JP2011076744A - Lithium secondary battery negative electrode mixture, lithium secondary battery negative electrode, and lithium secondary battery - Google Patents

Lithium secondary battery negative electrode mixture, lithium secondary battery negative electrode, and lithium secondary battery Download PDF

Info

Publication number
JP2011076744A
JP2011076744A JP2009224188A JP2009224188A JP2011076744A JP 2011076744 A JP2011076744 A JP 2011076744A JP 2009224188 A JP2009224188 A JP 2009224188A JP 2009224188 A JP2009224188 A JP 2009224188A JP 2011076744 A JP2011076744 A JP 2011076744A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
lithium secondary
silicon
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009224188A
Other languages
Japanese (ja)
Other versions
JP5593665B2 (en
Inventor
Tetsushi Ono
哲志 小野
Tatsuro Sasaki
龍朗 佐々木
Shinpei Sakashita
晋平 阪下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2009224188A priority Critical patent/JP5593665B2/en
Publication of JP2011076744A publication Critical patent/JP2011076744A/en
Application granted granted Critical
Publication of JP5593665B2 publication Critical patent/JP5593665B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium secondary battery negative electrode mixture, a lithium secondary battery negative electrode, and a lithium secondary battery capable of further improving charging-discharging cycle properties of a lithium ion secondary battery. <P>SOLUTION: The lithium secondary battery negative electrode mixture comprises a negative electrode active material and a binder. The negative electrode active material comprises: composite particles consisting of silicon-containing particles, which contain a silicon-alloy, oxide, nitride, or carbide capable of storing/releasing lithium ions, and a resin carbon material surrounding the silicon-containing particles; and a silicon-containing grid-shaped structure binding onto the surfaces of the composite particles and comprising nanofibers and/or nanotubes surrounding the composite particles. The binder comprises alkoxy group-bonded cellulose, hydroxyalkyl group-bonded cellulose, or carboxyalkyl group-bonded cellulose. The lithium secondary battery negative electrode includes the negative electrode mixture, and the lithium secondary battery includes the negative electrode. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、リチウム二次電池負極合剤、リチウム二次電池負極およびリチウム二次電池に関する。   The present invention relates to a lithium secondary battery negative electrode mixture, a lithium secondary battery negative electrode, and a lithium secondary battery.

電子機器類のポータブル化、コードレス化が進むにつれ、リチウム二次電池の小型軽量化、或いは高エネルギー密度化が、より一層求められている。リチウム二次電池を高密度化するため、リチウムと合金化するケイ素、スズ、ゲルマニウム、マグネシウム、鉛、およびアルミニウムまたはこれらの酸化物もしくは合金を負極活物質とした負極合剤を採用することが知られている。しかしながら、上述のような負極合剤は、使用する負極活物質がリチウムイオンを吸蔵する充電時に体積膨張し、反対にリチウムイオンを放出する放電時には体積収縮する。このため充放電サイクルの繰り返しに応じて負極電極の体積が変化し、その結果負極活物質が微粉化し、電極から脱落するなどして負極が崩壊することが知られている。   As electronic devices become more portable and cordless, lithium secondary batteries are required to be smaller and lighter or have higher energy density. In order to increase the density of lithium secondary batteries, it is known to employ a negative electrode mixture that uses silicon, tin, germanium, magnesium, lead, and aluminum, or an oxide or alloy thereof, which is alloyed with lithium, as a negative electrode active material. It has been. However, the negative electrode mixture as described above expands in volume during charging when the negative electrode active material used occludes lithium ions, and conversely shrinks in volume during discharging to release lithium ions. For this reason, it is known that the volume of the negative electrode changes as the charge / discharge cycle repeats, and as a result, the negative electrode active material is pulverized and dropped from the electrode, causing the negative electrode to collapse.

上記問題を克服するため、さまざまな手法、手段が検討されているが、リチウム二次電池負極合剤の負極活物質に金属、および酸化物を用いた場合に充放電特性を安定化させることは難しいのが現状である。そこで、例えば、負極材料に関する検討としては、特開2007−214137号公報に開示されているように、充放電サイクル特性に優れたリチウム二次電池用負極材料として、リチウム合金を形成しうる金属の粒子表面を有機物で被覆した負極活物質が提案されている。特開2007−214137号公報に記載の負極材料によると、リチウムイオンを吸蔵する際に起こる膨張を抑えるために、金属粒子の一次粒子平均粒径が500〜1nmのものが用いられると記載されている。しかし、用いる金属粒子の一次粒子径を小さくしたのみでは、充電時のリチウム吸蔵における金属粒子の膨張を抑えることは難しい。   In order to overcome the above-mentioned problems, various methods and means have been studied. However, when a metal and an oxide are used as the negative electrode active material of the lithium secondary battery negative electrode mixture, stabilizing the charge / discharge characteristics is not possible. The current situation is difficult. Thus, for example, as a study on the negative electrode material, as disclosed in Japanese Patent Application Laid-Open No. 2007-214137, as a negative electrode material for a lithium secondary battery having excellent charge / discharge cycle characteristics, a metal capable of forming a lithium alloy is used. A negative electrode active material in which the particle surface is coated with an organic substance has been proposed. According to the negative electrode material described in Japanese Patent Application Laid-Open No. 2007-214137, it is described that a metal particle having an average primary particle diameter of 500 to 1 nm is used in order to suppress expansion that occurs when occlusion of lithium ions. Yes. However, it is difficult to suppress the expansion of the metal particles during lithium occlusion during charging only by reducing the primary particle size of the metal particles used.

また、例えば、特開2007−305569号公報に開示されているように、粒径20nm以下の金属ナノ結晶と、金属ナノ結晶の表面上に形成された炭素コーティング層を備えることを特徴とする負極活物質が提案されている。特開2007−305569号公報に記載の負極によると、高容量で、容量維持率の良好なリチウム二次電池が得られる。記載されている負極を長寿命化する技術として、金属結晶をナノ粒子化し、且つ、炭素数が2ないし10のアルキル基、炭素数3ないし10のアリールアルキル基、炭素数3ないし10のアルキルアリール基、または炭素数2ないし10のアルコキシ基を含む有機分子で、金属結晶表面を被覆することが特徴とされている。特開2007−305569号公報に記載の金属結晶表面に生成される炭化層の形成は、気相成長法で形成されるものであり、本発明とは本質的に異なる。   Further, for example, as disclosed in JP 2007-30569 A, a negative electrode comprising a metal nanocrystal having a particle size of 20 nm or less and a carbon coating layer formed on the surface of the metal nanocrystal. Active materials have been proposed. According to the negative electrode described in JP-A-2007-305569, a lithium secondary battery having a high capacity and a good capacity retention rate can be obtained. As a technique for extending the life of the described negative electrode, a metal crystal is made into nanoparticles, and an alkyl group having 2 to 10 carbon atoms, an arylalkyl group having 3 to 10 carbon atoms, or an alkylaryl having 3 to 10 carbon atoms It is characterized in that the surface of the metal crystal is coated with an organic molecule containing a group or an alkoxy group having 2 to 10 carbon atoms. The formation of the carbonized layer formed on the surface of the metal crystal described in Japanese Patent Application Laid-Open No. 2007-305569 is formed by a vapor phase growth method and is essentially different from the present invention.

また、例えば、特開平8−241715号公報に開示されているように、金属塩と炭素源となる有機物を混合、非酸化性雰囲気中で焼成することを特長とする負極活物質が提案されているが、特開平8−241715号公報に記載の負極活物質は金属分を40wt%までしか含有していない。従って、負極活物質に導入された金属がリチウムイオンを吸蔵する量は少ない。また、吸蔵する量が少ないために金属の膨張が起こりにくく、負極が崩壊しにくいという特徴をもつが、特開平8−241715号公報による方法での負極活物質高容量化は難しい。   Further, for example, as disclosed in JP-A-8-241715, a negative electrode active material characterized by mixing a metal salt and an organic substance serving as a carbon source and firing in a non-oxidizing atmosphere has been proposed. However, the negative electrode active material described in JP-A-8-241715 contains only a metal content of up to 40 wt%. Therefore, the amount of the metal introduced into the negative electrode active material occludes lithium ions is small. Further, since the amount of occlusion is small, the metal does not easily expand, and the negative electrode is difficult to collapse. However, it is difficult to increase the capacity of the negative electrode active material by the method disclosed in JP-A-8-241715.

特開2007−214137号公報JP 2007-214137 A 特開2007−305569号公報JP 2007-305568 A 特開平8−241715号公報JP-A-8-241715

上記各公開公報に記載の金属、および酸化物を用いた負極活物質と、結着材とを含むリチウム二次電池負極合剤を用いたリチウム二次電池用負極は、いずれもリチウムと合金化する金属を炭素で被覆、もしくは処理することによって、充放電サイクルによる負極活物質の体積膨張・収縮をある程度抑えている。しかしながら、上記各公開公報に記載の発明では、充放電サイクルによる負極活物質の微粉化に起因する負極崩壊を完全に防止することができない。さらに、前記のいずれの事例も、開発した負極活物質との相乗効果を奏する結着剤の検討で充放電サイクルを向上させる試みは記載されておらず、上記各公開公報に記載のリチウム二次電池用負極は充放電サイクル特性が十分であるとはいえない。本発明は、リチウムイオン二次電池の充放電サイクル特性を一層向上させることを目的とする、リチウム二次電池負極合剤、リチウム二次電池負極およびこれを用いたリチウム二次電池を提供する。   The negative electrode for a lithium secondary battery using a lithium secondary battery negative electrode mixture containing a negative electrode active material using a metal and an oxide described in each of the above publications and a binder, and alloyed with lithium. By covering or treating the metal to be coated with carbon, the volume expansion / contraction of the negative electrode active material due to the charge / discharge cycle is suppressed to some extent. However, in the inventions described in the above publications, it is not possible to completely prevent the negative electrode collapse due to the pulverization of the negative electrode active material due to the charge / discharge cycle. Furthermore, none of the above examples describes an attempt to improve the charge / discharge cycle in the study of a binder that exhibits a synergistic effect with the developed negative electrode active material, and the lithium secondary described in each of the above-mentioned publications. It cannot be said that the battery negative electrode has sufficient charge / discharge cycle characteristics. The present invention provides a lithium secondary battery negative electrode mixture, a lithium secondary battery negative electrode, and a lithium secondary battery using the same, which are intended to further improve the charge / discharge cycle characteristics of the lithium ion secondary battery.

上述の目的は、以下の第(1)項〜第(13)項によって達成される。
(1)負極活物質(A)と、結着材(B)とを含むリチウム二次電池負極合剤であって、前記負極活物質(A)は、リチウムイオンの吸蔵・放出が可能なケイ素の合金、酸化物、窒化物または炭化物を含むケイ素含有粒子と、該ケイ素含有粒子を包囲する樹脂炭素材とからなる複合粒子、ならびに該複合粒子の表面に結合し、かつ、該複合粒子を包囲するナノファイバーおよび/またはナノチューブからなるケイ素含有網状構造体を含むものであり、前記結着材(B)は、アルコキシ基結合型セルロース、ヒドロキシアルキル基結合型セルロースまたはカルボキシアルキル基結合型セルロースを含むものであることを特徴とするリチウム二次電池負極合剤。
The above object is achieved by the following items (1) to (13).
(1) A lithium secondary battery negative electrode mixture comprising a negative electrode active material (A) and a binder (B), wherein the negative electrode active material (A) is silicon capable of occluding and releasing lithium ions. Composite particles comprising silicon-containing particles containing an alloy, oxide, nitride, or carbide of the above, and a resin carbon material surrounding the silicon-containing particles, and bonded to the surface of the composite particles and surrounding the composite particles The binder (B) contains alkoxy group-bonded cellulose, hydroxyalkyl group-bonded cellulose or carboxyalkyl group-bonded cellulose. What is claimed is: 1. A lithium secondary battery negative electrode mixture,

(2)前記結着材(B)を、前記負極活物質(A)100質量部に対し、4〜20質量部用いることを特徴とする第(1)項記載のリチウム二次電池負極合剤。 (2) The lithium secondary battery negative electrode mixture according to item (1), wherein 4 to 20 parts by mass of the binder (B) is used with respect to 100 parts by mass of the negative electrode active material (A). .

(3)前記結着材(B)が、エーテル化度が0.6〜1.5であるカルボキシメチルセルロースを含むことを特徴とする第(1)項または第(2)項記載のリチウム二次電池負極合剤。 (3) The lithium secondary as described in item (1) or (2), wherein the binder (B) contains carboxymethylcellulose having an etherification degree of 0.6 to 1.5. Battery negative electrode mixture.

(4)前記樹脂炭素材が細孔を有し、かつ、窒素ガス吸着法を用いたマイクロポア法により算出される0.25〜0.45nmの細孔径を有する該細孔の容積が0.0001〜1.5cm/gである、第(1)項〜第(3)項のいずれか1項に記載のリチウム二次電池負極合剤。 (4) The resin carbon material has pores and the volume of the pores having a pore diameter of 0.25 to 0.45 nm calculated by a micropore method using a nitrogen gas adsorption method is 0.00. The lithium secondary battery negative electrode mixture according to any one of Items (1) to (3), which is 0001 to 1.5 cm 2 / g.

(5)前記0.25〜0.45nmの細孔径を有する該細孔の容積が0.0005〜1.0cm/gである、第(1)項〜第(4)項のいずれか1項に記載のリチウム二次電池負極合剤。 (5) Any one of items (1) to (4), wherein the volume of the pores having a pore diameter of 0.25 to 0.45 nm is 0.0005 to 1.0 cm 2 / g. The lithium secondary battery negative electrode mixture as described in the paragraph.

(6)前記樹脂炭素材が細孔を有し、かつ、窒素ガス吸着法を用いたマイクロポア法により算出される0.25〜0.45nmの細孔径を有する該細孔の容積が、前記樹脂炭素材が有する全細孔容積に対して25容積%以上である、第(1)項〜第(5)項のいずれか1項に記載のリチウム二次電池負極合剤。 (6) The resin carbon material has pores, and the volume of the pores having a pore diameter of 0.25 to 0.45 nm calculated by a micropore method using a nitrogen gas adsorption method is The lithium secondary battery negative electrode mixture according to any one of items (1) to (5), which is 25% by volume or more based on the total pore volume of the resin carbon material.

(7)前記0.25〜0.45nmの細孔径を有する該細孔の容積が、前記樹脂炭素材が有する全細孔容積に対して30容積%以上である、第(1)項〜第(6)項のいずれか1項に記載のリチウム二次電池負極合剤。 (7) The volume of the pores having a pore diameter of 0.25 to 0.45 nm is 30% by volume or more based on the total pore volume of the resin carbon material, The lithium secondary battery negative electrode mixture according to any one of (6).

(8)前記網状構造体が更に炭素を含む、第(1)項〜第(7)項のいずれか1項に記載のリチウム二次電池負極合剤。 (8) The lithium secondary battery negative electrode mixture according to any one of (1) to (7), wherein the network structure further contains carbon.

(9)前記ケイ素含有粒子がケイ素酸化物を含む、第(1)項〜第(8)項のいずれか1項に記載のリチウム二次電池負極合剤。 (9) The lithium secondary battery negative electrode mixture according to any one of (1) to (8), wherein the silicon-containing particles contain silicon oxide.

(10)前記負極用活物質(A)において、ケイ素の合金、酸化物、窒化物または炭化物の含有量が5〜60質量%の範囲内である、第(1)〜第(9)項のいずれか1項に記載のリチウム二次電池負極合剤。 (10) In the negative electrode active material (A), the content of silicon alloy, oxide, nitride or carbide is in the range of 5 to 60 mass%, according to the items (1) to (9) The lithium secondary battery negative electrode mixture according to any one of the above items.

(11)前記負極用活物質(A)の平均粒子径が3μm〜15μmの範囲内である、第(1)〜第(10)項のいずれか1項に記載のリチウム二次電池負極合剤。 (11) The lithium secondary battery negative electrode mixture according to any one of (1) to (10), wherein the negative electrode active material (A) has an average particle diameter in the range of 3 μm to 15 μm. .

(12)第(1)項〜第(11)項のいずれか1項に記載のリチウム二次電池負極合剤を含むリチウム二次電池負極。 (12) A lithium secondary battery negative electrode comprising the lithium secondary battery negative electrode mixture according to any one of items (1) to (11).

(13)第(12)項に記載のリチウム二次電池負極を含むリチウム二次電池。 (13) A lithium secondary battery including the lithium secondary battery negative electrode according to item (12).

本発明のリチウム二次電池負極合剤によれば、負極活物質と結着剤の極めて高い相乗効果により、充放電サイクルによる負極活物質の微粉化が抑制されると共に、ナノファイバーおよび/またはナノチューブと複合粒子の間の密着性が維持されることにより該負極活物質の電極からの脱落などが抑えられ、これまでにない優れた充放電サイクル特性を示すリチウム二次電池負極合剤、リチウム二次電池負極およびこれを用いたリチウム二次電池が提供される。   According to the negative electrode mixture of the lithium secondary battery of the present invention, the pulverization of the negative electrode active material due to the charge / discharge cycle is suppressed by the extremely high synergistic effect of the negative electrode active material and the binder, and nanofibers and / or nanotubes By maintaining the adhesion between the anode and the composite particles, the negative electrode active material can be prevented from falling off from the electrode, and the lithium secondary battery negative electrode mixture and lithium secondary battery exhibiting unprecedented excellent charge / discharge cycle characteristics. A secondary battery negative electrode and a lithium secondary battery using the same are provided.

図1は、実施例1において得られた炭素材の走査型電子顕微鏡(SEM)写真である。1 is a scanning electron microscope (SEM) photograph of the carbon material obtained in Example 1. FIG. 図2(A)および(B)は、SEMで観測されたナノファイバーのそれぞれ異なる部分のエネルギー分散型X線分析装置(EDX)による元素分析結果を示すグラフである。FIGS. 2A and 2B are graphs showing the results of elemental analysis by an energy dispersive X-ray analyzer (EDX) of different portions of the nanofibers observed by SEM.

本発明は、負極活物質(A)と、結着材(B)とを含むリチウム二次電池負極合剤であって、前記負極活物質(A)は、リチウムイオンの吸蔵・放出が可能なケイ素の合金、酸化物、窒化物または炭化物を含むケイ素含有粒子と、該ケイ素含有粒子を包囲する樹脂炭素材とからなる複合粒子、ならびに該複合粒子の表面に結合し、かつ、該複合粒子を包囲するナノファイバーおよび/またはナノチューブからなるケイ素含有網状構造体を含むものであり、前記結着材(B)は、アルコキシ基結合型セルロース、ヒドロキシアルキル基結合型セルロースまたはカルボキシアルキル基結合型セルロースを含むものであることを特徴とするリチウム二次電池負極合剤であり、後述するように、リチウムイオン二次電池の負極活物質として、優れた充放電サイクル特性を実現する、本発明の負極活物質(A)に、さらに本発明の結着剤(B)を組み合わせた負極合剤を使用することで、本発明の負極活物質(A)と結着剤(B)の相乗効果により、極めて優れた充放電サイクル特性を実現するリチウム二次電池負極合剤、リチウム二次電池負極およびリチウム二次電池に関する技術を開示するものである。   The present invention is a lithium secondary battery negative electrode mixture containing a negative electrode active material (A) and a binder (B), and the negative electrode active material (A) can occlude and release lithium ions. Composite particles comprising silicon-containing particles containing an alloy, oxide, nitride, or carbide of silicon, and a resin carbon material surrounding the silicon-containing particles, and bonded to the surface of the composite particles, and the composite particles It includes a silicon-containing network structure composed of surrounding nanofibers and / or nanotubes, and the binder (B) comprises alkoxy group-bonded cellulose, hydroxyalkyl group-bonded cellulose or carboxyalkyl group-bonded cellulose. It is a lithium secondary battery negative electrode mixture characterized by containing, and as described later, as a negative electrode active material for a lithium ion secondary battery, The negative electrode active material (A) of the present invention can be obtained by using a negative electrode mixture in which the binder (B) of the present invention is further combined with the negative electrode active material (A) of the present invention, which realizes the electric cycle characteristics. Disclosed is a technology relating to a lithium secondary battery negative electrode mixture, a lithium secondary battery negative electrode, and a lithium secondary battery that realize extremely excellent charge / discharge cycle characteristics by the synergistic effect of the binder (B).

まず本発明の負極活物質(A)について詳細に説明する。
本発明による負極活物質(A)は、リチウムイオンの吸蔵・放出が可能なケイ素の合金、酸化物、窒化物または炭化物を含むケイ素含有粒子と、該ケイ素含有粒子を包囲する樹脂炭素材とからなる複合粒子、ならびに該複合粒子の表面に結合し、かつ、該複合粒子を包囲するナノファイバーおよび/またはナノチューブ(以下、「ナノファイバー等」という。)からなる網状構造体を含んでなり、該網状構造体がケイ素を含むことを特徴とする。上記樹脂炭素材と網状構造体は、炭素前駆体を、必要に応じて触媒を共存させて、炭化処理することにより形成される。さらに、網状構造体は、見かけ上、ケイ素含有粒子と樹脂炭素材からなる複合粒子の表面を起点に形成される。
First, the negative electrode active material (A) of the present invention will be described in detail.
The negative electrode active material (A) according to the present invention comprises silicon-containing particles containing a silicon alloy, oxide, nitride or carbide capable of occluding and releasing lithium ions, and a resin carbon material surrounding the silicon-containing particles. And a network structure composed of nanofibers and / or nanotubes (hereinafter referred to as “nanofibers”) bound to the surface of the composite particles and surrounding the composite particles, The network structure includes silicon. The resin carbon material and the network structure are formed by carbonizing a carbon precursor in the presence of a catalyst if necessary. Furthermore, the network structure is apparently formed starting from the surface of the composite particles composed of silicon-containing particles and a resin carbon material.

特定の理論に束縛されることを意図するものではないが、本発明におけるナノファイバー等からなる網状構造体は、リチウムイオンの吸蔵・放出が可能なケイ素の合金、酸化物、窒化物または炭化物を含むケイ素含有粒子と、該ケイ素含有粒子を包囲する樹脂炭素材とからなる複合粒子の表面に結合しているため、隣接する別の粒子に起因する網状構造体と交絡しているものと考えられる。このため、ナノファイバー等と複合粒子の間の密着性が高くなり、充放電によるケイ素含有粒子の体積膨張収縮に際してもナノファイバー等が複合粒子から離れにくくなる。また、隣接する複数の粒子の網状構造体同士が交絡することで全体として伸縮性のある網状構造体が形成されるため、充放電によるケイ素含有粒子の体積膨張収縮に際して負極全体の導電性が維持される。そして、負極の導電性が維持されることにより、充放電に伴う抵抗変化を抑制することができ、サイクル特性に優れたものとなる。このような本発明特有の網状構造体は、従来技術のように別途気相法で形成されたカーボンナノファイバー等を添加しただけでは、形成されない。なお、網状構造体は見かけ上複合粒子の表面を起点に形成されるが、網状構造体がケイ素を含有することから、網状構造体の真の起点はケイ素含有粒子の表面であると考えられる。 Although not intended to be bound by any particular theory, the network structure composed of nanofibers or the like in the present invention is made of a silicon alloy, oxide, nitride or carbide capable of occluding and releasing lithium ions. It is considered to be entangled with the network structure caused by another adjacent particle because it is bonded to the surface of the composite particle composed of the silicon-containing particle containing and the resin carbon material surrounding the silicon-containing particle. . For this reason, the adhesion between the nanofibers and the composite particles becomes high, and the nanofibers and the like are hardly separated from the composite particles even during the volume expansion and contraction of the silicon-containing particles due to charge and discharge. In addition, because the network structure of a plurality of adjacent particles is entangled with each other to form a stretchable network structure as a whole, the conductivity of the entire negative electrode is maintained during the volume expansion and contraction of silicon-containing particles due to charge and discharge. Is done. And by maintaining the electroconductivity of a negative electrode, the resistance change accompanying charging / discharging can be suppressed and it becomes excellent in cycling characteristics. Such a network structure peculiar to the present invention cannot be formed only by adding carbon nanofibers or the like separately formed by a vapor phase method as in the prior art. The network structure is apparently formed starting from the surface of the composite particle, but since the network structure contains silicon, the true starting point of the network structure is considered to be the surface of the silicon-containing particle.

本発明による網状構造体を構成するナノファイバー等は、繊維直径1μm未満のケイ素含有繊維を含む。ナノファイバーとナノチューブとを厳密に区別する必要はないが、本明細書では特に、繊維直径100nm以上のものをナノファイバーと、そして繊維直径100nm以下のものをナノチューブとそれぞれ定義する。本発明によるナノファイバー等の元素組成としては、ケイ素含有粒子の元の組成により、炭化ケイ素、窒化ケイ素、炭窒化ケイ素等またはこれらの任意の組合せであることが想定される。本発明によるナノファイバー等の元素組成は、ナノファイバー等の全体にわたり均一であってもよいし、場所によって異なっていてもよい。さらに、本発明による網状構造体を構成するナノファイバー等には、カーボンナノファイバーおよび/またはカーボンナノチューブ(以下、「カーボンナノファイバー等」という。)が含まれていることが好ましい。カーボンナノファイバー等が存在することにより、ケイ素含有粒子を含む複合粒子間の導電性向上が期待される。   The nanofibers and the like constituting the network structure according to the present invention include silicon-containing fibers having a fiber diameter of less than 1 μm. Although it is not necessary to strictly distinguish between nanofibers and nanotubes, in the present specification, those having a fiber diameter of 100 nm or more are specifically defined as nanofibers, and those having a fiber diameter of 100 nm or less are defined as nanotubes. The elemental composition of the nanofiber or the like according to the present invention is assumed to be silicon carbide, silicon nitride, silicon carbonitride, or any combination thereof depending on the original composition of the silicon-containing particles. The elemental composition of the nanofiber or the like according to the present invention may be uniform throughout the nanofiber or the like, or may vary depending on the location. Furthermore, it is preferable that the nanofibers and the like constituting the network structure according to the present invention include carbon nanofibers and / or carbon nanotubes (hereinafter referred to as “carbon nanofibers”). The presence of carbon nanofibers is expected to improve the conductivity between composite particles including silicon-containing particles.

本発明による樹脂炭素材は、リチウムイオンが進入するための細孔を有する。このような細孔は、負極活物質(A)に対して、窒素ガスをプローブ分子としたときに、窒素分子が進入・吸着できる場所である。細孔の大きさ(細孔径)は、0.25〜0.45nmの範囲内にあることが好ましい。細孔径が0.25nm未満であると、樹脂炭素材の炭素原子の電子雲による遮蔽効果によりリチウムイオンの進入が妨害されるため、充電容量が低下する。一方、細孔径が0.45nmを超えると、溶媒和されたリチウムイオンが細孔内に捕捉されるため、初期効率(放電容量/充電容量)が低下する。上記細孔径はマイクロポア法(装置:島津製作所製・細孔分布測定装置「ASAP−2010」)で測定された値である。
The resin carbon material according to the present invention has pores for allowing lithium ions to enter. Such pores are places where nitrogen molecules can enter and adsorb to the negative electrode active material (A) when nitrogen gas is used as a probe molecule. The size of the pores (pore diameter) is preferably in the range of 0.25 to 0.45 nm. If the pore diameter is less than 0.25 nm, the lithium ion intrusion is hindered by the shielding effect of the carbon atoms of the resin carbon material by the electron cloud, so that the charge capacity decreases. On the other hand, when the pore diameter exceeds 0.45 nm, solvated lithium ions are trapped in the pores, so that the initial efficiency (discharge capacity / charge capacity) decreases. The pore diameter is a value measured by a micropore method (apparatus: manufactured by Shimadzu Corporation; pore distribution measuring device “ASAP-2010”).

本発明による樹脂炭素材の全細孔容積と細孔容積は、窒素ガスをプローブ分子としたときに窒素分子が進入しうる空間として測定され、窒素ガス吸着法を用いたマイクロポア法により算出される。ここでいう細孔容積とは、各細孔径における細孔の容積を意味する。具体的には、測定時の各相対圧による窒素ガスの吸着量より各細孔径における細孔容積が算出される。本発明による樹脂炭素材の0.25〜0.45nmの細孔径を有する細孔容積は、好ましくは0.0001〜1.5cm/gの範囲内、より好ましくは0.0005〜1.0cm/gの範囲内である。0.25〜0.45nmの細孔径を有する細孔容積が1.5cm/g以下であると、充放電における電解液の分解反応が抑制され、初期充放電特性の低下が生じにくい。また、樹脂炭素材の真密度の低下が抑制され、電極としてのエネルギー密度低下が抑制される点でも好ましい。一方、0.25〜0.45nmの細孔径を有する細孔容積が0.0001cm/g以上であると、リチウムイオンが進入できる部位が減少せず、充電容量が低くならず、好ましい。また、樹脂炭素材が適度な粗密構造になり、ケイ素含有粒子の膨張を抑え、良好な充放電サイクル特性が発現する。0.25〜0.45nmの細孔径を有する細孔容積は、後述する樹脂炭素材の熱処理条件または炭化処理条件(温度、昇温速度、処理時間、処理雰囲気等)によって制御することができる。 The total pore volume and pore volume of the resin carbon material according to the present invention are measured as a space where nitrogen molecules can enter when nitrogen gas is used as a probe molecule, and are calculated by a micropore method using a nitrogen gas adsorption method. The The pore volume here means the pore volume at each pore diameter. Specifically, the pore volume at each pore diameter is calculated from the amount of nitrogen gas adsorbed by each relative pressure at the time of measurement. The pore volume of the resin carbon material according to the present invention having a pore diameter of 0.25 to 0.45 nm is preferably within a range of 0.0001 to 1.5 cm 3 / g, more preferably 0.0005 to 1.0 cm. Within the range of 3 / g. When the pore volume having a pore diameter of 0.25 to 0.45 nm is 1.5 cm 3 / g or less, the decomposition reaction of the electrolytic solution in charge / discharge is suppressed, and the initial charge / discharge characteristics are hardly deteriorated. Moreover, the reduction | decrease of the true density of a resin carbon material is suppressed and it is preferable also at the point which the energy density fall as an electrode is suppressed. On the other hand, when the pore volume having a pore diameter of 0.25 to 0.45 nm is 0.0001 cm 3 / g or more, the site where lithium ions can enter does not decrease and the charge capacity does not decrease, which is preferable. In addition, the resin carbon material has an appropriate density structure, suppresses expansion of the silicon-containing particles, and exhibits good charge / discharge cycle characteristics. The pore volume having a pore diameter of 0.25 to 0.45 nm can be controlled by heat treatment conditions or carbonization treatment conditions (temperature, temperature rising rate, treatment time, treatment atmosphere, etc.) of the resin carbon material described later.

本発明による樹脂炭素材は、上記0.25〜0.45nmの細孔径を有する細孔の容積が、樹脂炭素材が有する全細孔容積に対して、好ましくは25容積%以上、より好ましくは30容積%以上である。ここで樹脂炭素材の全細孔容積とは、負極活物質(A)の単位質量に対して、上記マイクロポア法における各相対圧の窒素ガス吸着量より算出される各細孔径の細孔容積の総和を指す。
上記0.25〜0.45nmの細孔径を有する細孔の容積が上記全細孔容積に対して25容積%以上であると、十分な充電容量が確保でき好ましい。
In the resin carbon material according to the present invention, the volume of the pores having a pore diameter of 0.25 to 0.45 nm is preferably 25% by volume or more, more preferably with respect to the total pore volume of the resin carbon material. 30% by volume or more. Here, the total pore volume of the resin carbon material is the pore volume of each pore diameter calculated from the nitrogen gas adsorption amount of each relative pressure in the micropore method with respect to the unit mass of the negative electrode active material (A). Refers to the sum of
When the volume of the pores having a pore diameter of 0.25 to 0.45 nm is 25% by volume or more with respect to the total pore volume, a sufficient charging capacity can be secured, which is preferable.

本発明の負極活物質(A)は、その形状に特に制限はなく、塊状、鱗片状、球状、繊維状等の任意の粒子形状を有することができる。また、これら負極活物質粒子の大きさは、充放電特性の上で、平均粒子径が3μm以上、15μm以下であることが好ましい。更に好ましくは5μm以上、12μm以下である。また、より好ましくは、7μm以上、10μm以下である。平均粒子径が15μm以下だと、負極活物質粒子間の間隙を小さく保持でき、負極活物質(A)として用いた場合に、負極電極の密度を向上させることができる。また、平均粒子径が3μm以上だと、単位質量当たりで見た場合、負極活物質粒子個数が大きく増加することなく、全体として嵩高くなることを防止でき、取り扱いが容易となる。 The shape of the negative electrode active material (A) of the present invention is not particularly limited, and may have any particle shape such as a lump shape, a scale shape, a spherical shape, and a fibrous shape. The negative electrode active material particles preferably have an average particle size of 3 μm or more and 15 μm or less in view of charge / discharge characteristics. More preferably, it is 5 μm or more and 12 μm or less. More preferably, it is 7 μm or more and 10 μm or less. When the average particle diameter is 15 μm or less, the gap between the negative electrode active material particles can be kept small, and when used as the negative electrode active material (A), the density of the negative electrode can be improved. Further, when the average particle diameter is 3 μm or more, when viewed per unit mass, the number of negative electrode active material particles does not increase greatly, and it can be prevented from becoming bulky as a whole, and handling becomes easy.

本発明における粒子径の定義としては、粒子形状とMie理論を用いて測定量を粒子径に算出した値とし、有効径と称されるものである。
本発明における平均粒子径は、レーザー回折式粒度分布測定法による測定される体積換算で頻度が50%となる粒子径を平均粒子径D50%として定めた。
The definition of the particle diameter in the present invention is a value obtained by calculating the measured amount into the particle diameter using the particle shape and Mie theory, and is referred to as an effective diameter.
In the present invention, the average particle diameter was determined as an average particle diameter D50%, which is 50% in terms of volume measured by the laser diffraction particle size distribution measurement method.

本発明によるケイ素含有粒子を構成するケイ素の合金、酸化物、窒化物もしくは炭化物の例として、一酸化ケイ素(SiO)、窒化ケイ素(Si)、炭化ケイ素(SiC)、チタンシリコン合金(Ti−Si系)等を挙げることができる。中でも、SiOは、対応するSi単体より充電時の膨張率が小さいためより好ましい。 Examples of silicon alloys, oxides, nitrides or carbides constituting the silicon-containing particles according to the present invention include silicon monoxide (SiO), silicon nitride (Si 2 N 4 ), silicon carbide (SiC), titanium silicon alloy ( Ti-Si type). Among these, SiO is more preferable because it has a smaller expansion coefficient during charging than the corresponding Si alone.

本発明によるケイ素含有粒子の平均粒子径は、概ね0.5μm〜5μmの範囲内にあることが好ましい。一般に、高い充放電容量を得る上では、平均粒子径を小さくして、リチウムイオンとの接触面積を増やすことが好ましい。しかしながら、ケイ素含有粒子の平均粒子径を0.5μm以上とすると、リチウムイオンの吸蔵量が過剰とならず、ケイ素含有粒子の膨張収縮を網状構造体により抑制できるため好ましい。一方、ケイ素含有粒子の平均粒子径を5μm以下とすると、高い充放電容量を発現でき好ましい。   The average particle size of the silicon-containing particles according to the present invention is preferably in the range of approximately 0.5 μm to 5 μm. Generally, in order to obtain a high charge / discharge capacity, it is preferable to reduce the average particle size and increase the contact area with lithium ions. However, when the average particle diameter of the silicon-containing particles is 0.5 μm or more, the occlusion amount of lithium ions does not become excessive, and the expansion and contraction of the silicon-containing particles can be suppressed by the network structure, which is preferable. On the other hand, when the average particle diameter of the silicon-containing particles is 5 μm or less, a high charge / discharge capacity can be expressed, which is preferable.

本発明における負極活物質(A)は、ケイ素の合金、酸化物、窒化物または炭化物を負極活物質(A)に対する質量比で5〜60質量%含有することが好ましい。上記ケイ素の合金、酸化物、窒化物または炭化物の含有量が5質量%以上だと、リチウムイオンの吸蔵を多くすることができ、高い充放電容量を得ることが期待できる。一方、上記含有量が60質量%以下だと、ケイ素のリチウムイオンの吸蔵・放出における膨張収縮を網状構造体により抑えることができ、良好な充放電サイクル特性が得られる。ここで、上記ケイ素の合金、酸化物、窒化物または炭化物の含有量は、JIS K 2272:1998に従う灰分試験法によって測定される。
The negative electrode active material (A) in the present invention preferably contains 5 to 60% by mass of a silicon alloy, oxide, nitride or carbide with respect to the negative electrode active material (A). When the content of the silicon alloy, oxide, nitride or carbide is 5% by mass or more, it is possible to increase the occlusion of lithium ions and to obtain a high charge / discharge capacity. On the other hand, when the content is 60% by mass or less, expansion and contraction in the insertion and extraction of lithium ions of silicon can be suppressed by the network structure, and good charge / discharge cycle characteristics can be obtained. Here, the content of the silicon alloy, oxide, nitride or carbide is measured by an ash test method according to JIS K 2272: 1998.

本発明による負極活物質(A)は、リチウムイオンの吸蔵・放出が可能なケイ素の合金、酸化物、窒化物または炭化物を含むケイ素含有粒子と、炭素前駆体とを混合することにより、該ケイ素含有粒子が該炭素前駆体に分散された混合物を形成し、次いで該混合物に炭化処理を施すことにより製造される。この炭化処理により、炭素前駆体が樹脂炭素材に転化すると共に、転化した樹脂炭素材とケイ素含有粒子とからなる複合粒子を包囲するナノファイバー等からなる網状構造体が、該複合粒子の表面を起点に形成される。さらに、本発明による負極活物質は、リチウムイオンの吸蔵・放出が可能なケイ素の合金、酸化物、窒化物または炭化物を含むケイ素含有粒子と、炭素前駆体と、触媒とを混合することにより、該ケイ素含有粒子と該触媒とが該炭素前駆体に分散された混合物を形成し、次いで該混合物に炭化処理を施すことによっても製造される。炭素前駆体中に触媒を分散させて炭化処理を施すことにより、網状構造体を構成するナノファイバー等、特にカーボンナノファイバー等の生成量を増大させることができる。 The negative electrode active material (A) according to the present invention is obtained by mixing silicon-containing particles containing an alloy, oxide, nitride, or carbide of silicon capable of occluding and releasing lithium ions with a carbon precursor. It is produced by forming a mixture in which the contained particles are dispersed in the carbon precursor, and then subjecting the mixture to carbonization. By this carbonization treatment, the carbon precursor is converted into a resin carbon material, and a network structure composed of nanofibers or the like surrounding the composite particles composed of the converted resin carbon material and silicon-containing particles is formed on the surface of the composite particles. Formed at the starting point. Furthermore, the negative electrode active material according to the present invention is obtained by mixing silicon-containing particles containing an alloy, oxide, nitride or carbide of silicon capable of occluding and releasing lithium ions, a carbon precursor, and a catalyst. It is also produced by forming a mixture in which the silicon-containing particles and the catalyst are dispersed in the carbon precursor, and then subjecting the mixture to carbonization. By dispersing the catalyst in the carbon precursor and subjecting it to carbonization, it is possible to increase the amount of nanofibers constituting the network structure, particularly carbon nanofibers.

炭素前駆体の例としては、石油ピッチ、石炭ピッチ、フェノール樹脂、フラン樹脂、エポキシ樹脂およびポリアクリロニトリルからなる群より選択された易黒鉛化材料または難黒鉛化材料を挙げることができる。易黒鉛化材料と難黒鉛化材料の混合物を使用してもよい。また、フェノール樹脂等に硬化剤(例、ヘキサメチレンテトラミン)を含めてもよく、その場合、硬化剤も炭素前駆体の一部となり得る。   Examples of the carbon precursor include an easily graphitizable material or a hardly graphitized material selected from the group consisting of petroleum pitch, coal pitch, phenol resin, furan resin, epoxy resin, and polyacrylonitrile. A mixture of an easily graphitizable material and a hardly graphitized material may be used. Moreover, you may include a hardening | curing agent (for example, hexamethylenetetramine) in a phenol resin etc., In that case, a hardening | curing agent can also be a part of carbon precursor.

触媒を使用する場合、例として、銅(Cu)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、モリブデン(Mo)およびマンガン(Mn)からなる群より選ばれた少なくとも1種の元素を含むものが挙げられる。触媒元素は、炭素前駆体に不純物として含まれるものであってもよく、その場合、意図的に別途触媒を用意して混合する必要のない場合もある。これらの触媒元素は、該ケイ素含有粒子と該炭素前駆体に分散された混合物を形成するように、溶液として粒子と混合することが好ましい。このような溶液を提供するため、触媒元素は金属塩化合物として用意することが好ましく、そのような金属塩化合物の例としては、上記元素の、硝酸塩、硫酸塩、塩酸塩等の無機酸根との塩、カルボン酸、スルホン酸、フェノール等の有機酸根との塩、等が挙げられる。また、このような溶液に用いる溶媒としては、水、有機溶媒および水と有機溶媒の混合物の中から適宜選択すればよく、特に有機溶媒の例としては、エタノール、イソプロピルアルコール、トルエン、ベンゼン、ヘキサン、テトラヒドロフラン等が挙げられる。   When using a catalyst, as an example, at least one element selected from the group consisting of copper (Cu), iron (Fe), cobalt (Co), nickel (Ni), molybdenum (Mo) and manganese (Mn) The thing containing is mentioned. The catalyst element may be contained as an impurity in the carbon precursor, and in that case, it may not be necessary to intentionally prepare and mix a separate catalyst. These catalytic elements are preferably mixed with the particles as a solution so as to form a mixture dispersed in the silicon-containing particles and the carbon precursor. In order to provide such a solution, the catalyst element is preferably prepared as a metal salt compound. Examples of such metal salt compounds include the above-described elements and inorganic acid radicals such as nitrates, sulfates, and hydrochlorides. And salts with organic acid radicals such as salts, carboxylic acids, sulfonic acids and phenols. Further, the solvent used in such a solution may be appropriately selected from water, an organic solvent, and a mixture of water and an organic solvent. Particularly, examples of the organic solvent include ethanol, isopropyl alcohol, toluene, benzene, hexane. , Tetrahydrofuran and the like.

ケイ素含有粒子と、炭素前駆体と、必要に応じて触媒と、を混合する方法に特に制限はなく、ホモディスパー、ホモジナイザー等の撹拌機による溶融または溶液混合;遠心粉砕機、自由ミル、ジェットミル等の粉砕機による粉砕混合;乳鉢、乳棒による混練混合;等を採用することができる。ケイ素含有粒子と、炭素前駆体とを混合する順序にも特に制限はないが、溶媒(使用する場合)に、ケイ素含有粒子、炭素前駆体、の順でもよいし、その逆でもかまわない。ケイ素含有粒子と樹脂炭素材からなる粒子において、樹脂炭素材によりケイ素含有粒子を包囲する複合粒子を形成する上で、溶媒を用いて、ケイ素含有粒子と炭素前駆体を混合し、スラリー状混合物としてもよいし、ケイ素含有粒子に炭素前駆体を混合し、炭素前駆体を硬化させ、固形状にしてもよい。また、上記スラリーにおいて、炭素前駆体が液状であれば、溶媒を使用しなくても良い。   There is no particular limitation on the method of mixing the silicon-containing particles, the carbon precursor, and, if necessary, the catalyst. Melting or solution mixing with a stirrer such as a homodisper or homogenizer; centrifugal crusher, free mill, jet mill It is possible to employ pulverization and mixing using a pulverizer such as mulling, kneading and mixing using a mortar or pestle. The order of mixing the silicon-containing particles and the carbon precursor is not particularly limited, but the order of the silicon-containing particles and the carbon precursor may be used for the solvent (when used), or vice versa. In forming particles containing silicon-containing particles and resin carbon materials, and forming composite particles surrounding the silicon-containing particles with the resin carbon material, the silicon-containing particles and the carbon precursor are mixed using a solvent to form a slurry mixture. Alternatively, a carbon precursor may be mixed with the silicon-containing particles, and the carbon precursor may be cured to form a solid. Further, in the slurry, if the carbon precursor is liquid, it is not necessary to use a solvent.

本発明の負極活物質(A)の粒度分布を調整する場合は、公知の粉砕方法、分級方法を採用すればよい。粉砕装置の例としては、ハンマーミル、ジョークラッシャー、衝突式粉砕器等が挙げられる。また、分級方法の例としては、気流分級、篩による分級が可能であり、特に気流分級装置の例として、ターボクラシファイヤー、ターボプレックス等が挙げられる。   When adjusting the particle size distribution of the negative electrode active material (A) of the present invention, a known pulverization method and classification method may be employed. Examples of the pulverizer include a hammer mill, a jaw crusher, and a collision pulverizer. Moreover, as an example of the classification method, air classification and classification with a sieve are possible. Particularly, examples of the air classification apparatus include a turbo classifier and a turboplex.

炭化処理のための加熱温度は、好ましくは400〜1400℃、より好ましくは600〜1300℃の範囲内で適宜設定すればよい。上記加熱温度に至るまでの昇温速度に特に制限はなく、好ましくは0.5〜600℃/時、より好ましくは20〜300℃/時の範囲内で適宜設定すればよい。上記加熱温度での保持時間は、好ましくは48時間以内、より好ましくは1〜12時間の範囲内で適宜設定すればよい。また、炭化処理は、アルゴン、窒素、二酸化炭素等の還元雰囲気において実施すればよい。さらに、炭化処理を2段階以上に分けて実施することにより、得られる樹脂炭素材の物性を制御することが好ましい。例えば、400〜700℃の温度で1〜6時間程度処理(一次炭化)した後、上述の粉砕処理により所期の平均粒子径を有する負極活物質を得、さらにその負極活物質を1000℃以上の温度で処理(二次炭化)することが好ましい。   What is necessary is just to set the heating temperature for carbonization processing suitably in the range of preferably 400-1400 degreeC, More preferably, 600-1300 degreeC. There is no restriction | limiting in particular in the temperature increase rate until it reaches the said heating temperature, What is necessary is just to set suitably in the range of 0.5-600 degreeC / hour, More preferably, 20-300 degreeC / hour. The holding time at the heating temperature is suitably set within 48 hours, more preferably within a range of 1 to 12 hours. Moreover, what is necessary is just to implement carbonization processing in reducing atmosphere, such as argon, nitrogen, a carbon dioxide. Furthermore, it is preferable to control the physical properties of the obtained resin carbon material by carrying out the carbonization treatment in two or more stages. For example, after processing (primary carbonization) at a temperature of 400 to 700 ° C. for about 1 to 6 hours, a negative electrode active material having an intended average particle size is obtained by the above-described pulverization treatment, and the negative electrode active material is further heated to 1000 ° C. or more. It is preferable to perform the treatment (secondary carbonization) at a temperature of

このように、本発明よる負極活物質(A)は、樹脂炭素材と、ナノファイバー等からなる網状構造体とが炭化処理により一緒に形成されるため、別途ナノファイバー等を気相法、アーク放電法、プラズマ処理法で用意する必要がなく、製造プロセスが簡便であり、且つコストを下げることができる。   Thus, since the negative electrode active material (A) according to the present invention is formed by carbonizing the resin carbon material and the network structure composed of nanofibers or the like, nanofibers or the like are separately formed by vapor phase method, arc There is no need to prepare by a discharge method or a plasma treatment method, the manufacturing process is simple, and the cost can be reduced.

次に本発明の結着剤(B)について説明する。
本発明の結着剤(B)は、アルコキシ基結合型セルロース、ヒドロキシアルキル基結合型セルロースまたはカルボキシアルキル基結合型を含むものである。前述のように本発明の負極活物質(A)における、ナノファイバー等からなる網状構造体は、隣接する別の粒子に起因する網状構造体と交絡しているため、ナノファイバー等と複合粒子の間の密着性が高くなり、充放電によるケイ素含有粒子の体積膨張収縮に際してもナノファイバー等が複合粒子から離れにくくなる。また、隣接する複数の粒子の網状構造体同士が交絡することで全体として伸縮性のある網状構造体が形成されるため、充放電によるケイ素含有粒子の体積膨張収縮に際して負極全体の導電性が維持される効果を奏するが、本発明の結着剤(B)を用いることにより、本発明の複合粒子同士の密着性を向上させる効果(これは従来の結着剤におけるナノファイバーのない活物質粒子同士の密着性を向上させる効果に相当)のみならず、ナノファイバー等と複合粒子、あるいはナノファイバー同士、の密着性が向上し、さらには網状構造体同士の交絡部分を補強する効果を奏するため、本発明の負極活物質(A)と、結着剤(B)との相乗効果により、サイクル特性が著しく向上するものである。
Next, the binder (B) of the present invention will be described.
The binder (B) of the present invention includes an alkoxy group-bonded cellulose, a hydroxyalkyl group-bonded cellulose, or a carboxyalkyl group-bonded type. As described above, the network structure composed of nanofibers or the like in the negative electrode active material (A) of the present invention is entangled with the network structure caused by other adjacent particles, so that the nanofibers and the composite particles In addition, the nanofibers and the like are hardly separated from the composite particles even during the volume expansion / contraction of the silicon-containing particles due to charge / discharge. In addition, because the network structure of a plurality of adjacent particles is entangled with each other to form a stretchable network structure as a whole, the conductivity of the entire negative electrode is maintained during the volume expansion and contraction of silicon-containing particles due to charge and discharge. The effect of improving the adhesion between the composite particles of the present invention by using the binder (B) of the present invention (this is an active material particle without nanofibers in the conventional binder) In addition to the effect of improving the adhesion between each other), the adhesion between the nanofibers and the composite particles or between the nanofibers is improved, and further, the effect of reinforcing the entangled portion between the network structures is exhibited. The cycle characteristics are remarkably improved by the synergistic effect of the negative electrode active material (A) of the present invention and the binder (B).

本発明に用いられるアルコキシ基結合型セルロース、ヒドロキシアルキル基結合型セルロースまたはカルボキシアルキル基結合型セルロースとしては、メチルセルロース、エチルセルロース、プロピルセルロース、イソプロピルセルロース、ブチルセルスなどのアルコキシ基結合型セルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースなどのヒドロキシアルキル基結合型セルロース、カルボキシメチルセルロース、カルボキシエチルセルロース、カルボキシエチルメチルセルロースなどのカルボキシアルキル基結合型セルロース、などが挙げられる。これらセルロース系化合物は、単独あるいは2種以上を組み合わせて使用することが出来る。アルコキシ基結合型セルロース、ヒドロキシアルキル基結合型セルロースまたはカルボキシアルキル基結合型セルロースを含む本発明の結着剤(B)は、負極活物質(A)100質量部に対して4〜20質量部用いることが好ましい。また、より好ましくは6〜14質量部である。4質量部以上だと、充放電サイクルに伴う活物質の脱落や、活物質と焦電体との密着性の低下などが生じにくく、また、20質量部以下だと、負極内の活物質の量が十分なものとなり、充放電特性、特に負極体積当たりの容量が十分なものとなる。本発明に用いられる結着剤(B)はアルコキシ基結合型セルロース、ヒドロキシアルキル基結合型セルロースまたはカルボキシアルキル基結合型セルロースを含むものであればよいが、中でもエーテル化度が0.6〜1.5であるカルボキシメチルセルロースが作業性や密着力の面で好ましく、カルボキシメチルセルロースのエーテル化度が0.6以上だと、前述の密着力が十分となり、充放電を繰り返した場合に活物質同士の脱落などの現象が生じにくく、容量低下を抑制する。またエーテル化度が1.5以下だと、電極スラリーとした場合の粘度が極端に上昇せず、円滑に焦電体に塗布することができる。また本発明の結着材(B)は、アルコキシ基結合型セルロース、ヒドロキシアルキル基結合型セルロースまたはカルボキシアルキル基結合型セルロースを含むものであればよいが、前述の説明で述べた本発明の結着材(B)の効果を低下させない範囲であれば、必要に応じてポリフッ化ビニリデン樹脂等の他の結着材を併用することは何ら差し支えない。   Examples of the alkoxy group-bonded cellulose, hydroxyalkyl group-bonded cellulose, or carboxyalkyl group-bonded cellulose used in the present invention include alkoxy group-bonded cellulose such as methyl cellulose, ethyl cellulose, propyl cellulose, isopropyl cellulose, and butyl cellulose, hydroxyethyl cellulose, hydroxy Examples include hydroxyalkyl group-bonded cellulose such as propylcellulose, carboxyalkyl group-bonded cellulose such as carboxymethylcellulose, carboxyethylcellulose, and carboxyethylmethylcellulose. These cellulose compounds can be used alone or in combination of two or more. The binder (B) of the present invention containing alkoxy group-bonded cellulose, hydroxyalkyl group-bonded cellulose, or carboxyalkyl group-bonded cellulose is used in an amount of 4 to 20 parts by weight with respect to 100 parts by weight of the negative electrode active material (A). It is preferable. Moreover, it is 6-14 mass parts more preferably. If it is 4 parts by mass or more, it is difficult for the active material to fall off due to the charge / discharge cycle, and the adhesion between the active material and the pyroelectric material is less likely to be generated. The amount is sufficient, and the charge / discharge characteristics, particularly the capacity per negative electrode volume, is sufficient. The binder (B) used in the present invention only needs to contain an alkoxy group-bonded cellulose, a hydroxyalkyl group-bonded cellulose, or a carboxyalkyl group-bonded cellulose. Among them, the degree of etherification is 0.6 to 1. .5 is preferred in terms of workability and adhesion, and when the degree of etherification of carboxymethyl cellulose is 0.6 or more, the aforementioned adhesion is sufficient, and when charging and discharging are repeated, the active materials Phenomenon such as dropout is unlikely to occur and suppresses capacity reduction. On the other hand, when the degree of etherification is 1.5 or less, the viscosity of the electrode slurry does not extremely increase and can be smoothly applied to the pyroelectric material. Further, the binder (B) of the present invention may be any one containing alkoxy group-bonded cellulose, hydroxyalkyl group-bonded cellulose, or carboxyalkyl group-bonded cellulose, but the binder of the present invention described in the above description. As long as the effect of the binder (B) is not lowered, other binders such as polyvinylidene fluoride resin may be used in combination as needed.

前述のようにして得られた負極活物質(A)、さらに結着材(B)を使用することにより、本発明によるリチウム二次電池負極を作製することができる。本発明によるリチウム二次電池負極は、従来公知の方法で作製することができ、例えば、本発明の負極活物質(A)、結着材(B)に、導電剤等を加えて適当な溶媒または分散媒で所定粘度としたスラリーを調製し、これを金属箔等の集電体に塗工し、厚さ数μm〜数百μmのコーティングを形成させる。そのコーティングを50〜200℃程度で熱処理することにより溶媒または分散媒を除去することにより、本発明による負極を得ることができる。
本発明による負極の作製に用いられる導電剤は、導電補助材として通常使用されている材料であればよく、例として、黒鉛、アセチレンブラック、ケッチェンブラック等が挙げられる。さらに、本発明による負極の作製に用いられる溶媒または分散媒は、負極活物質、結着剤、導電剤等を均一に混合できる材料であればよく、例として、N−メチル−2−ピロリドン、メタノール、アセトニトリル、水等が挙げられる。
By using the negative electrode active material (A) obtained as described above and the binder (B), the lithium secondary battery negative electrode according to the present invention can be produced. The lithium secondary battery negative electrode according to the present invention can be produced by a conventionally known method. For example, a suitable solvent is added to the negative electrode active material (A) and the binder (B) of the present invention by adding a conductive agent or the like. Alternatively, a slurry having a predetermined viscosity is prepared with a dispersion medium, and this is applied to a current collector such as a metal foil to form a coating having a thickness of several μm to several hundred μm. The negative electrode according to the present invention can be obtained by heat-treating the coating at about 50 to 200 ° C. to remove the solvent or the dispersion medium.
The conductive agent used for producing the negative electrode according to the present invention may be any material that is usually used as a conductive auxiliary material, and examples thereof include graphite, acetylene black, and ketjen black. Furthermore, the solvent or dispersion medium used in the production of the negative electrode according to the present invention may be any material that can uniformly mix the negative electrode active material, the binder, the conductive agent, and the like. As an example, N-methyl-2-pyrrolidone, Examples include methanol, acetonitrile, water and the like.

さらに、本発明によるリチウム二次電池負極を用いることにより、本発明によるリチウム二次電池を作製することができる。本発明によるリチウム二次電池は、従来公知の方法で作製することができ、一般に、本発明による負極と、正極と、電解質とを含み、さらにこれらの負極と正極が短絡しないようにするセパレータを含む。電解質がポリマーと複合化された固体電解質であってセパレータの機能を併せ持つものである場合には、独立したセパレータは不要である。   Furthermore, the lithium secondary battery according to the present invention can be produced by using the lithium secondary battery negative electrode according to the present invention. The lithium secondary battery according to the present invention can be produced by a conventionally known method. In general, the lithium secondary battery includes a negative electrode according to the present invention, a positive electrode, and an electrolyte, and further includes a separator that prevents the negative electrode and the positive electrode from being short-circuited. Including. When the electrolyte is a solid electrolyte combined with a polymer and has the function of a separator, an independent separator is not necessary.

本発明によるリチウム二次電池の作製に用いられる正極は、従来公知の方法で作製することができる。例えば、正極活物質に、バインダー、導電剤等を加えて適当な溶媒または分散媒で所定粘度としたスラリーを調製し、これを金属箔等の集電体に塗工し、厚さ数μm〜数百μmのコーティングを形成させ、そのコーティングを50〜200℃程度で熱処理することにより溶媒または分散媒を除去すればよい。正極活物質は、従来公知の材料であればよく、例えば、LiCoO等のコバルト複合酸化物、LiMn等のマンガン複合酸化物、LiNiO等のニッケル複合酸化物、これら酸化物の混合物、LiNiOのニッケルの一部をコバルトやマンガンに置換したもの、LiFeVO、LiFePO等の鉄複合酸化物、等を使用することができる。 The positive electrode used for the production of the lithium secondary battery according to the present invention can be produced by a conventionally known method. For example, a positive electrode active material is added with a binder, a conductive agent and the like to prepare a slurry having a predetermined viscosity with an appropriate solvent or dispersion medium, and this is applied to a current collector such as a metal foil, and a thickness of several μm to What is necessary is just to remove a solvent or a dispersion medium by forming several hundred micrometers coating and heat-processing the coating at about 50-200 degreeC. The positive electrode active material may be a conventionally known material, for example, a cobalt composite oxide such as LiCoO 2 , a manganese composite oxide such as LiMn 2 O 4 , a nickel composite oxide such as LiNiO 2 , and a mixture of these oxides. , LiNiO 2 in which part of nickel is replaced with cobalt or manganese, iron composite oxides such as LiFeVO 4 and LiFePO 4 , and the like can be used.

電解質としては、公知の電解液、常温溶融塩(イオン液体)、及び有機系もしくは無機系の固体電解質などを用いることができる。公知の電解液としては、例えば、エチレンカーボネートおよびプロピレンカーボネートなどの環状炭酸エステル、エチルメチルカーボネートおよびジエチルカーボネートなどの鎖状炭酸エステルなどが挙げられる。また、常温溶融塩(イオン液体)としては、例えば、イミダゾリウム系塩、ピロリジニウム系塩、ピリジニウム系塩、脂肪族系塩、アンモニウム系塩、ホスホニウム系塩、スルホニウム系塩などが挙げられる。前記固体電解質としては、例えば、ポリエーテル系ポリマー、ポリエステル系ポリマー、ポリイミン系ポリマー、ポリビニルアセタール系ポリマー、ポリアクリロニトリル系ポリマー、ポリフッ化アルケン系ポリマー、ポリ塩化ビニル系ポリマー、ポリ(塩化ビニル−フッ化ビニリデン)系ポリマー、ポリ(スチレン−アクリロニトリル)系ポリマー、及びニトリルゴムなどの直鎖型ポリマーなどに代表される有機系ポリマーゲル;ジルコニアなどの無機セラミックス;ヨウ化銀、ヨウ化銀硫黄化合物、ヨウ化銀ルビジウム化合物などの無機系電解質;などが挙げられる。また、イオン伝導度を低減するために、前記電解質にリチウム塩を溶解したものを二次電池用の電解質として用いることができる。また、電解質に難燃性を付与するために難燃性電解質溶解剤を加えることもできる。同様に、電解質の粘度を低下させるために可塑剤を加えることもできる。   As the electrolyte, a known electrolytic solution, a room temperature molten salt (ionic liquid), an organic or inorganic solid electrolyte, and the like can be used. Examples of the known electrolyte include cyclic carbonates such as ethylene carbonate and propylene carbonate, and chain carbonates such as ethyl methyl carbonate and diethyl carbonate. Examples of the room temperature molten salt (ionic liquid) include imidazolium salts, pyrrolidinium salts, pyridinium salts, aliphatic salts, ammonium salts, phosphonium salts, sulfonium salts, and the like. Examples of the solid electrolyte include polyether polymers, polyester polymers, polyimine polymers, polyvinyl acetal polymers, polyacrylonitrile polymers, polyfluorinated alkene polymers, polyvinyl chloride polymers, poly (vinyl chloride-fluoride). Vinylidene) -based polymers, poly (styrene-acrylonitrile) -based polymers, and organic polymer gels represented by linear polymers such as nitrile rubber; inorganic ceramics such as zirconia; silver iodide, silver iodide sulfur compounds, iodine And inorganic electrolytes such as silver rubidium compounds. Moreover, in order to reduce ionic conductivity, what melt | dissolved lithium salt in the said electrolyte can be used as an electrolyte for secondary batteries. A flame retardant electrolyte solubilizer can also be added to impart flame retardancy to the electrolyte. Similarly, a plasticizer can be added to reduce the viscosity of the electrolyte.

電解質に溶解させるリチウム塩としては、例えば、LiPF、LiClO、LiCFSO、LiBF、LiAsF、LiN(CFSO、LiN(CSOおよびLiC(CFSOなどが挙げられる。上記リチウム塩は、単独で用いても、また2種以上を組み合わせて用いてもよい。上記リチウム塩は、電解質全体に対して、一般に0.1質量%〜89.9質量%、好ましくは1.0質量%〜79.0質量%の含有量で用いられる。電解質のリチウム塩以外の成分は、リチウム塩の含有量が上記範囲内にあることを条件に、適当な量で添加することができる。 Examples of the lithium salt dissolved in the electrolyte include LiPF 6 , LiClO 4 , LiCF 3 SO 3 , LiBF 4 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 and LiC ( CF 3 SO 2 ) 3 and the like. The lithium salts may be used alone or in combination of two or more. The lithium salt is generally used in a content of 0.1% by mass to 89.9% by mass, preferably 1.0% by mass to 79.0% by mass, based on the entire electrolyte. Components other than the lithium salt of the electrolyte can be added in an appropriate amount on condition that the content of the lithium salt is within the above range.

上記電解質に用いられるポリマーとしては、電気化学的に安定であり、イオン伝導度が高いものであれば特に制限はなく、例えば、アクリレート系ポリマー、ポリフッ化ビニリデン等を使用することができる。また、重合性官能基を有するオニウムカチオンと重合性官能基を有する有機アニオンとから構成される塩モノマーを含むものから合成されたポリマーは、特にイオン伝導度が高く、充放電特性のさらなる向上に寄与し得る点で、より好ましい。電解質中のポリマー含有量は、好ましくは0.1質量%〜50質量%、より好ましくは1質量%〜40質量%の範囲内である。   The polymer used for the electrolyte is not particularly limited as long as it is electrochemically stable and has high ionic conductivity. For example, an acrylate polymer, polyvinylidene fluoride, or the like can be used. In addition, polymers synthesized from those containing a salt monomer composed of an onium cation having a polymerizable functional group and an organic anion having a polymerizable functional group have particularly high ionic conductivity, which further improves charge / discharge characteristics. It is more preferable at the point which can contribute. The polymer content in the electrolyte is preferably in the range of 0.1 mass% to 50 mass%, more preferably 1 mass% to 40 mass%.

上記難燃性電解質溶解剤としては、自己消火性を示し、かつ、電解質塩が共存した状態で電解質塩を溶解させることができる化合物であれば特に制限はなく、例えば、リン酸エステル、ハロゲン化合物、フォスファゼン等を使用することができる。   The flame retardant electrolyte solubilizer is not particularly limited as long as it is a compound that exhibits self-extinguishing properties and can dissolve the electrolyte salt in the presence of the electrolyte salt. For example, phosphate ester, halogen compound Phosphazene etc. can be used.

上記可塑剤の例としては、エチレンカーボネート、プロピレンカーボネート等の環状炭酸エステル、エチルメチルカーボネート、ジエチルカーボネート等の鎖状炭酸エステル、等が挙げられる。上記可塑剤は、単独で用いても、また2種以上を組み合わせて用いてもよい。   Examples of the plasticizer include cyclic carbonates such as ethylene carbonate and propylene carbonate, and chain carbonates such as ethyl methyl carbonate and diethyl carbonate. The above plasticizers may be used alone or in combination of two or more.

本発明によるリチウム二次電池にセパレータを用いる場合、正極と負極の間の短絡を防止することができ、電気化学的に安定である従来公知の材料を使用すればよい。セパレータの例としては、ポリエチレン製セパレータ、ポリプロピレン製セパレータ、セルロース製セパレータ、不織布、無機系セパレータ、グラスフィルター等が挙げられる。電解質にポリマーを含める場合には、その電解質がセパレータの機能を兼ね備える場合もあり、その場合、独立したセパレータは不要である。   When a separator is used in the lithium secondary battery according to the present invention, a conventionally known material that can prevent a short circuit between the positive electrode and the negative electrode and is electrochemically stable may be used. Examples of the separator include a polyethylene separator, a polypropylene separator, a cellulose separator, a nonwoven fabric, an inorganic separator, a glass filter, and the like. When a polymer is included in the electrolyte, the electrolyte may also have a separator function, and in that case, an independent separator is unnecessary.

本発明の二次電池の製造方法としては、公知な方法が適用できる。例えば、まず、上記で得た正極および負極を、所定の形、大きさに切断して用意し、次いで、正極と負極を直接接触しないように、セパレータを介して貼りあわせ、それを単層セルとする。次いで、この単層セルの電極間に、注液などの方法により、電解質を注入する。このようにして得られたセルを、例えば、ポリエステルフィルム/アルミニウムフィルム/変性ポリオレフィンフィルムの三層構造のラミネートフィルムからなる外装体に挿入し封止することにより、二次電池が得られる。得られた二次電池は、用途により、単セルとして用いても、複数のセルを繋いだモジュールとして用いてもよい。   As a method for producing the secondary battery of the present invention, a known method can be applied. For example, the positive electrode and the negative electrode obtained above are first prepared by cutting them into a predetermined shape and size, and then bonded via a separator so that the positive electrode and the negative electrode are not in direct contact with each other. And Next, an electrolyte is injected between the electrodes of the single-layer cell by a method such as injection. A secondary battery is obtained by inserting and sealing the thus obtained cell into an exterior body made of a laminate film having a three-layer structure of polyester film / aluminum film / modified polyolefin film, for example. The obtained secondary battery may be used as a single cell or a module in which a plurality of cells are connected depending on the application.

以下、本発明をより具体的に説明するための実施例を提供する。   Hereinafter, an example for explaining the present invention more concretely is provided.

<実施例1>
ノボラック型フェノール樹脂(住友ベークライト株式会社製PR−50237)135質量部およびヘキサメチレンテトラミン(三菱瓦斯化学株式会社製)25質量部を20質量部のメタノールを加えた4つ口フラスコに溶解させ、さらに一酸化ケイ素50質量部(平均粒子径1.2μm)を加え2時間攪拌を行った。攪拌終了後、得られたスラリーを200℃にて5時間硬化処理を行った。硬化処理後、窒素雰囲気下にて昇温し、500℃到達後1時間の炭化を行った。得られた炭化物を平均粒子径が11μmになるまで粉砕処理を行い、粉砕処理により得られた炭化物を、さらに昇温し、1100℃到達後10時間の炭化処理を行い、二次電池用負極活物質を得た。得られた負極活物質について、下記測定法により測定したところ、0.25〜0.45nmの細孔容積は、0.85cm/gであり、全細孔容積に対して55容積%であった。また、得られた負極活物質について、走査型電子顕微鏡(SEM)を用いて観察を行ったところ、負極活物質粒子表面に繊維直径が50nmのナノファイバー等の生成が確認された。また、得られた負極活物質には一酸化ケイ素が36.7質量%含有されていた。
<Example 1>
135 parts by weight of a novolak type phenolic resin (PR-50237 manufactured by Sumitomo Bakelite Co., Ltd.) and 25 parts by weight of hexamethylenetetramine (manufactured by Mitsubishi Gas Chemical Co., Inc.) are dissolved in a four-necked flask to which 20 parts by weight of methanol is added. 50 parts by mass of silicon monoxide (average particle size: 1.2 μm) was added and stirred for 2 hours. After stirring, the resulting slurry was cured at 200 ° C. for 5 hours. After the curing treatment, the temperature was raised in a nitrogen atmosphere, and carbonization was performed for 1 hour after reaching 500 ° C. The obtained carbide is pulverized until the average particle size becomes 11 μm, and the carbide obtained by the pulverization is further heated, and after reaching 1100 ° C., carbonized for 10 hours to obtain a negative electrode active for secondary battery. Obtained material. When the obtained negative electrode active material was measured by the following measurement method, the pore volume of 0.25 to 0.45 nm was 0.85 cm 3 / g, which was 55% by volume with respect to the total pore volume. It was. Moreover, when the obtained negative electrode active material was observed using the scanning electron microscope (SEM), the production | generation of the nanofiber etc. with a fiber diameter of 50 nm was confirmed on the negative electrode active material particle surface. Further, the obtained negative electrode active material contained 36.7% by mass of silicon monoxide.

得られた負極活物質を走査型電子顕微鏡(SEM)で観察した結果(電子顕微鏡写真)を図1に示す。図1からわかるように、ナノファイバー等がケイ素含有粒子と、該ケイ素含有粒子を包囲する樹脂炭素材とからなる複合粒子の表面から発生し、これらの粒子を包囲していることが確認された。また、SEMで観察されたナノファイバー等の2箇所をエネルギー分散型X線分析装置(EDX)を用いて元素分析を行なったところ、図2(A)および(B)に示したように、炭素、酸素及びケイ素のピークが確認された。 The result (electron micrograph) of observing the obtained negative electrode active material with a scanning electron microscope (SEM) is shown in FIG. As can be seen from FIG. 1, it was confirmed that nanofibers and the like were generated from the surface of the composite particles composed of silicon-containing particles and a resin carbon material surrounding the silicon-containing particles, and surrounded these particles. . In addition, when elemental analysis was performed using an energy dispersive X-ray analyzer (EDX) at two locations such as nanofibers observed by SEM, carbon was obtained as shown in FIGS. 2 (A) and (B). Oxygen and silicon peaks were confirmed.

負極活物質の評価
細孔容積と細孔分布の測定
測定試料を島津製作所製・細孔分布測定装置「ASAP−2010」を用いて、623Kで真空加熱前処理することで吸着ガスを脱着、プローブガスとしてNを用い、絶対圧760mmHg、相対圧0.005〜0.86の範囲で77.3Kでの吸着等温線を測定し、得られた吸着媒質の比表面積・吸着量から吸着層の厚さtを介し、HalseyおよびHalsey and Juraの厚み式をもとに平均細孔水理半径を算出し、細孔容積を次式に基づいて計算した。
HalseyおよびHalsey and Juraの厚み式については、以下に説明した通りである。
t=(M×Vsp/22414)×(Va/S)
[式中、t:吸着層の統計的厚さ、M:吸着質の分子量、Va:吸着媒単位質量当りの吸着量、Vsp:吸着質ガスの比容積、S:吸着媒の比表面積]
=HP1×[HP2/ln(Prel)]HP3
[式中、t:Ithポイントの厚み、HP1:Halseyパラメーター#1、HP2:Halseyパラメーター#2、HP3:Halseyパラメーター#3、Prel:Ithポイントの相対圧力(mmHg)]
平均水理半径(nm):R=(t+tI−1)/20
Ithポイント目に遮断した細孔表面積の増分ΔS:ΔS=SI−1−S
Ithポイント目に遮断した積算細孔表面積(m/g)S:S=S+S+S+・・・・・Sn
Ithポイント目に遮断した細孔容積の増分ΔV:
ΔV=(S×10cm/m)×(R×10−8cm/Å)
Ithポイント目の細孔容積ΔV/ΔR(cm/g):ΔV/ΔR=ΔV/t−tI−1
なお、上記Ithポイント目というのは、各相対圧による個々の測定ポイントのことをいう。
Ithポイント目に遮断した細孔容積(cm/g):V=V+V+V+・・・・・Vn。
Evaluation of negative electrode active material Measurement of pore volume and pore distribution Using a Shimadzu Corporation pore distribution measuring device “ASAP-2010”, the sample was vacuum-heated and pretreated at 623 K to desorb the adsorbed gas, and probe Using N 2 as the gas, the adsorption isotherm was measured at 77.3 K in the range of absolute pressure 760 mmHg and relative pressure 0.005 to 0.86. From the specific surface area and adsorption amount of the obtained adsorption medium, the adsorption layer Through the thickness t, the average pore hydraulic radius was calculated based on the thickness formula of Halsey and Halsey and Jura, and the pore volume was calculated based on the following formula.
The thickness formulas of Halsey and Halsey and Jura are as described below.
t = (M × Vsp / 22414) × (Va / S)
[Wherein, t: statistical thickness of the adsorption layer, M: molecular weight of the adsorbate, Va: adsorption amount per unit mass of the adsorbent, Vsp: specific volume of the adsorbate gas, S: specific surface area of the adsorbent]
t I = HP1 × [HP2 / ln (Prel I )] HP3
[Where, t I : thickness of I th point, HP1: Halsey parameter # 1, HP2: Halsey parameter # 2, HP3: Halsey parameter # 3, Prel I : relative pressure (mmHg) of I th point]
Average hydraulic radius (nm): R I = (t I + t I-1 ) / 20
Increment of pore surface area blocked at the Ith point ΔS: ΔS = S I-1 −S I
Integrated pore surface area (m 2 / g) blocked at the Ith point S: S = S 1 + S 2 + S 3 +... Sn
Pore volume increment ΔV blocked at the Ith point:
ΔV = (S × 10 4 cm 2 / m 2 ) × (R I × 10 −8 cm / Å)
Ith point pore volume ΔV / ΔR I (cm 3 / g): ΔV / ΔR I = ΔV / t I −t I−1
The Ith point refers to an individual measurement point by each relative pressure.
Pore volume blocked at the Ith point (cm 3 / g): V = V 1 + V 2 + V 3 +... Vn.

負極活物質の粒子径は、レーザー回折折散乱粒度分布測定装置(ベックマン・コールター(株)社製LS−230)を用いて測定した。平均粒子径は体積換算とし、頻度が累積で50%になったところを平均粒子径と定義した。   The particle size of the negative electrode active material was measured using a laser diffraction diffraction scattering particle size distribution analyzer (LS-230 manufactured by Beckman Coulter, Inc.). The average particle diameter was converted to volume, and the place where the frequency reached 50% cumulatively was defined as the average particle diameter.

充放電特性の評価
(1)負極合剤および負極の作製
上記で得られた負極活物質100質量部を用い、これに対して結着剤としてカルボキシメチルセルロース(ダイセル化学製:品番1160)、エーテル化度0.6〜0.8)10質量部、アセチレンブラック3質量部の割合で、それぞれ配合し、さらに、希釈溶媒として水200質量部を加え混合し、スラリー状の負極合剤を調製した。
この負極合剤を10μmの銅箔の両面に塗布し、その後、110℃で1時間真空乾燥した。真空乾燥後、ロールプレスによって電極を100μmに加圧成形した。これを幅40mmで長さ290mmの大きさに切り出し負極を作製した。この負極を用いて、リチウムイオン二次電池用電極としてφ13mmの径で打ち抜き負極とした。
Evaluation of charge / discharge characteristics (1) Preparation of negative electrode mixture and negative electrode Using 100 parts by mass of the negative electrode active material obtained above, carboxymethylcellulose (manufactured by Daicel Chemical Industries, Ltd .: product number 1160), etherification as a binder A degree of 0.6 to 0.8) was mixed at a ratio of 10 parts by mass and 3 parts by mass of acetylene black, and 200 parts by mass of water was further added and mixed as a diluent solvent to prepare a slurry-like negative electrode mixture.
This negative electrode mixture was applied to both sides of a 10 μm copper foil, and then vacuum-dried at 110 ° C. for 1 hour. After vacuum drying, the electrode was pressure molded to 100 μm by a roll press. This was cut into a size of 40 mm in width and 290 mm in length to produce a negative electrode. Using this negative electrode, a negative electrode was punched out with a diameter of 13 mm as an electrode for a lithium ion secondary battery.

(2)リチウムイオン二次電池の作製
上記負極、セパレーター(ポリプロピレン製多孔質フィルム:直径φ16、厚さ25μm)、作用極としてリチウム金属(直径φ12、厚さ1mm)の順で、宝泉製2032型コインセル内の所定の位置に配置した。さらに、電解液としてエチレンカーボネートとジエチレンカーボネートの混合液(体積比が1:1)に、過塩素酸リチウムを1[モル/リットル]の濃度で溶解させたものを注液し、リチウムイオン二次電池を作製した。
(2) Production of Lithium Ion Secondary Battery The negative electrode, separator (polypropylene porous film: diameter φ16, thickness 25 μm), and lithium metal (diameter φ12, thickness 1 mm) as working electrodes in order of Hosen 2032 The coin cell was placed at a predetermined position in the coin cell. Further, an electrolytic solution in which lithium perchlorate is dissolved at a concentration of 1 [mol / liter] in a mixed solution of ethylene carbonate and diethylene carbonate (volume ratio is 1: 1) is injected into a lithium ion secondary solution. A battery was produced.

(3)電池特性の評価
〈初期充放電特性評価〉
充電容量については、充電時の電流密度を25mA/gとして定電流充電を行い、電位が0Vに達した時点から、0Vで定電圧充電を行い、電流密度が1.25mA/gになるまでに充電した電気量を充電容量とした。
一方、放電容量については、放電時の電流密度も25mA/gとして定電流放電を行い、電位が2.5Vに達した時点から、2.5Vで定電圧放電を行い、電流密度が1.25mA/gになるまでに放電した電気量を放電容量とした。
なお、充放電特性の評価は、充放電特性評価装置(北斗電工(株)製:HJR−1010mSM8)を用いて行った。
また、以下の式により初回の充放電効率を定義した。
初回充放電効率(%)=初回放電容量(mAh/g)/初回充電容量(mAh/g)×100
(3) Evaluation of battery characteristics <Evaluation of initial charge / discharge characteristics>
Regarding the charging capacity, constant current charging is performed with the current density at the time of charging being 25 mA / g, and from the time when the potential reaches 0 V, constant voltage charging is performed at 0 V until the current density reaches 1.25 mA / g. The amount of electricity charged was taken as the charge capacity.
On the other hand, with respect to the discharge capacity, constant current discharge was performed with a current density at the time of discharge of 25 mA / g, and constant voltage discharge was performed at 2.5 V from the time when the potential reached 2.5 V, and the current density was 1.25 mA. The amount of electricity discharged up to / g was taken as the discharge capacity.
In addition, evaluation of the charging / discharging characteristic was performed using the charging / discharging characteristic evaluation apparatus (Hokuto Denko Co., Ltd. product: HJR-1010mSM8).
The initial charge / discharge efficiency was defined by the following equation.
Initial charge / discharge efficiency (%) = initial discharge capacity (mAh / g) / initial charge capacity (mAh / g) × 100

〈サイクル性評価〉
初期充放電特性評価条件を300回繰り返し測定した後に得られた放電容量を300サイクル目の放電容量とした。また、以下の式によりサイクル性(300サイクル容量維持率)を定義した。
サイクル性(%、300サイクル容量維持率)=300サイクル目の放電容量(mAh/g)/初回放電容量(mAh/g)×100
<Cycle evaluation>
The discharge capacity obtained after repeatedly measuring the initial charge / discharge characteristic evaluation conditions 300 times was defined as the discharge capacity at the 300th cycle. In addition, the cycle property (300 cycle capacity maintenance rate) was defined by the following equation.
Cycle performance (%, 300 cycle capacity retention rate) = 300th cycle discharge capacity (mAh / g) / initial discharge capacity (mAh / g) × 100

〈負荷特性評価〉
初期充放電特性評価により得られた放電容量を基準容量(C)とし、基準容量を充電した後に、充電量を1時間で放電させる電流密度にて放電を行い、得られた放電容量を1C容量とした。同様に基準容量を充電した後に、充電量を2分で放電させる電流密度で放電を行い、得られた放電容量を30C容量とした。また、以下の式により負荷特性(%、30Cでの容量 対 1Cでの容量)を定義した。
負荷特性(%、30Cでの容量 対 1Cでの容量)=30C容量(mAh/g)/1C容量(mAh/g)×100
<Evaluation of load characteristics>
The discharge capacity obtained by the initial charge / discharge characteristic evaluation is defined as the reference capacity (C 0 ), and after charging the reference capacity, discharging is performed at a current density that discharges the charged amount in 1 hour. The capacity. Similarly, after charging the reference capacity, discharging was performed at a current density that discharges the charged amount in 2 minutes, and the obtained discharge capacity was set to 30 C capacity. Also, the load characteristic (%, capacity at 30 C vs. capacity at 1 C) was defined by the following equation.
Load characteristics (%, capacity at 30 C vs. capacity at 1 C) = 30 C capacity (mAh / g) / 1 C capacity (mAh / g) × 100

<実施例2> ノボラック型フェノール樹脂(住友ベークライト株式会社製PR−50237)135質量部およびヘキサメチレンテトラミン(三菱瓦斯化学株式会社製)25質量部を30質量部のアセトンを加えた4つ口フラスコに溶解させ、さらに一酸化ケイ素30質量部(平均粒子径3.3μm)を加え3時間攪拌を行った。攪拌終了後、得られたスラリーを200℃にて3時間硬化処理を行った。硬化処理後、窒素雰囲気下にて昇温し、550℃到達後1時間の炭化を行った。得られた炭化物を平均粒子径が7μmになるまで粉砕処理を行い、粉砕処理により得られた炭化物を、さらに昇温し、1150℃到達後10時間の炭化処理を行い、二次電池用負極活物質を得た。得られた負極活物質の0.25〜0.45nmの細孔容積は、0.75cm/gであり、全細孔容積に対して75容積%であった。また、得られた負極活物質のSEM観察を行ったところ、繊維直径が40nmのナノファイバー等がケイ素含有粒子と、該ケイ素含有粒子を包囲する樹脂炭素材とからなる複合粒子の表面から発生し、これらの粒子を包囲していることが確認された。また、実施例1と同様に、SEMで観察されたナノファイバー等の2箇所をエネルギー分散型X線分析装置(EDX)を用いて元素分析を行なったところ、炭素、酸素及びケイ素のピークが確認された。さらに、得られた負極活物質には一酸化ケイ素が26.0質量%含有されていた。 <Example 2> A four-necked flask in which 135 parts by mass of novolak-type phenolic resin (PR-50237 manufactured by Sumitomo Bakelite Co., Ltd.) and 25 parts by mass of hexamethylenetetramine (manufactured by Mitsubishi Gas Chemical Co., Inc.) were added with 30 parts by mass of acetone. Further, 30 parts by mass of silicon monoxide (average particle size: 3.3 μm) was added, and the mixture was stirred for 3 hours. After stirring, the resulting slurry was cured at 200 ° C. for 3 hours. After the curing treatment, the temperature was raised in a nitrogen atmosphere, and carbonization was performed for 1 hour after reaching 550 ° C. The obtained carbide is pulverized until the average particle size becomes 7 μm. The carbide obtained by the pulverization is further heated, and after reaching 1150 ° C., carbonization is performed for 10 hours to obtain a negative electrode active for secondary battery. Obtained material. The obtained negative electrode active material had a pore volume of 0.25 to 0.45 nm of 0.75 cm 3 / g, and 75% by volume with respect to the total pore volume. Further, when SEM observation of the obtained negative electrode active material was performed, nanofibers having a fiber diameter of 40 nm were generated from the surface of composite particles composed of silicon-containing particles and a resin carbon material surrounding the silicon-containing particles. It was confirmed that these particles were surrounded. Further, as in Example 1, when elemental analysis was performed using an energy dispersive X-ray analyzer (EDX) at two locations such as nanofibers observed by SEM, peaks of carbon, oxygen and silicon were confirmed. It was done. Further, the obtained negative electrode active material contained 26.0% by mass of silicon monoxide.

次いで、負極活物質100質量部に対して結着剤としてカルボキシメチルセルロース(ダイセル化学製:品番1160、エーテル化度0.6〜0.8)14質量部、アセチレンブラック3質量部の割合で、それぞれ配合し、さらに、希釈溶媒として水250質量部を加え混合し、負極合剤、リチウムイオン二次電池負極を得た。さらに、実施例1と同様にして、リチウムイオン二次電池を作製して、充放電特性を評価した。   Next, carboxymethyl cellulose (manufactured by Daicel Chemical Industries, product number: 1160, degree of etherification: 0.6 to 0.8) as a binder with respect to 100 parts by mass of the negative electrode active material, and a ratio of 3 parts by mass of acetylene black, respectively. Further, 250 parts by weight of water was added as a diluent solvent and mixed to obtain a negative electrode mixture and a negative electrode for a lithium ion secondary battery. Further, in the same manner as in Example 1, a lithium ion secondary battery was produced, and charge / discharge characteristics were evaluated.

<実施例3>
ノボラック型フェノール樹脂(住友ベークライト株式会社製PR−50237)135質量部およびヘキサメチレンテトラミン(三菱瓦斯化学株式会社製)25質量部を45質量部のアセトンを加えた4つ口フラスコに溶解させ、さらに一酸化ケイ素45質量部(平均粒子径0.7μm)を加え5時間攪拌を行った。攪拌終了後、得られたスラリーを200℃にて3時間硬化処理を行った。硬化処理後、窒素雰囲気下にて昇温し、500℃到達後3時間の炭化を行った。得られた炭化物を平均粒子径が11μmになるまで粉砕処理を行い、粉砕処理により得られた炭化物を、さらに昇温し、1100℃到達後5時間の炭化処理を行い、二次電池用負極活物質を得た。得られた負極活物質について、実施例1と同様にして評価したところ、0.25〜0.45nmの細孔容積は、0.65cm/gであり、全細孔容積に対して55容積%であった。また、得られた負極活物質のSEM観察を行ったところ、繊維直径が40nmのナノファイバー等がケイ素含有粒子と、該ケイ素含有粒子を包囲する樹脂炭素材とからなる複合粒子の表面から発生し、これらの粒子を包囲していることが確認された。また、実施例1と同様に、SEMで観察されたナノファイバー等の2箇所をエネルギー分散型X線分析装置(EDX)を用いて元素分析を行なったところ、炭素、酸素及びケイ素のピークが確認された。さらに、得られた負極活物質には一酸化ケイ素が35.3質量%含有されていた。
<Example 3>
135 parts by mass of a novolac type phenolic resin (PR-50237 manufactured by Sumitomo Bakelite Co., Ltd.) and 25 parts by mass of hexamethylenetetramine (manufactured by Mitsubishi Gas Chemical Co., Inc.) are dissolved in a four-necked flask to which 45 parts by mass of acetone is added. 45 parts by mass of silicon monoxide (average particle size: 0.7 μm) was added and stirred for 5 hours. After stirring, the resulting slurry was cured at 200 ° C. for 3 hours. After the curing treatment, the temperature was raised in a nitrogen atmosphere, and carbonization was performed for 3 hours after reaching 500 ° C. The obtained carbide is pulverized until the average particle size becomes 11 μm. The carbide obtained by the pulverization is further heated, and after reaching 1100 ° C., carbonization is performed for 5 hours to obtain a negative electrode active for secondary battery. Obtained material. When the obtained negative electrode active material was evaluated in the same manner as in Example 1, the pore volume of 0.25 to 0.45 nm was 0.65 cm 3 / g, and 55 volumes with respect to the total pore volume. %Met. Further, when SEM observation of the obtained negative electrode active material was performed, nanofibers having a fiber diameter of 40 nm were generated from the surface of composite particles composed of silicon-containing particles and a resin carbon material surrounding the silicon-containing particles. It was confirmed that these particles were surrounded. Further, as in Example 1, when elemental analysis was performed using an energy dispersive X-ray analyzer (EDX) at two locations such as nanofibers observed by SEM, peaks of carbon, oxygen and silicon were confirmed. It was done. Furthermore, the obtained negative electrode active material contained 35.3% by mass of silicon monoxide.

次いで、負極活物質100質量部に対して結着剤としてカルボキシメチルセルロース(ダイセル化学製:品番1160、エーテル化度0.6〜0.8)6質量部、アセチレンブラック3質量部の割合で、それぞれ配合し、さらに、希釈溶媒として水160質量部を加え混合し、負極合剤、リチウムイオン二次電池負極を得た。さらに、実施例1と同様にして、リチウムイオン二次電池を作製して、充放電特性を評価した。   Next, carboxymethyl cellulose (manufactured by Daicel Chemical Industries, product number: 1160, degree of etherification: 0.6 to 0.8) as a binder with respect to 100 parts by mass of the negative electrode active material, and at a ratio of 3 parts by mass of acetylene black, respectively. Further, 160 parts by mass of water was added as a diluent solvent and mixed to obtain a negative electrode mixture and a lithium ion secondary battery negative electrode. Further, in the same manner as in Example 1, a lithium ion secondary battery was produced, and charge / discharge characteristics were evaluated.

<実施例4>
ノボラック型フェノール樹脂(住友ベークライト株式会社製PR−50237)135質量部およびヘキサメチレンテトラミン(三菱瓦斯化学株式会社製)25質量部を25質量部のアセトンを加えた4つ口フラスコに溶解させ、さらに一酸化ケイ素30質量部(平均粒子径1.3μm)、触媒として硝酸鉄0.1質量部を加え3時間攪拌を行った。攪拌終了後、得られたスラリーを200℃にて3時間硬化処理を行った。硬化処理後、窒素雰囲気下にて昇温し、450℃到達後3時間の炭化を行った。得られた炭化物を平均粒子径が12μmになるまで粉砕処理を行い、粉砕処理により得られた炭化物を、さらに昇温し、1100℃到達後10時間の炭化処理を行い、二次電池用負極活物質を得た。得られた負極活物質について、実施例1と同様にして評価したところ、0.25〜0.45nmの細孔容積は、0.80cm/gであり、全細孔容積に対して50容積%であった。また、得られた負極活物質のSEM観察を行ったところ、繊維直径が20nmのナノファイバー等がケイ素含有粒子と、該ケイ素含有粒子を包囲する樹脂炭素材とからなる複合粒子の表面から発生し、これらの粒子を包囲していることが確認された。また、実施例1と同様に、SEMで観察されたナノファイバー等の2箇所をエネルギー分散型X線分析装置(EDX)を用いて元素分析を行なったところ、炭素、酸素及びケイ素のピークが確認された。さらに、得られた負極活物質には一酸化ケイ素が28.4質量%含有されていた。
<Example 4>
135 parts by mass of a novolac type phenolic resin (PR-50237 manufactured by Sumitomo Bakelite Co., Ltd.) and 25 parts by mass of hexamethylenetetramine (manufactured by Mitsubishi Gas Chemical Co., Inc.) are dissolved in a four-necked flask to which 25 parts by mass of acetone is added, and 30 parts by mass of silicon monoxide (average particle size 1.3 μm) and 0.1 part by mass of iron nitrate as a catalyst were added and stirred for 3 hours. After stirring, the resulting slurry was cured at 200 ° C. for 3 hours. After the curing treatment, the temperature was raised in a nitrogen atmosphere, and carbonization was performed for 3 hours after reaching 450 ° C. The obtained carbide is pulverized until the average particle size becomes 12 μm, the temperature of the carbide obtained by the pulverization is further increased, and after reaching 1100 ° C., carbonization is performed for 10 hours. Obtained material. When the obtained negative electrode active material was evaluated in the same manner as in Example 1, the pore volume of 0.25 to 0.45 nm was 0.80 cm 3 / g, and 50 volumes with respect to the total pore volume. %Met. Further, when SEM observation of the obtained negative electrode active material was performed, nanofibers having a fiber diameter of 20 nm were generated from the surface of composite particles composed of silicon-containing particles and a resin carbon material surrounding the silicon-containing particles. It was confirmed that these particles were surrounded. Further, as in Example 1, when elemental analysis was performed using an energy dispersive X-ray analyzer (EDX) at two locations such as nanofibers observed by SEM, peaks of carbon, oxygen and silicon were confirmed. It was done. Furthermore, the obtained negative electrode active material contained 28.4% by mass of silicon monoxide.

次いで、負極活物質100質量部に対して結着剤としてカルボキシメチルセルロース(ダイセル化学製:品番1350、エーテル化度1.0〜1.5)10質量部、アセチレンブラック3質量部の割合で、それぞれ配合し、さらに、希釈溶媒として水200質量部を加え混合し、負極合剤、リチウムイオン二次電池負極を得た。さらに、実施例1と同様にして、リチウムイオン二次電池を作製して、充放電特性を評価した。
Next, carboxymethyl cellulose (manufactured by Daicel Chemical Industries, product number: 1350, degree of etherification: 1.0 to 1.5) as a binder with respect to 100 parts by mass of the negative electrode active material, and 3 parts by mass of acetylene black, respectively. Further, 200 parts by mass of water was added as a diluent solvent and mixed to obtain a negative electrode mixture and a negative electrode for a lithium ion secondary battery. Further, in the same manner as in Example 1, a lithium ion secondary battery was produced, and charge / discharge characteristics were evaluated.

<実施例5> β−ナフトール100質量部と43%ホルムアルデヒド水溶液53.3質量部、しゅう酸3質量部を攪拌機及び冷却管を備えた3つ口フラスコに入れ、100℃で3時間反応後、昇温脱水し、β−ナフトール樹脂90質量部を得た。上記操作を繰り返して得られたβ−ナフトール樹脂100質量部に対してヘキサメチレンテトラミンを10質量部の割合で添加したものを粉砕混合した後、30質量部のジメチルスルホアミドを加えた4つ口フラスコに溶解させ、さらに一酸化ケイ素60質量部(平均粒子径3.3μm)を加え3時間攪拌を行った。攪拌終了後、得られたスラリーを200℃にて3時間硬化処理を行った。硬化処理後、窒素雰囲気下にて昇温し、450℃到達後6時間の炭化を行った。得られた炭化物を平均粒子径が7μmになるまで粉砕処理を行い、粉砕処理により得られた炭化物を、さらに昇温し、1100℃到達後10時間の炭化処理を行い、二次電池用負極活物質を得た。得られた負極活物質について、実施例1と同様にして評価したところ、0.25〜0.45nmの細孔容積は、0.65cm/gであり、全細孔容積に対して65容積%であった。また、得られた負極活物質のSEM観察を行ったところ、繊維直径が20nmのナノファイバー等がケイ素含有粒子と、該ケイ素含有粒子を包囲する樹脂炭素材とからなる複合粒子の表面から発生し、これらの粒子を包囲していることが確認された。また、実施例1と同様に、SEMで観察されたナノファイバー等の2箇所をエネルギー分散型X線分析装置(EDX)を用いて元素分析を行なったところ、炭素、酸素及びケイ素のピークが確認された。さらに、得られた負極活物質には一酸化ケイ素が56.2質量%含有されていた。 <Example 5> 100 parts by mass of β-naphthol, 53.3 parts by mass of a 43% formaldehyde aqueous solution, and 3 parts by mass of oxalic acid were placed in a three-necked flask equipped with a stirrer and a condenser, and reacted at 100 ° C for 3 hours. The temperature was dehydrated to obtain 90 parts by mass of β-naphthol resin. A mixture of 10 parts by mass of hexamethylenetetramine with respect to 100 parts by mass of the β-naphthol resin obtained by repeating the above operation was pulverized and mixed, and then added with 30 parts by mass of dimethylsulfamide. It was made to melt | dissolve in a flask, 60 mass parts (average particle diameter of 3.3 micrometers) of silicon monoxide was further added, and it stirred for 3 hours. After stirring, the resulting slurry was cured at 200 ° C. for 3 hours. After the curing treatment, the temperature was raised in a nitrogen atmosphere, and carbonization was performed for 6 hours after reaching 450 ° C. The obtained carbide is pulverized until the average particle size becomes 7 μm. The carbide obtained by the pulverization is further heated, and after reaching 1100 ° C., carbonization is performed for 10 hours. Obtained material. When the obtained negative electrode active material was evaluated in the same manner as in Example 1, the pore volume of 0.25 to 0.45 nm was 0.65 cm 3 / g, and 65 volumes with respect to the total pore volume. %Met. Further, when SEM observation of the obtained negative electrode active material was performed, nanofibers having a fiber diameter of 20 nm were generated from the surface of composite particles composed of silicon-containing particles and a resin carbon material surrounding the silicon-containing particles. It was confirmed that these particles were surrounded. Further, as in Example 1, when elemental analysis was performed using an energy dispersive X-ray analyzer (EDX) at two locations such as nanofibers observed by SEM, peaks of carbon, oxygen and silicon were confirmed. It was done. Further, the obtained negative electrode active material contained 56.2% by mass of silicon monoxide.

次いで、負極活物質100質量部に対して結着剤としてカルボキシメチルセルロース(ダイセル化学製:品番2280、エーテル化度0.6〜0.8)10質量部、アセチレンブラック3質量部の割合で、それぞれ配合し、さらに、希釈溶媒として水200質量部を加え混合し、負極合剤、リチウムイオン二次電池負極を得た。さらに、実施例1と同様にして、リチウムイオン二次電池を作製して、充放電特性を評価した。   Next, carboxymethyl cellulose (manufactured by Daicel Chemical: product number 2280, degree of etherification 0.6 to 0.8) as a binder with respect to 100 parts by mass of the negative electrode active material, respectively, at a ratio of 3 parts by mass of acetylene black, respectively. Further, 200 parts by mass of water was added as a diluent solvent and mixed to obtain a negative electrode mixture and a negative electrode for a lithium ion secondary battery. Further, in the same manner as in Example 1, a lithium ion secondary battery was produced, and charge / discharge characteristics were evaluated.

<実施例6>
レゾール型フェノール樹脂(住友ベークライト株式会社製PR−51723)100質量部を30質量部のアセトンを加えた4つ口フラスコに溶解させ、さらに一酸化ケイ素20質量部(平均粒子径1.1μm)を加え3時間攪拌を行った。攪拌終了後、得られたスラリーを200℃にて3時間硬化処理を行った。硬化処理後、窒素雰囲気下にて昇温し、550℃到達後2時間の炭化を行った。得られた炭化物を平均粒子径が10μmになるまで粉砕処理を行い、粉砕処理により得られた炭化物を、さらに昇温し、1200℃到達後18時間の炭化処理を行い、二次電池用負極活物質を得た。得られた負極活物質について、実施例1と同様にして評価したところ、0.25〜0.45nmの細孔容積は、0.012cm/gであり、全細孔容積に対して40容積%であった。また、得られた負極活物質のSEM観察を行ったところ、繊維直径が35nmのナノファイバー等がケイ素含有粒子と、該ケイ素含有粒子を包囲する樹脂炭素材とからなる複合粒子の表面から発生し、これらの粒子を包囲していることが確認された。また、実施例1と同様に、SEMで観察されたナノファイバー等の2箇所をエネルギー分散型X線分析装置(EDX)を用いて元素分析を行なったところ、炭素、酸素及びケイ素のピークが確認された。さらに、得られた負極活物質には一酸化ケイ素が33.1質量%含有されていた。
<Example 6>
100 parts by mass of a resol-type phenolic resin (PR-51723 manufactured by Sumitomo Bakelite Co., Ltd.) was dissolved in a four-necked flask to which 30 parts by mass of acetone was added, and 20 parts by mass of silicon monoxide (average particle size 1.1 μm) was further added. The mixture was further stirred for 3 hours. After stirring, the resulting slurry was cured at 200 ° C. for 3 hours. After the curing treatment, the temperature was raised in a nitrogen atmosphere, and carbonization was performed for 2 hours after reaching 550 ° C. The obtained carbide is pulverized until the average particle size becomes 10 μm, the temperature of the carbide obtained by the pulverization is further increased, and carbonization is performed for 18 hours after reaching 1200 ° C. Obtained material. When the obtained negative electrode active material was evaluated in the same manner as in Example 1, the pore volume of 0.25 to 0.45 nm was 0.012 cm 3 / g, and 40 volumes with respect to the total pore volume. %Met. Further, when SEM observation of the obtained negative electrode active material was performed, nanofibers having a fiber diameter of 35 nm were generated from the surface of composite particles composed of silicon-containing particles and a resin carbon material surrounding the silicon-containing particles. It was confirmed that these particles were surrounded. Further, as in Example 1, when elemental analysis was performed using an energy dispersive X-ray analyzer (EDX) at two locations such as nanofibers observed by SEM, peaks of carbon, oxygen and silicon were confirmed. It was done. Furthermore, the obtained negative electrode active material contained 33.1% by mass of silicon monoxide.

次いで、負極活物質100質量部に対して結着剤としてカルボキシメチルセルロース(ダイセル化学製:品番1160、エーテル化度0.6〜0.8)10質量部、アセチレンブラック3質量部の割合で、それぞれ配合し、さらに、希釈溶媒として水200質量部を加え混合し、負極合剤、リチウムイオン二次電池負極を得た。さらに、実施例1と同様にして、リチウムイオン二次電池を作製して、充放電特性を評価した。   Next, carboxymethyl cellulose (manufactured by Daicel Chemical Industries, product number: 1160, degree of etherification: 0.6 to 0.8) as a binder with respect to 100 parts by mass of the negative electrode active material, and at a ratio of 3 parts by mass of acetylene black, respectively. Further, 200 parts by mass of water was added as a diluent solvent and mixed to obtain a negative electrode mixture and a negative electrode for a lithium ion secondary battery. Further, in the same manner as in Example 1, a lithium ion secondary battery was produced, and charge / discharge characteristics were evaluated.

<実施例7>
ノボラック型フェノール樹脂(住友ベークライト株式会社製PR−50237)135質量部およびヘキサメチレンテトラミン(三菱瓦斯化学株式会社製)25質量部を20質量部のメタノールを加えた4つ口フラスコに溶解させ、さらに一酸化ケイ素50質量部(平均粒子径1.2μm)を加え2時間攪拌を行った。攪拌終了後、得られたスラリーを150℃にて5時間硬化処理を行った。硬化処理後、窒素雰囲気下にて昇温し、600℃到達後3時間の炭化を行った。得られた炭化物を平均粒子径が9μmになるまで粉砕処理を行い、粉砕処理により得られた炭化物を、さらに昇温し、1250℃到達後3時間の炭化処理を行い、二次電池用負極活物質を得た。得られた負極活物の0.25〜0.45nmの細孔容積は、1.2cm/gであり、全細孔容積に対して80容積%であった。また、得られた負極活物質SEM観察を行ったところ、繊維直径が40nmのナノファイバー等がケイ素含有粒子と、該ケイ素含有粒子を包囲する樹脂炭素材とからなる複合粒子の表面から発生し、これらの粒子を包囲していることが確認された。また、実施例1と同様に、SEMで観察されたナノファイバー等の2箇所をエネルギー分散型X線分析装置(EDX)を用いて元素分析を行なったところ、炭素、酸素及びケイ素のピークが確認された。さらに、得られた負極活物質には一酸化ケイ素が35.9質量%含有されていた。
<Example 7>
135 parts by weight of a novolak type phenolic resin (PR-50237 manufactured by Sumitomo Bakelite Co., Ltd.) and 25 parts by weight of hexamethylenetetramine (manufactured by Mitsubishi Gas Chemical Co., Inc.) are dissolved in a four-necked flask to which 20 parts by weight of methanol is added. 50 parts by mass of silicon monoxide (average particle size: 1.2 μm) was added and stirred for 2 hours. After stirring, the obtained slurry was cured at 150 ° C. for 5 hours. After the curing treatment, the temperature was raised in a nitrogen atmosphere, and carbonization was performed for 3 hours after reaching 600 ° C. The obtained carbide is pulverized until the average particle size becomes 9 μm, the carbide obtained by the pulverization is further heated, and after reaching 1250 ° C., carbonization is performed for 3 hours. Obtained material. The obtained negative electrode active material had a pore volume of 0.25 to 0.45 nm of 1.2 cm 3 / g, and was 80% by volume based on the total pore volume. Moreover, when the obtained negative electrode active material SEM observation was performed, nanofibers having a fiber diameter of 40 nm were generated from the surface of the composite particles composed of silicon-containing particles and a resin carbon material surrounding the silicon-containing particles, It was confirmed to surround these particles. Further, as in Example 1, when elemental analysis was performed using an energy dispersive X-ray analyzer (EDX) at two locations such as nanofibers observed by SEM, peaks of carbon, oxygen and silicon were confirmed. It was done. Furthermore, the obtained negative electrode active material contained 35.9% by mass of silicon monoxide.

次いで、負極活物質100質量部に対して結着剤としてメチルセルロース(シグマアルドリッチ製、数平均分子量14000)20質量部、アセチレンブラック3質量部の割合で、それぞれ配合し、さらに、希釈溶媒として水400質量部を加え混合し、負極合剤、リチウムイオン二次電池負極を得た。さらに、実施例1と同様にして、リチウムイオン二次電池を作製して、充放電特性を評価した。   Next, 20 parts by mass of methyl cellulose (manufactured by Sigma-Aldrich, number average molecular weight 14000) and 3 parts by mass of acetylene black are blended with respect to 100 parts by mass of the negative electrode active material, respectively, and water 400 as a diluent solvent. Part by mass was added and mixed to obtain a negative electrode mixture and a negative electrode for a lithium ion secondary battery. Further, in the same manner as in Example 1, a lithium ion secondary battery was produced, and charge / discharge characteristics were evaluated.

<実施例8>
ノボラック型フェノール樹脂(住友ベークライト株式会社製PR−50237)135質量部およびヘキサメチレンテトラミン(三菱瓦斯化学株式会社製)25質量部を20質量部のメタノールを加えた4つ口フラスコに溶解させ、さらに一酸化ケイ素40質量部(平均粒子径1.2μm)を加え2時間攪拌を行った。攪拌終了後、得られたスラリーを175℃にて3時間硬化処理を行った。硬化処理後、窒素雰囲気下にて昇温し、650℃到達後1時間の炭化を行った。得られた炭化物を平均粒子径が9μmになるまで粉砕処理を行い、粉砕処理により得られた炭化物を、さらに昇温し、1100℃到達後18時間の炭化処理を行い、二次電池用負極活物質を得た。得られた負極活物質の0.25〜0.45nmの細孔容積は、0.85cm/gであり、全細孔容積に対して25容積%であった。また、得られた負極活物質のSEM観察を行ったところ、繊維直径が35nmのナノファイバー等がケイ素含有粒子と、該ケイ素含有粒子を包囲する樹脂炭素材とからなる複合粒子の表面から発生し、これらの粒子を包囲していることが確認された。また、実施例1と同様に、SEMで観察されたナノファイバー等の2箇所をエネルギー分散型X線分析装置(EDX)を用いて元素分析を行なったところ、炭素、酸素及びケイ素のピークが確認された。さらに、得られた負極活物質には一酸化ケイ素が36.2質量%含有されていた。
<Example 8>
135 parts by weight of a novolak type phenolic resin (PR-50237 manufactured by Sumitomo Bakelite Co., Ltd.) and 25 parts by weight of hexamethylenetetramine (manufactured by Mitsubishi Gas Chemical Co., Inc.) are dissolved in a four-necked flask to which 20 parts by weight of methanol is added. 40 parts by mass of silicon monoxide (average particle size: 1.2 μm) was added and stirred for 2 hours. After stirring, the resulting slurry was cured at 175 ° C. for 3 hours. After the curing treatment, the temperature was raised in a nitrogen atmosphere, and carbonization was performed for 1 hour after reaching 650 ° C. The obtained carbide is pulverized until the average particle size becomes 9 μm, and the carbide obtained by the pulverization is further heated, and after reaching 1100 ° C., carbonization is performed for 18 hours to obtain a negative electrode active for secondary battery. Obtained material. The obtained negative electrode active material had a pore volume of 0.25 to 0.45 nm of 0.85 cm 3 / g and 25 volume% with respect to the total pore volume. Further, when SEM observation of the obtained negative electrode active material was performed, nanofibers having a fiber diameter of 35 nm were generated from the surface of composite particles composed of silicon-containing particles and a resin carbon material surrounding the silicon-containing particles. It was confirmed that these particles were surrounded. Further, as in Example 1, when elemental analysis was performed using an energy dispersive X-ray analyzer (EDX) at two locations such as nanofibers observed by SEM, peaks of carbon, oxygen and silicon were confirmed. It was done. Furthermore, the obtained negative electrode active material contained 36.2% by mass of silicon monoxide.

次いで、負極活物質100質量部に対して結着剤としてヒドロキシプロピルメチルセルロース(シグマアルドリッチ製、2質量%水溶液)を固形分で4質量部となるよう配合し、さらにアセチレンブラック3質量部を加えて混合し、負極合剤、リチウムイオン二次電池負極を得た。さらに、実施例1と同様にして、リチウムイオン二次電池を作製して、充放電特性を評価した。   Next, hydroxypropylmethylcellulose (manufactured by Sigma-Aldrich, 2% by weight aqueous solution) is blended as a binder to 100 parts by weight of the negative electrode active material so that the solid content is 4 parts by weight, and further 3 parts by weight of acetylene black is added. The mixture was mixed to obtain a negative electrode mixture and a lithium ion secondary battery negative electrode. Further, in the same manner as in Example 1, a lithium ion secondary battery was produced, and charge / discharge characteristics were evaluated.

<実施例9>
レゾール型フェノール樹脂(住友ベークライト株式会社製PR−51723)100質量部を30質量部のアセトンを加えた4つ口フラスコに溶解させ、さらに一酸化ケイ素45質量部(平均粒子径1.3μm)を加え3時間攪拌を行った。攪拌終了後、得られたスラリーを200℃にて3時間硬化処理を行った。硬化処理後、窒素雰囲気下にて昇温し、450℃到達後3時間の炭化を行った。得られた炭化物を平均粒子径が10μmになるまで粉砕処理を行い、粉砕処理により得られた炭化物を、さらに昇温し、1050℃到達後3時間の炭化処理を行い、二次電池用負極活物質を得た。得られた負極活物質の0.25〜0.45nmの細孔容積は、0.0003cm/gであり、全細孔容積に対して30容積%であった。また、得られた負極活物質のSEM観察を行ったところ、繊維直径が50nmのナノファイバー等がケイ素含有粒子と、該ケイ素含有粒子を包囲する樹脂炭素材とからなる複合粒子の表面から発生し、これらの粒子を包囲していることが確認された。また、実施例1と同様に、SEMで観察されたナノファイバー等の2箇所をエネルギー分散型X線分析装置(EDX)を用いて元素分析を行なったところ、炭素、酸素及びケイ素のピークが確認された。さらに、得られた負極活物質には一酸化ケイ素が34.1質量%含有されていた。
<Example 9>
100 parts by mass of a resol type phenolic resin (PR-51723, manufactured by Sumitomo Bakelite Co., Ltd.) was dissolved in a four-necked flask to which 30 parts by mass of acetone was added, and 45 parts by mass of silicon monoxide (average particle size 1.3 μm) was further added. The mixture was further stirred for 3 hours. After stirring, the resulting slurry was cured at 200 ° C. for 3 hours. After the curing treatment, the temperature was raised in a nitrogen atmosphere, and carbonization was performed for 3 hours after reaching 450 ° C. The obtained carbide is pulverized until the average particle size becomes 10 μm, the temperature of the carbide obtained by the pulverization is further increased, and carbonization is performed for 3 hours after reaching 1050 ° C. Obtained material. The obtained negative electrode active material had a pore volume of 0.25 to 0.45 nm of 0.0003 cm 3 / g, and was 30% by volume with respect to the total pore volume. Further, when SEM observation of the obtained negative electrode active material was performed, nanofibers having a fiber diameter of 50 nm were generated from the surface of composite particles composed of silicon-containing particles and a resin carbon material surrounding the silicon-containing particles. It was confirmed that these particles were surrounded. Further, as in Example 1, when elemental analysis was performed using an energy dispersive X-ray analyzer (EDX) at two locations such as nanofibers observed by SEM, peaks of carbon, oxygen and silicon were confirmed. It was done. Furthermore, the obtained negative electrode active material contained 34.1% by mass of silicon monoxide.

次いで、負極活物質100質量部に対して結着剤としてヒドロキシプロピルメチルセルロース(シグマアルドリッチ製、2質量%水溶液)を固形分で4質量部となるよう配合し、さらにアセチレンブラック3質量部を加えて混合し、負極合剤、リチウムイオン二次電池負極を得た。さらに、実施例1と同様にして、リチウムイオン二次電池を作製して、充放電特性を評価した。   Next, hydroxypropylmethylcellulose (manufactured by Sigma-Aldrich, 2% by weight aqueous solution) is blended as a binder to 100 parts by weight of the negative electrode active material so that the solid content is 4 parts by weight, and further 3 parts by weight of acetylene black is added. The mixture was mixed to obtain a negative electrode mixture and a lithium ion secondary battery negative electrode. Further, in the same manner as in Example 1, a lithium ion secondary battery was produced, and charge / discharge characteristics were evaluated.


<比較例1> 実施例1で作製した負極活物質100質量部に対して結着剤としてポリフッ化ビニリデン樹脂10質量部、アセチレンブラック3質量部の割合で、それぞれ配合し、さらに、希釈溶媒としてN−メチル−2−ピロリドン120質量部を加え混合し、負極合剤、リチウムイオン二次電池負極を得た。さらに、実施例1と同様にして、リチウムイオン二次電池を作製して、充放電特性を評価した。

<Comparative example 1> It mix | blends in the ratio of 10 mass parts of polyvinylidene fluoride resin as a binder with respect to 100 mass parts of negative electrode active materials produced in Example 1, and 3 mass parts of acetylene black, respectively, Furthermore, as a dilution solvent 120 parts by mass of N-methyl-2-pyrrolidone was added and mixed to obtain a negative electrode mixture and a negative electrode for a lithium ion secondary battery. Further, in the same manner as in Example 1, a lithium ion secondary battery was produced, and charge / discharge characteristics were evaluated.

<比較例2>
実施例5で作製した負極活物質100質量部に対して結着剤としてポリフッ化ビニリデン樹脂10質量部、アセチレンブラック3質量部の割合で、それぞれ配合し、さらに、希釈溶媒としてN−メチル−2−ピロリドン120質量部を加え混合し、負極合剤、リチウムイオン二次電池負極を得た。さらに、実施例1と同様にして、リチウムイオン二次電池を作製して、充放電特性を評価した。
<Comparative Example 2>
100 parts by mass of the negative electrode active material produced in Example 5 were blended in a proportion of 10 parts by mass of polyvinylidene fluoride resin as a binder and 3 parts by mass of acetylene black, respectively, and further N-methyl-2 as a diluent solvent -Pyrrolidone 120 mass part was added and mixed, and the negative electrode mixture and the lithium ion secondary battery negative electrode were obtained. Further, in the same manner as in Example 1, a lithium ion secondary battery was produced, and charge / discharge characteristics were evaluated.


<比較例3> ノボラック型フェノール樹脂(住友ベークライト株式会社製PR−50237)135質量部およびヘキサメチレンテトラミン(三菱瓦斯化学株式会社製)25質量部を20質量部のメタノールを加えた4つ口フラスコに溶解させ、さらにケイ素20質量部(平均粒子径54μm)を加え2時間攪拌を行った。攪拌終了後、得られたスラリーを200℃にて3時間硬化処理を行い、炭化処理条件を、1000℃到達後10時間の炭化処理を行う以外は、実施例1と同様の方法により負極活物質を得た。得られた負極活物質の平均粒子径は8μmに調整した。得られた負極活物質について、実施例1と同様にして評価のところ、0.25〜0.45nmの細孔容積は、0.65cm/gであり、全細孔容積に対して20容積%であった。得られた負極活物質のSEM観察を行ったところ、複合粒子の表面には網状構造体は確認されなかった。また、得られた負極活物質にはケイ素が23.1質量%含有されていた。

Comparative Example 3 A four-necked flask in which 135 parts by mass of a novolak-type phenolic resin (PR-50237 manufactured by Sumitomo Bakelite Co., Ltd.) and 25 parts by mass of hexamethylenetetramine (manufactured by Mitsubishi Gas Chemical Co., Inc.) were added with 20 parts by mass of methanol. In addition, 20 parts by mass of silicon (average particle size of 54 μm) was added and stirred for 2 hours. After completion of the stirring, the obtained slurry was cured at 200 ° C. for 3 hours, and the negative electrode active material was obtained in the same manner as in Example 1 except that carbonization was performed for 10 hours after reaching 1000 ° C. Got. The average particle diameter of the obtained negative electrode active material was adjusted to 8 μm. The obtained negative electrode active material was evaluated in the same manner as in Example 1. As a result, the pore volume of 0.25 to 0.45 nm was 0.65 cm 3 / g, and 20 volumes with respect to the total pore volume. %Met. When SEM observation of the obtained negative electrode active material was performed, a network structure was not confirmed on the surface of the composite particles. The obtained negative electrode active material contained 23.1% by mass of silicon.

次いで、負極活物質100質量部に対して結着剤としてカルボキシメチルセルロース(ダイセル化学製:品番1160、エーテル化度0.6〜0.8)10質量部、アセチレンブラック3質量部の割合で、それぞれ配合し、さらに、希釈溶媒として水200質量部を加え混合し、負極合剤、リチウムイオン二次電池負極を得た。さらに、実施例1と同様にして、リチウムイオン二次電池を作製して、充放電特性を評価した。   Next, carboxymethyl cellulose (manufactured by Daicel Chemical Industries, product number: 1160, degree of etherification: 0.6 to 0.8) as a binder with respect to 100 parts by mass of the negative electrode active material, and at a ratio of 3 parts by mass of acetylene black, respectively. Further, 200 parts by mass of water was added as a diluent solvent and mixed to obtain a negative electrode mixture and a negative electrode for a lithium ion secondary battery. Further, in the same manner as in Example 1, a lithium ion secondary battery was produced, and charge / discharge characteristics were evaluated.

<比較例4>
ノボラック型フェノール樹脂(住友ベークライト株式会社製PR−50237)135質量部およびヘキサメチレンテトラミン(三菱瓦斯化学株式会社製)25質量部を30質量部のメタノールを加えた4つ口フラスコに溶解させ、さらにケイ素40質量部(平均粒子径25μm)を加え3時間攪拌を行った。攪拌終了後、得られたスラリーを200℃にて3時間硬化処理を行い、炭化処理条件を、900℃到達後5時間の炭化処理を行う以外は、実施例1と同様の方法により負極活物質を得た。得られた負極活物質の平均粒子径は10μmに調整した。得られた負極活物質について、実施例1と同様にして評価のところ、0.25〜0.45nmの細孔容積は、1.25cm/gであり、全細孔容積に対して25容積%であった。得られた負極活物質のSEM観察を行ったところ、複合粒子の表面には網状構造体は確認されなかった。また、得られた負極活物質にはケイ素が32.3質量%含有されていた。
<Comparative example 4>
135 parts by weight of a novolac type phenolic resin (PR-50237 manufactured by Sumitomo Bakelite Co., Ltd.) and 25 parts by weight of hexamethylenetetramine (manufactured by Mitsubishi Gas Chemical Co., Inc.) are dissolved in a four-necked flask to which 30 parts by weight of methanol is added. 40 parts by mass of silicon (average particle size: 25 μm) was added and stirred for 3 hours. After completion of the stirring, the obtained slurry was cured at 200 ° C. for 3 hours, and the negative electrode active material was obtained in the same manner as in Example 1 except that carbonization was performed for 5 hours after reaching 900 ° C. Got. The average particle diameter of the obtained negative electrode active material was adjusted to 10 μm. When the obtained negative electrode active material was evaluated in the same manner as in Example 1, the pore volume of 0.25 to 0.45 nm was 1.25 cm 3 / g, and 25 volumes with respect to the total pore volume. %Met. When SEM observation of the obtained negative electrode active material was performed, a network structure was not confirmed on the surface of the composite particles. Moreover, the obtained negative electrode active material contained 32.3 mass% of silicon.

次いで、負極活物質100質量部に対して結着剤としてカルボキシメチルセルロース(ダイセル化学製:品番1160、エーテル化度0.6〜0.8)10質量部、アセチレンブラック3質量部の割合で、それぞれ配合し、さらに、希釈溶媒として水200質量部を加え混合し、負極合剤、リチウムイオン二次電池負極を得た。さらに、実施例1と同様にして、リチウムイオン二次電池を作製して、充放電特性を評価した。   Next, carboxymethyl cellulose (manufactured by Daicel Chemical Industries, product number: 1160, degree of etherification: 0.6 to 0.8) as a binder with respect to 100 parts by mass of the negative electrode active material, and at a ratio of 3 parts by mass of acetylene black, respectively. Further, 200 parts by mass of water was added as a diluent solvent and mixed to obtain a negative electrode mixture and a negative electrode for a lithium ion secondary battery. Further, in the same manner as in Example 1, a lithium ion secondary battery was produced, and charge / discharge characteristics were evaluated.

上記各実施例、比較例について、負極活物質の評価結果を表1に、電池特性の評価結果を表2に示す。   Table 1 shows the evaluation results of the negative electrode active material and Table 2 shows the evaluation results of the battery characteristics for each of the above Examples and Comparative Examples.

表1、表2から明らかなように、実施例1〜9のリチウムイオン二次電池は、300サイクル後の放電容量維持率が80%以上あり、比較例1、2、3、4と比べ、充放電サイクル特性が顕著に向上した。これは、実施例ではナノファイバー等が本発明のケイ素含有粒子と、該ケイ素含有粒子を包囲する樹脂炭素材とからなる複合粒子の表面から発生し、これらの粒子を包囲て隣接する別の粒子に起因する網状構造体と交絡し、さらに本発明の結着剤(B)を用いることにより、本発明の複合粒子同士の密着性を向上させる効果のみならず、ナノファイバー等と複合粒子、あるいはナノファイバー同士の密着性が向上し、さらには網状構造体同士の交絡部分を補強する効果を奏するため、炭素材(A)と結着剤(B)との相乗効果により、サイクル特性が著しく向上したものである。比較例1および比較例2では、本発明の負極活物質(A)を使用しているものの、本発明の結着剤を使用していないため、負極活物質との相乗効果がなく、サイクル特性に劣る。また比較例3および比較例4では、負極活物質(A)の粒子を包囲するナノファイバー等が存在しないため、充放電サイクルによる負極活物質の膨張収縮に伴う微粉化が進行し、実質的に電極が崩壊した。特に、実施例1〜6は、0.25〜0.45nmの細孔径を有する細孔の容積が0.0005〜1.0cm/gであり、かつ、その容積が、樹脂炭素材が有する全細孔容積に対して30容積%以上であることにより、いずれも300サイクル後の放電容量維持率が85%以上を記録した。 As is clear from Tables 1 and 2, the lithium ion secondary batteries of Examples 1 to 9 have a discharge capacity maintenance rate of 80% or more after 300 cycles, compared with Comparative Examples 1, 2, 3, and 4, The charge / discharge cycle characteristics were remarkably improved. This is because, in the examples, nanofibers or the like are generated from the surface of the composite particles composed of the silicon-containing particles of the present invention and the resin carbon material surrounding the silicon-containing particles, and other particles surrounding and adjoining these particles. In addition to the effect of improving the adhesion between the composite particles of the present invention by using the binder (B) of the present invention by entanglement with the network structure resulting from the above, the nanofibers and the composite particles, or Cycle characteristics are remarkably improved by the synergistic effect of the carbon material (A) and the binder (B) in order to improve the adhesion between the nanofibers and to reinforce the entangled part between the network structures. It is what. In Comparative Example 1 and Comparative Example 2, although the negative electrode active material (A) of the present invention is used, since the binder of the present invention is not used, there is no synergistic effect with the negative electrode active material, and cycle characteristics Inferior to In Comparative Example 3 and Comparative Example 4, there is no nanofiber or the like surrounding the particles of the negative electrode active material (A), so that the pulverization accompanying the expansion and contraction of the negative electrode active material due to the charge / discharge cycle proceeds substantially. The electrode collapsed. In particular, in Examples 1 to 6, the volume of the pores having a pore diameter of 0.25 to 0.45 nm is 0.0005 to 1.0 cm 2 / g, and the volume of the resin carbon material has In each case, the discharge capacity retention rate after 300 cycles was recorded as 85% or more by being 30% by volume or more with respect to the total pore volume.

Claims (13)

負極活物質(A)と、結着材(B)とを含むリチウム二次電池負極合剤であって、前記負極活物質(A)は、リチウムイオンの吸蔵・放出が可能なケイ素の合金、酸化物、窒化物または炭化物を含むケイ素含有粒子と、該ケイ素含有粒子を包囲する樹脂炭素材とからなる複合粒子、ならびに該複合粒子の表面に結合し、かつ、該複合粒子を包囲するナノファイバーおよび/またはナノチューブからなるケイ素含有網状構造体を含むものであり、前記結着材(B)は、アルコキシ基結合型セルロース、ヒドロキシアルキル基結合型セルロースまたはカルボキシアルキル基結合型セルロースを含むものであることを特徴とするリチウム二次電池負極合剤。   A lithium secondary battery negative electrode mixture comprising a negative electrode active material (A) and a binder (B), wherein the negative electrode active material (A) is a silicon alloy capable of occluding and releasing lithium ions, Composite particles comprising silicon-containing particles containing oxides, nitrides or carbides, and resin carbon material surrounding the silicon-containing particles, and nanofibers bonded to the surface of the composite particles and surrounding the composite particles And / or a silicon-containing network structure composed of nanotubes, and the binder (B) contains an alkoxy group-bonded cellulose, a hydroxyalkyl group-bonded cellulose, or a carboxyalkyl group-bonded cellulose. A lithium secondary battery negative electrode mixture. 前記結着材(B)を、前記負極活物質(A)100質量部に対し、4〜20質量部用いることを特徴とする請求項1記載のリチウム二次電池負極合剤。   The lithium secondary battery negative electrode mixture according to claim 1, wherein 4 to 20 parts by mass of the binder (B) is used with respect to 100 parts by mass of the negative electrode active material (A). 前記結着材(B)が、エーテル化度が0.6〜1.5であるカルボキシメチルセルロースを含むことを特徴とする請求項1または請求項2記載のリチウム二次電池負極合剤。   The lithium secondary battery negative electrode mixture according to claim 1 or 2, wherein the binder (B) contains carboxymethyl cellulose having an etherification degree of 0.6 to 1.5. 前記樹脂炭素材が細孔を有し、かつ、窒素ガス吸着法を用いたマイクロポア法により算出される0.25〜0.45nmの細孔径を有する該細孔の容積が0.0001〜1.5cm/gである、請求項1〜3のいずれか1項に記載のリチウム二次電池負極合剤。 The resin carbon material has pores, and the pore volume having a pore diameter of 0.25 to 0.45 nm calculated by a micropore method using a nitrogen gas adsorption method is 0.0001 to 1 The lithium secondary battery negative electrode mixture according to claim 1, which is 0.5 cm 2 / g. 前記0.25〜0.45nmの細孔径を有する該細孔の容積が0.0005〜1.0cm/gである、請求項1〜4のいずれか1項に記載のリチウム二次電池負極合剤。 The lithium secondary battery negative electrode according to any one of claims 1 to 4, wherein a volume of the pores having a pore diameter of 0.25 to 0.45 nm is 0.0005 to 1.0 cm 2 / g. Mixture. 前記樹脂炭素材が細孔を有し、かつ、窒素ガス吸着法を用いたマイクロポア法により算出される0.25〜0.45nmの細孔径を有する該細孔の容積が、前記樹脂炭素材が有する全細孔容積に対して25容積%以上である、請求項1〜5のいずれか1項に記載のリチウム二次電池負極合剤。   The resin carbon material has pores, and the volume of the pores having a pore diameter of 0.25 to 0.45 nm calculated by a micropore method using a nitrogen gas adsorption method is the resin carbon material. The lithium secondary battery negative electrode mixture according to any one of claims 1 to 5, which is 25% by volume or more based on the total pore volume of the lithium secondary battery. 前記0.25〜0.45nmの細孔径を有する該細孔の容積が、前記樹脂炭素材が有する全細孔容積に対して30容積%以上である、請求項1〜6のいずれか1項に記載のリチウム二次電池負極合剤。   The volume of the pores having a pore diameter of 0.25 to 0.45 nm is 30% by volume or more based on the total pore volume of the resin carbon material. The lithium secondary battery negative electrode mixture as described in 1. 前記網状構造体が更に炭素を含む、請求項1〜7のいずれか1項に記載のリチウム二次電池負極合剤。   The lithium secondary battery negative electrode mixture according to any one of claims 1 to 7, wherein the network structure further contains carbon. 前記ケイ素含有粒子がケイ素酸化物を含む、請求項1〜8のいずれか1項に記載のリチウム二次電池負極合剤。   The lithium secondary battery negative electrode mixture according to any one of claims 1 to 8, wherein the silicon-containing particles contain silicon oxide. 前記負極活物質(A)において、ケイ素の合金、酸化物、窒化物または炭化物の含有量が5〜60質量%の範囲内である、請求項1〜9のいずれか1項に記載のリチウム二次電池負極合剤。   In the said negative electrode active material (A), content of a silicon alloy, an oxide, a nitride, or a carbide | carbonized_material is in the range of 5-60 mass%, Lithium 2 of any one of Claims 1-9. Secondary battery negative electrode mixture. 前記負極活物質(A)の平均粒子径が3μm〜15μmの範囲内である、請求項1〜10のいずれか1項に記載のリチウム二次電池負極合剤。   11. The lithium secondary battery negative electrode mixture according to claim 1, wherein an average particle diameter of the negative electrode active material (A) is in a range of 3 μm to 15 μm. 請求項1〜11のいずれか1項に記載のリチウム二次電池負極合剤を含むリチウム二次電池負極。   The lithium secondary battery negative electrode containing the lithium secondary battery negative electrode mixture of any one of Claims 1-11. 請求項12に記載のリチウム二次電池負極を含むリチウム二次電池。   The lithium secondary battery containing the lithium secondary battery negative electrode of Claim 12.
JP2009224188A 2009-09-29 2009-09-29 Lithium secondary battery negative electrode mixture, lithium secondary battery negative electrode and lithium secondary battery Expired - Fee Related JP5593665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009224188A JP5593665B2 (en) 2009-09-29 2009-09-29 Lithium secondary battery negative electrode mixture, lithium secondary battery negative electrode and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009224188A JP5593665B2 (en) 2009-09-29 2009-09-29 Lithium secondary battery negative electrode mixture, lithium secondary battery negative electrode and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2011076744A true JP2011076744A (en) 2011-04-14
JP5593665B2 JP5593665B2 (en) 2014-09-24

Family

ID=44020555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009224188A Expired - Fee Related JP5593665B2 (en) 2009-09-29 2009-09-29 Lithium secondary battery negative electrode mixture, lithium secondary battery negative electrode and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP5593665B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146300A1 (en) * 2012-03-30 2013-10-03 戸田工業株式会社 Negative electrode active material particle powder for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery
JP2014082139A (en) * 2012-10-18 2014-05-08 Hitachi Maxell Ltd Method for manufacturing negative electrode mixture-containing composition, lithium secondary battery negative electrode, lithium secondary battery, and material for negative electrode mixture-containing composition
JP2014191865A (en) * 2013-03-26 2014-10-06 Toshiba Corp Negative electrode, nonaqueous electrolyte battery, and battery pack
JP2016062706A (en) * 2014-09-17 2016-04-25 積水化学工業株式会社 Method for manufacturing negative electrode for lithium ion secondary battery, and method for manufacturing lithium ion secondary battery
JP2016066508A (en) * 2014-09-25 2016-04-28 信越化学工業株式会社 Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2016066529A (en) * 2014-09-25 2016-04-28 信越化学工業株式会社 Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2016125819A1 (en) * 2015-02-06 2016-08-11 東ソー株式会社 Composite active material for lithium secondary cell and method for manufacturing same
JP2016149340A (en) * 2015-02-06 2016-08-18 東ソー株式会社 Composite active material for lithium secondary battery, manufacturing method for the same and lithium secondary battery
WO2016136178A1 (en) * 2015-02-25 2016-09-01 三洋電機株式会社 Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
EP3104434A4 (en) * 2014-02-04 2017-08-16 Mitsui Chemicals, Inc. Negative electrode for lithium ion secondary cell, lithium-ion secondary cell, mixture paste for negative electrode for lithium-ion secondary cell, and method for manufacturing negative electrode for lithium-ion secondary cell
JP2018502420A (en) * 2014-11-18 2018-01-25 ウニヴェルジテート・パーダーボルン Method for producing electrode material for battery electrode
CN111742437A (en) * 2018-02-27 2020-10-02 松下知识产权经营株式会社 Nonaqueous electrolyte secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002237305A (en) * 2001-02-09 2002-08-23 Yuasa Corp Nonaqueous electrolytic battery
JP2006086010A (en) * 2004-09-16 2006-03-30 Nec Corp Carbon material for non-aqueous electrolyte secondary battery negative electrode material, and secondary battery negative electrode material using this, and non-aqueous electrolyte secondary battery
JP2006339092A (en) * 2005-06-06 2006-12-14 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and its negative electrode
WO2007094240A1 (en) * 2006-02-17 2007-08-23 Matsushita Electric Industrial Co., Ltd. Electroconductive composite particles, process for producing the electroconductive composite particles, and electrode plate and lithium ion rechargeable battery using the electroconductive composite particles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002237305A (en) * 2001-02-09 2002-08-23 Yuasa Corp Nonaqueous electrolytic battery
JP2006086010A (en) * 2004-09-16 2006-03-30 Nec Corp Carbon material for non-aqueous electrolyte secondary battery negative electrode material, and secondary battery negative electrode material using this, and non-aqueous electrolyte secondary battery
JP2006339092A (en) * 2005-06-06 2006-12-14 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and its negative electrode
WO2007094240A1 (en) * 2006-02-17 2007-08-23 Matsushita Electric Industrial Co., Ltd. Electroconductive composite particles, process for producing the electroconductive composite particles, and electrode plate and lithium ion rechargeable battery using the electroconductive composite particles

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013146300A1 (en) * 2012-03-30 2015-12-10 戸田工業株式会社 Negative electrode active material particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
WO2013146300A1 (en) * 2012-03-30 2013-10-03 戸田工業株式会社 Negative electrode active material particle powder for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery
JP2014082139A (en) * 2012-10-18 2014-05-08 Hitachi Maxell Ltd Method for manufacturing negative electrode mixture-containing composition, lithium secondary battery negative electrode, lithium secondary battery, and material for negative electrode mixture-containing composition
JP2014191865A (en) * 2013-03-26 2014-10-06 Toshiba Corp Negative electrode, nonaqueous electrolyte battery, and battery pack
EP3104434A4 (en) * 2014-02-04 2017-08-16 Mitsui Chemicals, Inc. Negative electrode for lithium ion secondary cell, lithium-ion secondary cell, mixture paste for negative electrode for lithium-ion secondary cell, and method for manufacturing negative electrode for lithium-ion secondary cell
JP2016062706A (en) * 2014-09-17 2016-04-25 積水化学工業株式会社 Method for manufacturing negative electrode for lithium ion secondary battery, and method for manufacturing lithium ion secondary battery
JP2016066508A (en) * 2014-09-25 2016-04-28 信越化学工業株式会社 Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2016066529A (en) * 2014-09-25 2016-04-28 信越化学工業株式会社 Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US11165056B2 (en) 2014-11-18 2021-11-02 Universität Paderborn Method of producing an electrode material for a battery electrode
JP2018502420A (en) * 2014-11-18 2018-01-25 ウニヴェルジテート・パーダーボルン Method for producing electrode material for battery electrode
JP2016149340A (en) * 2015-02-06 2016-08-18 東ソー株式会社 Composite active material for lithium secondary battery, manufacturing method for the same and lithium secondary battery
WO2016125819A1 (en) * 2015-02-06 2016-08-11 東ソー株式会社 Composite active material for lithium secondary cell and method for manufacturing same
CN107112499A (en) * 2015-02-25 2017-08-29 三洋电机株式会社 Anode for nonaqueous electrolyte secondary battery and rechargeable nonaqueous electrolytic battery
JPWO2016136178A1 (en) * 2015-02-25 2017-11-30 三洋電機株式会社 Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2016136178A1 (en) * 2015-02-25 2016-09-01 三洋電機株式会社 Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US10490812B2 (en) 2015-02-25 2019-11-26 Sanyo Electric Co., Ltd. Negative electrode including SiOx particles having carbon coating, carbonaceous active material particles, and compound having carboxyl or hydroxyl group and nonaqueous electrolyte secondary batteries
JP2020174057A (en) * 2015-02-25 2020-10-22 三洋電機株式会社 Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
CN107112499B (en) * 2015-02-25 2021-02-26 三洋电机株式会社 Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
CN111742437A (en) * 2018-02-27 2020-10-02 松下知识产权经营株式会社 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP5593665B2 (en) 2014-09-24

Similar Documents

Publication Publication Date Title
JP5482660B2 (en) Carbon material for lithium secondary battery negative electrode, lithium secondary battery negative electrode, lithium secondary battery, and method for producing carbon material for lithium secondary battery negative electrode
JP5593665B2 (en) Lithium secondary battery negative electrode mixture, lithium secondary battery negative electrode and lithium secondary battery
JP5593663B2 (en) Lithium secondary battery negative electrode mixture, lithium secondary battery negative electrode and lithium secondary battery
KR101513520B1 (en) Electrode for lithium battery, and lithium battery
JP5716093B2 (en) Positive electrode active material for lithium ion capacitor and method for producing the same
WO2009133807A1 (en) Carbon material for negative electrode of lithium secondary battery, method for producing the same, negative electrode of lithium secondary battery and lithium secondary battery
JP5593664B2 (en) Lithium secondary battery negative electrode mixture, lithium secondary battery negative electrode and lithium secondary battery
JP6450309B2 (en) Anode material for lithium ion secondary battery
JP6747294B2 (en) Negative electrode active material for lithium-ion secondary battery, method for producing the same, negative electrode, and lithium-ion secondary battery
JP2013510405A (en) High capacity anode materials for lithium ion batteries
JP2011253620A (en) Negative electrode active material, its manufacturing method, and lithium ion secondary battery using negative electrode active material
JP6543255B2 (en) Negative electrode material for lithium ion secondary battery and method of manufacturing the same
CN115667136B (en) Composite carbon particles and uses thereof
JP5573149B2 (en) Carbon material for negative electrode of lithium secondary battery, negative electrode of lithium secondary battery and lithium secondary battery
JP5655396B2 (en) Carbon material for negative electrode of lithium secondary battery, negative electrode mixture for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery
JP5499636B2 (en) Carbon material for negative electrode of lithium secondary battery, negative electrode of lithium secondary battery and lithium secondary battery
JP5540631B2 (en) Lithium secondary battery negative electrode mixture, lithium secondary battery negative electrode and lithium secondary battery
JP5482094B2 (en) Carbon material for lithium secondary battery negative electrode, lithium secondary battery negative electrode, lithium secondary battery, and method for producing carbon material for lithium secondary battery negative electrode
JP5440488B2 (en) Carbon material for secondary battery
JP5708198B2 (en) Carbon material for secondary battery and manufacturing method thereof
Suzanowicz et al. Approaches to Combat the Polysulfide Shuttle Phenomenon in Li–S Battery Technology. Batteries 2022, 8, 45
JP2015122316A (en) Carbonaceous material for secondary battery and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140721

R150 Certificate of patent or registration of utility model

Ref document number: 5593665

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees