JP5653372B2 - Electromagnetic shield door - Google Patents

Electromagnetic shield door Download PDF

Info

Publication number
JP5653372B2
JP5653372B2 JP2012011660A JP2012011660A JP5653372B2 JP 5653372 B2 JP5653372 B2 JP 5653372B2 JP 2012011660 A JP2012011660 A JP 2012011660A JP 2012011660 A JP2012011660 A JP 2012011660A JP 5653372 B2 JP5653372 B2 JP 5653372B2
Authority
JP
Japan
Prior art keywords
electromagnetic wave
door
wave absorbing
component
absorbing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012011660A
Other languages
Japanese (ja)
Other versions
JP2012169604A (en
Inventor
村田 雄一郎
雄一郎 村田
良彦 室永
良彦 室永
祐輔 白川
祐輔 白川
貴志 金本
貴志 金本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012011660A priority Critical patent/JP5653372B2/en
Publication of JP2012169604A publication Critical patent/JP2012169604A/en
Application granted granted Critical
Publication of JP5653372B2 publication Critical patent/JP5653372B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

この発明は電磁波シールド扉に関し、特にシールド性能の向上を目的とした扉本体と扉枠体の構造に関するものである。   The present invention relates to an electromagnetic shielding door, and particularly to the structure of a door body and a door frame for the purpose of improving shielding performance.

電磁波シールド扉は、扉を閉めた状態で、建物の扉から漏れる電磁波をシールドする。扉本体と扉枠体の間の隙間から電磁波が侵入したり漏洩したりするのを防止するために、扉本体と扉枠体の間は導電接続されている。扉を閉めるときに必要となる加圧力を低減したり高周波でのシールド性能を向上させたりするために、電磁波吸収機構を導電接触部に併設した電磁波シールド扉も考案されている。   The electromagnetic shielding door shields electromagnetic waves leaking from the door of the building with the door closed. In order to prevent electromagnetic waves from entering or leaking from the gap between the door body and the door frame, the door body and the door frame are conductively connected. In order to reduce the pressing force required when closing the door or improve the shielding performance at high frequency, an electromagnetic wave shielding door having an electromagnetic wave absorbing mechanism in the conductive contact portion has also been devised.

一般に電磁波シールド扉では、電磁波の周波数が高くなると共にシールド性能が低下する。特に1GHz以上の周波数では、シールド性能が急激に低下する。導電接触部の接触抵抗をできるだけ小さくするため、扉本体と扉枠体の隙間全体に導電接触部を設けると共に扉を閉じる時の加圧力を大きくすることが行なわれている。このような扉では、大きな加圧力を得るために、ロック機構が必要になったり、扉の開閉力が大きくなったりして、扉開閉時の操作性が低下する。   In general, in an electromagnetic shielding door, the frequency of electromagnetic waves increases and the shielding performance decreases. In particular, at a frequency of 1 GHz or more, the shielding performance is drastically lowered. In order to reduce the contact resistance of the conductive contact portion as much as possible, the conductive contact portion is provided in the entire gap between the door main body and the door frame body, and the pressure applied when closing the door is increased. In such a door, in order to obtain a large pressurizing force, a lock mechanism is required, or the opening / closing force of the door is increased, and the operability at the time of opening / closing the door is lowered.

この点を解決するために、特許文献1では、導電接触部に電磁波吸収機構を併設している。シールド性能は向上しているが、電磁波吸収機構として用いられる電磁波吸収材料による電磁波の減衰量は少ないため、十分なシールド量を得るには吸収材料を長くする必要がある。この文献に開示される構造では吸収材料を扉の厚み方向に設置することができないので、電磁波吸収機構は扉面と室内の壁との間に設置する必要がある。こうすると扉面の大きさに比べて扉開口部の大きさが狭くなる。   In order to solve this problem, in Patent Document 1, an electromagnetic wave absorbing mechanism is provided in the conductive contact portion. Although the shielding performance is improved, the amount of attenuation of the electromagnetic wave by the electromagnetic wave absorbing material used as the electromagnetic wave absorbing mechanism is small. Therefore, in order to obtain a sufficient shielding amount, it is necessary to lengthen the absorbing material. In the structure disclosed in this document, the absorbing material cannot be installed in the thickness direction of the door. Therefore, the electromagnetic wave absorbing mechanism needs to be installed between the door surface and the indoor wall. This reduces the size of the door opening compared to the size of the door surface.

特許文献2では、電磁波シールド窓に対して、2つの電磁波遮蔽物と、その間の空間の側面に設けられた電磁波吸収材料の作用による多重反射を利用してシールド性能を向上させている。電磁波シールド窓には開閉機構が無く、広い透光面から侵入する電磁波をシールドする。この方法は、開閉機構を有する扉構造や扉本体と扉枠体の狭い隙間にはそのまま適用できない。   In Patent Document 2, shielding performance is improved by using multiple reflections by the action of two electromagnetic wave shielding objects and an electromagnetic wave absorbing material provided on the side surface of the space between the electromagnetic wave shielding windows. The electromagnetic shielding window has no opening / closing mechanism, and shields electromagnetic waves entering from a wide light-transmitting surface. This method cannot be applied as it is to a door structure having an opening / closing mechanism or a narrow gap between a door body and a door frame.

特許文献3では、2箇所に導電接触部を設けてシールド性能を向上させている。この場合、電磁波吸収材料を用いていないので、電磁波の周波数が高くなるとシールド性能が低下する。また、2箇所に導電接触部を設けているため、扉を閉じる時の加圧力が大きくなる。   In patent document 3, the conductive contact part is provided in two places, and the shielding performance is improved. In this case, since the electromagnetic wave absorbing material is not used, the shielding performance decreases when the frequency of the electromagnetic wave increases. Moreover, since the conductive contact portions are provided at two locations, the pressure applied when closing the door is increased.

特開2002−111269号公報JP 2002-111269 A 特開2002−118391号公報JP 2002-118391 A 特開2008−034538号公報JP 2008-034538 A

この発明は、上記の課題を解決するためになされたものであり、電磁波シールド扉のシールド性能と操作性を向上することを目的とする。   This invention was made in order to solve said subject, and it aims at improving the shielding performance and operativity of an electromagnetic wave shield door.

この発明に係る電磁波シールド扉は、金属でシールドされている扉枠体と、金属でシールドされ扉枠体から片開きする扉本体とを備えている。扉枠体は、室内側側面部を囲む第1の弾性導電部材と、室外側側面部を囲む第1の金属部材と、側面部を囲み第1の弾性導電部材と第1の金属部材の間に配設されている第1の電磁波吸収部材とを有している。扉本体は、室内側側面部を囲み第1の弾性導電部材と接触する第2の金属部材と、室外側側面部を囲み第1の金属部材と接触する第2の弾性導電部材と、側面部を囲み第2の弾性導電部材と第2の金属部材の間に配設されている第2の電磁波吸収部材とを有している。第1の電磁波吸収部材は電磁波に対する吸収ピークの位置が異なる第1の構成部材と第2の構成部材から構成され、第2の電磁波吸収部材は電磁波に対する吸収ピークの位置が異なる第3の構成部材と第4の構成部材から構成されていて、第1の構成部材と第2の構成部材は扉枠体の側面部から扉枠体の内部側に向かう方向に積層され、第3の構成部材と第4の構成部材は扉本体の側面部から扉本体の内部側に向かう方向に積層されていて、第1の構成部材と第2の構成部材は電磁波の進行方向と平行に積層され、第3の構成部材と第4の構成部材は電磁波の進行方向と平行に積層されている。   An electromagnetic wave shielding door according to the present invention includes a door frame body shielded with metal and a door body which is shielded with metal and opens one side from the door frame body. The door frame includes a first elastic conductive member that surrounds the indoor side surface portion, a first metal member that surrounds the outdoor side surface portion, and a space between the first elastic conductive member and the first metal member that surrounds the side surface portion. And a first electromagnetic wave absorbing member disposed on the surface. The door body includes a second metal member that surrounds the indoor side surface portion and contacts the first elastic conductive member, a second elastic conductive member that surrounds the outdoor side surface portion and contacts the first metal member, and a side surface portion. And a second electromagnetic wave absorbing member disposed between the second elastic conductive member and the second metal member. The first electromagnetic wave absorbing member is composed of a first constituent member and a second constituent member having different absorption peak positions for electromagnetic waves, and the second electromagnetic wave absorbing member is a third constituent member having different absorption peak positions for electromagnetic waves. And the fourth component member, and the first component member and the second component member are laminated in a direction from the side surface portion of the door frame body toward the inside of the door frame body, and the third component member and The fourth component member is laminated in a direction from the side surface portion of the door main body toward the inside of the door main body, and the first component member and the second component member are laminated in parallel with the traveling direction of the electromagnetic wave. The fourth structural member and the fourth structural member are laminated in parallel with the traveling direction of the electromagnetic wave.

この発明に係る電磁波シールド扉は、電磁波の周波数が高くなっても、扉開閉時の操作性を維持しながら、良好なシールド性能を得ることができる。   The electromagnetic shielding door according to the present invention can obtain good shielding performance while maintaining the operability when the door is opened and closed even when the frequency of electromagnetic waves increases.

参考の形態1によるシールド扉の構成を示す断面図である。It is sectional drawing which shows the structure of the shield door by the reference form 1. 参考の形態1によるシールド扉の開状態を示す断面図である。It is sectional drawing which shows the open state of the shield door by the reference form 1. 参考の形態1によるシールド扉の詳細構成を示す断面図である。It is sectional drawing which shows the detailed structure of the shield door by the reference form 1. 導電接触部を有するシールド扉のシールド量を求める図である。It is a figure which calculates | requires the shielding amount of the shield door which has an electroconductive contact part. 電磁波吸収部材を有するシールド扉のシールド量を求める図である。It is a figure which calculates | requires the shielding amount of the shield door which has an electromagnetic wave absorption member. 隙間における電磁波の電界方向と磁界方向を示す断面図である。It is sectional drawing which shows the electric field direction and magnetic field direction of the electromagnetic waves in a clearance gap. シールド扉のシールド量と隙間の寸法関係を示す図である。It is a figure which shows the dimensional relationship of the shielding amount of a shield door, and a clearance gap. 参考の形態2によるシールド扉の構成を示す断面図である。It is sectional drawing which shows the structure of the shield door by the reference form 2. 参考の形態2によるシールド扉の開状態を示す断面図である。It is sectional drawing which shows the open state of the shield door by the reference form 2. 参考の形態3によるシールド扉の構成を示す断面図である。It is sectional drawing which shows the structure of the shield door by the reference form 3. 参考の形態3によるシールド扉の開状態を示す断面図である。It is sectional drawing which shows the open state of the shield door by the reference form 3. 参考の形態4によるシールド扉の構成を示す断面図である。It is sectional drawing which shows the structure of the shield door by the reference form 4. 参考の形態5によるシールド扉の構成を示す断面図である。It is sectional drawing which shows the structure of the shield door by the reference form 5. 実施の形態1によるシールド扉の構成を示す断面図である。 3 is a cross-sectional view showing a configuration of a shield door according to Embodiment 1. FIG. シールド扉に用いる電磁波吸収部材の電磁波吸収量の周波数特性を示す図である。It is a figure which shows the frequency characteristic of the electromagnetic wave absorption amount of the electromagnetic wave absorption member used for a shield door. シールド扉に用いる電磁波吸収部材の電磁波吸収量と電磁波吸収部材の厚みの関係を示す図である。It is a figure which shows the relationship between the electromagnetic wave absorption amount of the electromagnetic wave absorption member used for a shield door, and the thickness of an electromagnetic wave absorption member. 実施の形態2によるシールド扉の構成を示す断面図である。It is sectional drawing which shows the structure of the shield door by Embodiment 2. FIG. 実施の形態3によるシールド扉の構成を示す断面図である。It is sectional drawing which shows the structure of the shield door by Embodiment 3 . 参考の形態6によるシールド扉の構成を示す断面図である。It is sectional drawing which shows the structure of the shield door by the reference form 6 . 参考の形態7によるシールド扉の構成を示す断面図である。It is sectional drawing which shows the structure of the shield door by the reference form 7 . 参考の形態7によるシールド扉の別の構成を示す断面図である。It is sectional drawing which shows another structure of the shield door by the reference form 7 . 参考の形態8によるシールド扉の構成を示す断面図である。It is sectional drawing which shows the structure of the shield door by the reference form 8 . 参考の形態9によるシールド扉の構成を示す断面図である。It is sectional drawing which shows the structure of the shield door by the reference form 9 . 参考の形態10によるシールド扉の電磁波吸収部材の配置を示す図である。It is a figure which shows arrangement | positioning of the electromagnetic wave absorption member of the shield door by the reference form 10. FIG.

参考の形態1.
図1はこの発明の参考の形態1によるシールド扉の構成を示す断面図である。シールド扉100は、金属板5でシールドされている扉枠体2と、金属板6でシールドされ扉枠体2に取り付けられている扉本体1とから構成される。丁番20は、室外側から見て扉本体1の右側端部に取り付けられている。丁番20によって扉本体1は扉枠体2から片開きする。扉本体1の厚さは40mmから70mm程度である。
Reference form 1.
1 is a cross-sectional view showing a configuration of a shield door according to a first embodiment of the present invention. The shield door 100 includes a door frame body 2 shielded by a metal plate 5 and a door body 1 shielded by a metal plate 6 and attached to the door frame body 2. The hinge 20 is attached to the right end of the door body 1 when viewed from the outdoor side. The door body 1 is opened from the door frame 2 by the hinge 20. The thickness of the door body 1 is about 40 mm to 70 mm.

扉本体1の開閉は、丁番20を中心にして扉本体1を回転運動させることにより、矢印で表示される扉開閉方向に行なう。扉本体1と扉枠体2が干渉することなく開閉動作を行なうために、扉本体1と扉枠体2の間には、5mmから10mmの隙間9が必要である。隙間9は、電磁波が侵入したり漏洩したりする電磁波伝搬経路8となる。扉枠体2の側面部(内周面)10aと扉本体1の側面部(外周面)10bは、扉本体1の閉時に、対向する。   The door body 1 is opened and closed in the door opening and closing direction indicated by the arrow by rotating the door body 1 around the hinge 20. In order to perform the opening / closing operation without interference between the door body 1 and the door frame body 2, a gap 9 of 5 mm to 10 mm is required between the door body 1 and the door frame body 2. The gap 9 serves as an electromagnetic wave propagation path 8 through which electromagnetic waves enter or leak. The side surface portion (inner peripheral surface) 10 a of the door frame body 2 and the side surface portion (outer peripheral surface) 10 b of the door main body 1 face each other when the door main body 1 is closed.

図2は、シールド扉100が開いている状態を表している。弾性導電部材(第1の弾性導電部材)3は、扉枠体2の室内側に取り付けられていて、扉枠体2の側面部10aを囲んでいる。金属板(第2の金属部材)6aは扉本体1の室内側に取り付けられていて、扉本体1の側面部10bを囲んでいる。金属板6aは扉本体1の閉時に弾性導電部材3と接触し、かみ合うことで電磁波の漏洩を防ぐ。弾性導電部材(第2の弾性導電部材)4は扉本体1の室外側の側面部10bに取り付けられ、扉本体1の外周を囲んでいる。金属板(第1の金属部材)5aは、扉枠体2の室外側の側面部10aに設けられ、扉本体1の閉時に弾性導電部材4と接触し、かみ合う。金属板5に設けられた電磁波吸収部材(第1の電磁波吸収部材)7aは弾性導電部材3と金属板5aの間に配設されていて、扉枠体2の側面部10aを囲んでいる。金属板6に設けられた電磁波吸収部材(第1の電磁波吸収部材)7bは金属板6aと弾性導電部材4の間に配設されていて、扉本体1の側面部10bを囲んでいる。   FIG. 2 shows a state where the shield door 100 is open. The elastic conductive member (first elastic conductive member) 3 is attached to the indoor side of the door frame body 2 and surrounds the side surface portion 10 a of the door frame body 2. The metal plate (second metal member) 6 a is attached to the indoor side of the door main body 1 and surrounds the side surface portion 10 b of the door main body 1. The metal plate 6a is in contact with the elastic conductive member 3 when the door body 1 is closed, and is engaged to prevent leakage of electromagnetic waves. The elastic conductive member (second elastic conductive member) 4 is attached to the side surface portion 10 b on the outdoor side of the door main body 1 and surrounds the outer periphery of the door main body 1. The metal plate (first metal member) 5 a is provided on the side surface portion 10 a on the outdoor side of the door frame body 2, and comes into contact with and meshes with the elastic conductive member 4 when the door body 1 is closed. An electromagnetic wave absorbing member (first electromagnetic wave absorbing member) 7 a provided on the metal plate 5 is disposed between the elastic conductive member 3 and the metal plate 5 a and surrounds the side surface portion 10 a of the door frame body 2. An electromagnetic wave absorbing member (first electromagnetic wave absorbing member) 7 b provided on the metal plate 6 is disposed between the metal plate 6 a and the elastic conductive member 4 and surrounds the side surface portion 10 b of the door body 1.

扉枠体2に設けた金属板5と扉本体1に設けた金属板6は、金属板5に設けた弾性導電部材3と金属板6に設けた弾性導電部材4によって電気的に接続されている。金属板5、6と弾性導電部材3、4で囲まれた空間(隙間9)が扉本体1の全周囲に形成されるため、電磁波は細長い隙間形状の空間を伝搬する。この隙間形状の空間において、弾性導電部材3と金属板6aの接触部から室内に電磁波が漏洩する。同様に金属板5aと弾性導電部材4の接触部から室外に電磁波が漏洩する。金属板の途中からは電磁波は室内外に漏洩しないため、電磁波が室内外に漏れるのは、2箇所の接触部のみとなる。   The metal plate 5 provided on the door frame 2 and the metal plate 6 provided on the door body 1 are electrically connected by the elastic conductive member 3 provided on the metal plate 5 and the elastic conductive member 4 provided on the metal plate 6. Yes. Since a space (gap 9) surrounded by the metal plates 5 and 6 and the elastic conductive members 3 and 4 is formed around the entire door body 1, the electromagnetic wave propagates through a long and narrow space. In this gap-shaped space, electromagnetic waves leak into the room from the contact portion between the elastic conductive member 3 and the metal plate 6a. Similarly, electromagnetic waves leak from the contact portion between the metal plate 5a and the elastic conductive member 4 to the outside. Since electromagnetic waves do not leak into and out of the room from the middle of the metal plate, electromagnetic waves leak into and out of the room only at two contact portions.

参考の形態1では、電磁波吸収部材7a、7bの断面は矩形形状である。電磁波吸収部材7a、7bとして、磁性体材料や誘電体材料を用いることができる。電磁波は、磁性体損失や誘電体損失によって、隙間9を伝搬するうちに減衰する。特に、電磁波吸収部材7a、7bとして、磁性材料を用いた場合、1GHz以下の比較的低い周波数においても高いシールド効果を得ることができる。電磁波吸収部材7a、7bとして、フェライトなどの磁性体や炭素粉などを含む電波吸収体を用いても良い。この場合、1GHz以下の周波数においても高いシールド効果を得ることができる。 In the reference form 1, the cross sections of the electromagnetic wave absorbing members 7a and 7b are rectangular. As the electromagnetic wave absorbing members 7a and 7b, a magnetic material or a dielectric material can be used. The electromagnetic wave is attenuated while propagating through the gap 9 due to magnetic loss and dielectric loss. In particular, when a magnetic material is used as the electromagnetic wave absorbing members 7a and 7b, a high shielding effect can be obtained even at a relatively low frequency of 1 GHz or less. As the electromagnetic wave absorbing members 7a and 7b, a magnetic substance such as ferrite or a radio wave absorber containing carbon powder may be used. In this case, a high shielding effect can be obtained even at a frequency of 1 GHz or less.

弾性導電部材3、4は、弾性を有していて、金属板5a、6aを押し当てるとかみ合うことによって、電磁波の漏洩を防ぐことができる。弾性導電部材3、4には、伸縮性のある芯材を金属ワイヤや導電性繊維で被覆した導電性ガスケット、或は金属バネ形状のシールドフィンガーと呼ばれるガスケットが適している。この場合、扉本体1と扉枠体2の寸法公差によって多少の隙間が生じても、両者の電気的接続を確実に取ることができる。   The elastic conductive members 3 and 4 have elasticity, and can engage with the metal plates 5a and 6a so as to prevent leakage of electromagnetic waves. As the elastic conductive members 3 and 4, a conductive gasket in which a stretchable core material is covered with a metal wire or conductive fiber, or a gasket called a metal spring-shaped shield finger is suitable. In this case, even if a slight gap occurs due to the dimensional tolerance between the door main body 1 and the door frame body 2, the electrical connection between the two can be ensured.

次にシールド扉100の動作を説明する。図3はシールド扉の片側の隙間の断面構造を示す図である。室外から室内に電磁波が侵入する場合の電磁波伝搬経路8の詳細を示したものである。室外から扉に達した電磁波は、弾性導電部材4と金属板5aの接触部を通り、扉本体1と扉枠体2の隙間9に侵入する。隙間9を電磁波が伝搬する間に、隙間9の両側に配置された電磁波吸収部材7a、7bによって電磁波は減衰する。電磁波が弾性導電部材3と金属板6aの接触部に到達すると、電磁波の一部は室内に漏れるが、大部分の電磁波は反射して隙間9の内部を逆方向に伝搬する。   Next, the operation of the shield door 100 will be described. FIG. 3 is a diagram showing a cross-sectional structure of the gap on one side of the shield door. The details of the electromagnetic wave propagation path 8 when electromagnetic waves enter the room from the outside are shown. The electromagnetic wave that reaches the door from the outside passes through the contact portion between the elastic conductive member 4 and the metal plate 5 a and enters the gap 9 between the door body 1 and the door frame body 2. While the electromagnetic wave propagates through the gap 9, the electromagnetic wave is attenuated by the electromagnetic wave absorbing members 7 a and 7 b disposed on both sides of the gap 9. When the electromagnetic wave reaches the contact portion between the elastic conductive member 3 and the metal plate 6a, a part of the electromagnetic wave leaks into the room, but most of the electromagnetic wave is reflected and propagates in the gap 9 in the reverse direction.

このとき電磁波吸収部材7a、7bによって電磁波は減衰する。電磁波が弾性導電部材4と金属板5aの接触部に到達すると、電磁波の一部は室外へ戻るが、大部分は反射して隙間9を最初と同一方向に伝搬する。このとき電磁波吸収部材7a、7bによって電磁波は減衰する。電磁波が再び弾性導電部材3と金属板6aの接触部に到達すると、電磁波の一部は室内に漏れるが、大部分の電磁波は反射して隙間9を逆方向に伝搬する。図中には2回の反射しか記載していないが、実際は2つの導電接触部の間を何度も多重反射しながら電磁波が伝搬するため、電磁波吸収部材7a、7bよる減衰は非常に大きくなる。室内から室外に電磁波が漏洩する場合は電磁波の伝搬方向が逆になる。   At this time, the electromagnetic wave is attenuated by the electromagnetic wave absorbing members 7a and 7b. When the electromagnetic wave reaches the contact portion between the elastic conductive member 4 and the metal plate 5a, a part of the electromagnetic wave returns to the outside, but most of the electromagnetic wave is reflected and propagates through the gap 9 in the same direction as the first. At this time, the electromagnetic wave is attenuated by the electromagnetic wave absorbing members 7a and 7b. When the electromagnetic wave reaches the contact portion between the elastic conductive member 3 and the metal plate 6a again, a part of the electromagnetic wave leaks into the room, but most of the electromagnetic wave is reflected and propagates through the gap 9 in the reverse direction. Although only two reflections are shown in the figure, in practice, electromagnetic waves propagate with multiple reflections between two conductive contact portions many times, so that the attenuation by the electromagnetic wave absorbing members 7a and 7b becomes very large. . When electromagnetic waves leak from the room to the outside, the propagation direction of the electromagnetic waves is reversed.

次にシールド扉100のシールド量を説明する。図4は電磁波吸収部材がないときのシールド量を求める図である。ここではシールド扉100における2箇所の導電接触部A、Bでの多重反射のみを考慮してシールド量を求めている。導電接触部Aは弾性導電部材4と金属板5aを象徴している。導電接触部Bは弾性導電部材3と金属板6aを象徴している。導電接触部Aと導電接触部Bのシールド量を40dBと仮定する。このとき入射波の1/100が導電接触部を透過することになる。室外からの入射波の振幅を10,000とすると、導電接触部Aでは、透過波の振幅は100(=10000×1/100)、反射波の振幅は9900(=10000−100)となる。振幅100の透過波が隙間内に侵入するため、導電接触部Bでの入射波は振幅100となり、透過波は振幅1、反射波は振幅99となる。   Next, the shield amount of the shield door 100 will be described. FIG. 4 is a diagram for obtaining the shielding amount when there is no electromagnetic wave absorbing member. Here, the amount of shielding is obtained in consideration of only multiple reflection at the two conductive contact portions A and B in the shield door 100. The conductive contact portion A symbolizes the elastic conductive member 4 and the metal plate 5a. The conductive contact portion B symbolizes the elastic conductive member 3 and the metal plate 6a. It is assumed that the shield amount of the conductive contact portion A and the conductive contact portion B is 40 dB. At this time, 1/100 of the incident wave is transmitted through the conductive contact portion. If the amplitude of the incident wave from the outdoor is 10,000, in the conductive contact portion A, the amplitude of the transmitted wave is 100 (= 10000 × 1/100) and the amplitude of the reflected wave is 9900 (= 10000−100). Since a transmitted wave having an amplitude of 100 enters the gap, the incident wave at the conductive contact portion B has an amplitude of 100, the transmitted wave has an amplitude of 1, and the reflected wave has an amplitude of 99.

導電接触部Bでの反射波は導電接触部Aに到達し、透過波は0.99、反射波は98となる。この反射波は導電接触部Bに到達し、透過波は0.98、反射は97となる。以下同様に導電接触部Aと導電接触部Bの間を多重反射しながら減衰してゼロになる。全体のシールド量は多重反射時のトータルの透過波によって決まる。最初に導電接触部Bで反射した電磁波(振幅99)の半分ずつが室外側と室内側を透過するため、導電接触部Bを透過して室内に侵入する電磁波はトータルで振幅50.5(=99/2+1)となる。このときのシールド量は46dBになる。このように電磁波の反射でシールドをおこなっている導電接触部を多段にしても、シールド量は単純加算の80dBにならない。   The reflected wave at the conductive contact portion B reaches the conductive contact portion A, the transmitted wave is 0.99, and the reflected wave is 98. This reflected wave reaches the conductive contact portion B, the transmitted wave is 0.98, and the reflection is 97. In the same manner, attenuation between the conductive contact portion A and the conductive contact portion B is reduced to zero with multiple reflection. The total shielding amount is determined by the total transmitted wave at the time of multiple reflection. Since half of the electromagnetic wave (amplitude 99) first reflected by the conductive contact portion B is transmitted through the outdoor side and the indoor side, the total electromagnetic wave transmitted through the conductive contact portion B and entering the room has an amplitude of 50.5 (= 99/2 + 1). The shield amount at this time is 46 dB. Thus, even if the conductive contact portions that are shielded by the reflection of electromagnetic waves are multi-staged, the amount of shielding does not become 80 dB as a simple addition.

図5は電磁波吸収部材が有るときのシールド量を求める図である。導電接触部Aと導電接触部Bのシールド量を40dB、電磁波吸収部材7による電磁波の減衰を20dBと仮定する。このとき、電磁波は隙間9を伝搬中に振幅が1/10に減衰する。室外からの入射波の振幅を10,000とする。導電接触部Aでの透過波の振幅は100となる。透過波は隙間内の電磁波吸収部材7で減衰し、導電接触部Bに到達すると振幅は10になる。導電接触部Bでの透過波の振幅は0.1である。導電接触部Bでの反射波は9.9となり、導電接触部Aに到達すると振幅は0.99に減衰する。導電接触部Aで反射して導電接触部Bに到達すると振幅は0.098に減衰する。導電接触部Bでの透過波の振幅は0.00098である。   FIG. 5 is a diagram for obtaining the shielding amount when there is an electromagnetic wave absorbing member. It is assumed that the shield amount of the conductive contact portion A and the conductive contact portion B is 40 dB, and the electromagnetic wave attenuation by the electromagnetic wave absorbing member 7 is 20 dB. At this time, the amplitude of the electromagnetic wave is attenuated to 1/10 while propagating through the gap 9. The amplitude of the incident wave from the outside is 10,000. The amplitude of the transmitted wave at the conductive contact portion A is 100. The transmitted wave is attenuated by the electromagnetic wave absorbing member 7 in the gap, and when it reaches the conductive contact portion B, the amplitude becomes 10. The amplitude of the transmitted wave at the conductive contact portion B is 0.1. The reflected wave at the conductive contact portion B is 9.9, and when reaching the conductive contact portion A, the amplitude is attenuated to 0.99. When reflected by the conductive contact portion A and reaches the conductive contact portion B, the amplitude is attenuated to 0.098. The amplitude of the transmitted wave at the conductive contact portion B is 0.00098.

このように電磁波は電磁波吸収部材で減衰しながら多重反射を繰り返す。1往復することにより到達波の振幅は元の1/00(往復分)に減衰する。このため、3回目以降の到達波を考慮する必要は無い。従って、トータルの透過波の振幅は、9.8/10000+0.1=0.10098となる。すなわち2重ガスケット(導電接触部A、B)と電磁波吸収体を組み合わせた系のシールド量は―99.9dBとなる。この値は、単純加算した100dB(=40dB+40dB+20dB)と等しい。このように、2箇所の導電接触部の間に電磁波吸収部材を配置することにより、シールド量は46dBから100dBと非常に大きくなる。電磁波吸収部材の両側に導電接触部を設ける構造にすることにより、所定のシールド量を得るために電磁波吸収体の長さを非常に短くすることができる。   Thus, the electromagnetic wave repeats multiple reflection while being attenuated by the electromagnetic wave absorbing member. By reciprocating once, the amplitude of the reaching wave is attenuated to the original 1/00 (reciprocal). For this reason, it is not necessary to consider the third and subsequent arrival waves. Accordingly, the total transmitted wave amplitude is 9.8 / 10000 + 0.1 = 0.1000098. That is, the shield amount of the system in which the double gasket (conductive contact portions A and B) and the electromagnetic wave absorber are combined is -99.9 dB. This value is equal to 100 dB (= 40 dB + 40 dB + 20 dB) obtained by simple addition. As described above, by arranging the electromagnetic wave absorbing member between the two conductive contact portions, the shield amount becomes very large from 46 dB to 100 dB. By adopting a structure in which the conductive contact portions are provided on both sides of the electromagnetic wave absorbing member, the length of the electromagnetic wave absorber can be made very short in order to obtain a predetermined shield amount.

次に隙間9を伝搬する電磁波の電磁波吸収部材による減衰について説明する。図6は隙間9を伝搬する電磁波の電界と磁界の方向を示している。隙間9を伝搬する電磁波の進行方向11に対し、電界方向12は金属板5a、6aにほぼ垂直になる。磁界方向13は電磁波吸収部材7a、7bにほぼ平行となる。角度14は金属板5、6の法線と電界方向12のなす角度を指す。電界方向12が電磁波吸収部材7と直交すると大きな減衰量が得られる。角度14が大きくなると減衰量が低下して、所定のシールド量を得るために必要な電磁波吸収部材の長さが長くなる。   Next, the attenuation of the electromagnetic wave propagating through the gap 9 by the electromagnetic wave absorbing member will be described. FIG. 6 shows the direction of the electric field and magnetic field of the electromagnetic wave propagating through the gap 9. The electric field direction 12 is substantially perpendicular to the metal plates 5a and 6a with respect to the traveling direction 11 of the electromagnetic wave propagating through the gap 9. The magnetic field direction 13 is substantially parallel to the electromagnetic wave absorbing members 7a and 7b. The angle 14 indicates an angle formed by the normal lines of the metal plates 5 and 6 and the electric field direction 12. When the electric field direction 12 is orthogonal to the electromagnetic wave absorbing member 7, a large attenuation is obtained. As the angle 14 increases, the amount of attenuation decreases, and the length of the electromagnetic wave absorbing member necessary for obtaining a predetermined shield amount increases.

金属板に挟まれた隙間9を伝搬する電磁波は、隙間9の長さAと隙間9の間隔Bに関係する。比率A/Bが大きいほど、電界方向12は金属板に垂直に近くなり、シールド量が大きくなる。図7に比率A/Bとシールド量の関係を示す。実線18は、金属板5、6が導電接触部で電気的に接続されている場合である。比率A/B>1となると角度14がほとんどゼロになるため、電磁波吸収部材による減衰量が大きくなり大きなシールド量を得ることができる。一方、比率A/B<1では、角度14が大きくなり、電磁波吸収部材の減衰効果がほとんど現れずに、シールド量は小さい。   The electromagnetic wave propagating through the gap 9 between the metal plates is related to the length A of the gap 9 and the interval B of the gap 9. The larger the ratio A / B, the closer the electric field direction 12 is to be perpendicular to the metal plate, and the greater the shielding amount. FIG. 7 shows the relationship between the ratio A / B and the shield amount. A solid line 18 is a case where the metal plates 5 and 6 are electrically connected by a conductive contact portion. When the ratio A / B> 1, the angle 14 becomes almost zero, so that the amount of attenuation by the electromagnetic wave absorbing member increases and a large shield amount can be obtained. On the other hand, when the ratio A / B <1, the angle 14 increases, the attenuation effect of the electromagnetic wave absorbing member hardly appears, and the shielding amount is small.

通常のシールド扉では、隙間9の長さAに相当する扉厚さは60mm程度であるのに対し、扉枠体と扉本体の隙間Bは6mm程度である。比率A/B=10となり、大きなシールド量を得ることができ、必要なシールド量を得るための電磁波吸収部材の長さを非常に短くすることができる。これに対して、特許文献2に示した窓枠では、隙間の長さAに相当する窓厚さは10mm程度なのに対し、隙間に相当する窓幅は100mm程度である。この場合、比率A/Bは0.01となり、大きなシールド量を得ることはできない。   In a normal shield door, the door thickness corresponding to the length A of the gap 9 is about 60 mm, while the gap B between the door frame body and the door body is about 6 mm. The ratio A / B = 10, a large shield amount can be obtained, and the length of the electromagnetic wave absorbing member for obtaining the necessary shield amount can be extremely shortened. On the other hand, in the window frame shown in Patent Document 2, the window thickness corresponding to the gap length A is about 10 mm, whereas the window width corresponding to the gap is about 100 mm. In this case, the ratio A / B is 0.01, and a large shield amount cannot be obtained.

図7の実線19は、金属板5、6が導電接触部A、Bで電気的に接続されていない場合である。この場合、金属板5と金属板6の高周波的な電位が異なるため、角度14が大きくなる。電磁波吸収部材の減衰効果がほとんど現れずに、シールド量は小さくなる。文献2に示した窓枠では、電磁波遮蔽層と窓枠の間に電磁波吸収部材がある。2つの電磁波遮蔽層間の電気的導通が取れないため、大きなシールド効果を得ることはできない。   A solid line 19 in FIG. 7 is a case where the metal plates 5 and 6 are not electrically connected by the conductive contact portions A and B. In this case, the angle 14 increases because the high-frequency potentials of the metal plate 5 and the metal plate 6 are different. The attenuation effect of the electromagnetic wave absorbing member hardly appears and the shielding amount becomes small. In the window frame shown in Document 2, there is an electromagnetic wave absorbing member between the electromagnetic wave shielding layer and the window frame. Since electrical continuity between the two electromagnetic wave shielding layers cannot be obtained, a large shielding effect cannot be obtained.

以上から、この発明の参考の形態によれば、扉枠体と扉本体の間の隙間を漏洩する電磁波を、導電接触部間の多重反射を利用して大きく減衰させることができ、電磁波吸収部材の長さを短くしても優れたシールド性能を得ることができる。電磁波吸収部材を短くできるので、扉の厚さ方向に電磁波吸収部材を配置することができ、扉の開口部が狭くならないという効果を有する。また、扉隙間を伝搬する電磁波の電界方向を電磁波吸収部材に直交させることができるようなるため、シールド性能を更に向上させることができる。 As described above, according to the reference embodiment of the present invention , the electromagnetic wave leaking through the gap between the door frame body and the door main body can be greatly attenuated using the multiple reflection between the conductive contact portions, and the electromagnetic wave absorbing member Even if the length is shortened, excellent shielding performance can be obtained. Since the electromagnetic wave absorbing member can be shortened, the electromagnetic wave absorbing member can be arranged in the thickness direction of the door, and the opening of the door is not narrowed. Moreover, since the electric field direction of the electromagnetic wave propagating through the door gap can be orthogonal to the electromagnetic wave absorbing member, the shielding performance can be further improved.

参考の形態2.
図8はこの発明の参考の形態2によるシールド扉100の構成を示す断面図である。図中に示す形態は、扉本体1と扉枠体2の角部に電磁波吸収部材を配置した構成である。図9は参考の形態2によるシールド扉の開状態を示している。電磁波吸収部材7a、7bは断面が山型形状を呈している。
Reference form 2.
FIG. 8 is a sectional view showing a configuration of a shield door 100 according to the second embodiment of the present invention. The form shown in the figure is a configuration in which an electromagnetic wave absorbing member is disposed at the corners of the door body 1 and the door frame body 2. FIG. 9 shows an open state of the shield door according to the second embodiment . The electromagnetic wave absorbing members 7a and 7b have a mountain shape in cross section.

このような構成にすることにより、扉開口部の面積をあまり減少させずに扉厚さを薄くすることができる。また扉本体や扉枠体の角部に合わせて電磁波吸収部材を取り付ければよいので、取り付け精度を向上させることができ、扉隙間の管理を容易に行なうことができるようになる。   With such a configuration, the door thickness can be reduced without significantly reducing the area of the door opening. In addition, since the electromagnetic wave absorbing member may be attached in accordance with the corners of the door main body or the door frame body, the attachment accuracy can be improved, and the door gap can be easily managed.

参考の形態3.
図10はこの発明の参考の形態3によるシールド扉100の構成を示す断面図である。図中に示す形態は、導電接触部と電磁波吸収部材を多段にした構成である。図11は参考の形態3によるシールド扉の開状態を示している。
Reference form 3.
FIG. 10 is a cross-sectional view showing a configuration of a shield door 100 according to the third embodiment of the present invention. The form shown in the figure is a configuration in which the conductive contact portion and the electromagnetic wave absorbing member are multi-staged. FIG. 11 shows the opened state of the shield door according to the third embodiment .

電磁波吸収部材23a(第3の電磁波吸収部材)は、扉枠体2の側面部10aを囲み、弾性導電部材3(第1の弾性導電部材)と金属板5a(第1の金属部材)の間であって、電磁波吸収部材7a(第1の電磁波吸収部材)よりも金属板5a側に配設されている。電磁波吸収部材23b(第4の電磁波吸収部材)は、扉本体1の側面部10bを囲み、弾性導電部材4(第2の弾性導電部材)と金属板6a(第2の金属部材)の間であって、電磁波吸収部材7b(第2の電磁波吸収部材)よりも弾性導電部材4側に配設されている。   The electromagnetic wave absorbing member 23a (third electromagnetic wave absorbing member) surrounds the side surface portion 10a of the door frame 2, and is between the elastic conductive member 3 (first elastic conductive member) and the metal plate 5a (first metal member). And it is arrange | positioned rather than the electromagnetic wave absorption member 7a (1st electromagnetic wave absorption member) at the metal plate 5a side. The electromagnetic wave absorbing member 23b (fourth electromagnetic wave absorbing member) surrounds the side surface portion 10b of the door body 1, and is between the elastic conductive member 4 (second elastic conductive member) and the metal plate 6a (second metal member). Therefore, it is disposed closer to the elastic conductive member 4 than the electromagnetic wave absorbing member 7b (second electromagnetic wave absorbing member).

金属板5に設けられた弾性導電部材22(第3の弾性導電部材)は、電磁波吸収部材7aと電磁波吸収部材23aの間に配設されていて、扉枠体2の側面部10aを囲んでいる。金属板6に設けられた金属板6b(第3の金属部材)は、電磁波吸収部材7bと電磁波吸収部材23bの間に配設されていて、扉本体1の側面部10bを囲んでいる。弾性導電部材22と金属板6bは、扉本体1の閉時に、接触しかみ合うことで、電磁波の漏洩を防ぐ。   The elastic conductive member 22 (third elastic conductive member) provided on the metal plate 5 is disposed between the electromagnetic wave absorbing member 7a and the electromagnetic wave absorbing member 23a, and surrounds the side surface portion 10a of the door frame body 2. Yes. A metal plate 6b (third metal member) provided on the metal plate 6 is disposed between the electromagnetic wave absorbing member 7b and the electromagnetic wave absorbing member 23b, and surrounds the side surface portion 10b of the door body 1. The elastic conductive member 22 and the metal plate 6b prevent leakage of electromagnetic waves by engaging with each other when the door body 1 is closed.

このような構成にすることにより、広帯域で大きな減衰量を得ることができるシールド扉を得ることができる。また、このような構成にすることにより、特性の異なる電磁波吸収部材を用いることができるようになる。電磁波吸収部材が減衰させる電磁波の周波数が異なる材料を用いることにより、広帯域で大きな減衰量を得ることのできるシールド扉とすることができる。中央の弾性導電部材22は、無くても同様の効果を有することは言うまでもない。   By adopting such a configuration, a shield door capable of obtaining a large attenuation amount in a wide band can be obtained. In addition, with such a configuration, electromagnetic wave absorbing members having different characteristics can be used. By using materials having different electromagnetic wave frequencies to be attenuated by the electromagnetic wave absorbing member, a shield door capable of obtaining a large attenuation amount in a wide band can be obtained. Needless to say, the central elastic conductive member 22 has the same effect even if it is not present.

参考の形態4.
図12はこの発明の参考の形態4によるシールド扉100の構成を示す断面図である。
参考の形態1から3では、扉枠体の扉側側面部および扉本体の側面部の両側に電磁波吸収部材を配置した場合について説明したが、どちらか片方に電磁波吸収部材を配置しても同様の効果が得られる。図では、電磁波吸収部材7を扉枠体2の扉側側面部に設けた場合を示している。この場合、電磁波吸収部材の使用量を減らして扉の重さを軽くすることができるという効果を有する。
Reference form 4.
FIG. 12 is a sectional view showing a configuration of a shield door 100 according to the fourth embodiment of the present invention.
In the reference forms 1 to 3, the case where the electromagnetic wave absorbing member is disposed on both sides of the door side surface portion of the door frame body and the side surface portion of the door main body has been described, but the same applies even if the electromagnetic wave absorbing member is disposed on one of the sides. The effect is obtained. In the figure, the case where the electromagnetic wave absorbing member 7 is provided on the door side surface portion of the door frame 2 is shown. In this case, there is an effect that the use amount of the electromagnetic wave absorbing member can be reduced and the weight of the door can be reduced.

参考の形態5.
図13はこの発明の参考の形態5によるシールド扉100の構成を示す断面図である。電磁波吸収部材7a(第1の構成部材)と電磁波吸収部材7c(第2の構成部材)は、扉枠体2の厚さ方向に並んで積み重ねられている。電磁波吸収部材7b(第3の構成部材)と電磁波吸収部材7d(第4の構成部材)は、扉本体1の厚さ方向に並んで積み重ねられている。電磁波吸収部材7aと電磁波吸収部材7cは、扉枠体2の側面部10aを囲み、弾性導電部材3と金属板5aの間に配設されている。電磁波吸収部材7bと電磁波吸収部材7dは、扉本体1の側面部10bを囲み、弾性導電部材4と金属板6aの間に配設されている。
Reference form 5.
FIG. 13 is a cross-sectional view showing a configuration of a shield door 100 according to the fifth embodiment of the present invention. The electromagnetic wave absorbing member 7 a (first constituent member) and the electromagnetic wave absorbing member 7 c (second constituent member) are stacked side by side in the thickness direction of the door frame body 2. The electromagnetic wave absorbing member 7 b (third constituent member) and the electromagnetic wave absorbing member 7 d (fourth constituent member) are stacked side by side in the thickness direction of the door body 1. The electromagnetic wave absorbing member 7a and the electromagnetic wave absorbing member 7c surround the side surface portion 10a of the door frame 2 and are disposed between the elastic conductive member 3 and the metal plate 5a. The electromagnetic wave absorbing member 7b and the electromagnetic wave absorbing member 7d surround the side surface portion 10b of the door body 1 and are disposed between the elastic conductive member 4 and the metal plate 6a.

電磁波吸収部材7aと電磁波吸収部材7cには、電磁波吸収特性の異なる電磁波吸収部材が用いられている。同様に、電磁波吸収部材7bと電磁波吸収部材7dには、電磁波吸収特性の異なる電磁波吸収部材が用いられている。電磁波吸収部材7a〜7dに、周波数に対する電磁波吸収特性が異なる材料を用いることにより、シールド扉100は、広帯域で大きな減衰量を得ることができる。複数種類の電磁波吸収部材を用いても、部材の厚さを揃えることにより、扉本体1と扉枠体2の隙間は均一になり、電磁波吸収特性は安定する。   As the electromagnetic wave absorbing member 7a and the electromagnetic wave absorbing member 7c, electromagnetic wave absorbing members having different electromagnetic wave absorption characteristics are used. Similarly, electromagnetic wave absorbing members having different electromagnetic wave absorption characteristics are used for the electromagnetic wave absorbing member 7b and the electromagnetic wave absorbing member 7d. By using materials having different electromagnetic wave absorption characteristics with respect to the frequency for the electromagnetic wave absorbing members 7a to 7d, the shield door 100 can obtain a large attenuation in a wide band. Even when a plurality of types of electromagnetic wave absorbing members are used, the gap between the door body 1 and the door frame body 2 becomes uniform and the electromagnetic wave absorption characteristics are stabilized by making the thicknesses of the members uniform.

実施の形態1.
図14はこの発明の実施の形態1によるシールド扉100の構成を示す断面図である。電磁波吸収部材7cは、電磁波吸収部材7aよりも扉枠体2の内部側に配置され、電磁波吸収部材7dは、電磁波吸収部材7bよりも扉本体1の内部側に配置されている。電磁波吸収部材7aと電磁波吸収部材7cは、扉枠体2の側面部10aを囲み、弾性導電部材3と金属板5aの間に配設されている。扉枠体2の側面部10aに接して電磁波吸収部材7cが配設され、その上層に電磁波吸収部材7aが配設されている。電磁波吸収部材7bと電磁波吸収部材7dは、扉本体1の側面部10bを囲み、弾性導電部材4と金属板6aの間に配設されている。扉本体1の側面部10bに接して電磁波吸収部材7dが配設され、その上層に電磁波吸収部材7bが配設されている。
Embodiment 1 FIG.
FIG. 14 is a cross-sectional view showing a configuration of shield door 100 according to Embodiment 1 of the present invention. The electromagnetic wave absorbing member 7c is disposed on the inner side of the door frame 2 with respect to the electromagnetic wave absorbing member 7a, and the electromagnetic wave absorbing member 7d is disposed on the inner side of the door body 1 with respect to the electromagnetic wave absorbing member 7b. The electromagnetic wave absorbing member 7a and the electromagnetic wave absorbing member 7c surround the side surface portion 10a of the door frame 2 and are disposed between the elastic conductive member 3 and the metal plate 5a. The electromagnetic wave absorbing member 7c is disposed in contact with the side surface portion 10a of the door frame body 2, and the electromagnetic wave absorbing member 7a is disposed on the upper layer thereof. The electromagnetic wave absorbing member 7b and the electromagnetic wave absorbing member 7d surround the side surface portion 10b of the door body 1 and are disposed between the elastic conductive member 4 and the metal plate 6a. An electromagnetic wave absorbing member 7d is disposed in contact with the side surface portion 10b of the door body 1, and an electromagnetic wave absorbing member 7b is disposed on the upper layer thereof.

図15は異なる材料に関して電磁波吸収特性を比較して示す図である。実線51は電磁波吸収部材7c、7dの電磁波吸収量を示している。実線52は電磁波吸収部材7a、7bの電磁波吸収量を示している。電磁波吸収部材7c、7dが最もよく電磁波を吸収する周波数帯域は、電磁波吸収部材7a、7bが電磁波を最もよく吸収する周波数帯域よりも低く設定されている。   FIG. 15 is a diagram comparing the electromagnetic wave absorption characteristics of different materials. A solid line 51 indicates the electromagnetic wave absorption amount of the electromagnetic wave absorbing members 7c and 7d. A solid line 52 indicates the electromagnetic wave absorption amount of the electromagnetic wave absorbing members 7a and 7b. The frequency band in which the electromagnetic wave absorbing members 7c and 7d absorb the electromagnetic waves best is set lower than the frequency band in which the electromagnetic wave absorbing members 7a and 7b absorb the electromagnetic waves best.

電磁波は、周波数が高くなるほど表皮深さが浅くなるため、周波数が高い領域では材料の表面しか侵入しないのに対し、周波数が低い領域では材料の奥深くまで侵入する。図16は電磁波吸収部材の厚さと電磁波吸収量の関係を示している。実線61は電磁波の周波数が高いときの電磁波吸収量を示している。実線62は電磁波の周波数が低いときの電磁波吸収量を示している。電磁波の周波数が低いと電磁波吸収部材の厚さが厚いほど吸収量は増加するが、電磁波の周波数が高くなると電磁波吸収部材の厚さが厚くなっても吸収量はさほど増加しない。   Since the skin depth becomes shallower as the frequency increases, the electromagnetic wave penetrates only to the surface of the material in a region where the frequency is high, whereas it penetrates deep into the material in a region where the frequency is low. FIG. 16 shows the relationship between the thickness of the electromagnetic wave absorbing member and the electromagnetic wave absorption amount. A solid line 61 indicates the amount of electromagnetic wave absorption when the frequency of the electromagnetic wave is high. A solid line 62 indicates the amount of electromagnetic wave absorption when the frequency of the electromagnetic wave is low. When the electromagnetic wave frequency is low, the amount of absorption increases as the thickness of the electromagnetic wave absorbing member increases. However, when the frequency of the electromagnetic wave increases, the amount of absorption does not increase so much even if the thickness of the electromagnetic wave absorbing member increases.

電磁波を吸収する周波数帯域の異なる電磁波吸収部材を用いる場合、隙間側に電磁波吸収帯域の高い材料を配設し、側面部の奥行き側に電磁波吸収帯域の低い材料を配設することにより、広帯域で大きな減衰量を得ることができる。電磁波吸収部材の厚さは、電磁波の周波数が低くなるほど所定の減衰量を得るために厚くする。このため、電磁波吸収部材7c、7dの厚さを、それぞれ、電磁波吸収部材7a、7bの厚さより厚くしている。このような構成にすることにより、数十MHzから数十GHzまでの広い周波数範囲にて良好なシールド性能を有するシールド扉を得ることができる。2種類の電磁波吸収部材を積層しているため、電磁波吸収部材のトータルの厚さ薄くすることができ、扉の厚さが薄くなる。2種類以上の多数の電磁波吸収部材を用いても、同様の効果を得ることができることは言うまでもない。   When using electromagnetic wave absorbing members with different frequency bands for absorbing electromagnetic waves, a material with a high electromagnetic wave absorption band is provided on the gap side, and a material with a low electromagnetic wave absorption band is provided on the depth side of the side surface. A large amount of attenuation can be obtained. The thickness of the electromagnetic wave absorbing member is increased in order to obtain a predetermined attenuation as the frequency of the electromagnetic wave decreases. For this reason, the thickness of the electromagnetic wave absorbing members 7c and 7d is made larger than the thickness of the electromagnetic wave absorbing members 7a and 7b, respectively. With such a configuration, it is possible to obtain a shield door having good shielding performance in a wide frequency range from several tens of MHz to several tens of GHz. Since the two types of electromagnetic wave absorbing members are laminated, the total thickness of the electromagnetic wave absorbing members can be reduced, and the thickness of the door is reduced. It goes without saying that the same effect can be obtained even when two or more types of electromagnetic wave absorbing members are used.

実施の形態2.
図17はこの発明の実施の形態2によるシールド扉100の構成を示す断面図である。電磁波の周波数が低くなると所定の減衰量を得るための電磁波吸収部材の厚さを厚くする必要がある。このとき扉枠体側の電磁波吸収部材7cの厚みと扉本体側の電磁波吸収部材7dの厚みを合わせたトータルの厚さによって電磁波減衰量が決まるため、必ずしも両者の厚さを同じにする必要はない。実施の形態2で示したシールド扉においては、扉枠体側の電磁波吸収部材7cの厚さを扉本体側の電磁波吸収部材7dの厚さより厚くしている。
Embodiment 2. FIG.
FIG. 17 is a cross-sectional view showing a configuration of shield door 100 according to Embodiment 2 of the present invention. When the frequency of the electromagnetic wave is lowered, it is necessary to increase the thickness of the electromagnetic wave absorbing member for obtaining a predetermined attenuation. At this time, since the electromagnetic wave attenuation amount is determined by the total thickness of the electromagnetic wave absorbing member 7c on the door frame side and the electromagnetic wave absorbing member 7d on the door body side, the thicknesses of the both do not necessarily have to be the same. . In the shield door shown in the second embodiment, the thickness of the electromagnetic wave absorbing member 7c on the door frame side is made thicker than the thickness of the electromagnetic wave absorbing member 7d on the door body side.

このような構成にすることにより、数十MHzから数十GHzまでの広い周波数範囲にて良好なシールド性能を有するシールド性能を得ることができる。また、扉本体側の電磁波吸収部材の厚さを薄くできるため、扉本体を軽くでき、扉開閉時の操作性が向上すると共に、扉本体を支える丁番20を小型化できる。   With such a configuration, it is possible to obtain a shielding performance having a good shielding performance in a wide frequency range from several tens of MHz to several tens of GHz. Moreover, since the thickness of the electromagnetic wave absorbing member on the door body side can be reduced, the door body can be lightened, the operability when opening and closing the door is improved, and the hinge 20 that supports the door body can be miniaturized.

実施の形態3.
図18はこの発明の実施の形態3によるシールド扉100の構成を示す断面図である。電磁波吸収部材7aと電磁波吸収部材7cの間に膜状の仕切り金属板31aを設けている。電磁波吸収部材7bと電磁波吸収部材7dの間に膜状の仕切り金属板31bを設けている。仕切り金属板31aの厚さは、電磁波吸収部材7aが減衰させる周波数帯域の電磁波を反射し、電磁波吸収部材7cが減衰させる周波数帯域の電磁波を透過させる厚さとする。仕切り金属板31bの厚さは、電磁波吸収部材7bが減衰させる周波数帯域の電磁波を反射し、電磁波吸収部材7dが減衰させる周波数帯域の電磁波を透過させる厚さとする。
Embodiment 3 FIG.
FIG. 18 is a cross-sectional view showing a configuration of shield door 100 according to Embodiment 3 of the present invention. A film-like partition metal plate 31a is provided between the electromagnetic wave absorbing member 7a and the electromagnetic wave absorbing member 7c. A film-like partition metal plate 31b is provided between the electromagnetic wave absorbing member 7b and the electromagnetic wave absorbing member 7d. The partition metal plate 31a has a thickness that reflects electromagnetic waves in the frequency band attenuated by the electromagnetic wave absorbing member 7a and transmits electromagnetic waves in the frequency band attenuated by the electromagnetic wave absorbing member 7c. The partition metal plate 31b has a thickness that reflects electromagnetic waves in the frequency band attenuated by the electromagnetic wave absorbing member 7b and transmits electromagnetic waves in the frequency band attenuated by the electromagnetic wave absorbing member 7d.

このような構成にすることにより電磁波吸収部材7a、7bが減衰させる周波数帯域において、電界方向を電磁波吸収部材に直交させることができるようになる。高い周波数でのシールド量の低下は防止できる。電磁波吸収部材7c、7dが減衰させる周波数帯域の電磁波は金属膜を透過するために、この周波数帯域でのシールド量が低下することはない。   With this configuration, the electric field direction can be orthogonal to the electromagnetic wave absorbing member in the frequency band where the electromagnetic wave absorbing members 7a and 7b attenuate. It is possible to prevent a decrease in the shield amount at a high frequency. Since electromagnetic waves in the frequency band attenuated by the electromagnetic wave absorbing members 7c and 7d are transmitted through the metal film, the shielding amount in this frequency band does not decrease.

参考の形態6.
図19はこの発明の参考の形態6によるシールド扉100への電磁波吸収部材の取り付け方法を示す断面図である。電磁波吸収部材7aと電磁波吸収部材7bは断面が山型形状に加工されている。押さえ板81は電磁波吸収部材7aと電磁波吸収部材7bの段差部に取り付ける。このような構成にすることにより、押さえ板81の厚みによって電磁波吸収部材7aと電磁波吸収部材7bの間の隙間を広げることなく電磁波吸収部材7a、7bをシールド扉100に取り付けることができる。押さえ板81はポリカーボネイトなどの樹脂材料が望ましい。電磁波吸収部材7の段差部と押さえ板81がかみ合うことにより、電磁波吸収部材7が扉本体1や扉枠体2に確実に固定される。押さえ板81は、扉開閉に伴う振動によって電磁波吸収部材7が割れたり欠けたりすることを防止する。
Reference form 6.
FIG. 19 is a cross-sectional view showing a method for attaching an electromagnetic wave absorbing member to the shield door 100 according to Reference Embodiment 6 of the present invention. The cross section of the electromagnetic wave absorbing member 7a and the electromagnetic wave absorbing member 7b is processed into a mountain shape. The holding plate 81 is attached to the step portion between the electromagnetic wave absorbing member 7a and the electromagnetic wave absorbing member 7b. With such a configuration, the electromagnetic wave absorbing members 7 a and 7 b can be attached to the shield door 100 without increasing the gap between the electromagnetic wave absorbing member 7 a and the electromagnetic wave absorbing member 7 b depending on the thickness of the pressing plate 81. The holding plate 81 is preferably a resin material such as polycarbonate. The electromagnetic wave absorbing member 7 is securely fixed to the door body 1 and the door frame body 2 by engaging the stepped portion of the electromagnetic wave absorbing member 7 and the pressing plate 81. The holding plate 81 prevents the electromagnetic wave absorbing member 7 from being cracked or chipped by vibration accompanying opening and closing of the door.

参考の形態7.
図20はこの発明の参考の形態7によるシールド扉100の構成を示す断面図である。これまでの形態では、電磁波吸収部材7aが弾性導電部材3と金属板5aの間にある例について説明した。参考の形態7では、弾性導電部材3は扉枠体2の室内側に、弾性導電部材4は扉枠体2の室外側に、それぞれ取り付けられている。電磁波吸収部材7aは、扉枠体2の側面部10aを囲み、弾性導電部材3と弾性導電部材4の間に配設されている。金属板6aは扉本体1の室内側に取り付けられている。金属板6bは扉本体1の室外側に取り付けられている。電磁波吸収部材7bは扉本体1の側面部10bを囲み、金属板6aと金属板6bの間に配設されている。弾性導電部材3と金属板6a、および弾性導電部材4と金属板6bによって、扉枠体2の金属部と扉本体1の金属部は電気的に接続されている。
Reference form 7.
FIG. 20 is a cross-sectional view showing a configuration of a shield door 100 according to Reference Embodiment 7 of the present invention. In the embodiments so far, the example in which the electromagnetic wave absorbing member 7a is between the elastic conductive member 3 and the metal plate 5a has been described. In the reference form 7 , the elastic conductive member 3 is attached to the indoor side of the door frame 2, and the elastic conductive member 4 is attached to the outdoor side of the door frame 2. The electromagnetic wave absorbing member 7 a surrounds the side surface portion 10 a of the door frame 2 and is disposed between the elastic conductive member 3 and the elastic conductive member 4. The metal plate 6 a is attached to the indoor side of the door body 1. The metal plate 6 b is attached to the outdoor side of the door body 1. The electromagnetic wave absorbing member 7b surrounds the side surface portion 10b of the door body 1 and is disposed between the metal plate 6a and the metal plate 6b. The metal part of the door frame 2 and the metal part of the door body 1 are electrically connected by the elastic conductive member 3 and the metal plate 6a, and the elastic conductive member 4 and the metal plate 6b.

このような構成にすることにより、参考の形態1の場合と同じように、扉枠体と扉本体の間の隙間から漏洩する電磁波は、導電接触部間で多重反射される。漏洩する電磁波が大きく減衰するため、電磁波吸収部材の幅を短くしても優れたシールド性能を得ることができる。電磁波吸収部材7a、7bの幅を短くできるので、扉の厚さ方向に電磁波吸収部材を配置することができ、扉の開口部が狭くならない。また、扉隙間を伝搬する電磁波の電界方向を電磁波吸収部材に直交させることができるようになるため、シールド性能を更に向上させることができる。また、図21に示すように扉枠側に金属板5aと金属板5bを、扉本体側に弾性導電部材3と弾性導電部材4を取り付けても同様の効果が得られることは言うまでもない。 By adopting such a configuration, the electromagnetic wave leaking from the gap between the door frame body and the door main body is multiple-reflected between the conductive contact portions as in the case of the reference form 1 . Since the leaked electromagnetic wave is greatly attenuated, excellent shielding performance can be obtained even if the width of the electromagnetic wave absorbing member is shortened. Since the width of the electromagnetic wave absorbing members 7a and 7b can be shortened, the electromagnetic wave absorbing member can be arranged in the thickness direction of the door, and the door opening is not narrowed. Moreover, since the electric field direction of the electromagnetic wave propagating through the door gap can be made orthogonal to the electromagnetic wave absorbing member, the shielding performance can be further improved. Further, as shown in FIG. 21, it goes without saying that the same effect can be obtained even if the metal plate 5a and the metal plate 5b are attached to the door frame side, and the elastic conductive member 3 and the elastic conductive member 4 are attached to the door body side.

参考の形態8.
図22はこの発明の参考の形態8によるシールド扉100の構成を示す断面図である。扉本体1は室外側に設けられた外周縁1aを備えている。扉枠体2は室内側に設けられた内周縁2aを備えている。電磁波吸収部材7aは内周縁2aの室外側面に固定されている。電磁波吸収部材7bは外周縁1aの室内側面に固定されている。電磁波吸収部材7aは扉枠体2を囲み、弾性導電部材3と4の間に配設されている。電磁波吸収部材7bは、扉本体1を囲み、金属板6aと金属板6bの間に配設されている。電磁波吸収部材7aと電磁波吸収部材7bはくし型形状とし、電磁波伝搬経路を迷路状にしている。
Reference form 8.
FIG. 22 is a sectional view showing a configuration of a shield door 100 according to the eighth embodiment of the present invention. The door body 1 includes an outer peripheral edge 1a provided on the outdoor side. The door frame body 2 includes an inner peripheral edge 2a provided on the indoor side. The electromagnetic wave absorbing member 7a is fixed to the outdoor side surface of the inner peripheral edge 2a. The electromagnetic wave absorbing member 7b is fixed to the indoor side surface of the outer peripheral edge 1a. The electromagnetic wave absorbing member 7 a surrounds the door frame 2 and is disposed between the elastic conductive members 3 and 4. The electromagnetic wave absorbing member 7b surrounds the door body 1 and is disposed between the metal plate 6a and the metal plate 6b. The electromagnetic wave absorbing member 7a and the electromagnetic wave absorbing member 7b are comb-shaped, and the electromagnetic wave propagation path is a maze.

このような構成にすることにより、電磁波伝搬経路を長く取ることができ、大きなシールド性能を有するシールド扉を得ることができるという効果を有する。外周縁1aと内周縁2aに電磁波吸収体を配設しているため、扉厚さが厚くならない。また、扉枠体に弾性導電部材と金属板を取り付け、電磁波吸収部材を扉枠体の弾性導電部材と金属板の間に配設し、扉本体に弾性導電部材と金属板を取り付け、電磁波吸収部材を扉本体の弾性導電部材と金属板の間に配設しても同様の効果が得られる。   With such a configuration, there is an effect that an electromagnetic wave propagation path can be made long and a shield door having a large shielding performance can be obtained. Since the electromagnetic wave absorber is disposed on the outer peripheral edge 1a and the inner peripheral edge 2a, the door thickness does not increase. Also, an elastic conductive member and a metal plate are attached to the door frame, an electromagnetic wave absorbing member is disposed between the elastic conductive member and the metal plate of the door frame, an elastic conductive member and a metal plate are attached to the door body, and the electromagnetic wave absorbing member is Even if it is disposed between the elastic conductive member of the door body and the metal plate, the same effect can be obtained.

参考の形態9.
図23はこの発明の参考の形態9によるシールド扉100の構成を示す断面図である。参考の形態8と同様に、電磁波吸収部材7aと電磁波吸収部材7bをくし型形状としている。電磁波吸収部材7aのくし歯に仕切り金属板31aを挿入している。電磁波吸収部材7bの間に仕切り金属板31bを挿入している。このような構成にすることにより隙間を伝搬する電磁波の電界が電磁波吸収部材に直交させることができるため、数十MHzから数十GHzまでの広い周波数範囲にて良好なシールド性能を有するシールド扉を得ることができる。
Reference Form 9
FIG. 23 is a cross-sectional view showing a configuration of a shield door 100 according to the ninth embodiment of the present invention. Similarly to the reference form 8 , the electromagnetic wave absorbing member 7a and the electromagnetic wave absorbing member 7b have a comb shape. A partition metal plate 31a is inserted into the comb teeth of the electromagnetic wave absorbing member 7a. A partition metal plate 31b is inserted between the electromagnetic wave absorbing members 7b. With such a configuration, the electric field of the electromagnetic wave propagating through the gap can be made orthogonal to the electromagnetic wave absorbing member. Therefore, a shield door having good shielding performance in a wide frequency range from several tens of MHz to several tens of GHz is provided. Can be obtained.

参考の形態10.
図24はこの発明の参考の形態10によるシールド扉100の電磁波吸収部材の配置を示す図である。扉本体1の周囲に配設された電磁波吸収部材7b、7d、23bのうち、床側部71の厚さを他の部分(天井側部74bおよび縦方向連結部74a、74c)の厚さより厚くしている。同様に、扉枠体2の周囲に配設された電磁波吸収部材7a、7c、23aのうち、床側部73の厚さを他の部分(天井側部72bおよび縦方向連結部72a、72c)の厚さより薄くしている。
Reference form 10.
FIG. 24 is a view showing the arrangement of the electromagnetic wave absorbing members of the shield door 100 according to the tenth embodiment of the present invention. Of the electromagnetic wave absorbing members 7b, 7d, and 23b disposed around the door body 1, the floor side portion 71 is thicker than the other portions (the ceiling side portion 74b and the vertical connecting portions 74a and 74c). doing. Similarly, among the electromagnetic wave absorbing members 7a, 7c, and 23a arranged around the door frame body 2, the thickness of the floor side portion 73 is set to other portions (the ceiling side portion 72b and the longitudinal connecting portions 72a and 72c). It is thinner than the thickness.

このような構成にすることにより、数十MHzから数十GHzまでの広い周波数範囲にて良好なシールド性能を有するシールド性能を得ることができる。また、扉枠体2の下部の高さを低くすることができ、扉下部と床面との間にできる段差が小さくなる。   With such a configuration, it is possible to obtain a shielding performance having a good shielding performance in a wide frequency range from several tens of MHz to several tens of GHz. Moreover, the height of the lower part of the door frame 2 can be made low, and the level | step difference which can be made between a door lower part and a floor surface becomes small.

1 扉本体、2 扉枠体、3 弾性導電部材、4 弾性導電部材、5 金属板、6 金属板、7 電磁波吸収部材、8 電磁波伝搬経路、9 隙間、10 側面部、11 進行方向、12 電界方向、13 磁界方向、14 角度、20 丁番、23 電磁波吸収部材、31 仕切り金属板、71 床側部、72a 縦方向連結部、72b 天井側部、72c 縦方向連結部、73 床側部、74a 縦方向連結部、74b 天井側部、74c 縦方向連結部、100 シールド扉   DESCRIPTION OF SYMBOLS 1 Door main body, 2 Door frame body, 3 Elastic conductive member, 4 Elastic conductive member, 5 Metal plate, 6 Metal plate, 7 Electromagnetic wave absorption member, 8 Electromagnetic wave propagation path, 9 Clearance, 10 Side surface part, 11 Traveling direction, 12 Electric field Direction, 13 magnetic field direction, 14 angle, 20 hinge, 23 electromagnetic wave absorbing member, 31 partition metal plate, 71 floor side part, 72a vertical direction connection part, 72b ceiling side part, 72c vertical direction connection part, 73 floor side part, 74a Longitudinal connecting part, 74b Ceiling side part, 74c Vertical connecting part, 100 Shield door

Claims (14)

金属でシールドされている扉枠体と、金属でシールドされ前記扉枠体から片開きする扉本体とを備えている電磁波シールド扉において、
前記扉枠体は、室内側側面部を囲む第1の弾性導電部材と、室外側側面部を囲む第1の金属部材と、前記第1の弾性導電部材と前記第1の金属部材の間に配設され側面部を囲む第1の電磁波吸収部材とを有しており、
前記扉本体は、室内側側面部を囲み前記第1の弾性導電部材と接触する第2の金属部材と、室外側側面部を囲み前記第1の金属部材と接触する第2の弾性導電部材と、前記第2の弾性導電部材と前記第2の金属部材の間に配設され側面部を囲む第2の電磁波吸収部材とを有していて、
前記第1の電磁波吸収部材は電磁波に対する吸収ピークの位置が異なる第1の構成部材と第2の構成部材から構成され、前記第2の電磁波吸収部材は電磁波に対する吸収ピークの位置が異なる第3の構成部材と第4の構成部材から構成されていて、
前記第1の構成部材と前記第2の構成部材は前記扉枠体の側面部から前記扉枠体の内部側に向かう方向に積層され、前記第3の構成部材と前記第4の構成部材は前記扉本体の側面部から前記扉本体の内部側に向かう方向に積層されていて、
前記第1の構成部材と前記第2の構成部材は電磁波の進行方向と平行に積層され、前記第3の構成部材と前記第4の構成部材は電磁波の進行方向と平行に積層されていることを特徴とする電磁波シールド扉。
In an electromagnetic wave shield door comprising a door frame body shielded with metal and a door body shielded with metal and opened from the door frame body,
The door frame includes a first elastic conductive member surrounding the indoor side surface portion, a first metal member surrounding the outdoor side surface portion, and between the first elastic conductive member and the first metal member. A first electromagnetic wave absorbing member disposed and surrounding the side surface portion,
The door body includes a second metal member that surrounds the indoor side surface portion and contacts the first elastic conductive member, and a second elastic conductive member that surrounds the outdoor side surface portion and contacts the first metal member. And a second electromagnetic wave absorbing member disposed between the second elastic conductive member and the second metal member and surrounding the side surface portion ,
The first electromagnetic wave absorbing member includes a first constituent member and a second constituent member having different absorption peak positions for electromagnetic waves, and the second electromagnetic wave absorbing member has a third absorption peak position for electromagnetic waves different from each other. It is composed of a component member and a fourth component member,
The first component member and the second component member are stacked in a direction from the side surface portion of the door frame body toward the inner side of the door frame body, and the third component member and the fourth component member are Laminated in the direction from the side surface of the door body toward the inside of the door body,
The first component member and the second component member are stacked in parallel with the traveling direction of the electromagnetic wave, and the third component member and the fourth component member are stacked in parallel with the traveling direction of the electromagnetic wave. Electromagnetic shielding door characterized by.
前記第1の電磁波吸収部材および前記第2の電磁波吸収部材は断面が矩形形状であることを特徴とする請求項1に記載の電磁波シールド扉。   The electromagnetic wave shielding door according to claim 1, wherein the first electromagnetic wave absorbing member and the second electromagnetic wave absorbing member have a rectangular cross section. 前記第1の電磁波吸収部材および前記第2の電磁波吸収部材は断面が山型形状であることを特徴とする請求項1に記載の電磁波シールド扉。   2. The electromagnetic wave shielding door according to claim 1, wherein the first electromagnetic wave absorbing member and the second electromagnetic wave absorbing member have a mountain shape in cross section. 前記扉本体と前記扉枠体の隙間の長さをAとし、前記扉本体と前記扉枠体の隙間の幅をBとすると、比率A/Bが1よりも大きいことを特徴とする請求項1から3のいずれか1項に記載の電磁波シールド扉。 The length of the gap of the door body and the door frame is A, the When the width of the gap between the door body and the door frame B, claims the ratio A / B being greater than 1 The electromagnetic wave shield door according to any one of 1 to 3 . 前記電磁波吸収部材が磁性体材料を含むことを特徴とする請求項1から4のいずれか1項に記載の電磁波シールド扉。 The electromagnetic wave shielding door according to claim 1, wherein the electromagnetic wave absorbing member includes a magnetic material. 前記第1の構成部材の吸収ピークは前記第2の構成部材の吸収ピークよりも高周波側にシフトし、前記第3の構成部材の吸収ピークは前記第4の構成部材の吸収ピークよりも高周波側にシフトしていることを特徴とする請求項1に記載の電磁波シールド扉。 The absorption peak of the first component member is shifted to a higher frequency side than the absorption peak of the second component member, and the absorption peak of the third component member is higher than the absorption peak of the fourth component member. The electromagnetic shielding door according to claim 1 , wherein the electromagnetic shielding door is shifted. 前記第2の構成部材は前記第1の構成部材よりも前記扉枠体の内部側に配置され、前記第4の構成部材は、前記第3の構成部材よりも前記扉本体の内部側に配置されていることを特徴とする請求項6に記載の電磁波シールド扉。 The second component member is arranged on the inner side of the door frame body than the first component member, and the fourth component member is arranged on the inner side of the door body than the third component member. The electromagnetic shielding door according to claim 6 , wherein the electromagnetic shielding door is provided. 前記第1の構成部材と前記第2の構成部材は金属膜で仕切られ、前記第3の構成部材と前記第4の構成部材は金属膜で仕切られていることを特徴とする請求項6に記載の電磁波シールド扉。 It said first component and said second component is partitioned by a metal film, in claim 6, wherein the third component and the fourth component is characterized by being partitioned by a metal film The electromagnetic shielding door described. 前記第1の構成部材は前記第2の構成部材よりも薄いことを特徴とする請求項6に記載の電磁波シールド扉。 The electromagnetic shielding door according to claim 6 , wherein the first component member is thinner than the second component member. 前記第1の電磁波吸収部材は前記第2の電磁波吸収部材よりも厚いことを特徴とする請求項6に記載の電磁波シールド扉。 The electromagnetic wave shielding door according to claim 6 , wherein the first electromagnetic wave absorbing member is thicker than the second electromagnetic wave absorbing member. 前記第1の電磁波吸収部材は第1の押さえ板によって前記扉枠体に取り付けられ、前記第2の電磁波吸収部材は第2の押さえ板によって前記扉本体に取り付けられていることを特徴とする請求項1に記載の電磁波シールド扉。   The first electromagnetic wave absorbing member is attached to the door frame body by a first pressing plate, and the second electromagnetic wave absorbing member is attached to the door body by a second pressing plate. Item 2. The electromagnetic shielding door according to Item 1. 金属でシールドされている扉枠体と、金属でシールドされ前記扉枠体から片開きする扉本体とを備えている電磁波シールド扉において、
前記扉枠体は、室内側側面部を囲む第1の弾性導電部材と、室外側側面部を囲む第2の弾性導電部材と、前記第1の弾性導電部材と前記第2の弾性導電部材の間に配設され側面部を囲む第1の電磁波吸収部材とを有しており、
前記扉本体は、室内側側面部を囲み前記第1の弾性導電部材と接触する第1の金属部材と、室外側側面部を囲み前記第2の弾性導電部材と接触する第2の金属部材と、前記第1の金属部材と前記第2の金属部材の間に配設され側面部を囲む第2の電磁波吸収部材とを有していて、
前記第1の電磁波吸収部材は電磁波に対する吸収ピークの位置が異なる第1の構成部材と第2の構成部材から構成され、前記第2の電磁波吸収部材は電磁波に対する吸収ピークの位置が異なる第3の構成部材と第4の構成部材から構成されていて、
前記第1の構成部材と前記第2の構成部材は前記扉枠体の側面部から前記扉枠体の内部側に向かう方向に積層され、前記第3の構成部材と前記第4の構成部材は前記扉本体の側面部から前記扉本体の内部側に向かう方向に積層されていて、
前記第1の構成部材と前記第2の構成部材は電磁波の進行方向と平行に積層され、前記第3の構成部材と前記第4の構成部材は電磁波の進行方向と平行に積層されていることを特徴とする電磁波シールド扉。
In an electromagnetic wave shield door comprising a door frame body shielded with metal and a door body shielded with metal and opened from the door frame body,
The door frame includes a first elastic conductive member surrounding the indoor side surface portion, a second elastic conductive member surrounding the outdoor side surface portion, the first elastic conductive member, and the second elastic conductive member. A first electromagnetic wave absorbing member disposed between and surrounding the side surface,
The door body includes a first metal member that surrounds the indoor side surface portion and contacts the first elastic conductive member, and a second metal member that surrounds the outdoor side surface portion and contacts the second elastic conductive member. And a second electromagnetic wave absorbing member disposed between the first metal member and the second metal member and surrounding the side surface portion ,
The first electromagnetic wave absorbing member includes a first constituent member and a second constituent member having different absorption peak positions for electromagnetic waves, and the second electromagnetic wave absorbing member has a third absorption peak position for electromagnetic waves different from each other. It is composed of a component member and a fourth component member,
The first component member and the second component member are stacked in a direction from the side surface portion of the door frame body toward the inner side of the door frame body, and the third component member and the fourth component member are Laminated in the direction from the side surface of the door body toward the inside of the door body,
The first component member and the second component member are stacked in parallel with the traveling direction of the electromagnetic wave, and the third component member and the fourth component member are stacked in parallel with the traveling direction of the electromagnetic wave. Electromagnetic shielding door characterized by.
金属でシールドされている扉枠体と、金属でシールドされ前記扉枠体から片開きする扉本体とを備えている電磁波シールド扉において、
前記扉枠体は、室内側側面部を囲む第1の金属部材と、室外側側面部を囲む第2の金属部材と、前記第1の金属部材と前記第2の金属部材の間に配設され側面部を囲む第1の電磁波吸収部材とを有しており、
前記扉本体は、室内側側面部を囲み前記第1の金属部材と接触する第1の弾性導電部材
と、室外側側面部を囲み前記第2の金属部材と接触する第2の弾性導電部材と、前記第1の弾性導電部材と前記第2の弾性導電部材の間に配設され側面部を囲む第2の電磁波吸収部材とを有していて、
前記第1の電磁波吸収部材は電磁波に対する吸収ピークの位置が異なる第1の構成部材と第2の構成部材から構成され、前記第2の電磁波吸収部材は電磁波に対する吸収ピークの位置が異なる第3の構成部材と第4の構成部材から構成されていて、
前記第1の構成部材と前記第2の構成部材は前記扉枠体の側面部から前記扉枠体の内部側に向かう方向に積層され、前記第3の構成部材と前記第4の構成部材は前記扉本体の側面部から前記扉本体の内部側に向かう方向に積層されていて、
前記第1の構成部材と前記第2の構成部材は電磁波の進行方向と平行に積層され、前記第3の構成部材と前記第4の構成部材は電磁波の進行方向と平行に積層されていることを特徴とする電磁波シールド扉。
In an electromagnetic wave shield door comprising a door frame body shielded with metal and a door body shielded with metal and opened from the door frame body,
The door frame is disposed between the first metal member surrounding the indoor side surface portion, the second metal member surrounding the outdoor side surface portion, and the first metal member and the second metal member. And a first electromagnetic wave absorbing member surrounding the side surface portion,
The door body includes a first elastic conductive member that surrounds the indoor side surface and contacts the first metal member, and a second elastic conductive member that surrounds the outdoor side surface and contacts the second metal member. And a second electromagnetic wave absorbing member disposed between the first elastic conductive member and the second elastic conductive member and surrounding a side surface portion ,
The first electromagnetic wave absorbing member includes a first constituent member and a second constituent member having different absorption peak positions for electromagnetic waves, and the second electromagnetic wave absorbing member has a third absorption peak position for electromagnetic waves different from each other. It is composed of a component member and a fourth component member,
The first component member and the second component member are stacked in a direction from the side surface portion of the door frame body toward the inner side of the door frame body, and the third component member and the fourth component member are Laminated in the direction from the side surface of the door body toward the inside of the door body,
The first component member and the second component member are stacked in parallel with the traveling direction of the electromagnetic wave, and the third component member and the fourth component member are stacked in parallel with the traveling direction of the electromagnetic wave. Electromagnetic shielding door characterized by.
前記第1の電磁波吸収部材と前記第2の電磁波吸収部材は、床側部、天井側部、および縦方向部から構成され、前記第1の電磁波吸収部材は、前記床側部が前記天井側部および前記縦方向部よりも薄く、前記第2の電磁波吸収部材は、前記床側部が前記天井側部および前記縦方向部よりも厚いことを特徴とする請求項1、12、13のいずれか1項に記載の電磁波シールド扉。 The first electromagnetic wave absorbing member and the second electromagnetic wave absorbing member are configured by a floor side portion, a ceiling side portion, and a vertical direction portion, and the floor side portion of the first electromagnetic wave absorbing member is on the ceiling side. 14. The structure according to claim 1 , wherein the second electromagnetic wave absorbing member has a floor side portion thicker than the ceiling side portion and the vertical direction portion. The electromagnetic shielding door of Claim 1.
JP2012011660A 2011-01-25 2012-01-24 Electromagnetic shield door Active JP5653372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012011660A JP5653372B2 (en) 2011-01-25 2012-01-24 Electromagnetic shield door

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011013142 2011-01-25
JP2011013142 2011-01-25
JP2012011660A JP5653372B2 (en) 2011-01-25 2012-01-24 Electromagnetic shield door

Publications (2)

Publication Number Publication Date
JP2012169604A JP2012169604A (en) 2012-09-06
JP5653372B2 true JP5653372B2 (en) 2015-01-14

Family

ID=46973434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012011660A Active JP5653372B2 (en) 2011-01-25 2012-01-24 Electromagnetic shield door

Country Status (1)

Country Link
JP (1) JP5653372B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5921326B2 (en) * 2012-05-14 2016-05-24 三菱電機株式会社 Electromagnetic shield door
JP6049396B2 (en) * 2012-10-23 2016-12-21 三菱電機株式会社 Electromagnetic attenuation structure and electromagnetic shield door
JP2017092145A (en) * 2015-11-05 2017-05-25 株式会社竹中工務店 Electromagnetic shield structure
JP6227099B1 (en) * 2016-12-13 2017-11-08 株式会社巴コーポレーション Opening and closing mechanism of radio wave absorption screen
JP7184466B2 (en) * 2020-01-06 2022-12-06 株式会社巴コーポレーション Electromagnetic wave shield structure

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6225920Y2 (en) * 1980-05-15 1987-07-02
JPS6017920Y2 (en) * 1980-06-27 1985-05-31 ティーディーケイ株式会社 Radio wave shielding structure of door handle
JPS57180206A (en) * 1981-04-13 1982-11-06 Secr Defence Brit Improvement in or relative to radio wave absorptive coating
JPS57180207A (en) * 1981-04-13 1982-11-06 Secr Defence Brit Improvement in or relative to absorptive coating to reduce reflection of radio wave antenna
JP2972305B2 (en) * 1989-11-29 1999-11-08 日本電気株式会社 Electromagnetic shielding body and enclosure for electromagnetic shielding
JPH06336774A (en) * 1993-05-28 1994-12-06 Fuji Seiko Honsha:Kk Door for radio wave shielding room or the like
JP2000232293A (en) * 1999-02-12 2000-08-22 Hitachi Metals Ltd Electromagnetic wave absorber
JP2001015980A (en) * 1999-06-29 2001-01-19 Daido Steel Co Ltd Wide-band absorptive electromagnetic-wave absorber and its manufacture
JP2002111269A (en) * 2000-09-28 2002-04-12 Takenaka Komuten Co Ltd Electromagnetic wave shielding door
JP2004119584A (en) * 2002-09-25 2004-04-15 Mitsubishi Cable Ind Ltd Radio wave absorption panel and its fixing structure
JP2004119894A (en) * 2002-09-27 2004-04-15 Nippon Muki Co Ltd Electromagnetic-wave absorber, and manufacturing method thereof
JP4736517B2 (en) * 2004-04-23 2011-07-27 横浜ゴム株式会社 Radio wave absorber
JP4809726B2 (en) * 2006-07-27 2011-11-09 ナブテスコ株式会社 Door frame of electromagnetic shielding door

Also Published As

Publication number Publication date
JP2012169604A (en) 2012-09-06

Similar Documents

Publication Publication Date Title
JP5653372B2 (en) Electromagnetic shield door
US8987610B2 (en) Vent structure for electromagnetic shielding
JPH08222880A (en) Emi shield surrounding body
KR20030065728A (en) Mwo door having attenuating filter
US8331105B2 (en) Circuit board and semiconductor device
JP2972305B2 (en) Electromagnetic shielding body and enclosure for electromagnetic shielding
JP6893303B2 (en) High frequency heating device
JP4487345B2 (en) Anechoic chamber
JP2010103421A (en) Electromagnetic shielding panel, and window member and structure using the electromagnetic shielding panel
JP2013102045A (en) Electromagnetic shield door
JP2008130979A (en) Electromagnetic wave shield structure
CN217903408U (en) Double-conductor isolator
JP5981466B2 (en) Planar transmission line waveguide converter
JP4249061B2 (en) High frequency module
CN210183792U (en) EMI electromagnetic shielding device for optical active device
JP6049396B2 (en) Electromagnetic attenuation structure and electromagnetic shield door
CN110891361A (en) Shielding structure of circuit board and electronic device with same
CN212135996U (en) Anti nuclear reinforced cable of absorbed layer structure
JPH0828590B2 (en) Leakage electromagnetic wave shielding structure
JP5845431B2 (en) High frequency heating device
JPWO2017163799A1 (en) High frequency heating device
JP2007315728A (en) High frequency heating device
JP3925342B2 (en) Electromagnetic shielding device and microwave oven
JPS6235232B2 (en)
JP2003046288A (en) Electromagnetic wave shielding device and electronic oven

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141118

R151 Written notification of patent or utility model registration

Ref document number: 5653372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250