ボルト・ナット
19 連結駒
20 連結プレート
21 スライド板
22 締結ボルト
23 ナット
24 ガイド手段
25 ベースプレート
26 ブラケット
27 ローラ軸
28 ガイドローラ
O 軸線
1 Boiler body (structure)
2 Boiler frame (fixed member)
3 Frame steel column (fixing member)
5 Boiler steel column (structure-side holding member)
6 connecting member 10 elastic-plastic brace 11 load receiving portion 15 buckling prevention material 17 assembly bolt / nut 19 connecting piece 20 connecting plate 21 slide plate 22 fastening bolt 23 nut 24 guide means 25 base plate 26 bracket 27 roller shaft 28 guide roller O axis

Claims (1)

構造物の地震による荷重を支持する固定部材又は構造物側保持部材のいずれか一方を取り囲んで配置される連結部材と、
該連結部材を介して線対称の位置に配置され、各一端が連結部材に固定され、各他端が前記固定部材又は構造物側保持部材のいずれか他方に固定された弾塑性ブレースとを有し、
前記線対称に配置された弾塑性ブレースにより構造物側保持部材から連結部材を介して固定部材に伝えられる地震による荷重の伝達が、一方の弾塑性ブレースの圧縮と他方の弾塑性ブレースの引張とにより同時に行われるよう構成した弾塑性ブレース防震構造であって、
前記固定部材又は構造物側保持部材のいずれか一方と連結部材との間に、該固定部材又は構造物側保持部材のいずれか一方と連結部材との隙間を埋め且つ前記構造物の熱膨張に伴う前記固定部材の軸線方向への相対移動を案内するガイド手段を介装し
前記ガイド手段を、前記固定部材の軸線方向と直角な方向へ延びるローラ軸を中心に転動自在なガイドローラによって構成したことを特徴とする弾塑性ブレース防震構造。
A connecting member arranged to surround one of the fixing member or the structure-side holding member that supports the load caused by the earthquake of the structure;
There are elastic plastic braces arranged at line-symmetric positions via the connecting member, each end fixed to the connecting member, and each other end fixed to either the fixing member or the structure side holding member. And
The transmission of the load caused by the earthquake transmitted from the structure-side holding member to the fixing member via the connecting member by the elastic-plastic braces arranged in line symmetry is the compression of one elastic-plastic brace and the tension of the other elastic-plastic brace. Is an elastoplastic brace anti-seismic structure configured to be performed simultaneously,
A gap between either the fixing member or the structure-side holding member and the connecting member is filled between one of the fixing member or the structure-side holding member and the connecting member, and thermal expansion of the structure is performed. Interposing a guide means for guiding relative movement in the axial direction of the fixing member involved ,
An elastic-plastic brace anti-seismic structure characterized in that the guide means is constituted by a guide roller which can roll around a roller shaft extending in a direction perpendicular to the axial direction of the fixed member .
JP2010245984A 2010-11-02 2010-11-02 Elastic-plastic brace anti-seismic structure Active JP5659703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010245984A JP5659703B2 (en) 2010-11-02 2010-11-02 Elastic-plastic brace anti-seismic structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010245984A JP5659703B2 (en) 2010-11-02 2010-11-02 Elastic-plastic brace anti-seismic structure

Publications (2)

Publication Number Publication Date
JP2012097816A JP2012097816A (en) 2012-05-24
JP5659703B2 true JP5659703B2 (en) 2015-01-28

Family

ID=46389958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010245984A Active JP5659703B2 (en) 2010-11-02 2010-11-02 Elastic-plastic brace anti-seismic structure

Country Status (1)

Country Link
JP (1) JP5659703B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108592000B (en) * 2018-02-12 2023-07-14 中国恩菲工程技术有限公司 Vibration reduction assembly for boiler, boiler and vibration reduction method for heating surface of boiler
CN108222628B (en) * 2018-03-26 2023-05-09 郑州航空工业管理学院 Inter-column energy consumption and shock absorption device for silo

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2677801B2 (en) * 1987-11-09 1997-11-17 電源開発株式会社 Boiler equipment
JPH0214509U (en) * 1988-07-14 1990-01-30
JPH0820041B2 (en) * 1990-10-26 1996-03-04 株式会社東芝 Exhaust heat recovery boiler
JP2006031892A (en) * 2004-07-21 2006-02-02 Furuno Electric Co Ltd Electronic equipment supporting structure
JP4669321B2 (en) * 2005-05-24 2011-04-13 住金関西工業株式会社 Buckling-restrained axial force bearing member
JP5590994B2 (en) * 2010-07-01 2014-09-17 株式会社Ihi Seismic construction method and structure using elastoplastic brace

Also Published As

Publication number Publication date
JP2012097816A (en) 2012-05-24

Similar Documents

Publication Publication Date Title
KR101263078B1 (en) Connection metal fitting and building with the same
JP5285452B2 (en) Buckling-restrained brace and load-bearing frame using the same
JP4729134B1 (en) Metal plate for vibration control and building structure
KR100995937B1 (en) A seismic retrofit system for reinforced concrete structures
JP2017061808A (en) Earthquake resistant wall structure
JP2013057207A (en) Exposure type column base structure of iron frame column
JP2007002515A (en) Seismically retrofitting structure for building
JP6126932B2 (en) Function-separated vibration control structure for bridges
JP5659703B2 (en) Elastic-plastic brace anti-seismic structure
JP5590994B2 (en) Seismic construction method and structure using elastoplastic brace
JP5483525B2 (en) Seismic wall
JP2000274107A (en) Elastoplastic energy absorbing body
JP2001336304A (en) Vibration control device and vibration control structure
JP6706071B2 (en) Function-separated damping structure for bridges
JP2010043415A (en) Seismic control device
KR101294289B1 (en) Buckling restrained brace of dry type, and manufacturing method for the same
JP7362534B2 (en) energy absorbing material
JP4959636B2 (en) Damping member
JP4274082B2 (en) Seismic reinforcement equipment for buildings
JP2014145417A (en) Vibration-proof structure of structure
JP5953175B2 (en) Vibration suppression suspension structure
JP6977313B2 (en) Damping structure of the structure
JP2010007395A (en) Vibration control wall using corrugated steel plate
JP4971697B2 (en) Load bearing wall frame
KR101663298B1 (en) Shear panel for restoring original form

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141117

R151 Written notification of patent or utility model registration

Ref document number: 5659703

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250