JP5658342B2 - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
JP5658342B2
JP5658342B2 JP2013207102A JP2013207102A JP5658342B2 JP 5658342 B2 JP5658342 B2 JP 5658342B2 JP 2013207102 A JP2013207102 A JP 2013207102A JP 2013207102 A JP2013207102 A JP 2013207102A JP 5658342 B2 JP5658342 B2 JP 5658342B2
Authority
JP
Japan
Prior art keywords
phase
voltage
output
current
coordinate conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013207102A
Other languages
Japanese (ja)
Other versions
JP2013258912A (en
Inventor
徹郎 児島
徹郎 児島
誠司 石田
誠司 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2013207102A priority Critical patent/JP5658342B2/en
Publication of JP2013258912A publication Critical patent/JP2013258912A/en
Application granted granted Critical
Publication of JP5658342B2 publication Critical patent/JP5658342B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Description

本発明は、交流電動機を駆動する電力変換装置に関する。特に交流電源とし、交流電力を直流電力に変換する電力変換器(順変換器)と、直流電力を交流電力に変換して交流電動機を駆動する電力変換器(逆変換器)より構成される電力変換装置に関する。   The present invention relates to a power conversion device that drives an AC motor. In particular, the power is composed of a power converter (forward converter) that converts AC power into DC power, and a power converter (reverse converter) that drives the AC motor by converting DC power into AC power. The present invention relates to a conversion device.

例えば単相交流架線を電源とする電気鉄道において、その電力変換装置は単相交流電力を直流電力に変換する電力変換器(順変換器、コンバータ)と、直流電力を交流電力に変換して電動機を駆動する電力変換器(逆変換器、インバータ)から構成される。単相交流電力を整流する以上、原理的に順変換器の供給する直流電力は電源周波数の2倍で脈動してしまう。順変換器と逆変換器の間に配置する平滑化コンデンサの容量を大きくすることで、コンデンサ電圧の脈動を低減することができるが、設置容積や質量、コストなどの面から平滑化コンデンサの容量は制約を受けるため、電圧脈動を完全に解消することはできない。   For example, in an electric railway using a single-phase AC overhead line as a power source, the power conversion device includes a power converter (forward converter, converter) that converts single-phase AC power into DC power, and an electric motor that converts DC power into AC power. It is comprised from the power converter (inverse converter, inverter) which drives. As long as the single-phase AC power is rectified, the DC power supplied by the forward converter in principle pulsates at twice the power supply frequency. By increasing the capacity of the smoothing capacitor placed between the forward converter and the inverse converter, the pulsation of the capacitor voltage can be reduced. However, the capacity of the smoothing capacitor can be reduced in terms of installation volume, mass, and cost. Since voltage is limited, voltage pulsation cannot be completely eliminated.

コンデンサ電圧が脈動している場合の弊害を示す。コンデンサ電圧Ecf’が直流成分Ecfを中心として、実効値振幅ΔEcf、角周波数ω0で脈動しているものとし、次のように定める。

Figure 0005658342
変調率実効値Ym、インバータ角周波数ω1とし、インバータU相変調率ymuを次のようにおく。
Figure 0005658342
実際のインバータU相出力電圧vmuは、U相変調率ymuとコンデンサ電圧Ecf’の積であるから、式1と式2の積を求めると、
Figure 0005658342
となる。式3より、インバータ角周波数ω1成分(基本波成分)のほかに、インバータ角周波数ω1と、電圧脈動角周波数ω0の和ω1+ω0と差ω1−ω0の成分が生じていることが分かる。モータは印加する周波数が高くなるにつれてインピーダンスが大きくなる性質を持つ。逆に低周波成分についてはインピーダンスが小さくなる。このためインバータ角周波数ω1が電圧脈動角周波数ω0に接近すると両者の差ω1−ω0が小さくなり、振幅ΔEcf・Ymが微小であっても無視できない電流が流れてしまう。このようなインバータ角周波数が電圧脈動角周波数に接近したときに発生する低周波脈動をビートノイズと呼ぶ。 This shows the adverse effects when the capacitor voltage is pulsating. The capacitor voltage Ecf ′ is assumed to pulsate around the DC component Ecf with an effective value amplitude ΔEcf and an angular frequency ω0, and is determined as follows.
Figure 0005658342
The modulation factor effective value Ym and the inverter angular frequency ω1 are set, and the inverter U-phase modulation factor ymu is set as follows.
Figure 0005658342
Since the actual inverter U-phase output voltage vmu is the product of the U-phase modulation factor ymu and the capacitor voltage Ecf ′, when the product of Equation 1 and Equation 2 is obtained,
Figure 0005658342
It becomes. From equation 3, it can be seen that in addition to the inverter angular frequency ω1 component (fundamental wave component), there are components of the inverter angular frequency ω1 and the sum ω1 + ω0 and the difference ω1−ω0 of the voltage pulsation angular frequency ω0. The motor has the property that the impedance increases as the applied frequency increases. On the other hand, the impedance is low for low frequency components. For this reason, when the inverter angular frequency ω1 approaches the voltage pulsation angular frequency ω0, the difference ω1−ω0 between the two becomes small, and even if the amplitude ΔEcf · Ym is very small, a non-negligible current flows. Such low frequency pulsation that occurs when the inverter angular frequency approaches the voltage pulsation angular frequency is called beat noise.

このようなビートノイズ現象は古くから知られており、その対策技術もいくつか存在する。たとえば特許文献1記載の発明のように、コンデンサ電圧を検出し、コンデンサ電圧の脈動を打ち消すように変調率(パルス幅)を補正することで、ビートノイズを解消できる技術が知られている。特許文献1記載の発明は、式4に示すように変調率実効値Ymをコンデンサ電圧の直流成分Ecfで乗じ、コンデンサ電圧Ecf’で除算することで、補正した変調率ymu’を求める。

Figure 0005658342
Figure 0005658342
となる。式5より、出力電圧vmu’に含まれる周波数成分は基本波成分(インバータ角周波数ω1成分)のみとなり、ビートノイズの発生を完全に抑制できることが分かる。 Such a beat noise phenomenon has been known for a long time, and there are some countermeasure techniques. For example, as in the invention described in Patent Document 1, there is known a technique capable of eliminating beat noise by detecting a capacitor voltage and correcting a modulation rate (pulse width) so as to cancel the pulsation of the capacitor voltage. In the invention described in Patent Document 1, the corrected modulation factor ymu ′ is obtained by multiplying the modulation factor effective value Ym by the DC component Ecf of the capacitor voltage and dividing by the capacitor voltage Ecf ′ as shown in Equation 4.
Figure 0005658342
Figure 0005658342
It becomes. From Equation 5, it can be seen that the frequency component included in the output voltage vmu ′ is only the fundamental wave component (inverter angular frequency ω1 component), and the occurrence of beat noise can be completely suppressed.

しかし、電気鉄道で用いられている電動機駆動用電力変換器のように変調率100%まで使用する場合、変調率はこれ以上操作できないので特許文献1記載の技術を適用することができない。このような用途に対し、たとえば特許文献2記載の発明のように、コンデンサ電圧の脈動成分を検出し、インバータ角周波数を操作することでビートノイズを解消できる技術が知られている。特許文献2記載の発明では、式1より、コンデンサ電圧の脈動成分を検出し、ω0/Ecfを乗じたものをインバータ角周波数の操作量Δω1とする。

Figure 0005658342
式6を時間積分して位相の操作量に変換し、インバータU相変調率ymu’を書き直すと次のようになる。
Figure 0005658342
ここでコンデンサ電圧の脈動振幅ΔEcfは直流成分Ecfに対して十分小さい(ΔEcf≪Ecf)とすると、次式のように近似できる。
Figure 0005658342
式1と式4の積より、インバータU相出力電圧vmu’を求めると、
Figure 0005658342
となる。なお微小量ΔEcfの二乗項は無視できるものとして近似した。式9より、インバータ角周波数ω1と電圧脈動角周波数ω0の差の成分ω1−ω0は消え、ビートノイズの発生を抑制できることが分かる。ただし、式9と式3を比較すると和の成分ω1+ω0の振幅が2倍に増加していることが分かる。しかし、モータは印加する周波数が高くなるにつれてインピーダンスが大きくなるため、和の成分のノイズ電流は無視できる。 However, in the case of using up to a modulation rate of 100% as in a power converter for driving an electric motor used in an electric railway, the modulation rate cannot be operated any more, so the technique described in Patent Document 1 cannot be applied. For such applications, for example, as in the invention described in Patent Document 2, a technique is known in which beat noise can be eliminated by detecting a pulsating component of a capacitor voltage and operating an inverter angular frequency. In the invention described in Patent Document 2, the pulsation component of the capacitor voltage is detected from Equation 1 and multiplied by ω0 / Ecf is set as the operation amount Δω1 of the inverter angular frequency.
Figure 0005658342
Equation 6 is time-integrated and converted into a phase manipulated variable, and the inverter U-phase modulation factor ymu ′ is rewritten as follows.
Figure 0005658342
Here, assuming that the pulsation amplitude ΔEcf of the capacitor voltage is sufficiently small (ΔEcf << Ecf) with respect to the DC component Ecf, it can be approximated by the following equation.
Figure 0005658342
From the product of Equation 1 and Equation 4, the inverter U-phase output voltage vmu ′ is obtained.
Figure 0005658342
It becomes. The square term of the minute amount ΔEcf was approximated as negligible. From Equation 9, it can be seen that the component ω1-ω0 of the difference between the inverter angular frequency ω1 and the voltage pulsation angular frequency ω0 disappears and the occurrence of beat noise can be suppressed. However, comparing Equation 9 with Equation 3, it can be seen that the amplitude of the sum component ω1 + ω0 has doubled. However, since the impedance of the motor increases as the applied frequency increases, the noise current of the sum component can be ignored.

以上のように、特許文献1および特許文献2記載の発明は、検出したコンデンサ電圧を用いてインバータの変調率(パルス幅)もしくはインバータ角周波数を操作することで、モータ電流に発生する低周波脈動(ビートノイズ)を抑制する技術である。なお、モータ電流の低周波脈動を抑制しても、もともとのコンデンサ電圧の脈動は解消できない。これら2つの技術はフィードフォワード制御であり、コンデンサ電圧の検出やインバータ制御出力に誤差や遅延が生じると、モータ電流の低周波脈動を抑制し切れずに脈動が残ってしまったり、あるいは操作量が過剰で逆に不安定になってしまう可能性がある。   As described above, the inventions described in Patent Document 1 and Patent Document 2 use the detected capacitor voltage to operate the inverter modulation rate (pulse width) or inverter angular frequency, thereby generating low-frequency pulsation generated in the motor current. This is a technology for suppressing (beat noise). Even if the low frequency pulsation of the motor current is suppressed, the original pulsation of the capacitor voltage cannot be eliminated. These two technologies are feed-forward control. If an error or delay occurs in the detection of the capacitor voltage or the inverter control output, the low-frequency pulsation of the motor current may not be suppressed and the pulsation may remain or the operation amount may be reduced. On the contrary, it may become unstable.

これに対し、特許文献3記載の発明は、実際に低周波脈動が発生するモータ電流を検出し、抽出した脈動成分に応じてインバータ角周波数を操作することで、ビートノイズ抑制をフィードバック制御で構成する技術である。実効値振幅Im、インバータ角周波数ω1とし、インバータ出力電圧を位相基準とした場合の電流位相をθとし、モータ三相交流電流を次のようにおく。

Figure 0005658342
式11に示すように、モータ三相交流電流に対し、インバータ出力電圧を位相基準として座標変換を行うと、モータ電流の実効値振幅を得ることができる。
Figure 0005658342
ここでモータ三相交流電圧にインバータ角周波数ω1と電圧脈動角周波数ω0の差の成分ω1−ω0の脈動が重畳されている場合を考える。基本波成分(インバータ角周波数ω1成分)の実効値振幅をVmとし、差の成分の実効値振幅をΔVmとおく。
Figure 0005658342
インバータ角周波数ω1と電圧脈動角周波数ω0の差の成分ω1−ω0の電圧脈動に対して、電流は遅れ位相で流れるので、δ≧0とすると
Figure 0005658342
となる。式13に対し、インバータ出力電圧を位相基準として座標変換を行うと次のようになる。
Figure 0005658342
式14より、座標変換を行うと脈動成分の周波数がもともとの電圧脈動角周波数ω0にシフトされることが分かる。このモータ電流の脈動振幅ΔImは、もともとのコンデンサ電圧の脈動と異なり、ビートノイズ抑制制御を適切に行うことにより減少することが期待できる。このように特許文献3記載の発明は、座標変換後のモータ電流より脈動成分を抽出し、これに応じてインバータ角周波数を操作することで、ビートノイズ抑制をフィードバック制御で構成する技術である。フィードバック制御のため、フィードバック制御ゲインの設定にはある程度の余裕があり、所望の応答時間で収束していくように設計できるという利点を持つ。加えて、モータ三相交流の段階では脈動周波数がインバータ角周波数ω1に応じて移動していたのに対して、座標変換後の段階では脈動周波数がω0一定となるため、脈動成分を抽出するためのフィルタが設計しやすい等の利点も持つ。 On the other hand, the invention described in Patent Document 3 detects the motor current at which the low-frequency pulsation actually occurs, and operates the inverter angular frequency according to the extracted pulsation component, thereby configuring beat noise suppression by feedback control. Technology. The effective phase amplitude Im, the inverter angular frequency ω1, the current phase when the inverter output voltage is used as a phase reference is θ, and the motor three-phase AC current is set as follows.
Figure 0005658342
As shown in Equation 11, when coordinate conversion is performed on the motor three-phase AC current using the inverter output voltage as a phase reference, the effective amplitude of the motor current can be obtained.
Figure 0005658342
Here, consider a case where the pulsation of the difference component ω1-ω0 of the difference between the inverter angular frequency ω1 and the voltage pulsation angular frequency ω0 is superimposed on the motor three-phase AC voltage. The effective value amplitude of the fundamental wave component (inverter angular frequency ω1 component) is Vm, and the effective value amplitude of the difference component is ΔVm.
Figure 0005658342
Since the current flows in a delayed phase with respect to the voltage pulsation of the difference component ω1-ω0 of the difference between the inverter angular frequency ω1 and the voltage pulsation angular frequency ω0, if δ ≧ 0
Figure 0005658342
It becomes. When coordinate conversion is performed with respect to Equation 13 using the inverter output voltage as a phase reference, the following is obtained.
Figure 0005658342
From Equation 14, it can be seen that when coordinate conversion is performed, the frequency of the pulsation component is shifted to the original voltage pulsation angular frequency ω0. Unlike the original capacitor voltage pulsation, the motor current pulsation amplitude ΔIm can be expected to decrease by appropriately performing beat noise suppression control. As described above, the invention described in Patent Document 3 is a technique in which beat noise suppression is configured by feedback control by extracting a pulsation component from the motor current after coordinate conversion and manipulating the inverter angular frequency accordingly. For feedback control, there is a certain margin in the setting of the feedback control gain, and there is an advantage that it can be designed to converge with a desired response time. In addition, the pulsation frequency moved according to the inverter angular frequency ω1 at the motor three-phase AC stage, whereas the pulsation frequency is constant at ω0 at the stage after coordinate conversion, so that the pulsation component is extracted. The filter has the advantage of being easy to design.

特公昭61−48356号公報Japanese Examined Patent Publication No. 61-48356 特開平2−119573号公報Japanese Patent Laid-Open No. 2-119573 特開2003−111500号公報JP 2003-111500 A

前記ビートノイズ現象に対する技術として、特許文献1記載の発明は、例えば電気鉄道で用いられている電動機駆動用電力変換器のように変調率100%まで使用する分野では用いることができない。また特許文献1、2記載の発明はフィードフォワード制御であり、コンデンサ電圧の検出やインバータ制御出力に誤差や遅延が生じると、モータ電流の低周波脈動を抑制し切れずに脈動が残ってしまったり、あるいは操作量が過剰で逆に不安定になってしまう可能性がある。   As a technique for the beat noise phenomenon, the invention described in Patent Document 1 cannot be used in a field where the modulation factor is up to 100%, such as a power converter for driving a motor used in an electric railway. The inventions described in Patent Documents 1 and 2 are feedforward control. If an error or delay occurs in the detection of the capacitor voltage or the inverter control output, the low frequency pulsation of the motor current may not be suppressed and the pulsation may remain. Or, there is a possibility that the operation amount is excessive and the operation becomes unstable.

特許文献3記載の発明には2つの課題がある。まず、式12においてインバータ角周波数ω1が電圧脈動角周波数ω0に近い場合、差の成分ω1−ω0はほぼ直流になるから、式13における電流の遅れ位相δはほぼゼロになるが、インバータ角周波数ω1が電圧脈動角周波数ω0から離れるにつれて、位相δは大きくなってしまう。すなわち、式14において、座標変換後の脈動成分の位相δは、インバータ角周波数ω1に応じて変動してしまう。式1と式6より、インバータ角周波数の操作量はコンデンサ電圧の脈動成分と同相が理想である。このため、座標変換後のモータ電流から脈動成分を検出し、この脈動成分を用いてインバータ角周波数の操作量を求める際には、位相δを補正する必要がある。位相δはインバータ周波数ω1に応じて変動するので制御系の設計が難しいこと、また位相δが大きく変動する場合はそもそもフィードバック制御の安定性を確保するのが難しい。   The invention described in Patent Document 3 has two problems. First, when the inverter angular frequency ω1 is close to the voltage pulsation angular frequency ω0 in Expression 12, the difference component ω1−ω0 is almost DC, so the current delay phase δ in Expression 13 is almost zero. As ω1 moves away from the voltage pulsation angular frequency ω0, the phase δ increases. That is, in Equation 14, the phase δ of the pulsating component after coordinate conversion varies depending on the inverter angular frequency ω1. From Equation 1 and Equation 6, the operation amount of the inverter angular frequency is ideally in phase with the pulsating component of the capacitor voltage. For this reason, when detecting a pulsation component from the motor current after the coordinate conversion and obtaining the operation amount of the inverter angular frequency using the pulsation component, it is necessary to correct the phase δ. Since the phase δ varies depending on the inverter frequency ω1, it is difficult to design the control system. When the phase δ varies greatly, it is difficult to ensure the stability of the feedback control in the first place.

また、式15に示すように、インバータ角周波数ω1と電圧脈動角周波数ω0の和の成分ω1+ω0の電圧脈動に対して、遅れ位相εで電流が流れるものとする。

Figure 0005658342
式15に対し、インバータ出力電圧を位相基準として座標変換を行うと次のようになる。
Figure 0005658342
式16より、座標変換を行うと、インバータ角周波数ω1と電圧脈動角周波数ω0の和の成分ω1+ω0の脈動成分も、もともとの電圧脈動角周波数ω0にシフトされることが分かる。すなわち、座標変換後の段階では、差の成分ω1−ω0と和の成分ω1+ω0の区別がつかなくなってしまうことを意味する。式8より、インバータ角周波数ω1のみを操作する限り、差の成分ω1−ω0と和の成分ω1+ω0を同時にゼロにすることはできず、差の成分ω1−ω0をゼロにしようとすると和の成分ω1+ω0を2倍に増幅してしまう。この結果、座標変換後のモータ電流より抽出した角周波数ω0の脈動成分を極小にすることは可能であるが、決してゼロにすることはできない。このため、角周波数ω0の脈動成分をゼロにするようなフィードバック制御を構成しようとすると、条件によっては発散してしまう場合がある。 Further, as shown in Expression 15, it is assumed that a current flows with a delay phase ε with respect to the voltage pulsation of the sum component ω1 + ω0 of the inverter angular frequency ω1 and the voltage pulsation angular frequency ω0.
Figure 0005658342
When coordinate conversion is performed with respect to Equation 15 using the inverter output voltage as a phase reference, the result is as follows.
Figure 0005658342
From Equation 16, it can be seen that when coordinate conversion is performed, the pulsation component of the sum ω1 + ω0 of the inverter angular frequency ω1 and the voltage pulsation angular frequency ω0 is also shifted to the original voltage pulsation angular frequency ω0. That is, at the stage after the coordinate conversion, it means that the difference component ω1−ω0 and the sum component ω1 + ω0 cannot be distinguished. From Equation 8, as long as only the inverter angular frequency ω1 is operated, the difference component ω1−ω0 and the sum component ω1 + ω0 cannot be made zero at the same time. ω1 + ω0 is amplified twice. As a result, it is possible to minimize the pulsation component of the angular frequency ω0 extracted from the motor current after coordinate conversion, but it cannot be zero. For this reason, if it is going to comprise feedback control which makes the pulsation component of angular frequency (omega) 0 zero, it may diverge depending on conditions.

上記の課題を解決するため、本発明は、直流電源と、前記直流電源の供給する直流電力を安定化させる平滑化コンデンサと、前記直流電源の供給する直流電力を交流電力に変換する電力変換器と、前記電力変換器の供給する交流電力によって駆動される交流電動機と、前記交流電動機に流入する電流を検出する交流電流検出手段と、前記交流電動機に印加する交流電圧周波数もしくは位相を基準とし、前記交流電流検出手段により検出した交流電流検出値を直流量に変換する座標変換手段と、前記座標変換手段の出力値が指令値に一致するように前記電力変換器が出力する交流電圧を操作する第1の電流制御手段から構成される電力変換装置において、前記交流電流検出手段により検出した交流電流検出値の低周波成分を検出する手段と、前記交流電流検出値の低周波成分がゼロになるように前記電力変換器の出力する交流電圧を操作する第2の電流制御手段を備えることを最も主要な特徴とする。   In order to solve the above-described problems, the present invention provides a DC power supply, a smoothing capacitor that stabilizes DC power supplied from the DC power supply, and a power converter that converts DC power supplied from the DC power supply into AC power. AC motor driven by AC power supplied by the power converter, AC current detection means for detecting current flowing into the AC motor, and AC voltage frequency or phase applied to the AC motor as a reference, Coordinate conversion means for converting an AC current detection value detected by the AC current detection means into a DC amount, and an AC voltage output by the power converter so that an output value of the coordinate conversion means matches a command value In the power conversion device constituted by the first current control means, means for detecting a low frequency component of the AC current detection value detected by the AC current detection means, Low-frequency component of the AC current detection value is the most important feature in that it comprises a second current control means for operating the output AC voltage of the power converter to be zero.

本発明の電力変換装置は、交流電動機に流入する電流を検出する交流電流検出手段と、交流電動機に印加する交流電圧周波数もしくは位相を基準とし、前記交流電流検出手段により検出した交流電流検出値を直流量に変換する座標変換手段と、前記座標変換手段の出力値が指令値に一致するように電力変換器が出力する交流電圧を操作する第1の電流制御手段に加えて、前記交流電流検出手段により検出した交流電流検出値の低周波成分を検出する手段と、前記交流電流検出値の低周波成分がゼロになるように電力変換器の出力する交流電圧を操作する第2の電流制御手段を備えることにより、交流電流の基本波振幅(交流振幅)をその指令値に一致させると同時に、交流電流の低周波脈動を抑制することができる。すなわちビートノイズ現象の抑制をフィードバック制御により実現することができる。   The power conversion device according to the present invention includes an AC current detection unit that detects current flowing into the AC motor, and an AC current detection value detected by the AC current detection unit based on an AC voltage frequency or phase applied to the AC motor. In addition to the coordinate conversion means for converting to a direct current amount, and the first current control means for operating the AC voltage output from the power converter so that the output value of the coordinate conversion means matches the command value, the AC current detection Means for detecting a low frequency component of the detected AC current value detected by the means, and second current control means for operating the AC voltage output from the power converter so that the low frequency component of the detected AC current value becomes zero. , The low frequency pulsation of the alternating current can be suppressed at the same time as making the fundamental wave amplitude (alternating current amplitude) of the alternating current coincide with the command value. That is, suppression of the beat noise phenomenon can be realized by feedback control.

また、電力変換器の変調率に関係なく、交流電動機に印加する交流電圧周波数に比べて交流電流の脈動周波数が十分低ければ、第2の電流制御手段によって脈動を抑制することができる。   Moreover, regardless of the modulation rate of the power converter, if the pulsation frequency of the alternating current is sufficiently lower than the alternating voltage frequency applied to the alternating current motor, the pulsation can be suppressed by the second current control means.

本発明の第1の実施例のブロック図である。It is a block diagram of the 1st example of the present invention. 本発明の第2の実施例のブロック図である。It is a block diagram of the 2nd example of the present invention. 本発明の第1および第2の実施例における直流成分検出手段の一例である。It is an example of the direct current | flow component detection means in the 1st and 2nd Example of this invention. 本発明の第2の実施例における位相演算手段の一例である。It is an example of the phase calculating means in the 2nd Example of this invention.

以下、図面を用いて、本発明の実施の形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本発明の第1の実施例を図1に示す。図1において、本発明の電力変換装置は、単相交流電圧源1と、単相交流電圧源1の供給する単相交流電力を直流電力に変換する電力変換器2(順変換器、コンバータ)と、電力変換器2の供給する直流電力を安定化させる平滑化コンデンサ3と、電力変換器1の供給する直流電力を交流電力に変換する電力変換器4(逆変換器、インバータ)と、電力変換器4の供給する交流電力によって駆動される三相交流電動機5と、電力変換器4から三相交流電動機5に流入する三相交流電流Iu、v、wを検出する三相交流電流検出手段6と、平滑化コンデンサ3の印加電圧Ecfを検出する直流電圧検出手段7を備えている。
また、三相交流電流検出手段6により検出した三相交流電流Iu、v、wを三相交流電動機5に印加する三相交流電圧Vu、v、wの基準位相θu、v、wに基づいて座標変換を行い、二相直流電流Id、qに変換する座標変換手段10と、二相直流電流指令値Id、q*と座標変換手段10の出力する二相直流電流Id、qとの偏差を求める減算器11と、減算器11の出力する電流偏差がゼロになるような直流電圧操作量ΔVd、qを出力する電流制御手段12と、二相直流電流指令値Id、q*を入力し、交流電動機5に印加する交流電圧周波数や交流電動機5の電動機定数に基づいて交流電動機5に印加する二相直流電圧Vd、qを求める直流電圧生成手段13と、直流電圧生成手段13の出力する二相直流電圧Vd、qと電流制御手段12の出力する二相直流電圧操作量ΔVd、qの和を求める加算器14と、加算器14の出力を入力し、直交座標から極座標に変換することによって電圧振幅Vrと電圧位相角δを出力する座標変換手段15と、三相交流電動機5に印加する三相交流電圧Vu、v、wの基準位相θu、v、wと座標変換手段15の出力する電圧位相角δの和を求める加算器16と、加算器16の出力する位相に基づき、三相交流正弦波を出力する正弦波関数発生器17と、座標変換手段15の出力する電圧振幅Vrと、正弦波関数発生器17の出力する三相交流正弦波の積を求め、三相交流電圧Vu、v、wを出力する乗算器18と、三相交流電流検出手段6により検出した三相交流電流Iu、v、wを直交二相交流電流Ia、bに変換する座標変換手段19と、座標変換手段19の出力する直交二相交流電流Ia、bを入力し、低周波成分ΔIa、bを検出する直流成分検出手段20と、直流成分検出手段20の出力する直交二相交流電流の低周波成分ΔIa、bがゼロになるような直交二相交流電圧操作量ΔVa、bを出力する電流制御器21と、電流制御器21の出力する直交二相交流電圧操作量ΔVa、bを入力し、三相交流電圧操作量ΔVu、v、wを出力する座標変換手段22と、乗算器18の出力する三相交流電圧Vu、v、wと、座標変換手段22の出力する三相交流電圧操作量ΔVu、v、wの和を求める加算器23と、加算器23の出力する三相交流電圧と、直流電圧検出手段7の出力する平滑化コンデンサ電圧Ecfを入力し、電力変換器4を駆動するパルス信号Su、v、wを出力するPWM発生器24から構成される。
A first embodiment of the present invention is shown in FIG. In FIG. 1, a power converter of the present invention includes a single-phase AC voltage source 1 and a power converter 2 (forward converter, converter) that converts single-phase AC power supplied from the single-phase AC voltage source 1 into DC power. A smoothing capacitor 3 that stabilizes the DC power supplied from the power converter 2, a power converter 4 (inverse converter, inverter) that converts the DC power supplied from the power converter 1 into AC power, Three-phase AC motor 5 driven by AC power supplied from converter 4 and three-phase AC current detecting means for detecting three-phase AC currents Iu, v, and w flowing from power converter 4 to three-phase AC motor 5 6 and DC voltage detection means 7 for detecting the applied voltage Ecf of the smoothing capacitor 3.
Further, based on the reference phases θu, v, w of the three-phase AC voltages Vu, v, w applied to the three-phase AC motor 5 by the three-phase AC currents Iu, v, w detected by the three-phase AC current detection means 6. The coordinate conversion means 10 that performs coordinate conversion and converts it into two-phase DC currents Id and q, and the deviation between the two-phase DC current command values Id and q * and the two-phase DC currents Id and q output from the coordinate conversion means 10 The subtractor 11 to be obtained, the current control means 12 for outputting the DC voltage manipulated variable ΔVd, q so that the current deviation output from the subtractor 11 becomes zero, and the two-phase DC current command values Id, q * are input, The DC voltage generating means 13 for obtaining the two-phase DC voltages Vd and q applied to the AC motor 5 based on the AC voltage frequency applied to the AC motor 5 and the motor constant of the AC motor 5, and the two output from the DC voltage generating means 13 Phase DC voltage Vd, q and current control The adder 14 for obtaining the sum of the two-phase DC voltage manipulated variables ΔVd and q output from the stage 12 is input, and the output of the adder 14 is input, and the voltage amplitude Vr and the voltage phase angle δ are obtained by converting from orthogonal coordinates to polar coordinates. The coordinate conversion means 15 to be output and the addition for obtaining the sum of the reference phase θu, v, w of the three-phase AC voltage Vu, v, w applied to the three-phase AC motor 5 and the voltage phase angle δ output from the coordinate conversion means 15 The sine wave function generator 17 that outputs a three-phase alternating current sine wave based on the phase output from the adder 16 and the adder 16, the voltage amplitude Vr that is output from the coordinate conversion means 15, and the output from the sine wave function generator 17. The product of three-phase alternating current sine waves is obtained, and the three-phase alternating currents Iu, v, and w detected by the multiplier 18 that outputs the three-phase alternating current voltages Vu, v, and w and the three-phase alternating current detecting means 6 are Coordinate conversion means 1 for converting into phase alternating current Ia, b And DC component detection means 20 for detecting low frequency components ΔIa and b, and orthogonal two-phase AC current output by DC component detection means 20. Current controller 21 that outputs a quadrature two-phase AC voltage manipulated variable ΔVa, b such that the low frequency component ΔIa, b of the current is zero, and a quadrature two-phase AC voltage manipulated variable ΔVa, b output by the current controller 21 The coordinate conversion means 22 that inputs and outputs the three-phase AC voltage manipulated variables ΔVu, v, and w, the three-phase AC voltages Vu, v, and w that the multiplier 18 outputs, and the three-phase AC that the coordinate conversion means 22 outputs. The adder 23 for calculating the sum of the voltage manipulated variables ΔVu, v, w, the three-phase AC voltage output from the adder 23, and the smoothed capacitor voltage Ecf output from the DC voltage detection means 7 are input, and the power converter 4 Pulse signals Su, v, w for driving It comprises a PWM generator 24 that outputs.

本発明の第2の実施例を図2に示す。図2は、変調率100%時、すなわち電力変換器の出力する交流電圧振幅は操作不可能で、交流電圧位相のみ操作可能な状態における本発明の実施例である。図2において、本発明の電力変換装置は、単相交流電圧源1と、単相交流電圧源1の供給する単相交流電力を直流電力に変換する電力変換器2(順変換器、コンバータ)と、電力変換器2の供給する直流電力を安定化させる平滑化コンデンサ3と、電力変換器1の供給する直流電力を交流電力に変換する電力変換器4(逆変換器、インバータ)と、電力変換器4の供給する交流電力によって駆動される三相交流電動機5と、電力変換器4から三相交流電動機5に流入する三相交流電流Iu、v、wを検出する三相交流電流検出手段6と、平滑化コンデンサ3の印加電圧Ecfを検出する直流電圧検出手段7を備えている。   A second embodiment of the present invention is shown in FIG. FIG. 2 shows an embodiment of the present invention when the modulation rate is 100%, that is, the AC voltage amplitude output from the power converter is not operable and only the AC voltage phase is operable. In FIG. 2, the power converter of the present invention includes a single-phase AC voltage source 1 and a power converter 2 (forward converter, converter) that converts single-phase AC power supplied from the single-phase AC voltage source 1 into DC power. A smoothing capacitor 3 that stabilizes the DC power supplied from the power converter 2, a power converter 4 (inverse converter, inverter) that converts the DC power supplied from the power converter 1 into AC power, Three-phase AC motor 5 driven by AC power supplied from converter 4 and three-phase AC current detecting means for detecting three-phase AC currents Iu, v, and w flowing from power converter 4 to three-phase AC motor 5 6 and DC voltage detection means 7 for detecting the applied voltage Ecf of the smoothing capacitor 3.

また、三相交流電流検出手段6により検出した三相交流電流Iu、v、wを三相交流電動機5に印加する三相交流電圧Vu、v、wの基準位相θu、v、wに基づいて座標変換を行い、二相直流電流Id、qに変換する座標変換手段10と、二相直流電流指令値Id、q*と座標変換手段10の出力する二相直流電流Id、qとの偏差を求める減算器11と、減算器11の出力する電流偏差がゼロになるような直流電圧操作量ΔVd、qを出力する電流制御手段12と、二相直流電流指令値Id、q*を入力し、交流電動機5に印加する交流電圧周波数や交流電動機5の電動機定数に基づいて交流電動機5に印加する二相直流電圧Vd、qを求める直流電圧生成手段13と、直流電圧生成手段13の出力する二相直流電圧Vd、qと電流制御手段12の出力する二相直流電圧操作量ΔVd、qの和を求める加算器14と、加算器14の出力を入力し、直交座標から極座標に変換することによって電圧振幅Vrと電圧位相角δを出力する座標変換手段15と、三相交流電動機5に印加する三相交流電圧Vu、v、wの基準位相θu、v、wと座標変換手段15の出力する電圧位相角δの和を求める加算器16と、三相交流電流検出手段6により検出した三相交流電流Iu、v、wを直交二相交流電流Ia、bに変換する座標変換手段19と、座標変換手段19の出力する直交二相交流電流Ia、bを入力し、低周波成分ΔIa、bを検出する直流成分検出手段20と、直流成分検出手段20の出力する直交二相交流電流の低周波成分ΔIa、bがゼロになるような直交二相交流電圧操作量ΔVa、bを出力する電流制御器21と、電流制御器21の出力する直交二相交流電圧操作量ΔVa、bを入力し、三相交流電圧操作量ΔVu、v、wを出力する座標変換手段22と、加算器16の出力する三相交流電圧位相と、交流電圧角周波数ωと、座標変換手段22の出力する三相交流電圧操作量ΔVu、v、wを入力し、三相交流電圧位相操作量Δθu、v、wを出力する位相演算手段30と、加算器16の出力する三相交流交流位相と、位相演算手段30の出力する三相交流電圧位相操作量Δθu、v、wの和θ’u、v、wを求める加算器31と、加算器31の出力する三相交流位相を入力し、三相交流正弦波を出力する正弦波関数発生器32と、正弦波関数発生器32の出力する三相交流正弦波を入力し、入力が正ならば1、負ならば0のパルス信号を出力する符号判別器33から構成される。   Further, based on the reference phases θu, v, w of the three-phase AC voltages Vu, v, w applied to the three-phase AC motor 5 by the three-phase AC currents Iu, v, w detected by the three-phase AC current detection means 6. The coordinate conversion means 10 that performs coordinate conversion and converts it into two-phase DC currents Id and q, and the deviation between the two-phase DC current command values Id and q * and the two-phase DC currents Id and q output from the coordinate conversion means 10 The subtractor 11 to be obtained, the current control means 12 for outputting the DC voltage manipulated variable ΔVd, q so that the current deviation output from the subtractor 11 becomes zero, and the two-phase DC current command values Id, q * are input, The DC voltage generating means 13 for obtaining the two-phase DC voltages Vd and q applied to the AC motor 5 based on the AC voltage frequency applied to the AC motor 5 and the motor constant of the AC motor 5, and the two output from the DC voltage generating means 13 Phase DC voltage Vd, q and current control The adder 14 for obtaining the sum of the two-phase DC voltage manipulated variables ΔVd and q output from the stage 12 is input, and the output of the adder 14 is input, and the voltage amplitude Vr and the voltage phase angle δ are obtained by converting from orthogonal coordinates to polar coordinates. The coordinate conversion means 15 to be output and the addition for obtaining the sum of the reference phase θu, v, w of the three-phase AC voltage Vu, v, w applied to the three-phase AC motor 5 and the voltage phase angle δ output from the coordinate conversion means 15 16, a coordinate conversion means 19 that converts the three-phase alternating currents Iu, v, and w detected by the three-phase alternating current detection means 6 into orthogonal two-phase alternating currents Ia and b, and an orthogonal two that is output from the coordinate conversion means 19. The DC component detection means 20 for detecting the low frequency components ΔIa and b by inputting the phase AC currents Ia and b, and the low frequency components ΔIa and b of the orthogonal two-phase AC current output by the DC component detection means 20 become zero. Such quadrature two-phase AC voltage manipulated variable Δ Current controller 21 for outputting a and b, and coordinate conversion means for inputting quadrature two-phase AC voltage manipulated variable ΔVa and b output from current controller 21 and outputting three-phase AC voltage manipulated variable ΔVu, v and w 22, the three-phase AC voltage phase output from the adder 16, the AC voltage angular frequency ω, and the three-phase AC voltage operation amount ΔVu, v, w output from the coordinate conversion means 22 are input, and the three-phase AC voltage phase Sum of phase calculation means 30 for outputting manipulated variables Δθu, v, w, three-phase AC AC phase output from adder 16, and three-phase AC voltage phase manipulated variables Δθu, v, w output from phase calculator 30 An adder 31 for obtaining θ′u, v, w, a three-phase AC phase output from the adder 31, a sine wave function generator 32 for outputting a three-phase AC sine wave, and a sine wave function generator 32 Input three-phase AC sine wave, 1 if input is positive, 0 if negative The code discriminator 33 is configured to output the pulse signal.

図3は、図1および図2における直流成分検出手段20の詳細を示す一例である。図3において、直流成分検出手段20は、二相直流電流指令値Id、q*を入力し、三相交流電動機5に印加する三相交流電圧Vu、v、wの基準位相θu、v、wに基づいて座標変換を行い、直交二相交流電流指令値Ia、b*を出力する座標変換手段40と、座標変換手段40の出力する直交二相交流電流指令値Ia、b*と、座標変換手段19の出力する直交二相交流電流Ia、bの差ΔIa、bを求める減算器41から構成される。   FIG. 3 is an example showing details of the DC component detection means 20 in FIGS. 1 and 2. In FIG. 3, the DC component detection means 20 receives the two-phase DC current command values Id, q *, and the reference phases θu, v, w of the three-phase AC voltages Vu, v, w applied to the three-phase AC motor 5. Coordinate conversion means 40 that outputs the orthogonal two-phase alternating current command values Ia and b *, the orthogonal two-phase alternating current command values Ia and b * output from the coordinate conversion means 40, and the coordinate conversion It comprises a subtractor 41 for obtaining a difference ΔIa, b between the orthogonal two-phase alternating currents Ia, b output from the means 19.

図4は、図2における位相演算手段30の詳細を示す一例である。図4において、位相演算手段30は、座標変換手段22の出力する三相交流電圧操作量ΔVu、v、wを、直流電圧検出手段7の出力する平滑化コンデンサ電圧Ecfで正規化して変調率操作量を求める除算器50と、除算器50の出力する変調率操作量に2πを乗じ、位相操作量に変換するゲイン51と、三相交流電圧位相θ’u、v、wを入力し、三相交流余弦波を出力する余弦波関数発生器52と、余弦波関数発生器52の出力する三相交流余弦波を入力し、入力が正ならば1、負ならば0を出力する符号判別器53と、ゲイン51の出力する位相操作量と符号判別器53の出力の積を求める乗算器54と、交流電圧角周波数ωを入力し、所定の周波数以上になれば1を出力し続け、所定の周波数以下になれば0を出力し続けるヒステリシスコンパレータ55と、ヒステリシスコンパレータ55の出力に基づき、乗算器54の入力をそのまま出力、あるいは遮断する開閉器(スイッチ)56から構成される。   FIG. 4 is an example showing details of the phase calculation means 30 in FIG. In FIG. 4, the phase calculation means 30 normalizes the three-phase AC voltage operation amounts ΔVu, v, w output from the coordinate conversion means 22 with the smoothing capacitor voltage Ecf output from the DC voltage detection means 7, and operates the modulation rate. A divider 50 for obtaining the quantity, a gain 51 for multiplying the modulation rate manipulated variable output by the divider 50 by 2π to convert it into a phase manipulated variable, and a three-phase AC voltage phase θ′u, v, w are input. A cosine wave function generator 52 for outputting a phase AC cosine wave, and a sign discriminator for inputting a three-phase AC cosine wave output by the cosine wave function generator 52 and outputting 1 if the input is positive and 0 if negative. 53, a multiplier 54 for obtaining the product of the phase manipulated variable output by the gain 51 and the output of the sign discriminator 53, and the AC voltage angular frequency ω are input. If the frequency exceeds a predetermined frequency, 1 is continuously output. Hysteresis that continues to output 0 if the frequency falls below A scan comparator 55, based on the output of the hysteresis comparator 55, and the input of the multiplier 54 from the switch (switch) 56 as output, or blocking.

1 単相交流電圧源
2 電力変換器(順変換器、コンバータ)
3 平滑化コンデンサ
4 電力変換器(逆変換器、インバータ)
5 三相交流電動機
6 交流電流検出手段
7 直流電圧検出手段
10 座標変換手段(三相交流→二相直流)
11 減算器
12 電流制御手段
13 直流電圧生成手段
14 加算器
15 座標変換手段(直交座標→極座標)
16 加算器
17 正弦波関数発生器
18 乗算器
19 座標変換手段(三相交流→二相交流)
20 直流成分検出手段
21 電流制御器
22 座標変換手段(二相交流→三相交流)
23 加算器
24 PWM発生器
30 位相演算手段
31 加算器
32 正弦波関数発生器
33 符号判別器
40 座標変換手段(二相直流→二相交流)
41 減算器
50 除算器
51 ゲイン
52 余弦波関数発生器
53 符号判別器
54 乗算器
55 ヒステリシスコンパレータ
56 開閉器(スイッチ)
Ecf 平滑化コンデンサ電圧
Ia、b* 直交二相交流電流指令値
Ia、b 直交二相交流電流
ΔIa、b 直交二相交流電流の低周波成分
Id、q* 二相交流電流指令値
Id、q 二相直流電流
Iu、v、w 三相交流電流
Su、v、w 三相パルス信号
Vu、v、w 三相交流電圧
ΔVu、v、w 三相交流電圧操作量
ΔVa、b 直交二相交流電圧操作量
Vd、q 二相直流電圧
ΔVd、q 二相直流電圧操作量
Vr 電圧振幅
δ 電圧位相角
θu、v、w 三相交流電圧の基準位相
θ’u、v、w 三相交流電圧位相
Δθu、v、w 三相交流電圧位相操作量
ω 交流電圧角周波数
1 Single-phase AC voltage source 2 Power converter (forward converter, converter)
3 Smoothing capacitor 4 Power converter (inverse converter, inverter)
5 Three-phase AC motor 6 AC current detection means 7 DC voltage detection means 10 Coordinate conversion means (three-phase AC → two-phase DC)
DESCRIPTION OF SYMBOLS 11 Subtractor 12 Current control means 13 DC voltage generation means 14 Adder 15 Coordinate conversion means (orthogonal coordinates → polar coordinates)
16 Adder 17 Sine wave function generator 18 Multiplier 19 Coordinate conversion means (three-phase AC → two-phase AC)
20 DC component detection means 21 Current controller 22 Coordinate conversion means (two-phase AC → three-phase AC)
23 Adder 24 PWM generator 30 Phase calculation means 31 Adder 32 Sine wave function generator 33 Sign discriminator 40 Coordinate conversion means (two-phase DC → two-phase AC)
41 Subtractor 50 Divider 51 Gain 52 Cosine Wave Function Generator 53 Sign Discriminator 54 Multiplier 55 Hysteresis Comparator 56 Switch (Switch)
Ecf Smoothing capacitor voltage Ia, b * Quadrature two-phase alternating current command value Ia, b Quadrature two-phase alternating current ΔIa, b Low frequency component of quadrature two-phase alternating current Id, q * Two-phase alternating current command value Id, q Phase DC current Iu, v, w Three-phase AC current Su, v, w Three-phase pulse signal Vu, v, w Three-phase AC voltage ΔVu, v, w Three-phase AC voltage manipulated variable ΔVa, b Quadrature two-phase AC voltage operation Amount Vd, q Two-phase DC voltage ΔVd, q Two-phase DC voltage manipulated variable Vr Voltage amplitude δ Voltage phase angle θu, v, w Three-phase AC voltage reference phase θ'u, v, w Three-phase AC voltage phase Δθu, v, w Three-phase AC voltage phase manipulated variable ω AC voltage angular frequency

Claims (1)

直流電源と、前記直流電源の供給する直流電力を安定化させる平滑化コンデンサと、前記直流電源の供給する直流電力を交流電力に変換する第1の電力変換器と、前記第1の電力変換器の供給する交流電力によって駆動される交流電動機と、前記第1の電力変換器から前記交流電動機に流入する電流を検出する交流電流検出手段と、前記交流電動機に印加する交流電圧周波数もしくは位相を基準とし、前記交流電流検出手段により検出した交流電流検出値を直流量に変換する第1の座標変換手段と、前記第1の座標変換手段の出力値が直流電流指令値に一致するように前記第1の電力変換器が出力する交流電圧を操作する第1の電流制御手段から構成される電力変換装置において、
直交二相交流電流指令値と直交二相交流電流検出値の偏差を求める手段と、前記偏差に応じて直交二相交流電圧値の操作量を出力し、前記直交二相交流電圧値の操作量を前記第1の電流制御手段の出力する交流電圧操作量と同じ座標系に変換して、前記第1の電流制御手段の出力する交流電圧操作量に加算して前記第1の電力変換器の出力する交流電圧を操作する第2の電流制御手段を備えており、
前記直交二相交流電流指令値と直交二相交流電流検出値の偏差を求める手段は、前記交流電動機に印加する交流電圧周波数もしくは位相を基準とし、第1の電流制御手段の用いる前記直流電流指令値を直交二相交流電流指令値に変換する第2の座標変換手段と、前記交流電流検出手段により検出した前記交流電流検出値を直交二相交流電流検出値に変換する第3の座標変換手段と、前記第2の座標変換手段の出力する前記直交二相交流電流指令値と前記第3の座標変換手段の出力する前記直交二相交流電流検出値の偏差を演算する手段により構成されることを特徴とする電力変換装置。
DC power supply, smoothing capacitor for stabilizing DC power supplied from the DC power supply, first power converter for converting DC power supplied from the DC power supply into AC power, and the first power converter An AC motor driven by the AC power supplied by the power supply, AC current detection means for detecting a current flowing from the first power converter to the AC motor, and an AC voltage frequency or phase applied to the AC motor as a reference First coordinate conversion means for converting the AC current detection value detected by the AC current detection means into a DC amount, and the first coordinate conversion means so that the output value of the first coordinate conversion means matches the DC current command value. In the power converter configured by the first current control means for operating the AC voltage output from the one power converter,
Means for obtaining a deviation between the quadrature two-phase alternating current command value and the quadrature two-phase alternating current detection value, and an operation amount of the quadrature two-phase alternating voltage value according to the deviation, the was converted to the same coordinate system as the AC voltage manipulated variable output by the first current control means, before Symbol said first power converter by adding an AC voltage manipulated variable output by the first current control means A second current control means for operating the AC voltage output from
Said means for determining the deviation of the orthogonal two-phase alternating current command value and the quadrature two-phase alternating current detected values, said referenced to the AC voltage frequency or phase applied to the AC motor, the DC current command using the first current control means Second coordinate conversion means for converting the value into a quadrature two-phase alternating current command value, and third coordinate conversion means for converting the alternating current detection value detected by the alternating current detection means into a quadrature two-phase alternating current detection value When configured by the orthogonal two-phase alternating current command value and the third coordinate transformation means of the orthogonal two-phase alternating current detected value means you calculating the deviation of the output by the output by the second coordinate transformation means The power converter characterized by the above-mentioned.
JP2013207102A 2013-10-02 2013-10-02 Power converter Expired - Fee Related JP5658342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013207102A JP5658342B2 (en) 2013-10-02 2013-10-02 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013207102A JP5658342B2 (en) 2013-10-02 2013-10-02 Power converter

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008139116A Division JP2009290959A (en) 2008-05-28 2008-05-28 Power conversion device

Publications (2)

Publication Number Publication Date
JP2013258912A JP2013258912A (en) 2013-12-26
JP5658342B2 true JP5658342B2 (en) 2015-01-21

Family

ID=49954848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013207102A Expired - Fee Related JP5658342B2 (en) 2013-10-02 2013-10-02 Power converter

Country Status (1)

Country Link
JP (1) JP5658342B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100438320C (en) * 1997-10-31 2008-11-26 株式会社日立制作所 Power converter
JP4649955B2 (en) * 2004-11-02 2011-03-16 富士電機ホールディングス株式会社 Electric motor control device
JP2006340486A (en) * 2005-06-01 2006-12-14 Fuji Electric Fa Components & Systems Co Ltd Control device of motor

Also Published As

Publication number Publication date
JP2013258912A (en) 2013-12-26

Similar Documents

Publication Publication Date Title
JP6295782B2 (en) Power conversion device, power generation system, control device, and power conversion method
KR101594662B1 (en) Power conversion device
JP4988329B2 (en) Beatless control device for permanent magnet motor
JP4918483B2 (en) Inverter device
KR101077721B1 (en) Power converter
JP5915751B2 (en) Matrix converter
CN103828213B (en) power converter control method
EP3109993A1 (en) Power conversion device control method
JP6369517B2 (en) Control device for power converter
JP5922626B2 (en) Regenerative inverter device and inverter device using unit power cell
JP6372201B2 (en) Power converter
JP6035976B2 (en) Control device for power converter
JP2013247725A (en) Electric power conversion system
JP5888074B2 (en) Power converter
JP6834018B2 (en) Power converter
JP4971758B2 (en) Power converter
JP5658342B2 (en) Power converter
JP5833524B2 (en) Power converter and control device for power converter
JP6563135B2 (en) Motor control device
JP2009290959A (en) Power conversion device
JP2005110335A (en) Power converter
JP4446688B2 (en) Multiphase current supply circuit and control method thereof
JP2020088891A (en) Inverter device
WO2017122490A1 (en) Motor control system
JP6018792B2 (en) Power converter control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141127

R150 Certificate of patent or registration of utility model

Ref document number: 5658342

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees