JP5653120B2 - Magnetic element - Google Patents

Magnetic element Download PDF

Info

Publication number
JP5653120B2
JP5653120B2 JP2010177999A JP2010177999A JP5653120B2 JP 5653120 B2 JP5653120 B2 JP 5653120B2 JP 2010177999 A JP2010177999 A JP 2010177999A JP 2010177999 A JP2010177999 A JP 2010177999A JP 5653120 B2 JP5653120 B2 JP 5653120B2
Authority
JP
Japan
Prior art keywords
winding
magnetic
magnetic element
wound
dimension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010177999A
Other languages
Japanese (ja)
Other versions
JP2012038935A (en
Inventor
山家 孝志
孝志 山家
将寛 近藤
将寛 近藤
健太郎 大草
健太郎 大草
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2010177999A priority Critical patent/JP5653120B2/en
Publication of JP2012038935A publication Critical patent/JP2012038935A/en
Application granted granted Critical
Publication of JP5653120B2 publication Critical patent/JP5653120B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coils Or Transformers For Communication (AREA)

Description

本発明は、磁性体と巻き線とが一体で成形される磁性素子に関し、特に電気自動車やハイブリッド自動車等の車体駆動動力用モーターの電力変換装置であるインバータの昇圧回路などに用いて、好適な大電流通電や高電圧印加などに対応するリアクトル等の磁性素子に関する。   The present invention relates to a magnetic element in which a magnetic body and a winding are integrally formed, and is particularly suitable for use in a booster circuit of an inverter that is a power conversion device for a vehicle driving power motor such as an electric vehicle or a hybrid vehicle. The present invention relates to a magnetic element such as a reactor that can be used for energizing a large current or applying a high voltage.

従来この種の磁性素子は、磁性体と巻き線とにより構成される。磁性体としては直流電流重畳特性のよいFe−Si系の合金などを用いた積層電磁鋼板、圧粉ダスト、注型体などによるものが用いられ、巻き線としては平角線をエッジワイズ形状に巻回したものなどが知られている。   Conventionally, this type of magnetic element is composed of a magnetic body and windings. Magnetic materials such as laminated electrical steel sheets, compacted dust, and cast bodies using Fe-Si alloys with good direct current superposition characteristics are used, and rectangular wires are wound in an edgewise shape. What is turned is known.

このような磁性素子に対して、磁気特性はもちろんであるが、インバータ等の機器内での許容空間への適合や、冷却効率なども含めた最適設計が要求されている。また、今後の環境に配慮した製品の面から、より小型で低コストである磁性素子が求められている。   For such a magnetic element, not only the magnetic characteristics, but also an optimum design including an adaptation to an allowable space in a device such as an inverter and a cooling efficiency is required. Further, from the viewpoint of future environmentally friendly products, there is a demand for magnetic elements that are smaller and less expensive.

磁性素子として求められる性能の一つに冷却性能があり、例えば、冷却性能を高めるために冷却部材を追加したリアクトルがある(特許文献1)。   One of the performances required as a magnetic element is cooling performance. For example, there is a reactor in which a cooling member is added to improve cooling performance (Patent Document 1).

また、磁気特性の面から、交流抵抗を緩和すべく、リッツ線を平行な束状に被覆固定した集合線材とし、平角線をエッジワイズ形状に巻いて、巻き線を形成する方法が知られている(特許文献2)。   Also, from the aspect of magnetic properties, there is known a method of forming windings by forming aggregate wires in which litz wires are covered and fixed in parallel bundles in order to reduce AC resistance, and winding rectangular wires in an edgewise shape. (Patent Document 2).

さらに、低コスト化の点では有利な丸線を用い、多層に巻回されたインダクタが開示されている(特許文献3)。   Furthermore, an inductor wound in multiple layers using a round wire advantageous in terms of cost reduction is disclosed (Patent Document 3).

特開2007―335833号公報JP 2007-335833 A 特開平10−22131号公報Japanese Patent Laid-Open No. 10-22131 特開平5―291046号公報JP-A-5-291046

ところが、平角線による巻き線は占積率が高く、巻き線自体の小型化には有効であるが、種々の問題がある。例えば、巻き線の方法として、図5、図6がある。図5は、従来の第1の例における磁性素子の断面図である。図6は、従来の第2の例における磁性素子の断面図である。図5の磁性素子30は、巻き線21と、これを巻回したボビン等の絶縁部材23と、これらを注型する磁性体2とで構成される。また、図6の磁性素子40は、巻き線31と、これを巻回したボビン等の絶縁部材33と、これらを注型する磁性体2とで構成される。許容空間として床面積を小さくせざるを得ない場合は、図5に示すように、素子として、立方体に近い外径比とし側面や内面からの放熱性能を検討する必要があるが、冷却面が大きく確保できる場合は、図6に示すように、冷却面に接地する面が最大面である直方体のような外径比とし、換言すると冷却面に対し扁平な構成とすることが望ましい。   However, winding with a rectangular wire has a high space factor and is effective in reducing the size of the winding itself, but has various problems. For example, there are FIGS. 5 and 6 as winding methods. FIG. 5 is a cross-sectional view of a magnetic element in a first conventional example. FIG. 6 is a cross-sectional view of a magnetic element in a second conventional example. The magnetic element 30 in FIG. 5 includes a winding 21, an insulating member 23 such as a bobbin around which the winding 21 is wound, and a magnetic body 2 that casts them. Further, the magnetic element 40 of FIG. 6 includes a winding 31, an insulating member 33 such as a bobbin around which the winding 31 is wound, and the magnetic body 2 that casts them. When the floor area must be reduced as an allowable space, as shown in FIG. 5, it is necessary to consider the heat dissipation performance from the side surface and the inner surface as the element with an outer diameter ratio close to that of a cube. In the case where a large amount can be secured, as shown in FIG. 6, it is desirable to have an outer diameter ratio like a rectangular parallelepiped whose surface to be grounded on the cooling surface is the maximum surface, in other words, a configuration that is flat with respect to the cooling surface.

また、特許文献1のように、平角線をエッジワイズ形状に巻く場合、例えば図5のような平角線素線の断面のアスペクトが10程度までの平角線をエッジワイズに巻き線することは可能であるが、図6のようにアスペクトの高い断面のものをエッジワイズに巻き線することは困難であるように、平角線自体の断面のアスペクト比と、エッジワイズ形状に変形させつつ巻き線できる範囲に制約があることと、巻き高さは外径が限られた範囲においては、必要な巻き数にて確定してしまうため、高さ方向における自由度が小さく、端末の取り出し方向の制約もあることから、結果として巻き線の高さは高くなってしまい、前述のような冷却効率に関して最適な形状が得難いという問題があった。   Also, as in Patent Document 1, when winding a rectangular wire in an edgewise shape, for example, a rectangular wire having a cross-sectional aspect of up to about 10 as shown in FIG. 5 can be wound edgewise. However, as shown in FIG. 6, it is difficult to wind a cross-section having a high aspect ratio edgewise, so that it can be wound while being deformed into the aspect ratio of the cross section of the rectangular wire itself and the edgewise shape. Since there are restrictions on the range and the winding height is determined by the required number of windings in a range where the outer diameter is limited, the degree of freedom in the height direction is small, and there is also a restriction on the direction of taking out the terminal. Therefore, as a result, the height of the winding is increased, and there is a problem that it is difficult to obtain an optimum shape with respect to the cooling efficiency as described above.

さらに、平角線はコストが高い。一方、丸線はコストが低いが、巻き線としたときの占積率が低いこと、平角線と同等の直流抵抗の直径のものを用いると表皮効果による損失、近接効果による損失により交流抵抗が高くなるという問題があった。   Furthermore, the flat wire is expensive. On the other hand, the round wire is low in cost, but the space factor when it is wound is low, and if a wire with the same DC resistance diameter as that of a flat wire is used, the AC resistance is reduced by the skin effect and the proximity effect. There was a problem of becoming higher.

特許文献2では、交流抵抗を緩和する構造が採用されている。しかし、特許文献2の構造では、平行な束状に被覆固定した集合線材を製造すること自体でコストが発生することと、平行を維持するための周囲の被覆部材により占積率が低下すること、および平角線の場合は銅などの金属の塑性変形と高い弾性を利用し形状を維持させるのに対し、樹脂による被覆の集合線材のため樹脂の弾性があり、エッジワイズ形状の巻き線として形状を保持すること自体が難しかった。   In patent document 2, the structure which relieves alternating current resistance is employ | adopted. However, in the structure of Patent Document 2, the cost itself is produced by manufacturing the aggregated wire covered and fixed in parallel bundles, and the space factor is reduced by the surrounding covering members for maintaining parallelism. In the case of rectangular wires, the shape is maintained as an edgewise winding because there is a resin-coated aggregate wire that maintains the shape using plastic deformation and high elasticity of metals such as copper. It was difficult to hold itself.

さらに、磁気特性の面からは、巻き線の巻回軸を含む巻き線の断面において、巻回軸と平行な方向の寸法を縦寸法、垂直な方向の寸法を横寸法としたとき、縦寸法/横寸法の比が約1において、インダクタンスは最も高く、磁性体を含む磁性素子自体の体積も小さくすることが可能である。しかし、平角線の場合、前述のとおり最適な縦寸法/横寸法の比にて構成することは難しい。   Furthermore, in terms of magnetic properties, in the cross section of the winding including the winding axis of the winding, when the dimension in the direction parallel to the winding axis is the vertical dimension and the dimension in the vertical direction is the horizontal dimension, the vertical dimension / When the ratio of the lateral dimensions is about 1, the inductance is the highest, and the volume of the magnetic element itself including the magnetic material can be reduced. However, in the case of a rectangular wire, it is difficult to configure with the optimum ratio of vertical dimension / horizontal dimension as described above.

また、磁性素子において、(端子間の電圧/巻き数)分の電圧が1ターンあたりの線間電圧である。平角線をエッジワイズ形状に巻回する場合、必然的に各線は巻きはじめ側から順次隣り合う配列となり、線間電圧は巻き数分の一であるため十分に小さく問題とならないが、特許文献3のように、丸線を巻回する場合、巻きはじめ側の周と巻き終わり側の周とが接触し、これらの線間電圧は高いためレイヤーショートを起こす可能性があり、設計と製造管理には十分に注意する必要があった。   In the magnetic element, the voltage corresponding to (voltage between terminals / number of turns) is the line voltage per turn. When a rectangular wire is wound in an edgewise shape, each wire is inevitably arranged sequentially from the winding start side, and the line voltage is a fraction of the number of turns. When winding a round wire like this, the circumference on the winding start side and the circumference on the winding end side are in contact, and the voltage between these lines is high, which may cause a layer short-circuit. Needed to be careful.

このように小型で低コストな磁性素子を得るためには、磁気特性と冷却性能を向上させるために低背構造の巻き線が容易に製造できることと、低コストな丸線を用いながらも交流抵抗とレイヤーショートを悪化させないことなどを同時に満足させることが重要である。   In order to obtain such a small and low-cost magnetic element, it is possible to easily manufacture a low-profile winding to improve magnetic characteristics and cooling performance, and to use an AC resistance while using a low-cost round wire. It is important to satisfy the requirements such as not worsening the layer short.

本発明は、上記の課題を解決し、最適なインダクタンスが得られ、レイヤーショートを生じさせず、さらに冷却性能がよく、その上小型で、安価な磁性素子を提供することを目的とする。   An object of the present invention is to solve the above-described problems, and to provide an optimal magnetic element that can obtain an optimum inductance, does not cause a layer short, has a good cooling performance, and is small and inexpensive.

本発明によれば、比透磁率が640以下の磁性体と、前記磁性体の内部に形成された、丸線からなる素線を2本以上同時に巻回した巻き線とにより構成され、前記素線は、表皮厚み=1/(πfμσ) 1/2 (周波数f、比透磁率μ、導電率σ)で計算される導体直径を1としたとき0.9以下であり、巻回軸を含む前記巻き線の断面において前記巻回軸と平行な配列で整列巻きされ、前記巻き線の内周から外周に向かって巻回され、前記巻回軸と平行な方向の寸法を縦寸法、前記巻回軸に垂直な方向の寸法を横寸法としたとき、縦寸法/横寸法の比が0.3〜5となるよう構成されたことを特徴とする磁性素子が得られる。なお、横寸法は、巻き線の(外径−内径)/2である。 According to the present invention, the relative permeability is 640 or less of the magnetic material, the magnetic body inside which is formed of, is constituted by the windings of the wire made of round wire by turning two or more simultaneous winding, pre Symbol element lines, skin thickness = 1 / (πfμσ) 1/2 (frequency f, relative permeability mu, the conductivity sigma) is 0.9 or less when the 1 conductor diameter which is calculated by the winding shaft In a cross section of the winding, the winding is aligned in an arrangement parallel to the winding axis, wound from the inner periphery to the outer periphery of the winding, the dimension in the direction parallel to the winding axis, the vertical dimension, A magnetic element characterized in that the ratio of the vertical dimension / horizontal dimension is 0.3 to 5 when the dimension in the direction perpendicular to the winding axis is the horizontal dimension is obtained. The horizontal dimension is (outer diameter−inner diameter) / 2 of the winding.

また、本発明によれば、前記整列巻きで巻回された巻き線が、2層以上の前記素線により構成されていることを特徴とする上記の磁性素子が得られる。   In addition, according to the present invention, there is obtained the magnetic element described above, wherein the winding wound by the aligned winding is constituted by two or more layers of the strands.

また、本発明によれば、前記磁性体を注型することにより得られることを特徴とする上記の磁性素子が得られる。   In addition, according to the present invention, it is possible to obtain the above-described magnetic element obtained by casting the magnetic material.

本発明によれば、最適なインダクタンスが得られ、レイヤーショートを生じさせず、さらに冷却性能がよく、その上小型で、安価な磁性素子を提供することができる。   According to the present invention, an optimal inductance can be obtained, a layer short-circuit can be prevented, a cooling performance can be improved, and a small and inexpensive magnetic element can be provided.

即ち、本発明の磁性素子によれば、巻き線の高さを低背にできる。また、安価な丸線を使用しても交流抵抗とレイヤーショートを悪化させない。また、占積率が低下しても最適なインダクタンスが得られる。また、冷却面に対し扁平な構成としたため、冷却性能がよい。以上から、小型、安価で、高性能な磁性素子を得ることができる。   That is, according to the magnetic element of the present invention, the height of the winding can be reduced. Moreover, even if an inexpensive round wire is used, the AC resistance and the layer short-circuit are not deteriorated. Even if the space factor decreases, an optimum inductance can be obtained. In addition, since the configuration is flat with respect to the cooling surface, the cooling performance is good. From the above, a small, inexpensive and high-performance magnetic element can be obtained.

本発明は、インダクタのみでなく、トランス、モーターなどにも応用できる。   The present invention can be applied not only to inductors but also to transformers and motors.

本発明の一実施の形態における磁性素子に用いられるボビンへの巻き線の方法を説明する斜視図。図1(a)は、巻き始めの状態を示す図。図1(b)は、巻回途中の状態を示す図。図1(c)は、巻き終わりの状態を示す図。The perspective view explaining the method of winding to the bobbin used for the magnetic element in one embodiment of the present invention. Fig.1 (a) is a figure which shows the state of a winding start. FIG.1 (b) is a figure which shows the state in the middle of winding. FIG.1 (c) is a figure which shows the state of the end of winding. 本発明の一実施の形態における磁性素子の断面図。1 is a cross-sectional view of a magnetic element according to an embodiment of the present invention. 本発明の他の実施の形態における磁性素子に用いられるボビンへの巻き線を施した状態を示す斜視図。The perspective view which shows the state which gave the winding to the bobbin used for the magnetic element in other embodiment of this invention. 巻き線の縦寸法/横寸法に対するインダクタンスと磁性素子体積、直流抵抗の関係を示す図。The figure which shows the relationship of the inductance with respect to the vertical dimension / horizontal dimension of a winding, a magnetic element volume, and DC resistance. 従来の第1の例における磁性素子の断面図。Sectional drawing of the magnetic element in the conventional 1st example. 従来の第2の例における磁性素子の断面図。Sectional drawing of the magnetic element in the conventional 2nd example. 従来の第3の例における磁性素子の断面図。Sectional drawing of the magnetic element in the conventional 3rd example.

以下、本発明の実施の形態を説明する。図1は、本発明の一実施の形態における磁性素子に用いられるボビンへの巻き線の方法を説明する斜視図であり、図1(a)は、巻き始めの状態を示す図、図1(b)は、巻回途中の状態を示す図、図1(c)は、巻き終わりの状態を示す図である。図2は、本発明の一実施の形態における磁性素子の断面図である。   Embodiments of the present invention will be described below. FIG. 1 is a perspective view illustrating a method of winding a bobbin used in a magnetic element according to an embodiment of the present invention. FIG. 1 (a) is a diagram illustrating a state of starting winding, and FIG. b) is a diagram showing a state in the middle of winding, and FIG. 1 (c) is a diagram showing a state at the end of winding. FIG. 2 is a cross-sectional view of a magnetic element according to an embodiment of the present invention.

図2に示すように、本発明の実施の形態における磁性素子10は、巻き線1と、これを巻回したボビン等の絶縁部材3と、これらを注型する磁性体2とで構成したものである。巻き線1を巻回した絶縁部材をケース(図示せず)にセットした後、磁性体のスラリーを所定量流し込み、その後加熱し硬化させることにより磁性素子10が得られる。   As shown in FIG. 2, a magnetic element 10 according to an embodiment of the present invention is composed of a winding 1, an insulating member 3 such as a bobbin around which the winding 1 is wound, and a magnetic body 2 for casting them. It is. After setting the insulating member wound with the winding 1 in a case (not shown), a predetermined amount of magnetic slurry is poured, and then heated and cured to obtain the magnetic element 10.

本発明における磁性体2は、例えばFe−Si系、Fe−Si−Al系などの鉄系の磁性粉末と熱硬化性などの液状の樹脂を混合しスラリー状としたコンポジット磁性体を用いることができる。鉄系の磁性粉末は非鉄成分を含有することにより飽和磁歪および結晶磁気異方性が小さくなる組成があり鉄損は小さくできるが、逆に非鉄成分が多くなると飽和磁束密度が低下し、磁性素子としたときの磁気飽和が生じやすくなるため非鉄成分種と含有量は用途により適宜選択される。熱硬化性の樹脂はスラリーとしたときの流動性が十分であるよう低粘度のものが好ましい。また、熱硬化性樹脂の硬化後の弾性率、破壊強度、破断伸びなどの機械的性質は磁性素子として使用される通電条件による発熱と、使用環境、冷却機構などによる温度上昇に対し、十分な耐熱性と耐寒性を有するとともに、熱ストレスによる破壊が生じないことが必要であり、例えば破壊強度が大きいエポキシ樹脂や破断伸びが大きいシリコーン樹脂などを用いることができる。   As the magnetic body 2 in the present invention, for example, a composite magnetic body in which an iron-based magnetic powder such as Fe-Si or Fe-Si-Al is mixed with a liquid resin such as thermosetting is used as a slurry. it can. Iron-based magnetic powders contain a non-ferrous component and have a composition that reduces saturation magnetostriction and magnetocrystalline anisotropy, and iron loss can be reduced, but conversely as the non-ferrous component increases, the saturation magnetic flux density decreases and the magnetic element Therefore, the non-ferrous component species and content are appropriately selected depending on the application. The thermosetting resin is preferably a low-viscosity resin so as to have sufficient fluidity when made into a slurry. In addition, the mechanical properties of the thermosetting resin after curing, such as elastic modulus, fracture strength, and elongation at break, are sufficient for heat generation due to energizing conditions used as magnetic elements and temperature rise due to usage environment, cooling mechanism, etc. It is necessary to have heat resistance and cold resistance and not to be broken by thermal stress. For example, an epoxy resin having a high breaking strength or a silicone resin having a high breaking elongation can be used.

図1(a)に示すように、絶縁部材3は、円筒体の両端と、この両端を2分割した中央の位置とに3枚の鍔3a、3b、3cが設けられている。一端の鍔3aと中央の鍔3bの外周方向に延在させて、巻き線1を貫通させる孔を有する固定部3a1、3b1がそれぞれ設けられている。また、中央の鍔3bの円筒体と接する部分に、巻き線1を貫通させる孔を有する固定部3b2が設けられている。固定部3a1、3b2と、3b2、3b1とは中心からのなす角がそれぞれ約20度で形成されている。   As shown in FIG. 1A, the insulating member 3 is provided with three flanges 3a, 3b, and 3c at both ends of the cylindrical body and at a central position obtained by dividing the both ends into two. Fixing portions 3a1 and 3b1 having holes through which the winding wire 1 passes are provided so as to extend in the outer peripheral direction of the flange 3a at one end and the central flange 3b. In addition, a fixing portion 3b2 having a hole through which the winding wire 1 passes is provided at a portion of the central flange 3b that contacts the cylindrical body. The fixed portions 3a1, 3b2 and 3b2, 3b1 are formed at an angle of about 20 degrees from the center.

本発明の磁性素子に用いられる絶縁部材への巻き線は、次のようにして行われる。まず、図1(a)に示すように、絶縁部材3の下段の巻き線部、即ち鍔3b、3c間に、複数の素線(図では6本)からなる巻き線1の一端を1ターン施した後、巻き線1の他端を、固定部3b2の孔に鍔3cから鍔3aの方向に通し、上段の巻き線部、即ち鍔3a、3b間に導入する。次いで、図1(b)に示すように、絶縁部材3の鍔3b、3c間、鍔3a、3b間にそれぞれ互いに反対方向になるように巻回する。最後に、図1(c)に示すように、巻き線1の一端を、絶縁部材3の鍔3bに設けられた固定部3b1の孔に、他端を鍔3aに設けられた固定部3a1の孔にそれぞれ通し、端末を圧着端子等で処理し、端子4とする。   The winding to the insulating member used for the magnetic element of the present invention is performed as follows. First, as shown in FIG. 1 (a), one end of the winding 1 composed of a plurality of strands (six wires in the figure) is placed one turn between the lower winding portions of the insulating member 3, that is, the flanges 3b and 3c. After applying, the other end of the winding 1 is passed through the hole of the fixing portion 3b2 in the direction from the flange 3c to the flange 3a, and is introduced between the upper winding portions, that is, between the flanges 3a and 3b. Next, as shown in FIG. 1 (b), the insulating member 3 is wound so as to be opposite to each other between the flanges 3b and 3c and between the flanges 3a and 3b. Finally, as shown in FIG. 1 (c), one end of the winding 1 is inserted into the hole of the fixing portion 3b1 provided in the flange 3b of the insulating member 3, and the other end of the fixing portion 3a1 provided in the flange 3a. Each terminal is passed through the hole, and the terminal is processed with a crimp terminal or the like to form a terminal 4.

本発明における絶縁部材3には、例えば、フェノール樹脂、エポキシ樹脂等が使用できる。   For the insulating member 3 in the present invention, for example, phenol resin, epoxy resin or the like can be used.

次に、1段の例を示す。図3は、本発明の他の実施の形態における磁性素子に用いられるボビンへ巻き線を施した状態を示す斜視図である。図3に示すように、絶縁部材13は、円筒体の両端に2枚の鍔13a、13bが設けられている。一端の鍔13aの内周方向に延在させて、巻き線1を貫通させる孔を有する固定部13a1がそれぞれ設けられている。   Next, an example of one stage is shown. FIG. 3 is a perspective view showing a state in which a bobbin used in a magnetic element according to another embodiment of the present invention is wound. As shown in FIG. 3, the insulating member 13 is provided with two ridges 13a and 13b at both ends of the cylindrical body. Fixed portions 13a1 each having a hole extending through the winding 1 and extending in the inner peripheral direction of the flange 13a at one end are provided.

絶縁部材13の巻き線部、即ち鍔13a、13b間に、複数の素線(図では6本)からなる巻き線11の一端を1ターン施した後、固定部13a1の孔に鍔13bから鍔13aの方向に通すことにより巻き線が行われる。   One end of the winding wire 11 composed of a plurality of strands (six wires in the figure) is applied between the winding portions of the insulating member 13, that is, the flanges 13a and 13b, and then the hole from the flange 13b to the hole of the fixing portion 13a1. Winding is performed by passing in the direction of 13a.

以下、本発明の実施例の磁性素子について図面を参照し説明する。   Hereinafter, magnetic elements according to embodiments of the present invention will be described with reference to the drawings.

参考例1)
参考例では、外径27mm、内径15mm、高さ12mmのトロイダルコアに直径0.8mmの銅線をほぼ均等な線間間隔となるよう20ターン巻回しインダクタンスを測定した。次に同じトロイダルコアに同じく直径0.8mmの銅線を用い20ターンの巻き線を巻き線が密着するように集中的に巻き回しインダクタンスを測定した。このとき巻き線はトロイダルコアの全周において約1/3程度の範囲に集中的に巻回されている。次に、上記トロイダルコアに巻き線を施した状態にて、同じ材質の巻き線を施していないトロイダルコアを前記巻き線を施したトロイダルコアの外部にサンドイッチ状に配置してインダクタンスを測定した。トロイダルコアに用いた磁性体のμを表1に示す。
( Reference Example 1)
In this reference example, a copper wire having a diameter of 0.8 mm was wound around a toroidal core having an outer diameter of 27 mm, an inner diameter of 15 mm, and a height of 12 mm, and the inductance was measured by winding 20 turns so as to obtain a substantially uniform line spacing. Next, a copper wire having a diameter of 0.8 mm was similarly used on the same toroidal core, and 20 turns were concentratedly wound so that the windings were in close contact, and the inductance was measured. At this time, the winding is intensively wound in a range of about 1/3 around the entire circumference of the toroidal core. Next, in a state where the toroidal core was wound, a toroidal core not wound with the same material was disposed outside the toroidal core subjected to the winding, and the inductance was measured. Table 1 shows μ of the magnetic material used for the toroidal core.

Figure 0005653120
Figure 0005653120

表1に示すように、μが高いコアにおいては巻き線を均等に巻回したときと集中的に巻回したときのインダクタンスの変化は2.5%程度と小さく、外部にトロイダルコアを配置してもインダクタンスの変化はほとんどない。しかし、μが低いコアにおいては、巻き線を集中的に巻回したときのインダクタンスの増加は大きく、外部にトロイダルコアを配置したときのインダクタンスの増加も大きい。   As shown in Table 1, in the core with high μ, the change in inductance when winding is uniformly wound and when it is intensively wound is as small as about 2.5%, and a toroidal core is arranged outside. However, there is almost no change in inductance. However, in the core having a low μ, the increase in inductance when the winding is intensively wound is large, and the increase in inductance when the toroidal core is arranged outside is also large.

この理由は、μが高いコアにおいてはコアを周回する磁気抵抗が十分に小さいため、磁束はコアの内部を周回するのに対し、μが低いコアにおいては、コア内を周回する磁気抵抗よりも巻き線外部のμが1の空気中を短絡し周回するほうが磁気抵抗が低くなる要素が増加するためである。このことは、巻き線の外部にトロイダルコアを配置するとインダクタンスが上昇することからも明らかである。   This is because, in a core with a high μ, the magnetic resistance that circulates around the core is sufficiently small, so that the magnetic flux circulates inside the core, whereas in a core with a low μ, the magnetic resistance circulates in the core. This is because the number of elements that lower the magnetic resistance increases when short circuiting around the air with μ of 1 outside the winding. This is clear from the fact that the inductance increases when the toroidal core is disposed outside the winding.

つまりμが640以下の磁性材を用いる場合、磁路となるコアの全周に巻き線を配置すると漏れ磁束を低減することができるが、磁路となるコアの全周に巻き線を配置できない場合、本例のごとく、巻き線の外部にも磁性材を配置し磁路を形成する例えばポットタイプなどのコア形状が有利となる。   That is, when using a magnetic material with μ of 640 or less, if a winding is arranged around the entire core of the magnetic path, leakage magnetic flux can be reduced, but no winding can be arranged around the entire core of the magnetic path. In this case, as in this example, a core shape such as a pot type in which a magnetic material is arranged outside the winding to form a magnetic path is advantageous.

参考例2)
巻き線の巻き窓の面積(縦寸法×横寸法)を270mmとし、巻き線の平均径が70mm(巻き線平均径が一定)の円とし、任意の縦寸法/横寸法に対する巻き線のインダクタンスと磁性素子体積、巻き線の直流抵抗の計算値を図4に示す。体積と直流抵抗は幾何的計算による。インダクタンスの計算は、九州大学柁川[低温工学,Vol.30,No.7(1995)pp.324−332]による。その際、巻き線の外径に対し、磁性素子における磁性体の厚みは8mmで一定のポットタイプのコア形状とした。基本的に巻き線のインダクタンスが高いほど、磁性素子としたときのインダクタンスは高くなるため巻き線のインダクタンスは高い方が望ましい。
( Reference Example 2)
The area of the winding window (vertical dimension × horizontal dimension) is 270 mm 2 , the winding has an average diameter of 70 mm (the winding average diameter is constant), and the winding inductance for any vertical / horizontal dimension. FIG. 4 shows calculated values of the magnetic element volume and the DC resistance of the winding. Volume and direct current resistance are geometric calculations. Inductance calculation was performed by Kyushu University [Kyoto University [Cryogenic Engineering, Vol. 30, no. 7 (1995) p. 324-332]. At that time, the thickness of the magnetic body in the magnetic element was 8 mm with respect to the outer diameter of the winding, and a constant pot type core shape was used. Basically, the higher the winding inductance, the higher the inductance when the magnetic element is used.

図4に示すとおり、インダクタンスはアスペクト比が1において最大であり、0.3未満と5を超えた場合にてインダクタンスの低下が10%以上となり、好ましくない。   As shown in FIG. 4, the inductance is maximum when the aspect ratio is 1, and when the ratio is less than 0.3 and exceeds 5, the decrease in inductance becomes 10% or more, which is not preferable.

(実施例3)
0.8×9mmの平角線とほぼ同等の断面積となる直径とバイファイラ巻きの本数の丸線を用い、内径56mm高さ18mmにて約27ターン巻回し、図3の磁性素子を作製し、インダクタンスを測定した。その結果を表2に示す。10kHzでの銅の表皮深さは0.66mmであり直径が1.3mmにて表皮損失の影響は小さいはずであるが、実際は1.3mmにて交流抵抗は直流抵抗の10倍を超えてしまい実用上問題があり、計算上の0.9倍に相当する1.2mm以下であることが望ましい。
Example 3
Using a round wire of a diameter and a number of bifilar windings having a cross-sectional area substantially equal to a 0.8 × 9 mm rectangular wire, winding about 27 turns with an inner diameter of 56 mm and a height of 18 mm, the magnetic element of FIG. Inductance was measured. The results are shown in Table 2. The skin depth of copper at 10 kHz is 0.66 mm, and the influence of skin loss should be small when the diameter is 1.3 mm. However, at 1.3 mm, the AC resistance actually exceeds 10 times the DC resistance. There is a problem in practical use, and it is desirable that it is 1.2 mm or less corresponding to 0.9 times in calculation.

Figure 0005653120
Figure 0005653120

(実施例4)
丸線の素線の直径1mm、バイファイラ巻きの本数を6本とし、図1のような整列巻きと図7のようなバラ巻きにて巻き線を作製し、周囲にコンポジット磁性体を注型してインダクタを各10個ずつ作製し、レイヤーショート試験を行った。図7の磁性素子50は、巻き線41と、これを巻回したボビン等の絶縁部材43と、これらを注型する磁性体2とで構成した。巻き線の巻き数は28ターン、内径は56mm、巻き高さ14mm、整列巻きは14ターンを1層とし、2層(2段を重ねて配置)を直列に接続した。
Example 4
The diameter of the round wire is 1 mm, the number of bifilar windings is 6, and the windings are made with aligned windings as shown in FIG. 1 and loose windings as shown in FIG. 7, and a composite magnetic material is cast around them. 10 inductors were manufactured for each, and a layer short test was conducted. The magnetic element 50 in FIG. 7 is composed of a winding 41, an insulating member 43 such as a bobbin around which the winding 41 is wound, and the magnetic body 2 that casts them. The number of windings was 28 turns, the inner diameter was 56 mm, the winding height was 14 mm, and the aligned winding had 14 turns as one layer, and two layers (two layers stacked) were connected in series.

Figure 0005653120
Figure 0005653120

表3に示すとおり、本発明による整列巻きにより作製したインダクタはレイヤーショートを生じないことがわかる。   As shown in Table 3, it can be seen that the inductor produced by the aligned winding according to the present invention does not cause a layer short circuit.

なお、本発明は、上述した実施の形態及び実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能である。   The present invention is not limited to the above-described embodiments and examples, and various modifications can be made without departing from the gist of the present invention.

1、11、21、31、41 巻き線
2 磁性体
3、13、23、33、43 絶縁部材
3a、3b、3c、13a、13b 鍔
3a1、3b1、3b2、13a1 固定部
4 端子
10、20、30、40、50 磁性素子
1, 11, 21, 31, 41 Winding 2 Magnetic bodies 3, 13, 23, 33, 43 Insulating members 3a, 3b, 3c, 13a, 13b 鍔 3a1, 3b1, 3b2, 13a1 Fixed portion 4 Terminals 10, 20, 30, 40, 50 Magnetic element

Claims (3)

比透磁率が640以下の磁性体と、前記磁性体の内部に形成された、丸線からなる素線を2本以上同時に巻回した巻き線とにより構成され、
記素線は
表皮厚み=1/(πfμσ) 1/2 (周波数f、比透磁率μ、導電率σ)で計算される導体直径を1としたとき0.9以下であり、
巻回軸を含む前記巻き線の断面において前記巻回軸と平行な配列で整列巻きされ、前記巻き線の内周から外周に向かって巻回され、
前記巻回軸と平行な方向の寸法を縦寸法、前記巻回軸に垂直な方向の寸法を横寸法としたとき、縦寸法/横寸法の比が0.3〜5となるよう構成されたことを特徴とする磁性素子。
A magnetic material having a relative permeability of 640 or less, and a winding formed by winding two or more strands made of a round wire at the same time inside the magnetic material;
Before Kimoto line,
Skin thickness = 1 / (πfμσ) 1/2 (frequency f, relative magnetic permeability μ, conductivity σ) When the conductor diameter calculated as 1 is 0.9 or less,
In the cross section of the winding including the winding axis, the winding is aligned and arranged in an array parallel to the winding axis, and is wound from the inner circumference toward the outer circumference of the winding,
When the dimension in the direction parallel to the winding axis is the vertical dimension and the dimension in the direction perpendicular to the winding axis is the horizontal dimension, the ratio of the vertical dimension / horizontal dimension is 0.3 to 5. A magnetic element characterized by the above.
前記整列巻きで巻回された巻き線が、2層以上の前記素線により構成されていることを特徴とする請求項1に記載の磁性素子。 The magnetic element according to claim 1, wherein the winding wound by the aligned winding is composed of two or more layers of the strands. 前記磁性体を注型することにより得られることを特徴とする請求項1又は2に記載の磁性素子。 Magnetic element according to claim 1 or 2, characterized in that it is obtained by casting the magnetic material.
JP2010177999A 2010-08-06 2010-08-06 Magnetic element Active JP5653120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010177999A JP5653120B2 (en) 2010-08-06 2010-08-06 Magnetic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010177999A JP5653120B2 (en) 2010-08-06 2010-08-06 Magnetic element

Publications (2)

Publication Number Publication Date
JP2012038935A JP2012038935A (en) 2012-02-23
JP5653120B2 true JP5653120B2 (en) 2015-01-14

Family

ID=45850601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010177999A Active JP5653120B2 (en) 2010-08-06 2010-08-06 Magnetic element

Country Status (1)

Country Link
JP (1) JP5653120B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7117725B2 (en) * 2018-01-18 2022-08-15 株式会社ダイヘン Inductor, device with inductor, and method for manufacturing inductor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6266534A (en) * 1985-09-19 1987-03-26 Matsushita Electric Ind Co Ltd Choke coil for magnetron
JP3614227B2 (en) * 1996-01-12 2005-01-26 東洋電機製造株式会社 Air core reactor for power converter
JPH11251158A (en) * 1998-03-03 1999-09-17 Harness Syst Tech Res Ltd High-frequency winding
JP2006004958A (en) * 2003-06-12 2006-01-05 Nec Tokin Corp Magnetic core and coil component using the same
JP2006156737A (en) * 2004-11-30 2006-06-15 Toko Inc Wire-wound type inductor
JP4748397B2 (en) * 2006-12-08 2011-08-17 住友電気工業株式会社 Soft magnetic composite materials for reactors and reactors
JP5079316B2 (en) * 2006-12-08 2012-11-21 Necトーキン株式会社 Inductance element

Also Published As

Publication number Publication date
JP2012038935A (en) 2012-02-23

Similar Documents

Publication Publication Date Title
KR102122813B1 (en) Optimal inductor
JP2007181303A (en) Motor
JP5843124B2 (en) Core manufacturing method
JP6092862B2 (en) Coiled member and coil device
JP2010124636A (en) Coil unit and stator
US9330834B2 (en) Reactor
JP2012069786A (en) Reactor
JP5653120B2 (en) Magnetic element
JP2013179259A (en) Reactor, converter and power conversion device, and core material for reactor
JP6557527B2 (en) Reactor
CN109791833B (en) Coil, reactor, and design method for coil
JP6265031B2 (en) Core piece and reactor
JP5658485B2 (en) Magnetic element
JP6075678B2 (en) Composite magnetic core, reactor and power supply
JP2008141012A (en) Reactor
JP2012174752A (en) Magnetic element
JP5398636B2 (en) Magnetic element
JP5900741B2 (en) Composite magnetic core, reactor and power supply
JP2013197570A (en) Composite magnetic core, reactor, and power supply device
JP2016039322A (en) Coil and coil component
US11557423B2 (en) Coil and reactor
JP6087708B2 (en) Winding element manufacturing method
JP2010136486A (en) Stator structure and method for manufacturing stator
JP5434814B2 (en) Reactor
JP2012015382A (en) Reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141118

R150 Certificate of patent or registration of utility model

Ref document number: 5653120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250