JP5655396B2 - Carbon material for negative electrode of lithium secondary battery, negative electrode mixture for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery - Google Patents

Carbon material for negative electrode of lithium secondary battery, negative electrode mixture for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery Download PDF

Info

Publication number
JP5655396B2
JP5655396B2 JP2010149906A JP2010149906A JP5655396B2 JP 5655396 B2 JP5655396 B2 JP 5655396B2 JP 2010149906 A JP2010149906 A JP 2010149906A JP 2010149906 A JP2010149906 A JP 2010149906A JP 5655396 B2 JP5655396 B2 JP 5655396B2
Authority
JP
Japan
Prior art keywords
lithium secondary
negative electrode
secondary battery
carbon material
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010149906A
Other languages
Japanese (ja)
Other versions
JP2012014939A (en
Inventor
晋平 阪下
晋平 阪下
佐々木 龍朗
龍朗 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2010149906A priority Critical patent/JP5655396B2/en
Publication of JP2012014939A publication Critical patent/JP2012014939A/en
Application granted granted Critical
Publication of JP5655396B2 publication Critical patent/JP5655396B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウム二次電池負極用炭素材、リチウム二次電池用負極合剤、リチウム二次電池用負極、及びリチウム二次電池に関する。   The present invention relates to a carbon material for a lithium secondary battery negative electrode, a negative electrode mixture for a lithium secondary battery, a negative electrode for a lithium secondary battery, and a lithium secondary battery.

電子機器類のポータブル化、コードレス化が進むにつれ、リチウム二次電池の小型軽量化、或いは高エネルギー密度化が、より一層求められている。リチウム二次電池を高密度化するため、その負極材料として、リチウムと合金化するケイ素、スズ、ゲルマニウム、マグネシウム、鉛、およびアルミニウム又はこれらの酸化物若しくは合金を採用することが知られている。しかしながら、上述のような負極材料は、リチウムイオンを吸蔵する充電時に体積膨張し、反対にリチウムイオンを放出する放電時には体積収縮する。このため充放電サイクルの繰り返しに応じて負極電極の体積が変化し、その結果負極材料が微粉化し、電極から脱落するなどして負極が崩壊することが知られている。   As electronic devices become more portable and cordless, lithium secondary batteries are required to be smaller and lighter or have higher energy density. In order to increase the density of a lithium secondary battery, it is known to employ silicon, tin, germanium, magnesium, lead, aluminum, or an oxide or alloy thereof, which is alloyed with lithium, as a negative electrode material. However, the negative electrode material as described above expands in volume during charging to occlude lithium ions, and conversely shrinks in volume during discharge to release lithium ions. For this reason, it is known that the volume of the negative electrode changes as the charge / discharge cycle repeats, and as a result, the negative electrode material is pulverized and falls off the electrode, causing the negative electrode to collapse.

上記問題を克服するため、さまざまな手法、手段が検討されているが、リチウム二次電池負極材料に金属、および酸化物を用いた場合に充放電特性を安定化させることは難しいのが現状である。そこで、例えば、特許文献1には、SiOx(0.5≦x<2)で示される酸化珪素(A)と、リチウムイオンの吸脱着可能な導電性物質(B)とからなることを特徴とする複合体が提案されている。特許文献1によると、その複合体は、蓄電デバイス用電極材料として好適であり、高い放電容量と良好なサイクル特性を示すので特にリチウムイオン二次電池負極材として好ましく使用されると述べられている。しかし、酸化ケイ素と導電性物質とを相分離させないでそれらを均質にした複合体(前駆体)では、充放電時のリチウム吸蔵放出における負極活物質の体積膨張及び体積収縮を抑えることが困難である場合がある。   In order to overcome the above problems, various methods and means have been studied, but it is difficult to stabilize the charge / discharge characteristics when using metals and oxides as the negative electrode material for lithium secondary batteries. is there. Therefore, for example, Patent Document 1 is characterized by comprising silicon oxide (A) represented by SiOx (0.5 ≦ x <2) and a conductive substance (B) capable of adsorbing and desorbing lithium ions. A complex has been proposed. According to Patent Document 1, it is stated that the composite is suitable as an electrode material for an electricity storage device and exhibits a high discharge capacity and good cycle characteristics, so that it is particularly preferably used as a negative electrode material for a lithium ion secondary battery. . However, it is difficult to suppress the volume expansion and contraction of the negative electrode active material during lithium occlusion and release during charge and discharge in a composite (precursor) in which silicon oxide and a conductive material are made homogeneous without phase separation. There may be.

また、例えば、特許文献2に開示されているように、充放電サイクル特性に優れたリチウム二次電池用負極材料として、リチウム合金を形成しうる金属の粒子表面を有機物で被覆した負極活物質が提案されている。特許文献2に記載の負極材料によると、リチウムイオンを吸蔵する際に起こる膨張を抑えるために、金属粒子の一次粒子平均粒径が500〜1nmのものが用いられると記載されている。しかし、用いる金属粒子の一次粒子径を小さくしたのみでは、場合によっては充電時のリチウム吸蔵における金属粒子の膨張を抑えることは困難である。   Further, for example, as disclosed in Patent Document 2, as a negative electrode material for a lithium secondary battery having excellent charge / discharge cycle characteristics, a negative electrode active material in which a metal particle surface capable of forming a lithium alloy is coated with an organic substance is used. Proposed. According to the negative electrode material described in Patent Document 2, it is described that a metal particle having an average primary particle diameter of 500 to 1 nm is used in order to suppress expansion that occurs when lithium ions are occluded. However, it is difficult to suppress the expansion of the metal particles during lithium occlusion during charging only by reducing the primary particle size of the metal particles used.

特開2007−220411号公報JP 2007-220411 A 特開2007−214137号公報JP 2007-214137 A

上記、2つの特許文献に記載のリチウム二次電池用負極(電極材料)は、いずれもリチウムと合金化する金属を炭素で被覆、若しくは処理することによって、充放電サイクルによる負極活物質の体積膨張及び体積収縮をある程度は抑え込んでいる。しかしながら、上記2つの特許文献に記載の発明では、充放電サイクルによる負極活物質の微粉化に起因する負極崩壊を完全に防止することができず、リチウム二次電池用負極の充放電サイクル特性が十分であるとはいえない。したがって、本発明は、リチウムイオン二次電池の充放電サイクル特性を一層向上させ、さらに初期充放電効率(初期放電容量/初期充電容量)をも高めたリチウム二次電池負極用炭素材、リチウム二次電池負極合剤、リチウム二次電池負極及びリチウム二次電池を提供することを目的とする。   Both of the negative electrodes (electrode materials) for lithium secondary batteries described in the above two patent documents are coated with carbon or treated with a metal that is alloyed with lithium, so that the volume expansion of the negative electrode active material due to the charge / discharge cycle And volume shrinkage is suppressed to some extent. However, in the inventions described in the above two patent documents, the negative electrode collapse due to the pulverization of the negative electrode active material due to the charge / discharge cycle cannot be completely prevented, and the charge / discharge cycle characteristics of the negative electrode for a lithium secondary battery are That's not enough. Therefore, the present invention further improves the charge / discharge cycle characteristics of the lithium ion secondary battery, and further improves the initial charge / discharge efficiency (initial discharge capacity / initial charge capacity), and the carbon material for a lithium secondary battery negative electrode, lithium secondary battery A secondary battery negative electrode mixture, a lithium secondary battery negative electrode, and a lithium secondary battery are provided.

上述の目的は、以下の第(1)項〜第(8)項によって達成される。
(1)SiOX(0<X≦2)で示される酸化ケイ素を含む粒子と、樹脂炭素材とから構成される複合粒子であって、該複合粒子の表面の全体に含有される二酸化ケイ素(X=2)の平均含有率が0.2以上0.6以下であり、かつ、(該複合粒子の該表面の全体に含有される二酸化ケイ素(X=2)の該平均含有率)/(該複合粒子の該表面から、該複合粒子の100nmの深さ地点に現れる断面までの領域に含有される二酸化ケイ素(X=2)の平均含有率)の値が0.3以上0.7以下である複合粒子を含んでなる、リチウム二次電池負極用炭素材。
(2)(前記複合粒子の前記表面の全体に含有される二酸化ケイ素(X=2)の前記平均含有率)/(前記複合粒子の前記表面から、前記複合粒子の100nmの深さ地点に現れる前記断面までの前記領域に含有される二酸化ケイ素(X=2)の前記平均含有率)の値が0.4以上0.6以下である、第(1)項に記載のリチウム二次電池負極用炭素材。
(3)前記酸化ケイ素を含む粒子の平均粒子径が3μm以下である、第(1)項又は第(2)項に記載のリチウム二次電池負極用炭素材。
(4)前記酸化ケイ素を含む粒子の含有量が5質量%以上60質量%以下である、第(1)項〜第(3)項のいずれか1項に記載のリチウム二次電池負極用炭素材。
(5)前記複合粒子の平均粒子径が3μm以上15μm以下である、第(1)項〜第(4)項のいずれか1項に記載のリチウムイオン二次電池負極用炭素材。
(6)第(1)項〜第(5)項のいずれか1項に記載のリチウム二次電池負極用炭素材を含むリチウム二次電池用負極合剤。
(7)第(6)項に記載のリチウム二次電池用負極合剤を含むリチウム二次電池用負極。
(8)第(7)項に記載のリチウム二次電池用負極を含むリチウム二次電池。
The above object is achieved by the following items (1) to (8).
(1) Composite particles composed of particles containing silicon oxide represented by SiO x (0 <X ≦ 2) and a resin carbon material, and silicon dioxide contained in the entire surface of the composite particles ( X = 2) has an average content of 0.2 or more and 0.6 or less, and (the average content of silicon dioxide (X = 2) contained in the entire surface of the composite particle) / ( The value of silicon dioxide (average content of X = 2) contained in the region from the surface of the composite particle to the cross section appearing at a depth point of 100 nm of the composite particle is 0.3 or more and 0.7 or less A carbon material for a lithium secondary battery negative electrode, comprising the composite particles.
(2) (the average content of silicon dioxide (X = 2) contained in the entire surface of the composite particle) / (appears at a depth point of 100 nm of the composite particle from the surface of the composite particle) The lithium secondary battery negative electrode according to item (1), wherein a value of silicon dioxide (X = 2) in the region up to the cross section is 0.4 or more and 0.6 or less. Carbon material.
(3) The carbon material for a lithium secondary battery negative electrode according to (1) or (2), wherein an average particle diameter of the particles containing silicon oxide is 3 μm or less.
(4) Charcoal for lithium secondary battery negative electrode according to any one of (1) to (3), wherein the content of the particles containing silicon oxide is 5% by mass or more and 60% by mass or less. Material.
(5) The carbon material for a lithium ion secondary battery negative electrode according to any one of (1) to (4), wherein the composite particles have an average particle diameter of 3 μm or more and 15 μm or less.
(6) A negative electrode mixture for a lithium secondary battery comprising the carbon material for a lithium secondary battery negative electrode according to any one of items (1) to (5).
(7) A negative electrode for a lithium secondary battery comprising the negative electrode mixture for a lithium secondary battery according to (6).
(8) A lithium secondary battery comprising the negative electrode for a lithium secondary battery according to item (7).

本発明によれば、充放電サイクルによる負極用炭素材の微粉化が抑制されて、従来にはない優れた充放電サイクル特性を示すリチウム二次電池負極用炭素材が提供される。また、本発明によれば、初期充放電効率性(初期放電容量/初期充電容量)に優れたリチウム二次電池負極用炭素材が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the carbon material for negative electrode by the charging / discharging cycle is suppressed, and the carbon material for lithium secondary battery negative electrodes which shows the outstanding charge / discharge cycling characteristic which is not in the past is provided. Moreover, according to this invention, the carbon material for lithium secondary battery negative electrodes excellent in initial stage charge / discharge efficiency (initial stage discharge capacity / initial stage charge capacity) is provided.

以下、本発明について更に詳しく説明をする。   Hereinafter, the present invention will be described in more detail.

(1)リチウム二次電池負極用炭素材
本発明によるリチウム二次電池負極用炭素材は、SiOX(0<X≦2)で示される酸化ケイ素を含む粒子と、樹脂炭素材とから構成される複合粒子であって、該複合粒子の表面の全体に含有される二酸化ケイ素(X=2)の平均含有率が0.2以上0.6以下であり、かつ、(該複合粒子の該表面の全体に含有される二酸化ケイ素(X=2)の該平均含有率)/(該複合粒子の該表面から、該複合粒子の100nmの深さ地点に現れる断面までの領域に含有される二酸化ケイ素(X=2)の平均含有率)の値が0.3以上0.7以下である複合粒子を含んでなることを特徴とする。
(1) Carbon Material for Lithium Secondary Battery Negative Electrode A carbon material for a lithium secondary battery negative electrode according to the present invention is composed of particles containing silicon oxide represented by SiO x (0 <X ≦ 2) and a resin carbon material. The average content of silicon dioxide (X = 2) contained in the entire surface of the composite particle is 0.2 or more and 0.6 or less, and (the surface of the composite particle (The average content of silicon dioxide contained in the whole (X = 2)) / (silicon dioxide contained in a region from the surface of the composite particle to a cross section appearing at a depth point of 100 nm of the composite particle) It is characterized by comprising composite particles having a value of (average content of (X = 2)) of 0.3 or more and 0.7 or less.

本発明によるリチウム二次電池負極用炭素材に含まれる複合粒子は、SiOX(0<X≦2)で示される酸化ケイ素を含む粒子と、樹脂炭素材とから構成される。酸化ケイ素を含む粒子は樹脂炭素材に完全に包囲されてもよいし、樹脂炭素材の表面から一部突き出て完全に包囲されていなくてもよいし、又は樹脂炭素材とは別個独立に単独で存在してもよい。 The composite particles contained in the carbon material for a negative electrode of a lithium secondary battery according to the present invention are composed of particles containing silicon oxide represented by SiO x (0 <X ≦ 2) and a resin carbon material. The particles containing silicon oxide may be completely surrounded by the resin carbon material, or may not be completely surrounded by protruding partly from the surface of the resin carbon material, or separately from the resin carbon material. May be present.

複合粒子を構成する酸化ケイ素を含む粒子の酸化ケイ素は、化学式:SiOXで示される酸化ケイ素であり、Xは、0<X≦2であれば、任意の値をとることができる。すなわち、複合粒子を構成する酸化ケイ素を含む粒子の酸化ケイ素は、Xが少なくとも2つの値をとる少なくとも2種の酸化ケイ素から構成されてよい。複合粒子を構成する酸化ケイ素を含む粒子の酸化ケイ素が少なくとも2種の酸化ケイ素から構成される場合、複合粒子は、複合粒子の表面から中心に向かって酸化ケイ素のXが増加する傾斜構造を有することが好ましい。傾斜構造における酸化ケイ素のXの増加率は、(複合粒子の100nmの深さ地点に現れる断面までの領域のX−該複合粒子の該表面の酸化ケイ素のX)/(該複合粒子の該表面の酸化ケイ素のX)の式で表される。 The silicon oxide of the particles containing silicon oxide constituting the composite particles is silicon oxide represented by the chemical formula: SiO x , and X can take any value as long as 0 <X ≦ 2. That is, the silicon oxide of the particles containing silicon oxide constituting the composite particles may be composed of at least two types of silicon oxides in which X has at least two values. When the silicon oxide of the particle containing silicon oxide constituting the composite particle is composed of at least two types of silicon oxide, the composite particle has an inclined structure in which X of silicon oxide increases from the surface of the composite particle toward the center. It is preferable. The rate of increase of X of silicon oxide in the tilted structure is (X of the region up to the cross section appearing at a depth point of 100 nm of the composite particle−X of silicon oxide on the surface of the composite particle) / (the surface of the composite particle) The silicon oxide is represented by the formula X).

ここで、Xの導出方法は以下である。
(Xの導出方法)
1価:1×1価のピークの面積/全ピーク面積=A1
2価:2×2価のピークの面積/全ピーク面積=A2
3価:3×3価のピークの面積/全ピーク面積=A3
4価:4×4価のピークの面積/全ピーク面積=A4
X=(A1+A2+A3+A4)/2
Here, the method for deriving X is as follows.
(Method for deriving X)
Monovalent: 1 × monovalent peak area / total peak area = A1
Divalent: 2 × 2 peak area / total peak area = A2
Trivalent: 3 x trivalent peak area / total peak area = A3
Tetravalent: 4 × 4 valence peak area / total peak area = A4
X = (A1 + A2 + A3 + A4) / 2

Xの増加率は、3以下であることが好ましく、2.5以下であることがより好ましい。   The increase rate of X is preferably 3 or less, and more preferably 2.5 or less.

本発明によるリチウム二次電池負極用炭素材は、その形状に特に制限はなく、塊状、鱗片状、球状、繊維状等の任意の粒子形状を有することができる。また、これら炭素材粒子の大きさは、充放電特性の上で、平均粒子径が3μm以上、15μm以下であることが好ましい。更に好ましくは5μm以上、13μm以下である。また、より好ましくは、7μm以上、11μm以下である。平均粒子径が15μmより大きくなると、炭素材粒子間の間隙が大きくなり、リチウム二次電池負極用炭素材として用いた場合に、負極電極の密度を向上させることができなくなるおそれがある。また、平均粒子径が3μmより小さいと、単位質量当たりで見た場合、炭素材粒子個数が増加することにより全体として嵩高くなり、取り扱いが難しくなるなどの問題が生じるおそれがある。   The shape of the carbon material for a lithium secondary battery negative electrode according to the present invention is not particularly limited, and can have any particle shape such as a lump shape, a scale shape, a spherical shape, or a fibrous shape. The carbon material particles preferably have an average particle size of 3 μm or more and 15 μm or less in view of charge / discharge characteristics. More preferably, it is 5 μm or more and 13 μm or less. More preferably, it is 7 μm or more and 11 μm or less. When the average particle diameter is larger than 15 μm, the gap between the carbon material particles becomes large, and when used as a carbon material for a lithium secondary battery negative electrode, the density of the negative electrode may not be improved. On the other hand, when the average particle size is smaller than 3 μm, when viewed per unit mass, the number of carbon material particles increases, and as a result, there is a possibility that problems such as increase in bulk and difficulty in handling.

本発明における粒子径の定義としては、粒子形状とMie理論を用いて測定量を粒子径に算出した値とし、有効径と称されるものである。本発明における平均粒子径は、レーザー回折式粒度分布測定法による測定される体積換算で頻度が50%となる粒子径を平均粒子径D50%として定めた。   The definition of the particle diameter in the present invention is a value obtained by calculating the measured amount into the particle diameter using the particle shape and Mie theory, and is referred to as an effective diameter. In the present invention, the average particle diameter was determined as an average particle diameter D50%, which is 50% in terms of volume measured by the laser diffraction particle size distribution measurement method.

複合粒子の表面の全体に含有される二酸化ケイ素(X=2、SiO2)の平均含有率は0.2以上0.6以下であり、0.2未満であると、充放電に伴う負極用炭素材の膨張収縮に伴う粒子の崩壊が生じ、サイクル特性が低下してしまうという問題が生じ、0.6超であると、負極炭素材の放電容量が小さいという問題が生じる。ここで、複合粒子の表面の全体に含有される二酸化ケイ素(X=2、SiO2)の平均含有率とは、後述の手順で作製した電極をESCAで測定した際に得られるピークを0価、1価、2価、3価、4価それぞれのピークで波形分離を行った際の、4価のピークの面積/全ピークの合計面積という意味である。複合粒子の表面の全体に含有される二酸化ケイ素(X=2、SiO2)の平均含有率は、0.20以上0.50以下であることが好ましく、0.25以上0.45以下であることがより好ましく、0.25以上0.40以下であることが更に好ましい。 The average content of silicon dioxide (X = 2, SiO 2 ) contained in the entire surface of the composite particles is 0.2 or more and 0.6 or less, and when it is less than 0.2, for negative electrode accompanying charge / discharge When the carbon material expands and contracts, particle collapse occurs, resulting in a problem that the cycle characteristics deteriorate. When the carbon material exceeds 0.6, the discharge capacity of the negative electrode carbon material is small. Here, the average content of silicon dioxide (X = 2, SiO 2 ) contained in the entire surface of the composite particle is a zero valence peak obtained when an electrode produced by the procedure described later is measured by ESCA. It means the area of the tetravalent peak / the total area of all peaks when waveform separation is performed at the monovalent, divalent, trivalent, and tetravalent peaks. The average content of silicon dioxide (X = 2, SiO 2 ) contained in the entire surface of the composite particles is preferably 0.20 or more and 0.50 or less, and is 0.25 or more and 0.45 or less. More preferably, it is more preferably 0.25 or more and 0.40 or less.

(該複合粒子の該表面の全体に含有される二酸化ケイ素(X=2)の該平均含有率)/(該複合粒子の該表面から、複合粒子の100nmの深さ地点に現れる断面までの領域に含有される二酸化ケイ素(X=2)の平均含有率)の値は、0.3以上0.7以下であり、0.3未満であると、複合粒子の100nmの深さ地点に現れる断面までの領域に含有される二酸化ケイ素が多く放電容量が充分でないという問題が生じ、0.7超であると、複合粒子表面の二酸化ケイ素が多く放電容量が充分でないという問題が生じる。   (Average content of silicon dioxide (X = 2) contained in the entire surface of the composite particle) / (region from the surface of the composite particle to a cross section appearing at a depth point of 100 nm of the composite particle) The value of the silicon dioxide (X = 2 average content) contained in is 0.3 or more and 0.7 or less, and a cross section appearing at a depth point of 100 nm of the composite particles when it is less than 0.3 The problem is that the amount of silicon dioxide contained in the region up to this point is large and the discharge capacity is not sufficient, and if it exceeds 0.7, the problem is that the amount of silicon dioxide on the surface of the composite particles is large and the discharge capacity is not sufficient.

ここで、複合粒子の表面の全体に含有される二酸化ケイ素(X=2)の平均含有率とは、後述の手順で作製した電極をESCAで測定した際に得られるSi由来のピークを0価、1価、2価、3価、4価それぞれのピークで波形分離を行った際の、4価のピークの面積/全ピークの合計面積であり、複合粒子の表面から、複合粒子の100nmの深さ地点に現れる断面までの領域に含有される二酸化ケイ素(X=2)の平均含有率とは、後述の手順で作製した電極表面を深さ方向に100nmのArエッチング処理を行い、処理された面をESCAで測定した際に得られるピークを0価、1価、2価、3価、4価それぞれのピークで波形分離を行った際の、4価のピークの面積/全ピークの合計面積のことである。   Here, the average content of silicon dioxide (X = 2) contained in the entire surface of the composite particles is a zero-valence peak derived from Si obtained when an electrode produced by the procedure described below is measured by ESCA. The area of the tetravalent peak / the total area of all peaks when waveform separation is performed for each of the monovalent, divalent, trivalent, and tetravalent peaks. From the surface of the composite particle, 100 nm of the composite particle The average content of silicon dioxide (X = 2) contained in the region up to the cross section appearing at the depth point is that the surface of the electrode prepared by the procedure described later is processed by Ar etching treatment of 100 nm in the depth direction. The peak obtained when the surface is measured by ESCA is the sum of the tetravalent peak area / all peaks when waveform separation is performed for each of the zero-valent, monovalent, bivalent, trivalent, and tetravalent peaks. It is an area.

(該複合粒子の該表面の全体に含有される二酸化ケイ素(X=2)の該平均含有率)/(該複合粒子の該表面から、該複合粒子の100nmの深さ地点に現れる断面までの領域に含有される二酸化ケイ素(X=2)の平均含有率)の値は、0.35以上0.65以下であることが好ましく、0.40以上0.65以下であることがより好ましく、0.45以上0.60以下であることが更に好ましい。   (Average content of silicon dioxide (X = 2) contained in the entire surface of the composite particle) / (from the surface of the composite particle to a cross section appearing at a depth point of 100 nm of the composite particle) The value of silicon dioxide (average content of X = 2) contained in the region is preferably 0.35 or more and 0.65 or less, more preferably 0.40 or more and 0.65 or less, More preferably, it is 0.45 or more and 0.60 or less.

本発明によるリチウム二次電池負極用炭素材に含まれる複合粒子は、酸化ケイ素を含む粒子と、炭素前駆体とを混合することにより、その粒子が炭素前駆体に分散された混合物を形成し、次いでその混合物に炭化処理を施すことにより製造される。この炭化処理により、炭素前駆体が樹脂炭素材に転化すると共に、酸化ケイ素を含む粒子の表面近傍から優先的に還元反応が生じ、転化した樹脂炭素材と本発明の特徴を有するSiOX(0<X≦2)で示される酸化ケイ素を含む粒子とからなる複合粒子が生成する。 The composite particles contained in the carbon material for a lithium secondary battery negative electrode according to the present invention are formed by mixing particles containing silicon oxide and a carbon precursor to form a mixture in which the particles are dispersed in the carbon precursor, The mixture is then produced by subjecting it to carbonization. By this carbonization treatment, the carbon precursor is converted into a resin carbon material, and a reduction reaction occurs preferentially from the vicinity of the surface of the particles containing silicon oxide, and the converted resin carbon material and SiO X (0 Composite particles composed of particles containing silicon oxide represented by <X ≦ 2) are produced.

炭素前駆体の例としては、石油ピッチ、石炭ピッチ、フェノール樹脂、フラン樹脂、エポキシ樹脂およびポリアクリロニトリルからなる群より選択された易黒鉛化材料又は難黒鉛化材料を挙げることができる。易黒鉛化材料と難黒鉛化材料の混合物を使用してもよい。また、フェノール樹脂等に硬化剤(例、ヘキサメチレンテトラミン)を含めてもよく、その場合、硬化剤も炭素前駆体の一部となり得る。   Examples of the carbon precursor include an easily graphitizable material or a hardly graphitized material selected from the group consisting of petroleum pitch, coal pitch, phenol resin, furan resin, epoxy resin, and polyacrylonitrile. A mixture of an easily graphitizable material and a hardly graphitized material may be used. Moreover, you may include a hardening | curing agent (for example, hexamethylenetetramine) in a phenol resin etc., In that case, a hardening | curing agent can also be a part of carbon precursor.

SiOX(0<X≦2)で示される酸化ケイ素を含む粒子と、炭素前駆体とを混合する方法に特に制限はなく、ホモディスパー、ホモジナイザー等の撹拌機による溶融又は溶液混合;遠心粉砕機、自由ミル、ジェットミル等の粉砕機による粉砕混合;乳鉢、乳棒による混練混合;等を採用することができる。上記粒子と、炭素前駆体とを混合する順序にも特に制限はない。上記粒子と樹脂炭素材からなる粒子において、樹脂炭素材と、上記粒子とから構成される複合粒子を形成する上で、溶媒を用いて、上記粒子と炭素前駆体を混合し、スラリー状混合物としてもよいし、上記粒子に炭素前駆体を混合し、炭素前駆体を硬化させ、固形状にしてもよい。また、上記スラリーにおいて、炭素前駆体が液状であれば、溶媒を使用しなくても良い。 There is no particular limitation on the method of mixing the silicon oxide particles represented by SiO x (0 <X ≦ 2) and the carbon precursor, and melting or solution mixing with a stirrer such as a homodisper or a homogenizer; centrifugal crusher In addition, pulverization and mixing using a pulverizer such as a free mill and a jet mill; kneading and mixing using a mortar and pestle can be employed. There is no restriction | limiting in particular also in the order which mixes the said particle | grain and a carbon precursor. In forming the composite particles composed of the resin carbon material and the particles in the particles composed of the particles and the resin carbon material, the particles and the carbon precursor are mixed using a solvent to form a slurry mixture. Alternatively, a carbon precursor may be mixed into the particles, and the carbon precursor may be cured to form a solid. Further, in the slurry, if the carbon precursor is liquid, it is not necessary to use a solvent.

本発明のリチウム二次電池負極用炭素材の粒度分布を調整する場合は、公知の粉砕方法、分級方法を採用すればよい。粉砕装置の例としては、ハンマーミル、ジョークラッシャー、衝突式粉砕器等が挙げられる。また、分級方法の例としては、気流分級、篩による分級が可能であり、特に気流分級装置の例として、ターボクラシファイヤー、ターボプレックス等が挙げられる。   In order to adjust the particle size distribution of the carbon material for a lithium secondary battery negative electrode of the present invention, a known pulverization method and classification method may be employed. Examples of the pulverizer include a hammer mill, a jaw crusher, and a collision pulverizer. Moreover, as an example of the classification method, air classification and classification with a sieve are possible. Particularly, examples of the air classification apparatus include a turbo classifier and a turboplex.

炭化処理のための加熱温度は、好ましくは400〜1400℃、より好ましくは600〜1300℃の範囲内で適宜設定すればよい。上記加熱温度に至るまでの昇温速度に特に制限はなく、好ましくは0.5〜600℃/時、より好ましくは20〜300℃/時の範囲内で適宜設定すればよい。上記加熱温度での保持時間は、好ましくは48時間以内、より好ましくは1〜12時間の範囲内で適宜設定すればよい。また、炭化処理は、アルゴン、窒素、二酸化炭素等の還元雰囲気において実施すればよい。さらに、炭化処理を2段階以上に分けて実施することにより、得られる樹脂炭素材の物性を制御することが好ましい。例えば、400〜700℃の温度で1〜6時間程度処理(一次炭化)した後、上述の粉砕処理により所期の平均粒子径を有する炭素材を得、さらにその炭素材を1000℃以上の温度で処理(二次炭化)することが好ましい。   What is necessary is just to set the heating temperature for carbonization processing suitably in the range of preferably 400-1400 degreeC, More preferably, 600-1300 degreeC. There is no restriction | limiting in particular in the temperature increase rate until it reaches the said heating temperature, What is necessary is just to set suitably in the range of 0.5-600 degreeC / hour, More preferably, 20-300 degreeC / hour. The holding time at the heating temperature is suitably set within 48 hours, more preferably within a range of 1 to 12 hours. Moreover, what is necessary is just to implement carbonization processing in reducing atmosphere, such as argon, nitrogen, a carbon dioxide. Furthermore, it is preferable to control the physical properties of the obtained resin carbon material by carrying out the carbonization treatment in two or more stages. For example, after processing (primary carbonization) at a temperature of 400 to 700 ° C. for about 1 to 6 hours, a carbon material having an intended average particle diameter is obtained by the above-described pulverization treatment, and the carbon material is further heated to a temperature of 1000 ° C. or more. It is preferable to process (secondary carbonization) by.

本発明によるリチウム二次電池負極用炭素材に含まれる複合粒子を構成する、酸化ケイ素を含む粒子の平均粒径は3μm以下であることが好ましい。酸化ケイ素を含む粒子の平均粒径が3μm超であると、実用上の弊害はないが、充放電に伴う酸化ケイ素を含む粒子の膨張収縮に伴う粒子の崩壊が生じサイクル特性が低下してしまうという問題が生じる場合がある。酸化ケイ素を含む粒子の平均粒径は1μm以下であることがより好ましく、500nm以下であることが更に好ましい。   It is preferable that the average particle diameter of the particle | grains containing the silicon oxide which comprises the composite particle contained in the carbon material for lithium secondary battery negative electrodes by this invention is 3 micrometers or less. When the average particle size of the particles containing silicon oxide is more than 3 μm, there is no practical problem, but the particles containing silicon oxide accompanying the charge and discharge are collapsed and the cycle characteristics are deteriorated. May arise. The average particle size of the particles containing silicon oxide is more preferably 1 μm or less, and even more preferably 500 nm or less.

本発明によるリチウム二次電池負極用炭素材に含まれる複合粒子を構成する、酸化ケイ素を含む粒子の含有量は、5質量%以上60質量%以下であることが好ましく、10質量%以上50質量%以下であることがより好ましく、15質量%以上40質量%以下であることが更に好ましい。酸化ケイ素を含む粒子の含有量が5質量%未満であると、実用上の弊害はないが放電容量が小さいという問題が生じ、60質量%超であると、実用上の弊害はないが充放電に伴う負極用炭素材の膨張収縮に伴う粒子の崩壊が生じサイクル特性が低下してしまうという問題が生じる場合がある。ここで、酸化ケイ素を含む粒子の含有量は、炭化処理をした後の本発明によるリチウム二次電池負極用炭素材の灰分から求める。具体的には、JIS K 2272:1998に従った灰分試験法によって、酸化ケイ素を含む粒子の含有量は測定される。   The content of the particles containing silicon oxide constituting the composite particles contained in the carbon material for a lithium secondary battery negative electrode according to the present invention is preferably 5% by mass or more and 60% by mass or less, and preferably 10% by mass or more and 50% by mass. % Or less, more preferably 15% by mass or more and 40% by mass or less. If the content of the silicon oxide-containing particles is less than 5% by mass, there is no practical problem, but there is a problem that the discharge capacity is small. If it exceeds 60% by mass, there is no practical problem, but charging / discharging. In some cases, there is a problem that the particle characteristics are collapsed due to the expansion and contraction of the carbon material for the negative electrode, and the cycle characteristics are deteriorated. Here, content of the particle | grains containing a silicon oxide is calculated | required from the ash content of the carbon material for lithium secondary battery negative electrodes by this invention after carbonizing. Specifically, the content of particles containing silicon oxide is measured by an ash content test method according to JIS K 2272: 1998.

本発明によるリチウム二次電池負極用炭素材に含まれる複合粒子の平均粒径は、3μm以上15μm以下であることが好ましく、5μm以上13μm以下であることがより好ましく、7μm以上11μm以下であることが更に好ましい。複合粒子の平均粒径が3μm未満であると、実用上の弊害はないが単位質量当たりで見た場合、炭素材粒子個数が増加することにより全体として嵩高くなり、取り扱いが難しくなるという問題が生じるおそれがあり、15μm超であると、実用上の弊害はないが炭素材粒子間の間隙が大きくなり、リチウム二次電池負極用炭素材として用いた場合に、負極電極の密度を向上させることができなくなるおそれがある。   The average particle size of the composite particles contained in the carbon material for a lithium secondary battery negative electrode according to the present invention is preferably 3 μm or more and 15 μm or less, more preferably 5 μm or more and 13 μm or less, and 7 μm or more and 11 μm or less. Is more preferable. When the average particle size of the composite particles is less than 3 μm, there is no practical problem, but when viewed per unit mass, the total number of carbon material particles increases, resulting in an increase in bulk and difficulty in handling. If it exceeds 15 μm, there is no practical problem, but the gap between carbon material particles becomes large, and when used as a carbon material for a negative electrode of a lithium secondary battery, the density of the negative electrode is improved. There is a risk that it will not be possible.

(2)リチウム二次電池用負極合剤
本発明によるリチウム二次電池用負極合剤はリチウム二次電池負極用炭素材を含み、上述のようにして得られた本発明によるリチウム二次電池負極用炭素材を負極活物質として用いることにより、本発明によるリチウム二次電池用負極合剤を作製することができる。本発明によるリチウム二次電池用負極合剤は、従来公知の方法を用いればよく、負極活物質としての本発明による炭素材に、バインダー、導電剤等を加えて適当な溶媒又は分散媒で所定粘度としたスラリーとして調製することができる。
(2) Negative electrode mixture for lithium secondary battery The negative electrode mixture for lithium secondary battery according to the present invention contains a carbon material for negative electrode of lithium secondary battery, and the negative electrode for lithium secondary battery according to the present invention obtained as described above. By using the carbon material for an anode as a negative electrode active material, the negative electrode mixture for a lithium secondary battery according to the present invention can be produced. For the negative electrode mixture for lithium secondary batteries according to the present invention, a conventionally known method may be used. The carbon material according to the present invention as a negative electrode active material is added with a binder, a conductive agent, etc. It can be prepared as a slurry having a viscosity.

本発明による負極合剤の作製に用いられるバインダーは、従来公知の材料であればよく、例えば、ポリフッ化ビニリデン樹脂、ポリテトラフルオロエチレン、スチレン・ブタジエン共重合体、ポリイミド樹脂、ポリアミド樹脂、ポリビニルアルコール、ポリビニルブチラール等を使用することができる。また、本発明による負極の作製に用いられる導電剤は、導電補助材として通常使用されている材料であればよく、例として、黒鉛、アセチレンブラック、ケッチェンブラック等が挙げられる。さらに、本発明による負極の作製に用いられる溶媒又は分散媒は、負極活物質、バインダー、導電剤等を均一に混合できる材料であればよく、例として、N−メチル−2−ピロリドン、メタノール、アセトニトリル等が挙げられる。   The binder used for preparation of the negative electrode mixture according to the present invention may be any conventionally known material, such as polyvinylidene fluoride resin, polytetrafluoroethylene, styrene / butadiene copolymer, polyimide resin, polyamide resin, polyvinyl alcohol. Polyvinyl butyral can be used. In addition, the conductive agent used for producing the negative electrode according to the present invention may be any material that is usually used as a conductive auxiliary material, and examples thereof include graphite, acetylene black, and ketjen black. Furthermore, the solvent or dispersion medium used for the production of the negative electrode according to the present invention may be any material that can uniformly mix the negative electrode active material, the binder, the conductive agent, and the like. Examples thereof include N-methyl-2-pyrrolidone, methanol, Examples include acetonitrile.

(3)リチウム二次電池用負極
本発明によるリチウム二次電池用負極は本発明によるリチウム二次電池用負極合剤を含み、上述のようにして得られた本発明によるリチウム二次電池用負極合剤を用いることにより、本発明によるリチウム二次電池用負極を作製することができる。具体的には、本発明によるリチウム二次電池用負極は、本発明によるリチウム二次電池用負極合剤を金属箔等の集電体に塗工し、厚さ数μm〜数百μmのコーティングを形成させ、そのコーティングを50〜200℃程度で熱処理することにより溶媒又は分散媒を除去することにより作製することができる。
(3) Negative electrode for lithium secondary battery The negative electrode for lithium secondary battery according to the present invention includes the negative electrode mixture for lithium secondary battery according to the present invention, and the negative electrode for lithium secondary battery according to the present invention obtained as described above. By using the mixture, the negative electrode for a lithium secondary battery according to the present invention can be produced. Specifically, the negative electrode for a lithium secondary battery according to the present invention is formed by coating the negative electrode mixture for a lithium secondary battery according to the present invention on a current collector such as a metal foil to have a thickness of several μm to several hundred μm. And the coating is heat-treated at about 50 to 200 ° C. to remove the solvent or the dispersion medium.

(4)リチウム二次電池
さらに、本発明によるリチウム二次電池負極を用いることにより、本発明によるリチウム二次電池を作製することができる。本発明によるリチウム二次電池は、従来公知の方法で作製することができ、一般に、本発明による負極と、正極と、電解質とを含み、さらにこれらの負極と正極が短絡しないようにするセパレータを含む。電解質がポリマーと複合化された固体電解質であってセパレータの機能を併せ持つものである場合には、独立したセパレータは不要である。
(4) Lithium secondary battery Furthermore, the lithium secondary battery by this invention is producible by using the lithium secondary battery negative electrode by this invention. The lithium secondary battery according to the present invention can be produced by a conventionally known method. In general, the lithium secondary battery includes a negative electrode according to the present invention, a positive electrode, and an electrolyte, and further includes a separator that prevents the negative electrode and the positive electrode from being short-circuited. Including. When the electrolyte is a solid electrolyte combined with a polymer and has the function of a separator, an independent separator is not necessary.

本発明によるリチウム二次電池の作製に用いられる正極は、従来公知の方法で作製することができる。例えば、正極活物質に、バインダー、導電剤等を加えて適当な溶媒又は分散媒で所定粘度としたスラリーを調製し、これを金属箔等の集電体に塗工し、厚さ数μm〜数百μmのコーティングを形成させ、そのコーティングを50〜200℃程度で熱処理することにより溶媒又は分散媒を除去すればよい。正極活物質は、従来公知の材料であればよく、例えば、LiCoO2等のコバルト複合酸化物、LiMn24等のマンガン複合酸化物、LiNiO2等のニッケル複合酸化物、これら酸化物の混合物、LiNiO2のニッケルの一部をコバルトやマンガンに置換したもの、LiFeVO4、LiFePO4等の鉄複合酸化物、等を使用することができる。 The positive electrode used for the production of the lithium secondary battery according to the present invention can be produced by a conventionally known method. For example, a positive electrode active material is added with a binder, a conductive agent, etc. to prepare a slurry having a predetermined viscosity with an appropriate solvent or dispersion medium, and this is applied to a current collector such as a metal foil, and a thickness of several μm to What is necessary is just to remove a solvent or a dispersion medium by forming a several hundred micrometer coating and heat-processing the coating at about 50-200 degreeC. The positive electrode active material may be a conventionally known material, for example, a cobalt composite oxide such as LiCoO 2 , a manganese composite oxide such as LiMn 2 O 4 , a nickel composite oxide such as LiNiO 2 , and a mixture of these oxides. , LiNiO 2 in which a part of nickel is replaced with cobalt or manganese, iron composite oxides such as LiFeVO 4 and LiFePO 4 , and the like can be used.

電解質としては、公知の電解液、常温溶融塩(イオン液体)、及び有機系若しくは無機系の固体電解質などを用いることができる。公知の電解液としては、例えば、エチレンカーボネートおよびプロピレンカーボネートなどの環状炭酸エステル、エチルメチルカーボネートおよびジエチルカーボネートなどの鎖状炭酸エステルなどが挙げられる。また、常温溶融塩(イオン液体)としては、例えば、イミダゾリウム系塩、ピロリジニウム系塩、ピリジニウム系塩、アンモニウム系塩、ホスホニウム系塩、スルホニウム系塩などが挙げられる。前記固体電解質としては、例えば、ポリエーテル系ポリマー、ポリエステル系ポリマー、ポリイミン系ポリマー、ポリビニルアセタール系ポリマー、ポリアクリロニトリル系ポリマー、ポリフッ化アルケン系ポリマー、ポリ塩化ビニル系ポリマー、ポリ(塩化ビニル−フッ化ビニリデン)系ポリマー、ポリ(スチレン−アクリロニトリル)系ポリマー、及びニトリルゴムなどの直鎖型ポリマーなどに代表される有機系ポリマーゲル;ジルコニアなどの無機セラミックス;ヨウ化銀、ヨウ化銀硫黄化合物、ヨウ化銀ルビジウム化合物などの無機系電解質;などが挙げられる。また、前記電解質にリチウム塩を溶解したものを二次電池用の電解質として用いることができる。また、電解質に難燃性を付与するために難燃性電解質溶解剤を加えることもできる。同様に、電解質の粘度を低下させるために可塑剤を加えることもできる。   As the electrolyte, a known electrolytic solution, a room temperature molten salt (ionic liquid), an organic or inorganic solid electrolyte, and the like can be used. Examples of the known electrolyte include cyclic carbonates such as ethylene carbonate and propylene carbonate, and chain carbonates such as ethyl methyl carbonate and diethyl carbonate. Examples of the room temperature molten salt (ionic liquid) include imidazolium salts, pyrrolidinium salts, pyridinium salts, ammonium salts, phosphonium salts, sulfonium salts, and the like. Examples of the solid electrolyte include polyether polymers, polyester polymers, polyimine polymers, polyvinyl acetal polymers, polyacrylonitrile polymers, polyfluorinated alkene polymers, polyvinyl chloride polymers, poly (vinyl chloride-fluoride). Vinylidene) -based polymers, poly (styrene-acrylonitrile) -based polymers, and organic polymer gels represented by linear polymers such as nitrile rubber; inorganic ceramics such as zirconia; silver iodide, silver iodide sulfur compounds, iodine And inorganic electrolytes such as silver rubidium compounds. Moreover, what melt | dissolved lithium salt in the said electrolyte can be used as an electrolyte for secondary batteries. A flame retardant electrolyte solubilizer can also be added to impart flame retardancy to the electrolyte. Similarly, a plasticizer can be added to reduce the viscosity of the electrolyte.

電解質に溶解させるリチウム塩としては、例えば、LiPF6、LiClO4、LiCF3SO3、LiBF4、LiAsF6、LiN(CF3SO22、LiN(C25SO22およびLiC(CF3SO23などが挙げられる。上記リチウム塩は、単独で用いても、また2種以上を組み合わせて用いてもよい。上記リチウム塩は、電解質全体に対して、一般に0.1質量%〜89.9質量%、好ましくは1.0質量%〜79.0質量%の含有量で用いられる。電解質のリチウム塩以外の成分は、リチウム塩の含有量が上記範囲内にあることを条件に、適当な量で添加することができる。 Examples of the lithium salt dissolved in the electrolyte include LiPF 6 , LiClO 4 , LiCF 3 SO 3 , LiBF 4 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 and LiC ( CF 3 SO 2 ) 3 and the like. The lithium salts may be used alone or in combination of two or more. The lithium salt is generally used in a content of 0.1% by mass to 89.9% by mass, preferably 1.0% by mass to 79.0% by mass, based on the entire electrolyte. Components other than the lithium salt of the electrolyte can be added in an appropriate amount on condition that the content of the lithium salt is within the above range.

上記電解質に用いられるポリマーとしては、電気化学的に安定であり、イオン伝導度が高いものであれば特に制限はなく、例えば、アクリレート系ポリマー、ポリフッ化ビニリデン等を使用することができる。また、重合性官能基を有するオニウムカチオンと重合性官能基を有する有機アニオンとから構成される塩モノマーを含むものから合成されたポリマーは、特にイオン伝導度が高く、充放電特性のさらなる向上に寄与し得る点で、より好ましい。電解質中のポリマー含有量は、好ましくは0.1質量%〜50質量%、より好ましくは1質量%〜40質量%の範囲内である。   The polymer used for the electrolyte is not particularly limited as long as it is electrochemically stable and has high ionic conductivity. For example, an acrylate polymer, polyvinylidene fluoride, or the like can be used. In addition, polymers synthesized from those containing a salt monomer composed of an onium cation having a polymerizable functional group and an organic anion having a polymerizable functional group have particularly high ionic conductivity, which further improves charge / discharge characteristics. It is more preferable at the point which can contribute. The polymer content in the electrolyte is preferably in the range of 0.1 mass% to 50 mass%, more preferably 1 mass% to 40 mass%.

上記難燃性電解質溶解剤としては、自己消火性を示し、かつ、電解質塩が共存した状態で電解質塩を溶解させることができる化合物であれば特に制限はなく、例えば、リン酸エステル、ハロゲン化合物、フォスファゼン等を使用することができる。   The flame retardant electrolyte solubilizer is not particularly limited as long as it is a compound that exhibits self-extinguishing properties and can dissolve the electrolyte salt in the presence of the electrolyte salt. For example, phosphate ester, halogen compound Phosphazene etc. can be used.

上記可塑剤の例としては、エチレンカーボネート、プロピレンカーボネート等の環状炭酸エステル、エチルメチルカーボネート、ジエチルカーボネート等の鎖状炭酸エステル、等が挙げられる。上記可塑剤は、単独で用いても、また2種以上を組み合わせて用いてもよい。   Examples of the plasticizer include cyclic carbonates such as ethylene carbonate and propylene carbonate, and chain carbonates such as ethyl methyl carbonate and diethyl carbonate. The above plasticizers may be used alone or in combination of two or more.

本発明によるリチウム二次電池にセパレータを用いる場合、正極と負極の間の短絡を防止することができ、電気化学的に安定である従来公知の材料を使用すればよい。セパレータの例としては、ポリエチレン製セパレータ、ポリプロピレン製セパレータ、セルロース製セパレータ、不織布、無機系セパレータ、グラスフィルター等が挙げられる。電解質にポリマーを含める場合には、その電解質がセパレータの機能を兼ね備える場合もあり、その場合、独立したセパレータは不要である。   When a separator is used in the lithium secondary battery according to the present invention, a conventionally known material that can prevent a short circuit between the positive electrode and the negative electrode and is electrochemically stable may be used. Examples of the separator include a polyethylene separator, a polypropylene separator, a cellulose separator, a nonwoven fabric, an inorganic separator, a glass filter, and the like. When a polymer is included in the electrolyte, the electrolyte may also have a separator function, and in that case, an independent separator is unnecessary.

本発明の二次電池の製造方法としては、公知な方法が適用できる。例えば、まず、上記で得た正極および負極を、所定の形、大きさに切断して用意し、次いで、正極と負極を直接接触しないように、セパレータを介して貼りあわせ、それを単層セルとする。次いで、この単層セルの電極間に、注液などの方法により、電解質を注入する。このようにして得られたセルを、例えば、ポリエステルフィルム/アルミニウムフィルム/変性ポリオレフィンフィルムの三層構造のラミネートフィルムからなる外装体に挿入し封止することにより、二次電池が得られる。得られた二次電池は、用途により、単セルとして用いても、複数のセルを繋いだモジュールとして用いてもよい。   As a method for producing the secondary battery of the present invention, a known method can be applied. For example, the positive electrode and the negative electrode obtained above are first prepared by cutting them into a predetermined shape and size, and then bonded via a separator so that the positive electrode and the negative electrode are not in direct contact with each other. And Next, an electrolyte is injected between the electrodes of the single-layer cell by a method such as injection. A secondary battery is obtained by inserting and sealing the thus obtained cell into an exterior body made of a laminate film having a three-layer structure of polyester film / aluminum film / modified polyolefin film, for example. The obtained secondary battery may be used as a single cell or a module in which a plurality of cells are connected depending on the application.

以下、本発明をより具体的に説明するための実施例を提供する。なお、本発明は、その目的及び主旨を逸脱しない範囲で以下の実施例に限定されるものではない。   Hereinafter, an example for explaining the present invention more concretely is provided. In addition, this invention is not limited to a following example in the range which does not deviate from the objective and the main point.

<実施例1>
ノボラック型フェノール樹脂(住友ベークライト株式会社製PR−50237)135質量部及びヘキサメチレンテトラミン(三菱瓦斯化学株式会社製)25質量部を、20質量部のメタノールを加えた4つ口フラスコに溶解させ、さらに二酸化ケイ素(株式会社アドマテックス製)25質量部(平均粒子径50nm)を加え2時間攪拌を行った。攪拌終了後、得られたスラリーを200℃にて5時間硬化処理を行った。硬化処理後、窒素雰囲気下にて昇温し、500℃到達後1時間の炭化を行った。得られた炭素材を粉砕処理し、粉砕処理により得られた炭素材を、さらに昇温し、1050℃到達後8時間の炭化処理を行い、リチウム二次電池負極用炭素材を得た。複合粒子の平均粒子径は9μmであった。この実施例1で得られたリチウム二次電池負極用炭素材について、下記に示す電池特性評価、ESCAの価数の評価及び酸化ケイ素を含む粒子の含有量の評価を実施した。得られた評価結果を下記の表1に示す。
<Example 1>
135 parts by mass of a novolac type phenolic resin (PR-50237 manufactured by Sumitomo Bakelite Co., Ltd.) and 25 parts by mass of hexamethylenetetramine (manufactured by Mitsubishi Gas Chemical Co., Inc.) are dissolved in a four-necked flask to which 20 parts by mass of methanol is added. Further, 25 parts by mass (average particle size 50 nm) of silicon dioxide (manufactured by Admatechs Co., Ltd.) was added and stirred for 2 hours. After stirring, the resulting slurry was cured at 200 ° C. for 5 hours. After the curing treatment, the temperature was raised in a nitrogen atmosphere, and carbonization was performed for 1 hour after reaching 500 ° C. The obtained carbon material was pulverized, and the carbon material obtained by the pulverization treatment was further heated and carbonized for 8 hours after reaching 1050 ° C. to obtain a carbon material for a negative electrode of a lithium secondary battery. The average particle size of the composite particles was 9 μm. The carbon material for a lithium secondary battery negative electrode obtained in Example 1 was subjected to the following battery characteristic evaluation, ESCA valence evaluation, and content evaluation of particles containing silicon oxide. The obtained evaluation results are shown in Table 1 below.

電池特性の評価
(1)負極合剤及び負極の作製
上記の実施例1で得られたリチウム二次電池負極用炭素材を用い、これに対して結着剤としてポリフッ化ビニリデン10%、アセチレンブラック3%の割合で、それぞれ配合し、さらに、希釈溶媒としてN−メチル−2−ピロリドンを適量加え混合し、スラリー状の負極合剤(負極用混合物)を調製した。この負極合剤(負極スラリー状混合物)を10μmの銅箔の両面に塗布し、その後、110℃で1時間真空乾燥した。真空乾燥後、ロールプレスによって電極を100μmに加圧成形した。これを幅40mmで長さ290mmの大きさに切り出し負極を作製した。この負極を用いて、リチウム二次電池用電極としてφ13mmの径で打ち抜き負極とした。
Evaluation of Battery Characteristics (1) Preparation of Negative Electrode Mixture and Negative Electrode The carbon material for a lithium secondary battery negative electrode obtained in Example 1 above was used, and as a binder, 10% polyvinylidene fluoride and acetylene black were used as binders. Each was blended at a ratio of 3%, and an appropriate amount of N-methyl-2-pyrrolidone as a diluent solvent was added and mixed to prepare a slurry-like negative electrode mixture (negative electrode mixture). This negative electrode mixture (negative electrode slurry-like mixture) was applied to both sides of a 10 μm copper foil, and then vacuum-dried at 110 ° C. for 1 hour. After vacuum drying, the electrode was pressure-formed to 100 μm by a roll press. This was cut into a size of 40 mm in width and 290 mm in length to produce a negative electrode. Using this negative electrode, a negative electrode was punched out with a diameter of 13 mm as an electrode for a lithium secondary battery.

(2)リチウム二次電池の作製
上記負極、セパレータ(ポリプロピレン製多孔質フィルム:直径φ16、厚さ25μm)、作用極としてリチウム金属(直径φ12、厚さ1mm)の順で、宝泉製2032型コインセル内の所定の位置に配置した。さらに、電解液としてエチレンカーボネートとジエチレンカーボネートの混合液(体積比が1:1)に、過塩素酸リチウムを1[モル/リットル]の濃度で溶解させたものを注液し、リチウム二次電池を作製した。
(2) Production of lithium secondary battery The negative electrode, the separator (polypropylene porous film: diameter φ16, thickness 25 μm), and lithium metal (diameter φ12, thickness 1 mm) as the working electrode in this order, Hosen 2032 type It was arranged at a predetermined position in the coin cell. Furthermore, a lithium secondary battery was injected by dissolving lithium perchlorate at a concentration of 1 [mol / liter] in a mixed solution of ethylene carbonate and diethylene carbonate (volume ratio of 1: 1) as an electrolytic solution. Was made.

(3)電池特性の評価
〈初期充放電特性評価〉
充電容量については、充電時の電流密度を25mA/gとして定電流充電を行い、電位が0Vに達した時点から、0Vで定電圧充電を行い、電流密度が1.25mA/gになるまでに充電した電気量を充電容量とした。一方、放電容量については、放電時の電流密度も25mA/gとして定電流放電を行い、電位が2.5Vに達した時点から、2.5Vで定電圧放電を行い、電流密度が1.25mA/gになるまでに放電した電気量を放電容量とした。なお、充放電特性の評価は、充放電特性評価装置(北斗電工(株)製:HJR−1010mSM8)を用いて行った。
(3) Evaluation of battery characteristics <Evaluation of initial charge / discharge characteristics>
Regarding the charging capacity, constant current charging is performed with the current density at the time of charging being 25 mA / g, and from the time when the potential reaches 0 V, constant voltage charging is performed at 0 V until the current density reaches 1.25 mA / g. The amount of electricity charged was taken as the charge capacity. On the other hand, with respect to the discharge capacity, constant current discharge was performed with a current density at the time of discharge of 25 mA / g, and constant voltage discharge was performed at 2.5 V from the time when the potential reached 2.5 V, and the current density was 1.25 mA. The amount of electricity discharged up to / g was taken as the discharge capacity. In addition, evaluation of the charging / discharging characteristic was performed using the charging / discharging characteristic evaluation apparatus (Hokuto Denko Co., Ltd. product: HJR-1010mSM8).

また、以下の式により初期の充放電効率を定義した。
初期充放電効率(%)=初期放電容量(mAh/g)/初期充電容量(mAh/g)×100
The initial charge / discharge efficiency was defined by the following equation.
Initial charge / discharge efficiency (%) = initial discharge capacity (mAh / g) / initial charge capacity (mAh / g) × 100

〈サイクル性評価〉
初期充放電特性評価条件を200回繰り返し測定した後に得られた放電容量を200サイクル目の放電容量とした。また、以下の式によりサイクル性(200サイクル容量維持率)を定義した。
<Cycle evaluation>
The discharge capacity obtained after the initial charge / discharge characteristic evaluation conditions were repeatedly measured 200 times was defined as the discharge capacity at the 200th cycle. Moreover, the cycle property (200 cycle capacity maintenance rate) was defined by the following formula.

サイクル性(%、200サイクル容量維持率)=200サイクル目の放電容量(mAh/g)/初期放電容量(mAh/g)×100   Cycle performance (%, 200 cycle capacity retention rate) = 200th cycle discharge capacity (mAh / g) / initial discharge capacity (mAh / g) × 100

ESCAの価数の評価
実施例1で得られたリチウム二次電池負極用炭素材の複合粒子中のSiOxの価数評価としてESCAの測定を行った。Escalab−220iXL(サーモフィッシャー サイエンティフィック社製)を用い、測定を実施し、Binding Energyが96〜106eVに表れるSi由来のピークを0〜4価の各価数でピーク分離を行い、(各価数のピークの面積/全ピーク面積)を酸化ケイ素(SiOx)の各価数の含有率とした。
Evaluation of ESCA Valency ESCA was measured as an evaluation of the valence of SiOx in the composite particles of the carbon material for the negative electrode of the lithium secondary battery obtained in Example 1. Using Escalab-220iXL (Thermo Fisher Scientific Co., Ltd.), the measurement was carried out, and the peak derived from Si in which Binding Energy appears at 96 to 106 eV was separated at each valence of 0 to 4 (each valence) The number peak area / total peak area) was defined as the content of each valence of silicon oxide (SiOx).

<Si由来のピーク分離>
0価、1価、2価、3価、4価のピークトップの位置はSi2P1とSi2P3の分離は考慮せず、各価数のピークトップ位置をそれぞれBinding Energy=98.6eV、99.9eV、101.1eV、102.3eV、103.4eVとし、各ピークの半値幅はそれぞれ1.1、1.2、1.3、1.5、1.7とし、ピーク分離を行った。
<Si-derived peak separation>
The positions of the 0-valent, 1-valent, 2-valent, 3-valent, and 4-valent peak tops do not consider the separation of Si 2P1 and Si 2P3 , and the peak top positions of the respective valences are Binding Energy = 98.6 eV, 99. 9eV, 101.1eV, 102.3eV, and 103.4eV were set, and the half width of each peak was 1.1, 1.2, 1.3, 1.5, and 1.7, respectively, and peak separation was performed.

ここで、該複合粒子の該表面の全体に含有される二酸化ケイ素(X=2)の該平均含有率とは前記の手順で作製した電極をESCAで測定した際に得られるピークを0価、1価、2価、3価、4価それぞれのピークで波形分離を行った際の、4価のピークの面積/全ピークの合計面積であり、該複合粒子の該表面から、該複合粒子の100nmの深さ地点に現れる断面までの領域に含有される二酸化ケイ素(X=2)の平均含有率とは、前記の手順で作製した電極表面を深さ方向に100nmのArエッチング処理を行い、処理された面をESCAで測定した際に得られるピークを0価、1価、2価、3価、4価それぞれのピークで波形分離を行った際の、4価のピークの面積/全ピークの合計面積のことである。   Here, the average content of silicon dioxide (X = 2) contained in the entire surface of the composite particle is zero valence, and the peak obtained when the electrode prepared by the above procedure is measured by ESCA. The area of the tetravalent peak / the total area of all peaks when waveform separation is performed for each of the monovalent, divalent, trivalent, and tetravalent peaks. From the surface of the composite particle, The average content of silicon dioxide (X = 2) contained in the region up to the cross section appearing at a depth point of 100 nm is 100 nm Ar etching treatment in the depth direction on the electrode surface prepared by the above procedure, The peak obtained when the treated surface is measured by ESCA is the tetravalent peak area / total peak when waveform separation is performed for each of the zero, monovalent, divalent, trivalent, and tetravalent peaks. Is the total area.

酸化ケイ素を含む粒子の含有量の評価(炭素材の灰分から求める方法)
JIS K 2272:1998にしたがって、実施例1で得られたリチウム二次電池負極用炭素材の灰分を測定し、酸化ケイ素を含む粒子の含有量を測定した。
Evaluation of the content of particles containing silicon oxide (Method of obtaining from ash content of carbon material)
According to JIS K 2272: 1998, the ash content of the carbon material for a lithium secondary battery negative electrode obtained in Example 1 was measured, and the content of particles containing silicon oxide was measured.

<実施例2>
ノボラック型フェノール樹脂(住友ベークライト株式会社製PR−50237)135質量部及びヘキサメチレンテトラミン(三菱瓦斯化学株式会社製)25質量部を、20質量部のメタノールを加えた4つ口フラスコに溶解させ、さらに二酸化ケイ素(株式会社アドマテックス製)25質量部(平均粒子径1μm)を加え2時間攪拌を行った。攪拌終了後、得られたスラリーを200℃にて5時間硬化処理を行った。硬化処理後、窒素雰囲気下にて昇温し、500℃到達後1時間の炭化を行った。得られた炭素材を、粉砕処理し、粉砕処理により得られた炭素材を、さらに昇温し、1050℃到達後8時間の炭化処理を行い、リチウム二次電池負極用炭素材を得た。複合粒子の平均粒子径は11μmであった。この実施例2で得られたリチウム二次電池負極用炭素材について、上記の実施例1で実施した電池特性評価法、ESCAの価数の評価法、及び酸化ケイ素を含む粒子の含有量の評価法を用いて全く同様に評価した。得られた評価結果を下記の表1に示す。
<Example 2>
135 parts by mass of a novolac type phenolic resin (PR-50237 manufactured by Sumitomo Bakelite Co., Ltd.) and 25 parts by mass of hexamethylenetetramine (manufactured by Mitsubishi Gas Chemical Co., Inc.) are dissolved in a four-necked flask to which 20 parts by mass of methanol is added. Further, 25 parts by mass (average particle diameter: 1 μm) of silicon dioxide (manufactured by Admatechs Co., Ltd.) was added and stirred for 2 hours. After stirring, the resulting slurry was cured at 200 ° C. for 5 hours. After the curing treatment, the temperature was raised in a nitrogen atmosphere, and carbonization was performed for 1 hour after reaching 500 ° C. The obtained carbon material was pulverized, the carbon material obtained by the pulverization was further heated, and carbonized for 8 hours after reaching 1050 ° C. to obtain a carbon material for a negative electrode of a lithium secondary battery. The average particle size of the composite particles was 11 μm. About the carbon material for lithium secondary battery negative electrodes obtained in this Example 2, the battery characteristic evaluation method implemented in Example 1 above, the ESCA valence evaluation method, and the evaluation of the content of particles containing silicon oxide The method was evaluated in exactly the same way. The obtained evaluation results are shown in Table 1 below.

<実施例3>
ノボラック型フェノール樹脂(住友ベークライト株式会社製PR−50237)135質量部及びヘキサメチレンテトラミン(三菱瓦斯化学株式会社製)25質量部を、20質量部のメタノールを加えた4つ口フラスコに溶解させ、さらに二酸化ケイ素(株式会社アドマテックス製)25質量部(平均粒子径1μm)を加え2時間攪拌を行った。攪拌終了後、得られたスラリーを200℃にて5時間硬化処理を行った。硬化処理後、窒素雰囲気下にて昇温し、500℃到達後1時間の炭化を行った。得られた炭素材を、粉砕処理し、粉砕処理により得られた炭素材を、さらに昇温し、1050℃到達後3時間の炭化処理を行い、リチウム二次電池負極用炭素材を得た。複合粒子の平均粒子径は10μmであった。この実施例3で得られたリチウム二次電池負極用炭素材について、上記の実施例1で実施した電池特性評価法、ESCAの価数の評価法、及び酸化ケイ素を含む粒子の含有量の評価法を用いて全く同様に評価した。得られた評価結果を下記の表1に示す。
<Example 3>
135 parts by mass of a novolac type phenolic resin (PR-50237 manufactured by Sumitomo Bakelite Co., Ltd.) and 25 parts by mass of hexamethylenetetramine (manufactured by Mitsubishi Gas Chemical Co., Inc.) are dissolved in a four-necked flask to which 20 parts by mass of methanol is added. Further, 25 parts by mass (average particle diameter: 1 μm) of silicon dioxide (manufactured by Admatechs Co., Ltd.) was added and stirred for 2 hours. After stirring, the resulting slurry was cured at 200 ° C. for 5 hours. After the curing treatment, the temperature was raised in a nitrogen atmosphere, and carbonization was performed for 1 hour after reaching 500 ° C. The obtained carbon material was pulverized, the carbon material obtained by the pulverization was further heated, and carbonized for 3 hours after reaching 1050 ° C. to obtain a carbon material for a lithium secondary battery negative electrode. The average particle size of the composite particles was 10 μm. Regarding the carbon material for a lithium secondary battery negative electrode obtained in Example 3, the battery characteristic evaluation method performed in Example 1 above, the ESCA valence evaluation method, and the evaluation of the content of particles containing silicon oxide The method was evaluated in exactly the same way. The obtained evaluation results are shown in Table 1 below.

<実施例4>
ノボラック型フェノール樹脂(住友ベークライト株式会社製PR−50237)135質量部及びヘキサメチレンテトラミン(三菱瓦斯化学株式会社製)25質量部を、20質量部のメタノールを加えた4つ口フラスコに溶解させ、さらに二酸化ケイ素(株式会社アドマテックス製)55質量部(平均粒子径1μm)を加え2時間攪拌を行った。攪拌終了後、得られたスラリーを200℃にて5時間硬化処理を行った。硬化処理後、窒素雰囲気下にて昇温し、500℃到達後1時間の炭化を行った。得られた炭素材を、粉砕処理し、粉砕処理により得られた炭素材を、さらに昇温し、1050℃到達後8時間の炭化処理を行い、リチウム二次電池負極用炭素材を得た。複合粒子の平均粒子径は11μmであった。この実施例4で得られたリチウム二次電池負極用炭素材について、上記の実施例1で実施した電池特性評価法、ESCAの価数の評価法、及び酸化ケイ素を含む粒子の含有量の評価法を用いて全く同様に評価した。得られた評価結果を下記の表1に示す。
<Example 4>
135 parts by mass of a novolac type phenolic resin (PR-50237 manufactured by Sumitomo Bakelite Co., Ltd.) and 25 parts by mass of hexamethylenetetramine (manufactured by Mitsubishi Gas Chemical Co., Inc.) are dissolved in a four-necked flask to which 20 parts by mass of methanol is added. Furthermore, 55 parts by mass of silicon dioxide (manufactured by Admatechs Co., Ltd.) (average particle size 1 μm) was added and stirred for 2 hours. After stirring, the resulting slurry was cured at 200 ° C. for 5 hours. After the curing treatment, the temperature was raised in a nitrogen atmosphere, and carbonization was performed for 1 hour after reaching 500 ° C. The obtained carbon material was pulverized, the carbon material obtained by the pulverization was further heated, and carbonized for 8 hours after reaching 1050 ° C. to obtain a carbon material for a negative electrode of a lithium secondary battery. The average particle size of the composite particles was 11 μm. About the carbon material for lithium secondary battery negative electrodes obtained in this Example 4, the battery characteristic evaluation method implemented in said Example 1, the evaluation method of the valence of ESCA, and the evaluation of the content of particles containing silicon oxide The method was evaluated in exactly the same way. The obtained evaluation results are shown in Table 1 below.

<実施例5>
ノボラック型フェノール樹脂(住友ベークライト株式会社製PR−50237)135質量部及びヘキサメチレンテトラミン(三菱瓦斯化学株式会社製)25質量部を、20質量部のメタノールを加えた4つ口フラスコに溶解させ、さらに二酸化ケイ素(株式会社アドマテックス製)25質量部(平均粒子径50nm)を加え2時間攪拌を行った。攪拌終了後、得られたスラリーを200℃にて5時間硬化処理を行った。硬化処理後、窒素雰囲気下にて昇温し、500℃到達後1時間の炭化を行った。得られた炭素材を、粉砕処理し、粉砕処理により得られた炭素材を、さらに昇温し、1050℃到達後0.5時間の炭化処理を行い、リチウム二次電池負極用炭素材を得た。複合粒子の平均粒子径は9μmであった。この実施例5で得られたリチウム二次電池負極用炭素材について、上記の実施例1で実施した電池特性評価法、ESCAの価数の評価法、及び酸化ケイ素を含む粒子の含有量の評価法を用いて全く同様に評価した。得られた評価結果を下記の表1に示す。
<Example 5>
135 parts by mass of a novolac type phenolic resin (PR-50237 manufactured by Sumitomo Bakelite Co., Ltd.) and 25 parts by mass of hexamethylenetetramine (manufactured by Mitsubishi Gas Chemical Co., Inc.) are dissolved in a four-necked flask to which 20 parts by mass of methanol is added. Further, 25 parts by mass (average particle size 50 nm) of silicon dioxide (manufactured by Admatechs Co., Ltd.) was added and stirred for 2 hours. After stirring, the resulting slurry was cured at 200 ° C. for 5 hours. After the curing treatment, the temperature was raised in a nitrogen atmosphere, and carbonization was performed for 1 hour after reaching 500 ° C. The obtained carbon material is pulverized, and the carbon material obtained by the pulverization treatment is further heated and carbonized for 0.5 hours after reaching 1050 ° C. to obtain a carbon material for a negative electrode of a lithium secondary battery. It was. The average particle size of the composite particles was 9 μm. About the carbon material for lithium secondary battery negative electrodes obtained in this Example 5, the battery characteristic evaluation method implemented in Example 1 above, the ESCA valence evaluation method, and the evaluation of the content of particles containing silicon oxide The method was evaluated in exactly the same way. The obtained evaluation results are shown in Table 1 below.

<比較例1>
ノボラック型フェノール樹脂(住友ベークライト株式会社製PR−50237)135質量部及びヘキサメチレンテトラミン(三菱瓦斯化学株式会社製)25質量部を、20質量部のメタノールを加えた4つ口フラスコに溶解させ、さらにケイ素(Nanostructured & Amorphous Materials,Inc.製)10質量部(平均粒子径50nm)を加え2時間攪拌を行った。攪拌終了後、得られたスラリーを200℃にて5時間硬化処理を行った。硬化処理後、窒素雰囲気下にて昇温し、500℃到達後1時間の炭化を行った。得られた炭素材を、粉砕処理し、粉砕処理により得られた炭素材を、さらに昇温し、1050℃到達後8時間の炭化処理を行い、リチウム二次電池負極用炭素材を得た。複合粒子の平均粒子径は9μmであった。この比較例1で得られたリチウム二次電池負極用炭素材について、上記の実施例1で実施した電池特性評価法及びESCAの価数の評価法を用いて全く同様に評価し、ケイ素を含む粒子の含有量の評価は、実施例1で実施した酸化ケイ素を含む粒子の含有量の評価法にしたがって評価をした。得られた評価結果を下記の表1に示す。
<Comparative Example 1>
135 parts by mass of a novolac type phenolic resin (PR-50237 manufactured by Sumitomo Bakelite Co., Ltd.) and 25 parts by mass of hexamethylenetetramine (manufactured by Mitsubishi Gas Chemical Co., Inc.) are dissolved in a four-necked flask to which 20 parts by mass of methanol is added. Further, 10 parts by mass (average particle size: 50 nm) of silicon (Nanostructured & Amorphous Materials, Inc.) was added and stirred for 2 hours. After stirring, the resulting slurry was cured at 200 ° C. for 5 hours. After the curing treatment, the temperature was raised in a nitrogen atmosphere, and carbonization was performed for 1 hour after reaching 500 ° C. The obtained carbon material was pulverized, the carbon material obtained by the pulverization was further heated, and carbonized for 8 hours after reaching 1050 ° C. to obtain a carbon material for a negative electrode of a lithium secondary battery. The average particle size of the composite particles was 9 μm. The carbon material for a lithium secondary battery negative electrode obtained in Comparative Example 1 was evaluated in exactly the same manner using the battery characteristic evaluation method and ESCA valence evaluation method implemented in Example 1 above, and contained silicon. The content of the particles was evaluated according to the method for evaluating the content of particles containing silicon oxide, which was performed in Example 1. The obtained evaluation results are shown in Table 1 below.

<比較例2>
ノボラック型フェノール樹脂(住友ベークライト株式会社製PR−50237)135質量部及びヘキサメチレンテトラミン(三菱瓦斯化学株式会社製)25質量部を、20質量部のメタノールを加えた4つ口フラスコに溶解させ、さらに二酸化ケイ素(株式会社アドマテックス製)25質量部(平均粒子径7μm)を加え2時間攪拌を行った。攪拌終了後、得られたスラリーを200℃にて5時間硬化処理を行った。硬化処理後、窒素雰囲気下にて昇温し、500℃到達後1時間の炭化を行った。得られた炭素材を、粉砕処理し、粉砕処理により得られた炭素材を、さらに昇温し、1050℃到達後8時間の炭化処理を行い、リチウム二次電池負極用炭素材を得た。複合粒子の平均粒子径は10μmであった。この比較例2で得られたリチウム二次電池負極用炭素材について、上記の実施例1で実施した電池特性評価法、ESCAの価数の評価法及び酸化ケイ素を含む粒子の含有量の評価法を用いて全く同様に評価した。得られた評価結果を下記の表1に示す。
<Comparative example 2>
135 parts by mass of a novolac type phenolic resin (PR-50237 manufactured by Sumitomo Bakelite Co., Ltd.) and 25 parts by mass of hexamethylenetetramine (manufactured by Mitsubishi Gas Chemical Co., Inc.) are dissolved in a four-necked flask to which 20 parts by mass of methanol is added. Further, 25 parts by mass (average particle size: 7 μm) of silicon dioxide (manufactured by Admatechs Co., Ltd.) was added and stirred for 2 hours. After stirring, the resulting slurry was cured at 200 ° C. for 5 hours. After the curing treatment, the temperature was raised in a nitrogen atmosphere, and carbonization was performed for 1 hour after reaching 500 ° C. The obtained carbon material was pulverized, the carbon material obtained by the pulverization was further heated, and carbonized for 8 hours after reaching 1050 ° C. to obtain a carbon material for a negative electrode of a lithium secondary battery. The average particle size of the composite particles was 10 μm. Regarding the carbon material for a lithium secondary battery negative electrode obtained in Comparative Example 2, the battery characteristic evaluation method implemented in Example 1 above, the ESCA valence evaluation method, and the content evaluation method of particles containing silicon oxide Was evaluated in exactly the same manner. The obtained evaluation results are shown in Table 1 below.

<比較例3>
ノボラック型フェノール樹脂(住友ベークライト株式会社製PR−50237)135質量部及びヘキサメチレンテトラミン(三菱瓦斯化学株式会社製)25質量部を、20質量部のメタノールを加えた4つ口フラスコに溶解させ、さらに二酸化ケイ素(株式会社アドマテックス製)25質量部(平均粒子径50nm)を加え2時間攪拌を行った。攪拌終了後、得られたスラリーを200℃にて5時間硬化処理を行った。硬化処理後、窒素雰囲気下にて昇温し、500℃到達後1時間の炭化を行った。得られた炭素材を、粉砕処理し、粉砕処理により得られた炭素材を、さらに昇温し、1050℃到達後8時間の炭化処理を行い、続いて大気雰囲気下、300℃10時間処理を実施し、リチウム二次電池負極用炭素材を得た。複合粒子の平均粒子径は11μmであった。この比較例3で得られたリチウム二次電池負極用炭素材について、上記の実施例1で実施した電池特性評価法、ESCAの価数の評価法及び酸化ケイ素を含む粒子の含有量の評価法を用いて全く同様に評価した。得られた評価結果を下記の表1に示す。
<Comparative Example 3>
135 parts by mass of a novolac type phenolic resin (PR-50237 manufactured by Sumitomo Bakelite Co., Ltd.) and 25 parts by mass of hexamethylenetetramine (manufactured by Mitsubishi Gas Chemical Co., Inc.) are dissolved in a four-necked flask to which 20 parts by mass of methanol is added. Further, 25 parts by mass (average particle size 50 nm) of silicon dioxide (manufactured by Admatechs Co., Ltd.) was added and stirred for 2 hours. After stirring, the resulting slurry was cured at 200 ° C. for 5 hours. After the curing treatment, the temperature was raised in a nitrogen atmosphere, and carbonization was performed for 1 hour after reaching 500 ° C. The obtained carbon material is pulverized, and the carbon material obtained by the pulverization treatment is further heated and carbonized for 8 hours after reaching 1050 ° C., followed by treatment at 300 ° C. for 10 hours in an air atmosphere. It implemented and obtained the carbon material for lithium secondary battery negative electrodes. The average particle size of the composite particles was 11 μm. Regarding the carbon material for a lithium secondary battery negative electrode obtained in Comparative Example 3, the battery characteristic evaluation method implemented in Example 1 above, the ESCA valence evaluation method, and the content evaluation method of particles containing silicon oxide Was evaluated in exactly the same manner. The obtained evaluation results are shown in Table 1 below.

<比較例4>
ノボラック型フェノール樹脂(住友ベークライト株式会社製PR−50237)135質量部及びヘキサメチレンテトラミン(三菱瓦斯化学株式会社製)25質量部を、20質量部のメタノールを加えた4つ口フラスコに溶解させ、さらに二酸化ケイ素(株式会社アドマテックス製)25質量部(平均粒子径5μm)を加え2時間攪拌を行った。攪拌終了後、得られたスラリーを200℃にて5時間硬化処理を行った。硬化処理後、窒素雰囲気下にて昇温し、500℃到達後1時間の炭化を行った。得られた炭素材を、粉砕処理し、粉砕処理により得られた炭素材を、さらに昇温し、1050℃到達後0.1時間の炭化処理を行い、リチウム二次電池負極用炭素材を得た。複合粒子の平均粒子径は11μmであった。この比較例4で得られたリチウム二次電池負極用炭素材について、上記の実施例1で実施した電池特性評価法、ESCAの価数の評価法及び酸化ケイ素を含む粒子の含有量の評価法を用いて全く同様に評価した。得られた評価結果を下記の表1に示す。
<Comparative Example 4>
135 parts by mass of a novolac type phenolic resin (PR-50237 manufactured by Sumitomo Bakelite Co., Ltd.) and 25 parts by mass of hexamethylenetetramine (manufactured by Mitsubishi Gas Chemical Co., Inc.) are dissolved in a four-necked flask to which 20 parts by mass of methanol is added. Further, 25 parts by mass (average particle diameter: 5 μm) of silicon dioxide (manufactured by Admatechs Co., Ltd.) was added and stirred for 2 hours. After stirring, the resulting slurry was cured at 200 ° C. for 5 hours. After the curing treatment, the temperature was raised in a nitrogen atmosphere, and carbonization was performed for 1 hour after reaching 500 ° C. The obtained carbon material is pulverized, and the carbon material obtained by the pulverization treatment is further heated and carbonized for 0.1 hour after reaching 1050 ° C. to obtain a carbon material for a negative electrode of a lithium secondary battery. It was. The average particle size of the composite particles was 11 μm. Regarding the carbon material for a lithium secondary battery negative electrode obtained in Comparative Example 4, the battery characteristic evaluation method implemented in Example 1 above, the ESCA valence evaluation method, and the content evaluation method of particles containing silicon oxide Was evaluated in exactly the same manner. The obtained evaluation results are shown in Table 1 below.

Figure 0005655396
Figure 0005655396

表1に記載の結果から明らかなように、実施例1〜5で各々得られたリチウム二次電池負極用炭素材を用いて作製した、各々のリチウム二次電池の初期放電容量は、各々、689mAh/g、536mAh/g、562mAh/g、677mAh/g、507mAh/gであり、200サイクル後のサイクル容量維持率は、各々、89%、91%、90%、87%、85%であった。一方、比較例1で得られたリチウム二次電池負極用炭素材を用いて作製した、リチウム二次電池の初期放電容量は936mAh/gであったが、200サイクル後のサイクル容量維持率が著しく低下した(12%)。比較例2〜4で各々得られたリチウム二次電池負極用炭素材を用いて作製した、各々のリチウム二次電池の200サイクル容量維持率は、各々、95%、93%、94%であったが、放電容量が著しく低い結果となった(各々、376mAh/g、311mAh/g、341mAh/g)。以上の結果から、初期放電容量が高く、かつ、200サイクル容量維持率が高いものは、実施例1〜5で各々得られたリチウム二次電池負極用炭素材を用いて作製した、各々のリチウム二次電池であった。   As is clear from the results shown in Table 1, the initial discharge capacities of the respective lithium secondary batteries produced using the carbon materials for the negative electrodes of the lithium secondary batteries obtained in Examples 1 to 5, respectively, 689 mAh / g, 536 mAh / g, 562 mAh / g, 677 mAh / g, and 507 mAh / g, and the cycle capacity maintenance rates after 200 cycles were 89%, 91%, 90%, 87%, and 85%, respectively. It was. On the other hand, the initial discharge capacity of the lithium secondary battery produced using the carbon material for the negative electrode of the lithium secondary battery obtained in Comparative Example 1 was 936 mAh / g, but the cycle capacity retention rate after 200 cycles was remarkable. Decreased (12%). The 200 cycle capacity retention rates of the lithium secondary batteries produced using the carbon materials for the negative electrodes of the lithium secondary batteries obtained in Comparative Examples 2 to 4 were 95%, 93%, and 94%, respectively. However, the discharge capacity was remarkably low (respectively 376 mAh / g, 311 mAh / g, 341 mAh / g). From the above results, those having a high initial discharge capacity and a high 200 cycle capacity retention rate were prepared using the carbon materials for lithium secondary battery negative electrodes obtained in Examples 1 to 5, respectively. It was a secondary battery.

Claims (8)

SiOX(0<X≦2)で示される酸化ケイ素を含む粒子と、樹脂炭素材とから構成される複合粒子であって、該複合粒子の表面の全体に含有される二酸化ケイ素(X=2)の平均含有率が0.2以上0.6以下であり、かつ、(該複合粒子の該表面の全体に含有される二酸化ケイ素(X=2)の該平均含有率)/(該複合粒子の該表面から、該複合粒子の100nmの深さ地点に現れる断面までの領域に含有される二酸化ケイ素(X=2)の平均含有率)の値が0.3以上0.7以下である複合粒子を含んでなる、リチウム二次電池負極用炭素材において、
該複合粒子の表面の全体に含有される二酸化ケイ素(X=2)の平均含有率とは、該複合粒子で作製された電極をESCAで測定した際に得られるピークの波形分離を行って算出された二酸化ケイ素(X=2)の平均含有率であり、かつ、
該複合粒子の該表面から、該複合粒子の100nmの深さ地点に現れる断面までの領域に含有される二酸化ケイ素(X=2)の平均含有率とは、該複合粒子で作製された電極の表面を深さ方向に100nmのエッチング処理を行い、処理された面をESCAで測定した際に得られるピークの波形分離を行って算出された二酸化ケイ素(X=2)の平均含有率であることを特徴とする、リチウム二次電池負極用炭素材。
Composite particles composed of particles containing silicon oxide represented by SiO x (0 <X ≦ 2) and a resin carbon material, and silicon dioxide (X = 2) contained in the entire surface of the composite particles ) Is 0.2 or more and 0.6 or less, and (the average content of silicon dioxide (X = 2) contained in the entire surface of the composite particles) / (the composite particles) A composite having a value of silicon dioxide (average content of X = 2) contained in a region from the surface to a cross section appearing at a depth of 100 nm of the composite particle is 0.3 or more and 0.7 or less In a carbon material for a lithium secondary battery negative electrode comprising particles ,
The average content of silicon dioxide (X = 2) contained in the entire surface of the composite particle is calculated by performing waveform separation of peaks obtained when an electrode made of the composite particle is measured by ESCA. The average content of deposited silicon dioxide (X = 2), and
The average content of silicon dioxide (X = 2) contained in the region from the surface of the composite particle to the cross section appearing at a depth point of 100 nm of the composite particle is the average content of the electrode made of the composite particle. The average content of silicon dioxide (X = 2) calculated by etching the surface in the depth direction to 100 nm and performing waveform separation of peaks obtained when the treated surface is measured by ESCA. A carbon material for a negative electrode of a lithium secondary battery.
(前記複合粒子の前記表面の全体に含有される二酸化ケイ素(X=2)の前記平均含有率)/(前記複合粒子の前記表面から、前記複合粒子の100nmの深さ地点に現れる前記断面までの前記領域に含有される二酸化ケイ素(X=2)の前記平均含有率)の値が0.4以上0.6以下である、請求項1に記載のリチウム二次電池負極用炭素材。   (The average content of silicon dioxide (X = 2) contained in the entire surface of the composite particle) / (From the surface of the composite particle to the cross section appearing at a depth point of 100 nm of the composite particle) The carbon material for a lithium secondary battery negative electrode according to claim 1, wherein a value of silicon dioxide (X = 2) contained in the region is 0.4 or more and 0.6 or less. 前記酸化ケイ素を含む粒子の平均粒子径が3μm以下である、請求項1又は2に記載のリチウム二次電池負極用炭素材。   The carbon material for a lithium secondary battery negative electrode according to claim 1 or 2, wherein an average particle diameter of the particles containing silicon oxide is 3 µm or less. 前記酸化ケイ素を含む粒子の含有量が5質量%以上60質量%以下である、請求項1から3のいずれか1項に記載のリチウム二次電池負極用炭素材。   The carbon material for a lithium secondary battery negative electrode according to any one of claims 1 to 3, wherein a content of the particles containing silicon oxide is 5 mass% or more and 60 mass% or less. 前記複合粒子の平均粒子径が3μm以上15μm以下である、請求項1から4のいずれか1項に記載のリチウムイオン二次電池負極用炭素材。   The carbon material for a lithium ion secondary battery negative electrode according to any one of claims 1 to 4, wherein an average particle diameter of the composite particles is 3 µm or more and 15 µm or less. 請求項1から5のいずれか1項に記載のリチウム二次電池負極用炭素材を含むリチウム二次電池用負極合剤。   The negative electrode mixture for lithium secondary batteries containing the carbon material for lithium secondary battery negative electrodes of any one of Claim 1 to 5. 請求項6に記載のリチウム二次電池用負極合剤を含むリチウム二次電池用負極。   The negative electrode for lithium secondary batteries containing the negative electrode mixture for lithium secondary batteries of Claim 6. 請求項7に記載のリチウム二次電池用負極を含むリチウム二次電池。   A lithium secondary battery comprising the negative electrode for a lithium secondary battery according to claim 7.
JP2010149906A 2010-06-30 2010-06-30 Carbon material for negative electrode of lithium secondary battery, negative electrode mixture for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery Expired - Fee Related JP5655396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010149906A JP5655396B2 (en) 2010-06-30 2010-06-30 Carbon material for negative electrode of lithium secondary battery, negative electrode mixture for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010149906A JP5655396B2 (en) 2010-06-30 2010-06-30 Carbon material for negative electrode of lithium secondary battery, negative electrode mixture for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2012014939A JP2012014939A (en) 2012-01-19
JP5655396B2 true JP5655396B2 (en) 2015-01-21

Family

ID=45601136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010149906A Expired - Fee Related JP5655396B2 (en) 2010-06-30 2010-06-30 Carbon material for negative electrode of lithium secondary battery, negative electrode mixture for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP5655396B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104335401B (en) * 2012-06-07 2016-07-27 日本瑞翁株式会社 Cathode size compositions, lithium ion secondary battery negative pole and lithium rechargeable battery
CN104781959B (en) * 2012-11-13 2017-07-04 日本电气株式会社 Negative electrode active material, its preparation method and lithium secondary battery
JP6430489B2 (en) 2014-03-24 2018-11-28 株式会社東芝 Negative electrode active material for non-aqueous electrolyte battery, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and battery pack
JP6567448B2 (en) 2016-03-16 2019-08-28 株式会社東芝 Non-aqueous electrolyte battery electrode material, non-aqueous electrolyte battery electrode, non-aqueous electrolyte battery and battery pack including the same, vehicle
JP6921481B2 (en) 2016-03-17 2021-08-18 株式会社東芝 Electrode materials for non-aqueous electrolyte batteries, electrodes for non-aqueous electrolyte batteries, non-aqueous electrolyte batteries and battery packs equipped with them, vehicles

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5060010B2 (en) * 2002-10-18 2012-10-31 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP3952180B2 (en) * 2002-05-17 2007-08-01 信越化学工業株式会社 Conductive silicon composite, method for producing the same, and negative electrode material for nonaqueous electrolyte secondary battery
JP2004071542A (en) * 2002-06-14 2004-03-04 Japan Storage Battery Co Ltd Negative electrode active material, negative electrode using same, nonaqueous electrolyte battery using same, and manufacture of negative electrode active material
JP5058494B2 (en) * 2006-02-15 2012-10-24 株式会社クラレ Composite, method for producing the same, and electrode material for power storage device
JP2007214137A (en) * 2007-03-12 2007-08-23 Mitsubishi Chemicals Corp Negative electrode active material for nonaqueous carbon-coated lithium secondary battery
JP5272492B2 (en) * 2008-04-21 2013-08-28 信越化学工業株式会社 Negative electrode material for non-aqueous electrolyte secondary battery and method for producing the same, and negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
CN102227836B (en) * 2008-09-30 2014-07-02 住友电木株式会社 Carbon material for negative electrode of lithium secondary battery, negative electrode of lithium secondary battery, lithium secondary battery and method for producing carbon material for negative electrode of lithium secondary battery
CN102906908A (en) * 2010-05-25 2013-01-30 株式会社大阪钛技术 Powder for negative electrode material of lithium-ion rechargeable battery electrode, and method of producing same

Also Published As

Publication number Publication date
JP2012014939A (en) 2012-01-19

Similar Documents

Publication Publication Date Title
CN102227836B (en) Carbon material for negative electrode of lithium secondary battery, negative electrode of lithium secondary battery, lithium secondary battery and method for producing carbon material for negative electrode of lithium secondary battery
JP4306697B2 (en) Secondary battery
KR101494715B1 (en) Negative active material for rechargeable lithium battery, method of preparing the same, and negative electrode and rechargeable lithium battery including the same
JP5162945B2 (en) Mixture of lithium phosphate transition metal compound and carbon, electrode provided with the same, battery provided with the electrode, method for producing the mixture, and method for producing the battery
JP6493409B2 (en) Non-aqueous electrolyte secondary battery
JPWO2007043665A1 (en) Mixture of lithium iron phosphate and carbon, electrode including the same, battery including the electrode, method for manufacturing the mixture, and method for manufacturing the battery
WO2012144177A1 (en) Negative electrode for lithium ion secondary batteries and lithium ion secondary battery using negative electrode
JP2012164624A (en) Negative electrode active material for lithium ion secondary battery, and lithium ion secondary battery comprising the negative electrode active material
JP2011076741A (en) Lithium secondary battery negative electrode mixture, lithium secondary battery negative electrode, and lithium secondary battery
JP5827977B2 (en) Negative electrode active material for lithium ion secondary battery, negative electrode mixture for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2011076744A (en) Lithium secondary battery negative electrode mixture, lithium secondary battery negative electrode, and lithium secondary battery
JP2022550820A (en) Spherical carbon-based negative electrode active material, manufacturing method thereof, negative electrode containing same, and lithium secondary battery
JP5655396B2 (en) Carbon material for negative electrode of lithium secondary battery, negative electrode mixture for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery
JP2023015188A (en) Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery
JP2016170930A (en) Negative electrode active material layer and power storage device having the same
JP5573149B2 (en) Carbon material for negative electrode of lithium secondary battery, negative electrode of lithium secondary battery and lithium secondary battery
JP5499636B2 (en) Carbon material for negative electrode of lithium secondary battery, negative electrode of lithium secondary battery and lithium secondary battery
JP5639017B2 (en) Negative electrode active material for lithium ion secondary battery, negative electrode mixture for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
CN113614944A (en) Composite particle for electrochemical element functional layer, binder composition for electrochemical element functional layer, conductive material paste for electrode composite layer, slurry for electrode composite layer, electrode for electrochemical element, and electrochemical element
JP2004063411A (en) Complex graphite material, its manufacturing method, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR20170101215A (en) Lithium-phosphorus composite oxide carbon composite, production method therefor, electrochemical device, and lithium ion secondary battery
JP5482094B2 (en) Carbon material for lithium secondary battery negative electrode, lithium secondary battery negative electrode, lithium secondary battery, and method for producing carbon material for lithium secondary battery negative electrode
JP7133776B2 (en) Non-aqueous electrolyte secondary battery
JP2013073920A (en) Composition, carbon composite material for lithium ion secondary battery negative electrode material, negative electrode mixture for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2011076742A (en) Lithium secondary battery negative electrode mixture, lithium secondary battery negative electrode, and lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141110

R150 Certificate of patent or registration of utility model

Ref document number: 5655396

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees