JP5649849B2 - Method for producing carbon monoxide reduction catalyst and carbon monoxide reduction catalyst - Google Patents
Method for producing carbon monoxide reduction catalyst and carbon monoxide reduction catalyst Download PDFInfo
- Publication number
- JP5649849B2 JP5649849B2 JP2010096306A JP2010096306A JP5649849B2 JP 5649849 B2 JP5649849 B2 JP 5649849B2 JP 2010096306 A JP2010096306 A JP 2010096306A JP 2010096306 A JP2010096306 A JP 2010096306A JP 5649849 B2 JP5649849 B2 JP 5649849B2
- Authority
- JP
- Japan
- Prior art keywords
- carbon monoxide
- metal oxide
- weight
- metal component
- range
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003054 catalyst Substances 0.000 title claims description 134
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 title claims description 104
- 229910002091 carbon monoxide Inorganic materials 0.000 title claims description 96
- 238000004519 manufacturing process Methods 0.000 title claims description 22
- 229910044991 metal oxide Inorganic materials 0.000 claims description 87
- 150000004706 metal oxides Chemical class 0.000 claims description 87
- 229910052751 metal Inorganic materials 0.000 claims description 86
- 239000002184 metal Substances 0.000 claims description 86
- 239000002245 particle Substances 0.000 claims description 79
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 44
- 239000011148 porous material Substances 0.000 claims description 43
- 239000006185 dispersion Substances 0.000 claims description 42
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 34
- 238000000034 method Methods 0.000 claims description 33
- 239000010419 fine particle Substances 0.000 claims description 32
- 238000001694 spray drying Methods 0.000 claims description 32
- 238000010304 firing Methods 0.000 claims description 31
- 239000007864 aqueous solution Substances 0.000 claims description 27
- 239000007787 solid Substances 0.000 claims description 21
- 150000001875 compounds Chemical class 0.000 claims description 17
- 239000000377 silicon dioxide Substances 0.000 claims description 17
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 16
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 16
- 239000000203 mixture Substances 0.000 claims description 15
- 238000001035 drying Methods 0.000 claims description 11
- 150000003755 zirconium compounds Chemical class 0.000 claims description 11
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 10
- 238000002156 mixing Methods 0.000 claims description 10
- 239000000243 solution Substances 0.000 claims description 10
- 229910052707 ruthenium Inorganic materials 0.000 claims description 9
- 229910052742 iron Inorganic materials 0.000 claims description 8
- 239000000395 magnesium oxide Substances 0.000 claims description 8
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- 229910052703 rhodium Inorganic materials 0.000 claims description 7
- 229910052783 alkali metal Inorganic materials 0.000 claims description 6
- 150000001340 alkali metals Chemical class 0.000 claims description 6
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 6
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 6
- 239000002131 composite material Substances 0.000 claims description 6
- 150000002739 metals Chemical class 0.000 claims description 6
- 229910052763 palladium Inorganic materials 0.000 claims description 6
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 6
- 150000002910 rare earth metals Chemical class 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 2
- 229910052799 carbon Inorganic materials 0.000 claims 2
- 239000003426 co-catalyst Substances 0.000 claims 1
- 238000006722 reduction reaction Methods 0.000 description 64
- 239000012530 fluid Substances 0.000 description 33
- 239000000843 powder Substances 0.000 description 28
- 230000000694 effects Effects 0.000 description 26
- 239000002002 slurry Substances 0.000 description 15
- 238000004458 analytical method Methods 0.000 description 12
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 12
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 12
- 238000002360 preparation method Methods 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 238000005299 abrasion Methods 0.000 description 9
- 229910004298 SiO 2 Inorganic materials 0.000 description 8
- 239000000446 fuel Substances 0.000 description 8
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 239000007788 liquid Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 5
- 239000011164 primary particle Substances 0.000 description 5
- 239000010948 rhodium Substances 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- WRAGBEWQGHCDDU-UHFFFAOYSA-M C([O-])([O-])=O.[NH4+].[Zr+] Chemical compound C([O-])([O-])=O.[NH4+].[Zr+] WRAGBEWQGHCDDU-UHFFFAOYSA-M 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- 238000001354 calcination Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000011593 sulfur Substances 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 229910000000 metal hydroxide Inorganic materials 0.000 description 3
- 150000004692 metal hydroxides Chemical class 0.000 description 3
- GTCKPGDAPXUISX-UHFFFAOYSA-N ruthenium(3+);trinitrate Chemical compound [Ru+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O GTCKPGDAPXUISX-UHFFFAOYSA-N 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 239000001993 wax Substances 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 230000010757 Reduction Activity Effects 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000011163 secondary particle Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- 238000004448 titration Methods 0.000 description 2
- BDSSZTXPZHIYHM-UHFFFAOYSA-N 2-phenoxypropanoyl chloride Chemical compound ClC(=O)C(C)OC1=CC=CC=C1 BDSSZTXPZHIYHM-UHFFFAOYSA-N 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- 238000004517 catalytic hydrocracking Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- ICAKDTKJOYSXGC-UHFFFAOYSA-K lanthanum(iii) chloride Chemical compound Cl[La](Cl)Cl ICAKDTKJOYSXGC-UHFFFAOYSA-K 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 235000011147 magnesium chloride Nutrition 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 1
- LYTNHSCLZRMKON-UHFFFAOYSA-L oxygen(2-);zirconium(4+);diacetate Chemical compound [O-2].[Zr+4].CC([O-])=O.CC([O-])=O LYTNHSCLZRMKON-UHFFFAOYSA-L 0.000 description 1
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- SONJTKJMTWTJCT-UHFFFAOYSA-K rhodium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Rh+3] SONJTKJMTWTJCT-UHFFFAOYSA-K 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Landscapes
- Catalysts (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
本発明は、一酸化炭素還元触媒の製造方法および一酸化炭素還元触媒とに関する。 The present invention relates to a method for producing a carbon monoxide reduction catalyst and a carbon monoxide reduction catalyst.
さらに詳しくは、活性、選択性とともに粒子強度、流動性等に優れ、流動床触媒、懸濁床触媒として長期にわたって使用することのできる一酸化炭素還元触媒の製造方法および当該一酸化炭素還元触媒とに関する。 More specifically, a method for producing a carbon monoxide reduction catalyst that is excellent in activity, selectivity, particle strength, fluidity, etc., and can be used for a long time as a fluidized bed catalyst or a suspension bed catalyst, and the carbon monoxide reduction catalyst About.
近年、ガソリンや軽油のような液体燃料に対する硫黄分規制が急速に厳しくなってきている。そのため、硫黄分や芳香族炭化水素の含有量が低い環境に優しいクリーンな液体燃料の製造が不可欠となっている。このようなクリーン燃料の製造方法として、一酸化炭素を水素で還元するフィッシャー・トロプシュ(FT)合成法が挙げられる。FT合成法により、パラフィン含有量に富み、かつ硫黄分を含まない液体燃料基材を製造することができるとともに、ワックス(FTワックス)も同時に製造することができる。そして、FTワックスは水素化分解により中間留分(灯油や軽油などの燃料基材)へと変換することができる。 In recent years, regulations on sulfur content for liquid fuels such as gasoline and light oil have been rapidly tightened. Therefore, it is indispensable to produce an environmentally friendly clean liquid fuel having a low sulfur content and aromatic hydrocarbon content. As a method for producing such a clean fuel, there is a Fischer-Tropsch (FT) synthesis method in which carbon monoxide is reduced with hydrogen. By the FT synthesis method, it is possible to produce a liquid fuel base material that is rich in paraffin and does not contain sulfur, and wax (FT wax) can also be produced simultaneously. The FT wax can be converted into middle distillates (fuel base materials such as kerosene and light oil) by hydrocracking.
FT合成は、シリカやアルミナなどの担体上に、鉄やコバルトなどの活性金属を担持した触媒を用いて実施されている(特許文献1)。 FT synthesis is carried out using a catalyst in which an active metal such as iron or cobalt is supported on a carrier such as silica or alumina (Patent Document 1).
また、これら触媒上に上記活性金属に加えてナトリウム、マグネシウム、リチウム、ジルコニウム等の第2金属を組み合わせて使用することにより、触媒性能が向上することが報告されている(特許文献2)。 Further, it has been reported that the catalyst performance is improved by using a combination of a second metal such as sodium, magnesium, lithium and zirconium in addition to the above active metal on these catalysts (Patent Document 2).
しかしながら、さらに性能の向上した触媒が求められており、このため第2金属としてジルコニウムを触媒外表面近傍に選択的に担持することによってFT合成触媒としての性能が向上することが報告されている(特許文献3)。 However, there is a demand for a catalyst with further improved performance. For this reason, it has been reported that the performance as an FT synthesis catalyst is improved by selectively supporting zirconium as the second metal in the vicinity of the outer surface of the catalyst ( Patent Document 3).
従来、FT合成には固定床、流動床、懸濁床、移動床、等のプロセスがあり、そのプロセスに応じた触媒が用いられている。 Conventionally, FT synthesis includes processes such as a fixed bed, a fluidized bed, a suspension bed, and a moving bed, and a catalyst corresponding to the process is used.
近年、長期連続運転等の理由から流動床、懸濁床が見直されているが、従来の触媒では、耐摩耗性、粒子強度等が不充分で長期に亘って循環使用できず、また、摩耗して微粉化した触媒粉は分離が困難で、配管詰まり等の原因となり、長期に亘って運転できない場合があった。 In recent years, fluidized beds and suspended beds have been reviewed for reasons such as long-term continuous operation. However, conventional catalysts are insufficient in wear resistance, particle strength, etc., and cannot be used repeatedly for a long time. Thus, the finely divided catalyst powder is difficult to separate, causing piping clogging and the like, and may not be operated for a long time.
本発明者等は、上記問題点について鋭意検討した結果、金属酸化物微粒子分散液と金属酸化物ゲルの混合分散液を噴霧乾燥し、焼成して得た担体に粒子に活性金属成分、第2金
属成分を担持した触媒は、活性、選択性に優れるとともに、耐摩耗性、(粒子強度)に優れることを見出して本発明を完成するに至った。
As a result of intensive studies on the above problems, the present inventors have made a carrier obtained by spray-drying and firing a mixed dispersion of a metal oxide fine particle dispersion and a metal oxide gel, and then adding the active metal component to the particles. The catalyst carrying the metal component was found to be excellent in activity and selectivity, as well as in abrasion resistance and (particle strength), and thus completed the present invention.
本発明の目的は、活性、選択性に優れるとともに耐摩耗性、粒子強度、流動性等に優れ、長期にわたって使用することのできる一酸化炭素還元触媒の製造方法および一酸化炭素還元触媒とを提供することにある。 The object of the present invention is to provide a carbon monoxide reduction catalyst production method and a carbon monoxide reduction catalyst that are excellent in activity, selectivity, wear resistance, particle strength, fluidity, etc. and can be used over a long period of time. There is to do.
本発明の構成は以下の通りである。 The configuration of the present invention is as follows.
下記の工程(a)〜(j)からなることを特徴とする一酸化炭素還元触媒の製造方法。(a)金属酸化物微粒子分散液と金属酸化物ゲルとを混合し、金属酸化物微粒子分散液の固形分としての重量(Wp)と金属酸化物ゲルの固形分としての重量(Wg)との重量比(Wg)/(Wp)が0.1〜4.5の範囲にあり、濃度が固形分として5〜30重量%の範囲にある混合分散液を調製する工程
(b)混合分散液を均一混合処理する工程
(c)均一混合分散液を噴霧乾燥する工程
(d)焼成する工程(一次焼成工程)
(i)活性金属成分化合物水溶液を吸収させる工程
(j)焼成する工程(二次焼成工程)
[2]前記金属酸化物微粒子が、シリカ、アルミナ、ジルコニア、チタニア、マグネシアお
よびこれらの複合酸化物から選ばれる少なくとも1種からなり、該微粒子の平均粒子径が
5〜100nmの範囲にある[1]の一酸化炭素還元触媒の製造方法。
[3]前記金属酸化物ゲルが、シリカ、アルミナ、ジルコニア、チタニア、マグネシアおよ
びこれらの複合酸化物から選ばれる少なくとも1種のゲルである[1]または[2]の一酸化炭
素還元触媒の製造方法。
[4]前記工程(d)についで、下記の工程(e)、ついで工程(f)を実施することを特
徴とする[1]〜[3]の一酸化炭素還元触媒の製造方法。
(e)ジルコニウム化合物水溶液を吸収させる工程
(f)乾燥・焼成する工程
[5]前記活性金属成分がFe、Ru、Co、Rh、Ni、Pdから選ばれる1種以上であ
り、該活性金属成分の含有量が金属酸化物として3〜50重量%の範囲にある[1]〜[4]の一酸化炭素還元触媒の製造方法。
[6]前記工程(f)の後、または前記工程(j)の後に、下記の工程(k)、ついで工程
(L)を実施する[1]〜[5]の一酸化炭素還元触媒の製造方法。
(k)第2活性金属成分(助触媒金属成分)化合物水溶液を吸収させる工程
(L)乾燥・焼成する工程
[7]前記第2活性金属成分(助触媒金属成分)がアルカリ金属、アルカリ土類金属、希土
類金属から選ばれる1種または2種以上の金属であり、第2活性金属成分の含有量が金属酸化物として0.005〜5重量%の範囲にあることを特徴とする請求項1〜7のいずれかに記載の一酸化炭素還元触媒の製造方法。
[8]前記[1]〜[7]の方法で得られ、金属酸化物と活性金属成分とからなる一酸化炭素還元
触媒であって、活性金属成分がFe、Ru、Co、Rh、Ni、Pdから選ばれる1種以上であり、該活性金属成分の含有量が金属酸化物として3〜50重量%の範囲にあり、平均粒子径が50〜200μmの範囲にあり、比表面積が50〜200m2/gの範囲にあ
り、細孔容積が0.1〜0.6ml/gの範囲にあり、耐摩耗性が0.01〜1重量%/15時間の範囲にあることを特徴とする一酸化炭素還元触媒。
[9]前記金属酸化物がシリカ、アルミナ、ジルコニア、チタニア、マグネシアから選ばれ
る1種以上の金属酸化物であり、該金属酸化物の含有量が50〜97重量%の範囲にある[8]の一酸化炭素還元触媒。
[10]さらに、第2活性金属成分(助触媒金属成分)を含み、第2活性金属成分がアルカリ
金属、アルカリ土類金属、希土類金属から選ばれる1種以上の金属であり、第2活性金属成分の含有量が金属酸化物として0.005〜5重量%の範囲にある[8]または[9]の一酸化炭素還元触媒。
A method for producing a carbon monoxide reduction catalyst comprising the following steps (a) to (j): (A) A metal oxide fine particle dispersion and a metal oxide gel are mixed, and a weight (Wp) as a solid content of the metal oxide fine particle dispersion and a weight (Wg) as a solid content of the metal oxide gel. Step (b) of preparing a mixed dispersion in which the weight ratio (Wg) / (Wp) is in the range of 0.1 to 4.5 and the concentration is in the range of 5 to 30% by weight as the solid content. Step of uniformly mixing (c) Step of spray drying uniform mixture dispersion (d) Step of firing (primary firing step)
(I) Step of absorbing the active metal component compound aqueous solution (j) Step of firing (secondary firing step)
[2] The metal oxide fine particles are made of at least one selected from silica, alumina, zirconia, titania, magnesia and composite oxides thereof, and the average particle size of the fine particles is in the range of 5 to 100 nm. ] The manufacturing method of the carbon monoxide reduction catalyst.
[3] Production of a carbon monoxide reduction catalyst according to [1] or [2], wherein the metal oxide gel is at least one gel selected from silica, alumina, zirconia, titania, magnesia, and composite oxides thereof. Method.
[4] The method for producing a carbon monoxide reduction catalyst according to [1] to [3], wherein the following step (e) and then step (f) are performed after the step (d).
(E) Step of absorbing an aqueous zirconium compound solution (f) Step of drying and firing
[5] The active metal component is at least one selected from Fe, Ru, Co, Rh, Ni, and Pd, and the content of the active metal component is in the range of 3 to 50% by weight as a metal oxide. [1] A process for producing a carbon monoxide reduction catalyst of [4].
[6] Production of a carbon monoxide reduction catalyst according to [1] to [5], wherein the following step (k) and then step (L) are performed after step (f) or after step (j) Method.
(K) Step of absorbing the second active metal component (promoter metal component) compound aqueous solution (L) Step of drying and firing
[7] The second active metal component (promoter metal component) is one or more metals selected from alkali metals, alkaline earth metals, and rare earth metals, and the content of the second active metal component is metal. The method for producing a carbon monoxide reduction catalyst according to any one of claims 1 to 7, wherein the oxide is in the range of 0.005 to 5% by weight.
[8] A carbon monoxide reduction catalyst obtained by the method of [1] to [7] and comprising a metal oxide and an active metal component, wherein the active metal component is Fe, Ru, Co, Rh, Ni, It is at least one selected from Pd, the content of the active metal component is in the range of 3 to 50% by weight as the metal oxide, the average particle diameter is in the range of 50 to 200 μm, and the specific surface area is 50 to 200 m. 2 / g, pore volume in the range of 0.1 to 0.6 ml / g, and wear resistance in the range of 0.01 to 1% by weight / 15 hours. Carbon oxide reduction catalyst.
[9] The metal oxide is one or more metal oxides selected from silica, alumina, zirconia, titania, and magnesia, and the content of the metal oxide is in the range of 50 to 97% by weight. [8] Carbon monoxide reduction catalyst.
[10] Furthermore, the second active metal component (promoter metal component) is included, and the second active metal component is one or more metals selected from alkali metals, alkaline earth metals, and rare earth metals, and the second active metal [8] or [9] The carbon monoxide reduction catalyst having a component content in the range of 0.005 to 5% by weight as a metal oxide.
本発明によれば、活性、選択性に優れるとともに耐摩耗性、粒子強度、流動性等に優れ、長期にわたって連続的に使用することのできる一酸化炭素還元触媒の製造方法および一酸化炭素還元触媒とを提供することができる。 According to the present invention, a carbon monoxide reduction catalyst production method and a carbon monoxide reduction catalyst that are excellent in activity, selectivity, wear resistance, particle strength, fluidity, etc., and can be used continuously over a long period of time. And can be provided.
まず、本発明に係る一酸化炭素還元触媒の製造方法について説明する。
一酸化炭素還元触媒の製造方法
本発明に係る一酸化炭素還元触媒の製造方法は、下記の工程(a)〜(j)からなることを特徴としている。
(a)混合分散液を調製する工程
(b)混合分散液を均一混合処理する工程
(c)均一混合分散液を噴霧乾燥する工程
(d)焼成する工程(一次焼成工程)
(i)活性金属成分化合物水溶液を吸収させる工程
工程(a)
まず、金属酸化物微粒子分散液と金属酸化物ゲルとを混合し、金属酸化物微粒子分散液の固形分としての重量(Wp)と金属酸化物ゲルの固形分としての重量(Wg)との重量比(Wg)/(Wp)が0.1〜4.5の範囲にあり、濃度が固形分として5〜30重量%の範囲にある混合分散液を調製する。
First, the manufacturing method of the carbon monoxide reduction catalyst which concerns on this invention is demonstrated.
Method for Producing Carbon Monoxide Reduction Catalyst The method for producing a carbon monoxide reduction catalyst according to the present invention is characterized by comprising the following steps (a) to (j).
(A) Step for preparing the mixed dispersion (b) Step for uniformly mixing the mixed dispersion (c) Step for spray drying the uniform mixed dispersion (d) Step for firing (primary firing step)
(I) A step of absorbing an aqueous solution of an active metal component compound
Step (a)
First, the metal oxide fine particle dispersion and the metal oxide gel are mixed, and the weight (Wp) as the solid content of the metal oxide fine particle dispersion and the weight (Wg) as the solid content of the metal oxide gel. A mixed dispersion in which the ratio (Wg) / (Wp) is in the range of 0.1 to 4.5 and the concentration is in the range of 5 to 30% by weight as the solid content is prepared.
本発明に用いる金属酸化物微粒子としてはシリカ、アルミナ、ジルコニア、チタニア、マグネシアおよびこれらの複合酸化物から選ばれる1種以上からなる微粒子であることが
好ましい。これらの金属酸化物微粒子を用いると、活性が高く、触媒寿命の長い一酸化炭素還元触媒を得ることができる。金属酸化物微粒子の平均粒子径は5〜100nm、さらには10〜80nmの範囲にあることが好ましい。金属酸化物微粒子の平均粒子径が前記範囲にない場合は、混合する金属酸化物ゲルの割合にもよるが、粒子強度、耐摩耗性が不充分となる場合がある。このような金属酸化物微粒子は通常ゾル状物が好適に使用される。
The metal oxide fine particles used in the present invention are preferably fine particles comprising at least one selected from silica, alumina, zirconia, titania, magnesia, and composite oxides thereof. When these metal oxide fine particles are used, a carbon monoxide reduction catalyst having a high activity and a long catalyst life can be obtained. The average particle diameter of the metal oxide fine particles is preferably in the range of 5 to 100 nm, more preferably 10 to 80 nm. When the average particle diameter of the metal oxide fine particles is not within the above range, the particle strength and wear resistance may be insufficient depending on the ratio of the metal oxide gel to be mixed. In general, a sol-like material is suitably used for such metal oxide fine particles.
金属酸化物ゲルとしては、シリカ、アルミナ、ジルコニア、チタニア、マグネシアおよびこれらの複合酸化物から選ばれる1種以上からなるゲルであることが好ましい。ここで
、ゲルとは、珪素、アルミニウム、ジルコニウム、チタニウム、マグネシウムの塩(化合物)およびこれらの混合物を加水分解等して生成する金属水酸化物ゲル、あるいは金属水酸化物ゲルを乾燥して得られる金属水酸化物微粉体を意味している。粉体を使用する場合、その粒子径は、一次粒子径が1〜20nm、好ましくは1〜15nmの範囲にあるもの
が望ましい。二次粒子径(一次粒子の凝集体粒子)は、10nm〜50μm、好ましくは20nm〜30μmの範囲にあることが望ましい。金属酸化物ゲルの二次粒子は、分散液中で容易
に非凝集状態になり、粒子径が一次粒子になるように、粒子径が小さくなるのに対し、金属酸化物微粒子は、前記粒子径範囲の非凝集粒子(一次粒子)であり、粒子径がさらに小さくなることもない。また、形状において相違し、金属酸化物の種類によっても異なるが、金属酸化物微粒子は球状、サイコロ状、棒状などであり、一方、金属酸化物ゲルは不定形(形状、大きさ)である。
The metal oxide gel is preferably a gel composed of one or more selected from silica, alumina, zirconia, titania, magnesia and composite oxides thereof. Here, the gel is obtained by drying a metal hydroxide gel or a metal hydroxide gel formed by hydrolyzing a salt (compound) of silicon, aluminum, zirconium, titanium, magnesium and a mixture thereof. Metal hydroxide fine powder. When powder is used, the particle diameter is preferably 1 to 20 nm, preferably 1 to 15 nm in primary particle diameter. The secondary particle diameter (aggregate particles of primary particles) is desirably in the range of 10 nm to 50 μm, preferably 20 nm to 30 μm. The secondary particle of the metal oxide gel is easily in a non-aggregated state in the dispersion, and the particle size becomes small so that the particle size becomes the primary particle. It is a non-aggregated particle (primary particle) in the range, and the particle diameter is not further reduced. Moreover, although it differs in a shape and changes with kinds of metal oxide, metal oxide microparticles | fine-particles are spherical shape, dice shape, rod shape, etc. on the other hand, metal oxide gel is an indefinite form (shape, magnitude | size).
なお、本発明では、金属酸化物微粒子と金属酸化物ゲルとを構成する金属酸化物は、同じものであっても、異なるものであってもよい。より好ましくは金属酸化物微粒子と金属
酸化物ゲルが同じ金属酸化物から構成されるものであり、シリカ、アルミナ、ジルコニアから組合わせが望ましい。
In the present invention, the metal oxides constituting the metal oxide fine particles and the metal oxide gel may be the same or different. More preferably, the metal oxide fine particles and the metal oxide gel are composed of the same metal oxide, and a combination of silica, alumina, and zirconia is desirable.
金属酸化物微粒子と金属酸化物ゲルとを併用することで、金属酸化物微粒子間に金属酸化物ゲル(主に均一混合処理によって一次粒子となった)が存在するようになり、粒子強度、耐摩耗性を損なうことなく、細孔容積の大きな担体を得ることができる。金属酸化物微粒子を単独で使用すると、担体の細孔容積が小さくなり、金属酸化物ゲルを単独で使用すると担体の細孔容積は大きくなるものの、粒子強度、耐摩耗性が不十分となる。
微粒子分散液およびゲル中に含まれる溶媒(分散媒)としては、水、アルコール、ケトン類などの低温で揮発し、残存しないものが使用され、通常、水が使用される。
By using the metal oxide fine particles and the metal oxide gel in combination, the metal oxide gel (mainly formed into primary particles by the uniform mixing process) is present between the metal oxide fine particles. A carrier having a large pore volume can be obtained without impairing wear. When the metal oxide fine particles are used alone, the pore volume of the carrier is reduced. When the metal oxide gel is used alone, the pore volume of the carrier is increased, but the particle strength and wear resistance are insufficient.
As the solvent (dispersion medium) contained in the fine particle dispersion and the gel, those which volatilize at a low temperature such as water, alcohol and ketones and do not remain are usually used, and water is usually used.
金属酸化物微粒子と金属酸化物ゲルとの混合比率は、金属酸化物微粒子の固形分としての重量(Wp)と金属酸化物ゲルの固形分としての重量(Wg)との重量比(Wg)/(Wp)が0.1〜4.5、さらに好ましくは0.2〜4.0の範囲にあることが好ましい。 The mixing ratio between the metal oxide fine particles and the metal oxide gel is the weight ratio (Wg) of the weight (Wp) as the solid content of the metal oxide fine particles and the weight (Wg) as the solid content of the metal oxide gel. (Wp) is preferably in the range of 0.1 to 4.5, more preferably 0.2 to 4.0.
重量比(Wg)/(Wp)が0.1未満の場合は、得られる担体の細孔容積が小さく、活性金属成分の担持量が少なくなるので充分な活性が得られない場合がある。 When the weight ratio (Wg) / (Wp) is less than 0.1, the pore volume of the resulting support is small, and the amount of active metal component supported is small, so that sufficient activity may not be obtained.
重量比(Wg)/(Wp)が4.5を越えると、さらに細孔容積が増大することもなく、粒子強度、耐摩耗性が不充分となる場合がある。 When the weight ratio (Wg) / (Wp) exceeds 4.5, the pore volume does not increase further, and the particle strength and wear resistance may be insufficient.
金属酸化物微粒子分散液と金属酸化物ゲルの混合分散液を調製するが、混合分散液の濃度は固形分として5〜30重量%、さらには10〜25重量%の範囲となるように調製する。 A mixed dispersion of a metal oxide fine particle dispersion and a metal oxide gel is prepared, and the concentration of the mixed dispersion is adjusted so as to be in the range of 5 to 30% by weight, further 10 to 25% by weight as a solid content. .
混合分散液の固形分としての濃度が5重量%未満の場合は、噴霧乾燥法にもよるが、後述する工程(c)で噴霧乾燥して得られる担体微粒子の平均粒子径が50μm未満となることがあり、触媒の分離回収が困難となり、流動床プロセス、懸濁床プロセスで使用することが困難となる場合がある。 When the concentration of the mixed dispersion as a solid content is less than 5% by weight, although depending on the spray drying method, the average particle size of the carrier fine particles obtained by spray drying in the step (c) described later is less than 50 μm. In some cases, it becomes difficult to separate and recover the catalyst, and it may be difficult to use the catalyst in a fluidized bed process or a suspension bed process.
混合分散液の固形分としての濃度が30重量%を越えると、次工程(b)で粘度が高くなり過ぎて、噴霧乾燥が困難になる場合がある。 If the concentration of the mixed dispersion as a solid content exceeds 30% by weight, the viscosity becomes too high in the next step (b), and spray drying may be difficult.
工程(b)
混合分散液を均一混合処理する。
Step (b)
The mixed dispersion is uniformly mixed.
均一混合処理する方法としては、所望の担体が得られれば特に制限はないが、撹拌、ホモジナイザー、コロイドミル、ジェットミル等の方法が挙げられる。 The method for the uniform mixing treatment is not particularly limited as long as a desired carrier can be obtained, and examples thereof include a stirring method, a homogenizer, a colloid mill, and a jet mill.
均一混合処理することによって混合分散液は通常、粘度が高くなり、均一化した混合分散液を噴霧乾燥すると得られる担体粒子は粒子表面に凹凸等がなく真球状であり、粒子は耐摩耗性、強度、流動性に優れている。 By carrying out the uniform mixing treatment, the mixed dispersion usually has a high viscosity, and the carrier particles obtained by spray-drying the homogenized mixed dispersion are spherical with no irregularities on the particle surface, and the particles are wear resistant. Excellent strength and fluidity.
工程(c)
均一混合分散液を熱風気流中に噴霧して乾燥し、担体粒子を調製する。
Step (c)
The uniform mixed dispersion is sprayed into a hot air stream and dried to prepare carrier particles.
噴霧乾燥法としては、所望の担体粒子が得られれば特に制限は無いが、回転ディスク法、加圧ノズル法、2流体ノズル法等従来公知の方法を採用することができる。 The spray drying method is not particularly limited as long as desired carrier particles can be obtained, but conventionally known methods such as a rotating disk method, a pressurized nozzle method, and a two-fluid nozzle method can be employed.
噴霧乾燥における熱風の入口温度は150〜600℃、さらには150〜450℃、範囲にあることが好ましい。 The inlet temperature of hot air in spray drying is preferably in the range of 150 to 600 ° C, more preferably 150 to 450 ° C.
熱風の入口温度が150℃未満の場合は、乾燥が不充分となる場合があり、噴霧乾燥室壁面等への未乾燥粒子の付着が激しく、収率が著しく低下する場合がある。 When the inlet temperature of the hot air is less than 150 ° C., drying may be insufficient, and undried particles adhere to the spray drying chamber wall surface and the yield may be significantly reduced.
熱風の入口温度が600℃を越えると、均一混合分散液の濃度、金属酸化物微粒子と金属酸化物ゲルの種類、混合割合等によっても異なるが、真球状でない粒子が得られることがあり、真球状であっても、耐摩耗性等が不充分になる場合がある。 If the inlet temperature of the hot air exceeds 600 ° C., it may vary depending on the concentration of the uniformly mixed dispersion, the types of metal oxide fine particles and metal oxide gel, the mixing ratio, etc., but non-spherical particles may be obtained. Even if it is spherical, wear resistance and the like may be insufficient.
この時、出口温度は概ね50〜300℃の範囲にあることが好ましい。 At this time, the outlet temperature is preferably in the range of approximately 50 to 300 ° C.
工程(d)
ついで、得られた担体粒子を大気中で焼成(第1焼成)する。この焼成によって、粒子強度が向上し、大きな細孔容積が形成される。
Step (d)
Next, the obtained carrier particles are fired in air (first firing). This firing improves the particle strength and forms a large pore volume.
焼成温度は300〜700℃、さらには400〜650℃の範囲にあることが好ましい。 The firing temperature is preferably in the range of 300 to 700 ° C, more preferably 400 to 650 ° C.
焼成温度が300℃未満の場合は、最終的に得られる一酸化炭素還元触媒の強度、耐摩耗性が不充分となる場合がある。 When the calcination temperature is less than 300 ° C., the strength and wear resistance of the finally obtained carbon monoxide reduction catalyst may be insufficient.
焼成温度が700℃を越えると、金属酸化物微粒子と金属酸化物ゲルの種類、混合割合等によっても異なるが、所望の細孔容積を有する担体粒子が得られない場合がある。 When the calcination temperature exceeds 700 ° C., carrier particles having a desired pore volume may not be obtained, although it varies depending on the types and mixing ratios of the metal oxide fine particles and the metal oxide gel.
焼成時間は、焼成温度によっても異なるが、通常、0.5〜10時間である。 The firing time varies depending on the firing temperature, but is usually 0.5 to 10 hours.
焼成して得た担体粒子は、細孔容積が0.2〜1.2ml/g、さらには0.25〜1.0ml/gの範囲にあることが好ましい。 The carrier particles obtained by firing preferably have a pore volume in the range of 0.2 to 1.2 ml / g, more preferably 0.25 to 1.0 ml / g.
担体粒子の細孔容積が0.2ml/g未満の場合は、後の工程で、後述する活性金属成分、第2活性金属成分を所望量担持することができない場合があり、担持できたとしても得られる触媒の細孔容積が小さくなり(0.1ml/g未満)、活性が不充分となる場合がある。 If the pore volume of the carrier particles is less than 0.2 ml / g, the active metal component and the second active metal component, which will be described later, may not be supported in desired amounts in later steps. The resulting catalyst may have a small pore volume (less than 0.1 ml / g), resulting in insufficient activity.
担体粒子の細孔容積が1.2ml/gを越えると、担体粒子、触媒粒子の強度、耐摩耗性が不充分となる場合がある。 If the pore volume of the carrier particles exceeds 1.2 ml / g, the strength and wear resistance of the carrier particles and catalyst particles may be insufficient.
本発明では、前記工程(d)についで、下記の工程(e)、ついで工程(f)を実施することが好ましい。
工程(e)
工程(d)で得られた担体粒子に、ジルコニウム化合物水溶液を吸収(含浸)させる。ジ
ルコニウム化合物としては硫酸ジルコニール、酢酸ジルコニール、炭酸ジルコニールアンモニウム等が挙げられる。
In the present invention, following the step (d), it is preferable to carry out the following step (e) and then step (f).
Step (e)
The carrier particles obtained in step (d) are absorbed (impregnated) with an aqueous zirconium compound solution. Examples of the zirconium compound include zirconyl sulfate, zirconyl acetate, and zirconyl ammonium carbonate.
ジルコニウム化合物の担持は、前記担体粒子の概ね全細孔容積に相当する量のジルコニウム化合物水溶液を調製し、担体粒子に吸収させ、ついで工程(F)を行うことによって担持することができる。 Zirconium compound can be supported by preparing an aqueous zirconium compound solution in an amount substantially corresponding to the total pore volume of the carrier particles, absorbing the carrier particles, and then carrying out step (F).
一回の吸収で所望のジルコニアの担持ができない場合は同様の操作を必要回数繰り返す
ことによって担持することができる。
When the desired zirconia cannot be supported by a single absorption, it can be supported by repeating the same operation as many times as necessary.
なお、ジルコニウム化合物水溶液の濃度は、担体粒子の全細孔容積および所望のジルコニア量を勘案して調整すればよい。 The concentration of the zirconium compound aqueous solution may be adjusted in consideration of the total pore volume of the carrier particles and the desired amount of zirconia.
このようにジルコニアを担持すると、活性、選択性、触媒寿命が向上した一酸化炭素還元触媒が得られる。 When zirconia is supported in this manner, a carbon monoxide reduction catalyst with improved activity, selectivity, and catalyst life can be obtained.
ジルコニアの担持量はZrO2として1〜20重量%、さらには2〜15重量%の範囲
にあることが好ましい。
The supported amount of zirconia is preferably in the range of 1 to 20% by weight, more preferably 2 to 15% by weight as ZrO 2 .
ジルコニアの担持量がZrO2として1重量%未満の場合はジルコニアを担持する効果
、即ち、活性、選択性の向上、触媒寿命の向上が充分得られない場合がある。
When the amount of zirconia supported is less than 1% by weight as ZrO 2 , the effect of supporting zirconia, that is, the activity, selectivity and catalyst life may not be sufficiently obtained.
ジルコニアの担持量がZrO2として20重量%を越えると、ジルコニアを担持後、細
孔容積が小さくなりすぎて、ついで、金属活性成分、第2活性金属成分を所望量担持できない場合がある。
工程(f)
ついで、ジルコニウム化合物水溶液を吸収した担体粒子を乾燥・焼成する。
If the supported amount of zirconia exceeds 20% by weight as ZrO 2 , the pore volume becomes too small after supporting zirconia, and then the metal active component and the second active metal component may not be supported in a desired amount.
Step (f)
Next, the carrier particles that have absorbed the aqueous zirconium compound solution are dried and fired.
乾燥方法としては、ジルコニウム化合物水溶液を吸収した担体粒子の水分を除去できれば特に制限はなく、従来公知の方法を採用することができる。通常、乾燥温度は100〜200℃で0.5〜12時間である。 The drying method is not particularly limited as long as the moisture of the carrier particles that have absorbed the aqueous zirconium compound solution can be removed, and a conventionally known method can be employed. Usually, the drying temperature is 100 to 200 ° C. for 0.5 to 12 hours.
次に、焼成するが、焼成温度は200〜700℃、さらには300〜650℃の範囲にあることが好ましい。 Next, firing is performed, but the firing temperature is preferably in the range of 200 to 700 ° C, more preferably 300 to 650 ° C.
焼成温度が300℃未満の場合は、ジルコニウム化合物が完全に分解しない場合、あるいは分解したジルコニア水和物が無水状態のジルコニアにならない場合があり、活性、選択性が不充分になる場合がある。 When the firing temperature is less than 300 ° C., the zirconium compound may not be completely decomposed, or the decomposed zirconia hydrate may not be converted into anhydrous zirconia, and the activity and selectivity may be insufficient.
焼成温度が700℃を越えると、所望の細孔容積を有する担体粒子が得られない場合がある。 When the firing temperature exceeds 700 ° C., carrier particles having a desired pore volume may not be obtained.
工程(i)
前記工程(d)の後に、担体粒子に活性金属成分化合物水溶液を吸収(含浸)させる。なお、前記工程(e)および(f)を行なった場合、その後に工程(i)を行う。
Step (i)
After the step (d), the carrier particles are absorbed (impregnated) with the active metal component compound aqueous solution. In addition, when the said process (e) and (f) is performed, process (i) is performed after that.
活性金属成分化合物としては、Fe、Ru、Co、Rh、Ni、Pdから選ばれる1種または2種以上の金属の化合物が挙げられる。具体的には、硝酸第二鉄、硝酸ルテニウム、塩化コバルト、塩化ロジウム、硝酸ニッケル、塩化パラジウム等が挙げられる。 Examples of the active metal component compound include compounds of one or more metals selected from Fe, Ru, Co, Rh, Ni, and Pd. Specific examples include ferric nitrate, ruthenium nitrate, cobalt chloride, rhodium chloride, nickel nitrate, and palladium chloride.
本発明では、中でもRu、Co金属の化合物が好ましい。Ru、Co金属の化合物を用いると一酸化炭素還元活性が高く、フィッシャー・トロプシュ(FT)合成用触媒として好適に用いることができ、高品質の液体燃料基材を高収率で生産することができる。 In the present invention, Ru and Co metal compounds are particularly preferable. When Ru and Co metal compounds are used, carbon monoxide reduction activity is high, and it can be suitably used as a catalyst for Fischer-Tropsch (FT) synthesis, and can produce a high-quality liquid fuel substrate in a high yield. it can.
活性金属成分化合物水溶液の使用量は、最終的な一酸化炭素還元触媒中に金属酸化物として3〜50重量%、さらには5〜40重量%の範囲にあることが好ましい。 The amount of the active metal component compound aqueous solution used is preferably 3 to 50% by weight, more preferably 5 to 40% by weight as a metal oxide in the final carbon monoxide reduction catalyst.
活性金属成分の含有量が金属酸化物として3重量%未満の場合は活性が不充分となる場
合がある。
If the content of the active metal component is less than 3% by weight as the metal oxide, the activity may be insufficient.
活性金属成分の含有量が金属酸化物として50重量%を越えては、担持することができない場合があり、担持できたとしてもさらに活性が向上することもなく、得られる触媒の細孔容積が小さくなるために活性が不充分となる場合がある。
工程(j)
ついで、活性金属成分化合物水溶液を吸収した粒子を乾燥・焼成(二次焼成)する。
If the content of the active metal component exceeds 50% by weight as a metal oxide, it may not be supported, and even if supported, the activity will not be further improved, and the pore volume of the resulting catalyst will be In some cases, the activity becomes insufficient due to the small size.
Step (j)
Next, the particles that have absorbed the active metal component compound aqueous solution are dried and fired (secondary firing).
乾燥方法としては、活性金属成分化合物水溶液を吸収した担体粒子の水分を除去できれば特に制限はなく、従来公知の方法を採用することができる。通常、乾燥温度は100〜200℃で0.5〜12時間である。 The drying method is not particularly limited as long as it can remove moisture from the carrier particles that have absorbed the active metal component compound aqueous solution, and conventionally known methods can be employed. Usually, the drying temperature is 100 to 200 ° C. for 0.5 to 12 hours.
次に、焼成するが、焼成温度は200〜600℃、さらには400〜550℃の範囲にあることが好ましい。 Next, firing is performed, but the firing temperature is preferably in the range of 200 to 600 ° C, more preferably 400 to 550 ° C.
焼成温度が200℃未満の場合は、活性が不充分となる場合があり、焼成温度が600℃を越えても、担持した活性金属成分の酸化物がクラスター化(集合物・塊)して、活性が不充分となる場合がある。 When the firing temperature is less than 200 ° C., the activity may be insufficient. Even when the firing temperature exceeds 600 ° C., the oxide of the supported active metal component is clustered (aggregates / lumps), The activity may be insufficient.
この工程(j)では、活性金属成分は酸化物として含有されているが、一酸化炭素還元反応に使用する場合に、活性金属還元して用いる場合は金属となり、あるいは反応中に還元性ガスによって還元されて金属となる。 In this step (j), the active metal component is contained as an oxide, but when used in a carbon monoxide reduction reaction, it becomes a metal when used by reducing the active metal, or by a reducing gas during the reaction. Reduced to metal.
本発明では、前記工程(f)の後、あるいは工程(j)の後に、下記の工程(k)、ついで工程(l)を実施することが好ましい。
工程(k)
第2活性金属成分(助触媒金属成分)化合物水溶液を、吸収(含浸)させる。第2活性金属成分化合物としては、アルカリ金属、アルカリ土類金属、希土類金属から選ばれる1種または2種以上の金属の塩であり、具体的には硫酸ナトリウム、酢酸ナトリウム、塩化マグネシウム、塩化カルシウム、塩化ランタンなどが挙げられる。このような第2活性金属成分を含むことで、選択性が向上し、触媒寿命を長く保持できる
第2活性金属成分化合物水溶液の吸収は工程(e)におけるジルコニウム化合物水溶液の吸収と同様に行う。
In the present invention, it is preferable to carry out the following step (k) and then step (l) after the step (f) or after the step (j).
Step (k)
The aqueous solution of the second active metal component (promoter metal component) compound is absorbed (impregnated). The second active metal component compound is a salt of one or more metals selected from alkali metals, alkaline earth metals, and rare earth metals, specifically sodium sulfate, sodium acetate, magnesium chloride, calcium chloride. And lanthanum chloride. By including such a second active metal component, the selectivity is improved and the catalyst life can be kept long. The absorption of the second active metal component compound aqueous solution is performed in the same manner as the absorption of the zirconium compound aqueous solution in the step (e).
第2活性金属成分化合物水溶液の使用量は、最終的な一酸化炭素還元触媒中に金属(酸化物)として0.005〜5重量%、さらには0.01〜4重量%の範囲にあることが好ましい。 The amount of the second active metal component compound aqueous solution used is in the range of 0.005 to 5% by weight, further 0.01 to 4% by weight as a metal (oxide) in the final carbon monoxide reduction catalyst. Is preferred.
第2活性金属成分の含有量が金属酸化物として0.005重量%未満の場合は、活性、選択性の低下、触媒寿命の低下を抑制する効果が不充分となる場合がある。 When the content of the second active metal component is less than 0.005% by weight as the metal oxide, the effect of suppressing the decrease in activity, selectivity, and catalyst life may be insufficient.
第2活性金属成分の含有量が金属酸化物として5重量%を越えても、更に触媒寿命が長くなることもなく、むしろ活性、選択性が低下する場合がある。
工程(l)
ついで、第2活性金属成分化合物水溶液を吸収した担体粒子を乾燥・焼成する。乾燥および焼成は前記工程(f)と同様に行う。第2活性金属成分は、担体中に、酸化物として存在している。
Even if the content of the second active metal component exceeds 5% by weight as the metal oxide, the catalyst life may not be further increased, and the activity and selectivity may be lowered.
Step (l)
Next, the carrier particles that have absorbed the second active metal component compound aqueous solution are dried and fired. Drying and firing are performed in the same manner as in the step (f). The second active metal component is present as an oxide in the support.
このようにして得られる一酸化炭素還元触媒は、平均粒子径が50〜200μm、さらには60〜160μmの範囲にあり、比表面積が50〜200m2/g、さらには100
〜200m2/gの範囲にあり、細孔容積が0.1〜0.6ml/g、さらには0.2〜
0.55ml/gの範囲にあり、耐摩耗性が0.01〜1重量%/15時間、さらには0.01〜0.8重量%/15時間の範囲にある。
The carbon monoxide reduction catalyst thus obtained has an average particle size in the range of 50 to 200 μm, more preferably 60 to 160 μm, and a specific surface area of 50 to 200 m 2 / g, further 100.
Is in the range of ~ 200 m 2 / g, and the pore volume is 0.1 to 0.6 ml / g, more preferably 0.2 to
The wear resistance is in the range of 0.55 ml / g, and the wear resistance is in the range of 0.01 to 1% by weight / 15 hours, and further in the range of 0.01 to 0.8% by weight / 15 hours.
つぎに、本発明に係る一酸化炭素還元触媒について説明する。
一酸化炭素還元触媒
本発明に係る一酸化炭素還元触媒は、上記製造方法で得られたものであり、金属酸化物と活性金属成分とからなる一酸化炭素還元触媒であって、活性金属成分がFe、Ru、Co、Rh、Ni、Pdから選ばれる1種以上であり、該活性金属成分の含有量が金属酸化物として3〜50重量%の範囲にあり、平均粒子径が50〜200μmの範囲にあり、比表面積が50〜200m2/gの範囲にあり、細孔容積が0.1〜0.6ml/gの範囲
にあり、耐摩耗性が0.01〜1重量%/15時間の範囲にあることを特徴としている。
Next, the carbon monoxide reduction catalyst according to the present invention will be described.
Carbon monoxide reduction catalyst The carbon monoxide reduction catalyst according to the present invention is a carbon monoxide reduction catalyst obtained by the above production method, comprising a metal oxide and an active metal component, wherein the active metal component is It is at least one selected from Fe, Ru, Co, Rh, Ni, Pd, the content of the active metal component is in the range of 3 to 50% by weight as a metal oxide, and the average particle size is 50 to 200 μm The specific surface area is in the range of 50 to 200 m 2 / g, the pore volume is in the range of 0.1 to 0.6 ml / g, and the wear resistance is 0.01 to 1% by weight / 15 hours. It is characterized by being in the range of.
触媒として使用される場合、活性成分は金属状態とするが、通常では、活性成分は金属酸化物の状態で担持されていてもよい。 When used as a catalyst, the active ingredient is in a metal state, but usually the active ingredient may be supported in the form of a metal oxide.
金属酸化物
本発明に用いる金属酸化物は、前記した金属酸化物微粒子と前記した金属酸化物ゲルに由来する金属酸化物とからなっている。これらの比率は、上記混合比率に由来する。
Metal Oxide The metal oxide used in the present invention is composed of the aforementioned metal oxide fine particles and a metal oxide derived from the aforementioned metal oxide gel. These ratios are derived from the above mixing ratio.
本発明の金属酸化物担体はさらにジルコニアを含んでいることが好ましい。 The metal oxide support of the present invention preferably further contains zirconia.
ジルコニアの含有量は一酸化炭素還元触媒中に1〜20重量%、さらには2〜15重量%の範囲にあることが好ましい。このようにジルコニアを含むことで、活性、選択性の向上、触媒寿命の向上などを図ることができる。 The content of zirconia is preferably in the range of 1 to 20% by weight, more preferably 2 to 15% by weight in the carbon monoxide reduction catalyst. By including zirconia in this manner, it is possible to improve activity, selectivity, and catalyst life.
一酸化炭素還元触媒中の金属酸化物担体の含有量は金属酸化物として50〜97重量%、さらには60〜95重量%の範囲にあることが好ましい。
活性金属成分
活性金属成分はFe、Ru、Co、Rh、Ni、Pdから選ばれる1種以上であることが好ましい。
The content of the metal oxide support in the carbon monoxide reduction catalyst is preferably in the range of 50 to 97% by weight, more preferably 60 to 95% by weight as the metal oxide.
Active metal component The active metal component is preferably at least one selected from Fe, Ru, Co, Rh, Ni and Pd.
本発明では特にRuおよび/またはCo金属が好ましい。Ruおよび/またはCo金属を用いると一酸化炭素還元活性が高く、フィッシャー・トロプシュ(FT)合成用触媒として好適に用いることができ、高品質の液体燃料基材を高収率で生産することができる。 In the present invention, Ru and / or Co metal is particularly preferable. When Ru and / or Co metal is used, carbon monoxide reduction activity is high, it can be suitably used as a catalyst for Fischer-Tropsch (FT) synthesis, and a high-quality liquid fuel substrate can be produced in a high yield. it can.
活性金属の含有量は一酸化炭素還元触媒中に金属酸化物として、3〜50重量%、さらには5〜40重量%の範囲となるように担持されていることが好ましい。 The active metal content is preferably supported in the carbon monoxide reduction catalyst as a metal oxide in a range of 3 to 50% by weight, more preferably 5 to 40% by weight.
ここで、活性金属成分の含有量を酸化物としているが、反応に共するに際して還元して用いる場合金属となり、あるいは反応中に還元性ガスによって還元されて金属となる。 Here, although the content of the active metal component is an oxide, it is converted to a metal when used in the reaction, or reduced to a metal by a reducing gas during the reaction.
還元する場合、通常、水素ガスなどの存在下に、加熱処理する。 In the case of reduction, heat treatment is usually performed in the presence of hydrogen gas or the like.
第2活性金属酸化物成分
本発明の一酸化炭素還元触媒にはさらに、第2活性金属酸化物成分(第2活性成分とものいう)を含むことが好ましい。このような第2活性金属酸化物成分を含むことで、活性、選択性を高め、触媒寿命を長くすることができる。
Second active metal oxide component The carbon monoxide reduction catalyst of the present invention preferably further contains a second active metal oxide component (also referred to as a second active component). By including such a 2nd active metal oxide component, activity and selectivity can be improved and a catalyst lifetime can be lengthened.
第2活性金属成分としては、前記したようなアルカリ金属、アルカリ土類金属、希土類
金属から選ばれる1種以上の金属の酸化物が好ましい。
The second active metal component is preferably an oxide of one or more metals selected from alkali metals, alkaline earth metals, and rare earth metals as described above.
具体的にはナトリウム、カリウム、マグネシウム、カルシウム、ランタン等が挙げられる。 Specific examples include sodium, potassium, magnesium, calcium, lanthanum and the like.
一酸化炭素還元触媒中の第2活性成分の含有量は金属酸化物として0.005〜5重量%、さらには0.01〜4重量%の範囲にあることが好ましい。
形状
一酸化炭素還元触媒は、平均粒子径が50〜200μm、さらには60〜160μmの範囲にあることが好ましい。一酸化炭素還元触媒の平均粒子径が50μm未満の場合は、流動床で用いる場合は流動性が低下し、懸濁床で用いる場合は分離が困難となる場合がある。一酸化炭素還元触媒の平均粒子径が200μmを越えると、流動床で用いる場合は流動性が低下し、懸濁床で用いる場合は活性が不充分となる場合がある。
The content of the second active component in the carbon monoxide reduction catalyst is preferably in the range of 0.005 to 5% by weight, more preferably 0.01 to 4% by weight as the metal oxide.
The shape carbon monoxide reduction catalyst preferably has an average particle size in the range of 50 to 200 μm, more preferably 60 to 160 μm. When the average particle diameter of the carbon monoxide reduction catalyst is less than 50 μm, fluidity may be reduced when used in a fluidized bed, and separation may be difficult when used in a suspended bed. When the average particle diameter of the carbon monoxide reduction catalyst exceeds 200 μm, the fluidity is lowered when used in a fluidized bed, and the activity may be insufficient when used in a suspended bed.
また、比表面積は50〜200m2/g、さらには60〜180m2/gの範囲にあることが好ましい。比表面積が50m2/g未満の場合は、活性が不充分となる場合がある。
比表面積が200m2/gを越えるものは、本発明の方法では得ることが困難である。
The specific surface area is preferably in the range of 50 to 200 m 2 / g, more preferably 60 to 180 m 2 / g. When the specific surface area is less than 50 m 2 / g, the activity may be insufficient.
Those having a specific surface area exceeding 200 m 2 / g are difficult to obtain by the method of the present invention.
細孔容積は0.1〜0.6ml/g、さらには0.2〜0.55ml/gの範囲にあることが好ましい。細孔容積が0.1ml/g未満の場合は、活性が不充分となる場合がある。細孔容積が0.6ml/gを越えると、耐摩耗性が不充分となり、長期連続運転が困難となる場合がある。 The pore volume is preferably in the range of 0.1 to 0.6 ml / g, more preferably 0.2 to 0.55 ml / g. When the pore volume is less than 0.1 ml / g, the activity may be insufficient. When the pore volume exceeds 0.6 ml / g, the wear resistance is insufficient and long-term continuous operation may be difficult.
耐摩耗性は、0.01〜1重量%/15時間、さらには0.02〜0.8重量%/15時間の範囲にあることが好ましい。耐摩耗性が0.01重量%/15時間未満のものは得ることが困難であり、得られたとしても細孔容積が小さく、活性が不充分となる場合がある。耐摩耗性が1重量%/15時間を越えると、一酸化炭素還元反応に使用する場合、長期連続運転が困難となる場合がある。 The abrasion resistance is preferably in the range of 0.01 to 1% by weight / 15 hours, more preferably 0.02 to 0.8% by weight / 15 hours. It is difficult to obtain a wear resistance of less than 0.01% by weight / 15 hours, and even if obtained, the pore volume is small and the activity may be insufficient. When the wear resistance exceeds 1% by weight / 15 hours, long-term continuous operation may be difficult when used in a carbon monoxide reduction reaction.
以上のような本発明にかかる一酸化炭素還元触媒を使用すると、活性、選択性に優れるとともに、耐摩耗性、粒子強度、流動性などに優れ、長期にわたって連続的に使用することができ、パラフィン含有量に富み、かつ硫黄分を含まない液体燃料基材を効率的に製造することができるという効果が奏せられる。またその使用形態は、公知の条件をとくに制限なく採用することができる。 When the carbon monoxide reduction catalyst according to the present invention as described above is used, it has excellent activity and selectivity, and is excellent in wear resistance, particle strength, fluidity, etc., and can be used continuously over a long period of time. The liquid fuel base material which is rich in content and does not contain sulfur content can be produced efficiently. Moreover, the use condition can employ | adopt a well-known condition without a restriction | limiting especially.
以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。
[実施例1]
一酸化炭素還元用流動触媒(1)の調製
シリカゾル(日揮触媒化成(株)製:S−20LE、平均粒子径19nm、SiO2濃
度20重量%)7500gと、シリカ微粉末((株)トクヤマ製:レオロシールQS−40)1500gとを、水6000gに混合して固形分濃度20重量%の混合分散液を調製した。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
[Example 1]
Preparation of fluid catalyst for carbon monoxide reduction (1) Silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: S-20LE, average particle diameter 19 nm, SiO 2 concentration 20% by weight) 7500 g and silica fine powder (manufactured by Tokuyama Corporation) : Leolosil QS-40) 1500 g was mixed with 6000 g of water to prepare a mixed dispersion having a solid content concentration of 20% by weight.
ついで、混合分散液をホモジナイザー((株)喜商製:アサヒホモジナイザー LL型)にて均一化処理して噴霧乾燥用スラリーを調製した。 Next, the mixed dispersion was homogenized with a homogenizer (manufactured by Kisho Co., Ltd .: Asahi homogenizer LL type) to prepare a slurry for spray drying.
ついで、回転ディスク法噴霧乾燥装置を用い、噴霧乾燥用スラリーを16.8kg/hrの流量で、入口温度170℃の熱風気流中に噴霧して担体用粉体(1-1)を得た。この時
、出口温度は100℃であった。
Subsequently, the slurry for spray drying was sprayed into a hot air stream having an inlet temperature of 170 ° C. at a flow rate of 16.8 kg / hr using a rotating disk method spray drying apparatus to obtain powder for carrier (1-1). At this time, the outlet temperature was 100 ° C.
ついで、担体用粉体(1-1)を650℃で3時間焼成して担体用粉体(1-2)を調製した。担体(1-2)の細孔容積は0.74ml/gであった。 Subsequently, the carrier powder (1-1) was calcined at 650 ° C. for 3 hours to prepare a carrier powder (1-2). The pore volume of the carrier (1-2) was 0.74 ml / g.
ついで、ZrO2として濃度13重量%の炭酸ジルコニウムアンモニウム水溶液328
.5gを担体(1-2)500gに吸収させ、ついで、120℃で16時間乾燥した後、50
0℃で1時間焼成して一酸化炭素還元用流動触媒担体(1)を調製した。
Subsequently, an aqueous zirconium ammonium carbonate solution 328 having a concentration of 13% by weight as ZrO 2 was obtained.
. 5 g was absorbed in 500 g of the carrier (1-2), and then dried at 120 ° C. for 16 hours.
The fluidized catalyst carrier (1) for carbon monoxide reduction was prepared by calcination at 0 ° C. for 1 hour.
ついで、Coとして濃度14量%の硝酸コバルト水溶液を吸収させ、300℃で1時間乾燥した後、300℃で1時間焼成した。この操作を繰り返し計1226gの硝酸コバルト水溶液を吸収させた後、最後に450℃で1時間焼成して一酸化炭素還元用流動触媒(1)を調製した。 Subsequently, a cobalt nitrate aqueous solution having a concentration of 14% by weight was absorbed as Co, dried at 300 ° C. for 1 hour, and then fired at 300 ° C. for 1 hour. This operation was repeated to absorb a total of 1226 g of cobalt nitrate aqueous solution, and finally calcined at 450 ° C. for 1 hour to prepare a carbon monoxide reducing fluid catalyst (1).
得られた一酸化炭素還元用流動触媒(1)について、組成分析、平均粒子径(粒子径分布
)、比表面積、細孔容積、耐摩耗性を評価し、結果を表1に示す。
The resulting carbon monoxide reduction fluid catalyst (1) was evaluated for composition analysis, average particle size (particle size distribution), specific surface area, pore volume, and abrasion resistance. The results are shown in Table 1.
なお、平均粒子径、比表面積、細孔容積、耐摩耗性、粒子強度、流動性の測定は以下の方法によって測定した。
平均粒子径(粒子径分布)
マイクロメッシュシーブ法:JIS K0069 「化学製品のふるい分け試験方法」に準拠し
て行った。
比表面積
BET法により測定した。
細孔容積
水滴定法:所定重量の担体、または触媒をガラス瓶に充填し、これに少量の水を手規定して吸収させ、浸透し、これを担体、触媒粒子がガラス壁に付着するようになるまで繰り返し、付着を始めたとの水の滴定量を担体、または触媒の重量で除した値を細孔容積とした。
耐摩耗性
耐摩耗性は、ACC法(ACC. Bulletin、No.6131-4M-1/57.)に記載された方法に準拠し、触媒充填量50g、ノズル径0.406mmΦ、空気流量0.426m3/時間の条件で流動させ、流動開始後5〜50時間の間の15時間に、流動層容器から飛散して回収された微粒子の重量割合(%)
から算出する。
[実施例2]
一酸化炭素還元用流動触媒(2)の調製
シリカゾル(日揮触媒化成(株)製:S−20LE、平均粒子径19nm、SiO2濃
度20重量%)10,000gと、シリカ微粉末((株)トクヤマ製:レオロシールQS−40)1,000gとを、水4,000gに混合して固形分濃度20重量%の混合分散液を調製した。
The average particle diameter, specific surface area, pore volume, abrasion resistance, particle strength, and fluidity were measured by the following methods.
Average particle size (particle size distribution)
Micromesh sieve method: Measured according to JIS K0069 “Chemical product screening test method”.
The specific surface area was measured by the BET method.
Pore volumetric water titration method: A glass bottle is filled with a predetermined weight of support or catalyst, and a small amount of water is manually absorbed and penetrated into the glass bottle so that the support and catalyst particles adhere to the glass wall. The value obtained by dividing the titration of water at the start of adhesion by the weight of the carrier or catalyst was defined as the pore volume.
Abrasion resistance Abrasion resistance conforms to the method described in the ACC method (ACC. Bulletin, No.6131-4M-1 / 57.), With a catalyst filling amount of 50 g, a nozzle diameter of 0.406 mmΦ, and an air flow rate of 0.426 m 3 The weight ratio (%) of the fine particles scattered and collected from the fluidized bed container for 15 hours between 5 and 50 hours after the start of flow
Calculate from
[Example 2]
Preparation of fluid catalyst for carbon monoxide reduction (2) Silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: S-20LE, average particle diameter 19 nm, SiO 2 concentration 20% by weight) 10,000 g and silica fine powder (Co., Ltd.) Tokuyama: Leorosil QS-40) 1,000 g was mixed with 4,000 g of water to prepare a mixed dispersion having a solid content concentration of 20% by weight.
ついで、混合分散液をホモジナイザー((株)喜商製:アサヒホモジナイザー LL型)にて均一化処理して噴霧乾燥用スラリーを調製した。 Next, the mixed dispersion was homogenized with a homogenizer (manufactured by Kisho Co., Ltd .: Asahi homogenizer LL type) to prepare a slurry for spray drying.
以下、実施例1と同様にして一酸化炭素還元用流動触媒(2)を調製した。 Thereafter, a fluidized catalyst for reducing carbon monoxide (2) was prepared in the same manner as in Example 1.
得られた一酸化炭素還元用流動触媒(2)について、組成分析、平均粒子径、比表面積、
細孔容積、耐摩耗性を評価し、結果を表1に示す。
[実施例3]
一酸化炭素還元用流動触媒(3)の調製
シリカゾル(日揮触媒化成(株)製:S−20LE、平均粒子径19nm、SiO2濃
度20重量%)6,000gと、シリカ微粉末((株)トクヤマ製:レオロシールQS−40)1800gとを、水7,200gに混合して固形分濃度20重量%の混合分散液を調製した。
About the obtained carbon monoxide reduction fluid catalyst (2), composition analysis, average particle diameter, specific surface area,
The pore volume and wear resistance were evaluated, and the results are shown in Table 1.
[Example 3]
Preparation of fluid catalyst for carbon monoxide reduction (3) Silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: S-20LE, average particle diameter 19 nm, SiO 2 concentration 20% by weight) 6,000 g and silica fine powder (Co., Ltd.) Tokuyama: Leolosil QS-40) 1800 g was mixed with water 7,200 g to prepare a mixed dispersion having a solid concentration of 20% by weight.
ついで、混合分散液をホモジナイザー((株)喜商製:アサヒホモジナイザー LL型)にて均一化処理して噴霧乾燥用スラリーを調製した。 Next, the mixed dispersion was homogenized with a homogenizer (manufactured by Kisho Co., Ltd .: Asahi homogenizer LL type) to prepare a slurry for spray drying.
以下、実施例1と同様にして一酸化炭素還元用流動触媒(3)を調製した。 Thereafter, a fluidized catalyst (3) for reducing carbon monoxide was prepared in the same manner as in Example 1.
得られた一酸化炭素還元用流動触媒(3)について、組成分析、平均粒子径、比表面積、
細孔容積、耐摩耗性を評価し、結果を表1に示す。
[実施例4]
一酸化炭素還元用流動触媒(4)の調製
実施例1と同様にして調製した噴霧乾燥用スラリーを、入口温度150℃の熱風気流中に噴霧して担体用粉体(1)を得た。この時、出口温度は90℃であった
以下、実施例1と同様にして一酸化炭素還元用流動触媒(4)を調製した。
About the obtained carbon monoxide reducing fluid catalyst (3), composition analysis, average particle diameter, specific surface area,
The pore volume and wear resistance were evaluated, and the results are shown in Table 1.
[Example 4]
Preparation of fluid catalyst for carbon monoxide reduction (4) The slurry for spray drying prepared in the same manner as in Example 1 was sprayed into a hot air stream having an inlet temperature of 150 ° C. to obtain a carrier powder (1). At this time, the outlet temperature was 90 ° C. A fluidized catalyst for reducing carbon monoxide (4) was prepared in the same manner as in Example 1.
得られた一酸化炭素還元用流動触媒(4)について、組成分析、平均粒子径、比表面積、
細孔容積、耐摩耗性を評価し、結果を表1に示す。
[実施例5]
一酸化炭素還元用流動触媒(5)の調製
実施例1と同様にして調製した噴霧乾燥用スラリーを、入口温度230℃の熱風気流中に噴霧して担体用粉体(5-1)を得た。この時、出口温度は180℃であった
以下、実施例1と同様にして一酸化炭素還元用流動触媒(5)を調製した。
About the obtained carbon monoxide reduction fluid catalyst (4), composition analysis, average particle diameter, specific surface area,
The pore volume and wear resistance were evaluated, and the results are shown in Table 1.
[Example 5]
Preparation of fluid catalyst for carbon monoxide reduction (5) Spray drying slurry prepared in the same manner as in Example 1 was sprayed into a hot air stream having an inlet temperature of 230 ° C. to obtain carrier powder (5-1). It was. At this time, the outlet temperature was 180 ° C. A fluidized catalyst for reducing carbon monoxide (5) was prepared in the same manner as in Example 1.
得られた一酸化炭素還元用流動触媒(5)について、組成分析、平均粒子径、比表面積、
細孔容積、耐摩耗性を評価し、結果を表1に示す。
[実施例6]
一酸化炭素還元用流動触媒(6)の調製
シリカゾル(日揮触媒化成(株)製:S−20LE、平均粒子径19nm、SiO2濃
度20重量%)7500gと、シリカ微粉末((株)トクヤマ製:レオロシールQS−40)1500gとを、水21,000gに混合して固形分濃度10重量%の混合分散液を調製した。
About the obtained carbon monoxide reduction fluid catalyst (5), composition analysis, average particle diameter, specific surface area,
The pore volume and wear resistance were evaluated, and the results are shown in Table 1.
[Example 6]
Preparation of fluid catalyst for carbon monoxide reduction (6) Silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: S-20LE, average particle diameter 19 nm, SiO 2 concentration 20% by weight) 7500 g and silica fine powder (manufactured by Tokuyama Corporation) : Leolosil QS-40) 1500 g was mixed with 21,000 g of water to prepare a mixed dispersion having a solid content concentration of 10% by weight.
ついで、混合分散液をホモジナイザー((株)喜商製:アサヒホモジナイザー LL型)にて均一化処理して噴霧乾燥用スラリーを調製した。 Next, the mixed dispersion was homogenized with a homogenizer (manufactured by Kisho Co., Ltd .: Asahi homogenizer LL type) to prepare a slurry for spray drying.
ついで、回転ディスク法噴霧乾燥装置を用い、噴霧乾燥用スラリーを16.8kg/hrの流量で、入口温度170℃の熱風気流中に噴霧して担体用粉体(6-1)を得た。この時
、出口温度は90℃であった。
Subsequently, the slurry for spray drying was sprayed into a hot air stream having an inlet temperature of 170 ° C. at a flow rate of 16.8 kg / hr using a rotating disk method spray drying apparatus to obtain a carrier powder (6-1). At this time, the outlet temperature was 90 ° C.
以下、実施例1と同様にして一酸化炭素還元用流動触媒(6)を調製した。 Thereafter, a fluidized catalyst for reducing carbon monoxide (6) was prepared in the same manner as in Example 1.
得られた一酸化炭素還元用流動触媒(6)について、組成分析、平均粒子径、比表面積、
細孔容積、耐摩耗性を評価し、結果を表1に示す。
[実施例7]
一酸化炭素還元用流動触媒(7)の調製
シリカゾル(日揮触媒化成(株)製:S−20LE、平均粒子径19nm、SiO2濃
度20重量%)7500gと、シリカ微粉末((株)トクヤマ製:レオロシールQS−4
0)1500gとを、水3,000gに混合して固形分濃度25重量%の混合分散液を調製した。
About the obtained carbon monoxide reduction fluid catalyst (6), composition analysis, average particle diameter, specific surface area,
The pore volume and wear resistance were evaluated, and the results are shown in Table 1.
[Example 7]
Preparation of fluid catalyst for carbon monoxide reduction (7) Silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: S-20LE, average particle diameter 19 nm, SiO 2 concentration 20% by weight) 7500 g and silica fine powder (manufactured by Tokuyama Co., Ltd.) : Leolo Seal QS-4
0) 1500 g was mixed with 3,000 g of water to prepare a mixed dispersion having a solid content concentration of 25% by weight.
ついで、混合分散液をホモジナイザー((株)喜商製:アサヒホモジナイザー LL型)にて均一化処理して噴霧乾燥用スラリーを調製した。 Next, the mixed dispersion was homogenized with a homogenizer (manufactured by Kisho Co., Ltd .: Asahi homogenizer LL type) to prepare a slurry for spray drying.
ついで、回転ディスク法噴霧乾燥装置を用い、噴霧乾燥用スラリーを16.8kg/hrの流量で、入口温度170℃の熱風気流中に噴霧して担体用粉体(7-1)を得た。この時
、出口温度は110℃であった。
Subsequently, the slurry for spray drying was sprayed in a hot air stream having an inlet temperature of 170 ° C. at a flow rate of 16.8 kg / hr using a rotating disk method spray drying apparatus to obtain powder for carrier (7-1). At this time, the outlet temperature was 110 ° C.
以下、実施例1と同様にして一酸化炭素還元用流動触媒(7)を調製した。 Thereafter, a fluidized catalyst for reducing carbon monoxide (7) was prepared in the same manner as in Example 1.
得られた一酸化炭素還元用流動触媒(7)について、組成分析、平均粒子径、比表面積、
細孔容積、耐摩耗性を評価し、結果を表1に示す。
[実施例8]
一酸化炭素還元用流動触媒(8)の調製
実施例1と同様にして一酸化炭素還元用流動触媒担体(1)を調製した。
About the obtained carbon monoxide reduction fluid catalyst (7), composition analysis, average particle diameter, specific surface area,
The pore volume and wear resistance were evaluated, and the results are shown in Table 1.
[Example 8]
Preparation of fluid catalyst for reducing carbon monoxide (8) A fluid catalyst carrier for reducing carbon monoxide (1) was prepared in the same manner as in Example 1.
ついで、Coとして濃度14量%、Ruとして濃度2量%の硝酸コバルト・硝酸ルテニウム混合水溶液を吸収させ、300℃で1時間乾燥した後、300℃で1時間焼成した。この操作を繰り返し計1226gの硝酸コバルト・硝酸ルテニウム混合水溶液を吸収させた後、最後に450℃で1時間焼成して一酸化炭素還元用流動触媒(8)を調製した。 Next, a cobalt nitrate / ruthenium nitrate mixed aqueous solution having a concentration of 14% by weight as Co and a concentration of 2% by weight as Ru was absorbed, dried at 300 ° C. for 1 hour, and then fired at 300 ° C. for 1 hour. This operation was repeated until a total of 1226 g of cobalt nitrate / ruthenium nitrate mixed aqueous solution was absorbed, and finally calcined at 450 ° C. for 1 hour to prepare a carbon monoxide reducing fluid catalyst (8).
得られた一酸化炭素還元用流動触媒(8)について、組成分析、平均粒子径、比表面積、
細孔容積、耐摩耗性を評価し、結果を表1に示す。
[比較例1]
一酸化炭素還元用流動触媒(R1)の調製
シリカゾル(日揮触媒化成(株)製:S−20LE、平均粒子径19nm、SiO2濃
度20重量%)7,500gを、回転ディスク法噴霧乾燥装置を用い、噴霧乾燥用スラリーを16.8kg/hrの流量で、入口温度170℃の熱風気流中に噴霧して担体用粉体(R1-1)を得た。この時、出口温度は100℃であった。
About the obtained carbon monoxide reduction fluid catalyst (8), composition analysis, average particle diameter, specific surface area,
The pore volume and wear resistance were evaluated, and the results are shown in Table 1.
[Comparative Example 1]
Preparation of fluidized catalyst for carbon monoxide reduction (R1) 7,500 g of silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: S-20LE, average particle diameter 19 nm, SiO 2 concentration 20% by weight) was applied to a rotating disk method spray drying apparatus. The slurry for spray drying was sprayed at a flow rate of 16.8 kg / hr into a hot air stream having an inlet temperature of 170 ° C. to obtain a carrier powder (R1-1). At this time, the outlet temperature was 100 ° C.
ついで、担体用粉体(R1-1)を650℃で3時間焼成して担体用粉体(R1-2)を調製した。担体用粉体(R1-2)の細孔容積は0.30ml/gであった。 Subsequently, the carrier powder (R1-1) was calcined at 650 ° C. for 3 hours to prepare a carrier powder (R1-2). The pore volume of the carrier powder (R1-2) was 0.30 ml / g.
ついで、ZrO2として濃度13重量%の炭酸ジルコニウムアンモニウム水溶液328
.5gを担体(R1-2)500gに吸収させ、ついで、120℃で16時間乾燥した後、500℃で1時間焼成して一酸化炭素還元用流動触媒担体(R1)を調製した。
Subsequently, an aqueous zirconium ammonium carbonate solution 328 having a concentration of 13% by weight as ZrO 2 was obtained.
. 5 g was absorbed into 500 g of the support (R1-2), then dried at 120 ° C. for 16 hours, and then calcined at 500 ° C. for 1 hour to prepare a carbon monoxide reducing fluid catalyst support (R1).
ついで、Coとして濃度14量%の硝酸コバルト水溶液gを吸収させ、300℃で1時間乾燥した後、300℃で1時間焼成した。この操作を繰り返し計1226gの硝酸コバルト水溶液を吸収させた後、最後に450℃で1時間焼成して一酸化炭素還元用流動触媒(R1)を調製した。 Next, a cobalt nitrate aqueous solution g having a concentration of 14% by weight was absorbed as Co, dried at 300 ° C. for 1 hour, and then fired at 300 ° C. for 1 hour. This operation was repeated to absorb a total of 1226 g of cobalt nitrate aqueous solution, and finally calcined at 450 ° C. for 1 hour to prepare a carbon monoxide reducing fluid catalyst (R1).
得られた一酸化炭素還元用流動触媒(R1)について、組成分析、平均粒子径、比表面積、細孔容積、耐摩耗性を評価し、結果を表1に示す。
[比較例2]
一酸化炭素還元用流動触媒(R2)の調製
シリカゾル(日揮触媒化成(株)製:S−20LE、平均粒子径19nm、SiO2濃
度20重量%)7500gと、シリカ微粉末((株)トクヤマ製:レオロシールQS−4
0)75gとを、水300gに混合して固形分濃度20重量%の混合分散液を調製した。
The obtained carbon monoxide reducing fluid catalyst (R1) was evaluated for composition analysis, average particle diameter, specific surface area, pore volume, and abrasion resistance. The results are shown in Table 1.
[Comparative Example 2]
Preparation of fluid catalyst for carbon monoxide reduction (R2) Silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: S-20LE, average particle diameter 19 nm, SiO 2 concentration 20% by weight) 7500 g and silica fine powder (manufactured by Tokuyama Co., Ltd.) : Leolo Seal QS-4
0) 75 g was mixed with 300 g of water to prepare a mixed dispersion having a solid content of 20% by weight.
ついで、混合分散液をホモジナイザー((株)喜商製:アサヒホモジナイザー LL型)にて均一化処理して噴霧乾燥用スラリーを調製した。 Next, the mixed dispersion was homogenized with a homogenizer (manufactured by Kisho Co., Ltd .: Asahi homogenizer LL type) to prepare a slurry for spray drying.
ついで、回転ディスク法噴霧乾燥装置を用い、噴霧乾燥用スラリーを16.8kg/hrの流量で、入口温度170℃の熱風気流中に噴霧して担体用粉体(R2-1)を得た。この時、出口温度は100℃であった。 Next, using a rotating disk method spray drying apparatus, the slurry for spray drying was sprayed at a flow rate of 16.8 kg / hr into a hot air stream having an inlet temperature of 170 ° C. to obtain a carrier powder (R2-1). At this time, the outlet temperature was 100 ° C.
ついで、担体用粉体(R2-1)を650℃で3時間焼成して担体用粉体(R2-2)を調製した。担体(R2-2)の細孔容積は0.35ml/gであった。 Subsequently, the carrier powder (R2-1) was fired at 650 ° C. for 3 hours to prepare a carrier powder (R2-2). The pore volume of the carrier (R2-2) was 0.35 ml / g.
ついで、ZrO2として濃度13重量%の炭酸ジルコニウムアンモニウム水溶液328
.5gを担体(1-2)500gに吸収させ、ついで、120℃で16時間乾燥した後、50
0℃で1時間焼成して一酸化炭素還元用流動触媒担体(1)を調製した。
Subsequently, an aqueous zirconium ammonium carbonate solution 328 having a concentration of 13% by weight as ZrO 2 was obtained.
. 5 g was absorbed in 500 g of the carrier (1-2), and then dried at 120 ° C. for 16 hours.
The fluidized catalyst carrier (1) for carbon monoxide reduction was prepared by calcination at 0 ° C. for 1 hour.
ついで、Coとして濃度14量%の硝酸コバルト水溶液を吸収させ、300℃で1時間乾燥した後、300℃で1時間焼成した。この操作を繰り返し計1226gの硝酸コバルト水溶液を吸収させた後、最後に450℃で1時間焼成して一酸化炭素還元用流動触媒(R2)を調製した。 Subsequently, a cobalt nitrate aqueous solution having a concentration of 14% by weight was absorbed as Co, dried at 300 ° C. for 1 hour, and then fired at 300 ° C. for 1 hour. This operation was repeated to absorb a total of 1226 g of cobalt nitrate aqueous solution, and finally calcined at 450 ° C. for 1 hour to prepare a carbon monoxide reducing fluid catalyst (R2).
得られた一酸化炭素還元用流動触媒(R2)について、組成分析、平均粒子径、比表面積、細孔容積、耐摩耗性を評価し、結果を表1に示す。
[比較例3]
一酸化炭素還元用流動触媒(R3)の調製
シリカゾル(日揮触媒化成(株)製:S−20LE、平均粒子径19nm、SiO2濃
度20重量%)7500gと、シリカ微粉末((株)トクヤマ製:レオロシールQS−40)7,500gとを、水30,000gに混合して固形分濃度20重量%の混合分散液を調製した。
The obtained carbon monoxide reducing fluid catalyst (R2) was evaluated for composition analysis, average particle diameter, specific surface area, pore volume, and abrasion resistance. The results are shown in Table 1.
[Comparative Example 3]
Preparation of fluid catalyst for carbon monoxide reduction (R3) Silica sol (manufactured by JGC Catalysts & Chemicals Co., Ltd .: S-20LE, average particle diameter 19 nm, SiO 2 concentration 20% by weight) 7500 g and silica fine powder (manufactured by Tokuyama Co., Ltd.) : Leolosil QS-40) 7,500 g was mixed with 30,000 g of water to prepare a mixed dispersion having a solid content concentration of 20% by weight.
ついで、混合分散液をホモジナイザー((株)喜商製:アサヒホモジナイザー LL型)にて均一化処理して噴霧乾燥用スラリーを調製した。 Next, the mixed dispersion was homogenized with a homogenizer (manufactured by Kisho Co., Ltd .: Asahi homogenizer LL type) to prepare a slurry for spray drying.
ついで、回転ディスク法噴霧乾燥装置を用い、噴霧乾燥用スラリーを16.8kg/hrの流量で、入口温度170℃の熱風気流中に噴霧して担体用粉体(R3-1)を得た。この時、出口温度は100℃であった。 Subsequently, the slurry for spray drying was sprayed into a hot air stream having an inlet temperature of 170 ° C. at a flow rate of 16.8 kg / hr using a rotating disk method spray drying apparatus to obtain powder for carrier (R3-1). At this time, the outlet temperature was 100 ° C.
ついで、担体用粉体(R3-1)を650℃で3時間焼成して担体用粉体(R3-2)を調製した。担体(R3-2)の細孔容積は1.25ml/gであった。 The carrier powder (R3-1) was then fired at 650 ° C. for 3 hours to prepare a carrier powder (R3-2). The pore volume of the carrier (R3-2) was 1.25 ml / g.
ついで、ZrO2として濃度13重量%の炭酸ジルコニウムアンモニウム水溶液328
.5gを担体(R3-2)500gに吸収させ、ついで、120℃で16時間乾燥した後、500℃で1時間焼成して一酸化炭素還元用流動触媒担体(R3)を調製した。
Subsequently, an aqueous zirconium ammonium carbonate solution 328 having a concentration of 13% by weight as ZrO 2 was obtained.
. 5 g was absorbed into 500 g of the support (R3-2), then dried at 120 ° C. for 16 hours, and then calcined at 500 ° C. for 1 hour to prepare a carbon monoxide reducing fluid catalyst support (R3).
ついで、Coとして濃度14量%の硝酸コバルト水溶液を吸収させ、300℃で1時間乾燥した後、300℃で1時間焼成した。この操作を繰り返し計1226gの硝酸コバルト水溶液を吸収させた後、最後に450℃で1時間焼成して一酸化炭素還元用流動触媒(R3)を調製した。 Subsequently, a cobalt nitrate aqueous solution having a concentration of 14% by weight was absorbed as Co, dried at 300 ° C. for 1 hour, and then fired at 300 ° C. for 1 hour. This operation was repeated to absorb a total of 1226 g of cobalt nitrate aqueous solution, and finally calcined at 450 ° C. for 1 hour to prepare a carbon monoxide reducing fluid catalyst (R3).
得られた一酸化炭素還元用流動触媒(R3)について、組成分析、平均粒子径、比表面積、
細孔容積、耐摩耗性を評価し、結果を表1に示す。
[参考例]
一酸化炭素還元用流動触媒(R4)の調製
実施例1と同様にして調製した担体用粉体(1-2)500gに、Coとして濃度14量%
の硝酸コバルト水溶液を吸収させ、300℃で1時間乾燥した後、300℃で1時間焼成した。この操作を繰り返し計1226gの硝酸コバルト水溶液を吸収させた後、最後に450℃で1時間焼成して一酸化炭素還元用流動触媒(R4)を調製した。
About the obtained carbon monoxide reducing fluid catalyst (R3), composition analysis, average particle diameter, specific surface area,
The pore volume and wear resistance were evaluated, and the results are shown in Table 1.
[Reference example]
Preparation of fluid catalyst (R4) for carbon monoxide reduction To 500 g of carrier powder (1-2) prepared in the same manner as in Example 1, 14% by weight as Co
The cobalt nitrate aqueous solution was absorbed, dried at 300 ° C. for 1 hour, and then fired at 300 ° C. for 1 hour. This operation was repeated until a total of 1226 g of cobalt nitrate aqueous solution was absorbed, and finally calcined at 450 ° C. for 1 hour to prepare a carbon monoxide reducing fluid catalyst (R4).
得られた一酸化炭素還元用流動触媒(R4)について、組成分析、平均粒子径、比表面積、細孔容積、耐摩耗性を評価し、結果を表1に示す。 The obtained carbon monoxide reducing fluid catalyst (R4) was evaluated for composition analysis, average particle diameter, specific surface area, pore volume, and abrasion resistance. The results are shown in Table 1.
Claims (9)
(a)金属酸化物微粒子分散液と金属酸化物ゲルとを混合し、金属酸化物微粒子分散液の固形分としての重量(Wp)と金属酸化物ゲルの固形分としての重量(Wg)との重量比(Wg)/(Wp)が0.1〜4.5の範囲にあり、濃度が固形分として5〜30重量%の範囲にある混合分散液を調製する工程
(b)混合分散液を均一混合処理する工程
(c)均一混合分散液を噴霧乾燥する工程
(d)焼成する工程(一次焼成工程)
(e)ジルコニウム化合物水溶液を吸収させる工程
(f)乾燥・焼成する工程
(i)活性金属成分化合物水溶液を吸収させる工程
(j)焼成する工程(二次焼成工程) A method for producing a carbon monoxide reduction catalyst comprising the following steps (a) to (j):
(A) A metal oxide fine particle dispersion and a metal oxide gel are mixed, and a weight (Wp) as a solid content of the metal oxide fine particle dispersion and a weight (Wg) as a solid content of the metal oxide gel. Step (b) of preparing a mixed dispersion in which the weight ratio (Wg) / (Wp) is in the range of 0.1 to 4.5 and the concentration is in the range of 5 to 30% by weight as the solid content. Step of uniformly mixing (c) Step of spray drying uniform mixture dispersion (d) Step of firing (primary firing step)
(E) Step of absorbing an aqueous zirconium compound solution
(F) Step of drying and firing (i) Step of absorbing active metal component compound aqueous solution (j) Step of firing (secondary firing step)
(k)第2活性金属成分(助触媒金属成分)化合物水溶液を吸収させる工程
(L)乾燥・焼成する工程 After the step (f), or after the step (j), monoxide according to any one of claims 1 to 4, which comprises carrying out the following steps (k), then step (L) A method for producing a carbon reduction catalyst.
(K) Step of absorbing the second active metal component (promoter metal component) compound aqueous solution (L) Step of drying and firing
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010096306A JP5649849B2 (en) | 2010-04-19 | 2010-04-19 | Method for producing carbon monoxide reduction catalyst and carbon monoxide reduction catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010096306A JP5649849B2 (en) | 2010-04-19 | 2010-04-19 | Method for producing carbon monoxide reduction catalyst and carbon monoxide reduction catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011224458A JP2011224458A (en) | 2011-11-10 |
JP5649849B2 true JP5649849B2 (en) | 2015-01-07 |
Family
ID=45040518
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010096306A Active JP5649849B2 (en) | 2010-04-19 | 2010-04-19 | Method for producing carbon monoxide reduction catalyst and carbon monoxide reduction catalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5649849B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102716754B (en) * | 2012-07-12 | 2014-06-18 | 上海碧科清洁能源技术有限公司 | Catalyst for preparing butadiene by oxidative dehydrogenation of butene in fluidized bed reactor and preparation method and application thereof |
KR20150113643A (en) * | 2014-03-31 | 2015-10-08 | (주)써스텍 | Manufacturing method of mixed metal oxides catalyst |
JP7239346B2 (en) * | 2019-02-21 | 2023-03-14 | 日揮触媒化成株式会社 | Method for producing catalytic oxide for Fischer-Tropsch synthesis |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02273544A (en) * | 1989-04-14 | 1990-11-08 | Nippon Oil Co Ltd | Preparation of hydrocarbon convertion catalyst |
JPH0683785B2 (en) * | 1991-06-03 | 1994-10-26 | 出光興産株式会社 | Composite oxide catalyst carrier, method for producing the same, and method for treating heavy oil with catalyst using the carrier |
JPH07138015A (en) * | 1993-06-15 | 1995-05-30 | Catalysts & Chem Ind Co Ltd | Silica fine spherical particle and its production |
JPH10330372A (en) * | 1997-05-26 | 1998-12-15 | Kawasaki Steel Corp | Production of phthalic anhydride |
US6117814A (en) * | 1998-02-10 | 2000-09-12 | Exxon Research And Engineering Co. | Titania catalysts their preparation and use in fischer-tropsch synthesis |
WO2003087265A1 (en) * | 2002-04-16 | 2003-10-23 | Sasol Technology (Proprietary) Limited | Hydrocarbon synthesis process using an alkali promoted iron catalyst |
AU2004228845B2 (en) * | 2003-04-07 | 2009-07-09 | Nippon Steel Corporation | Catalyst for producing hydrocarbon from synthesis gas and method for producing catalyst |
JP4808688B2 (en) * | 2006-08-25 | 2011-11-02 | 新日本製鐵株式会社 | Catalyst for producing hydrocarbons from synthesis gas, catalyst production method, catalyst regeneration method, and method for producing hydrocarbons from synthesis gas |
JP2008264777A (en) * | 2007-03-26 | 2008-11-06 | Toto Ltd | Photocatalyst-coated object and photocatalytic coating fluid therefor |
-
2010
- 2010-04-19 JP JP2010096306A patent/JP5649849B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011224458A (en) | 2011-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4429063B2 (en) | Catalyst for producing hydrocarbon from synthesis gas, method for producing the catalyst, and method for producing hydrocarbon | |
JP4808688B2 (en) | Catalyst for producing hydrocarbons from synthesis gas, catalyst production method, catalyst regeneration method, and method for producing hydrocarbons from synthesis gas | |
WO2015072573A1 (en) | Production method for catalyst for fischer-tropsch synthesis, and production method for hydrocarbon | |
WO2008023851A1 (en) | Catalyst for producing hydrocarbon from synthetic gas, method for producing catalyst, method for regenerating catalyst, and method for producing hydrocarbon from synthetic gas | |
CA2437107A1 (en) | Attrition resistant inorganic microspheroidal particles | |
JP5649849B2 (en) | Method for producing carbon monoxide reduction catalyst and carbon monoxide reduction catalyst | |
JP2007061770A (en) | Catalyst for manufacturing hydrocarbon from synthesis gas, method for manufacturing catalyst, and method for manufacturing hydrocarbon from synthesis gas using catalyst | |
JP5100151B2 (en) | Catalyst for producing hydrocarbons from synthesis gas, catalyst production method, method for producing hydrocarbons from synthesis gas, and catalyst regeneration method | |
AU2011328995B2 (en) | Stable slurry bed Fischer-Tropsch catalyst with high surface area and activity | |
JP5919145B2 (en) | Method for producing catalyst for producing hydrocarbons from synthesis gas, method for producing hydrocarbons from synthesis gas, and method for regenerating catalyst | |
JP2018508351A (en) | Catalyst containing dispersed gold and palladium and its use in selective hydrogenation | |
JP4773116B2 (en) | Method for producing catalyst for producing hydrocarbons from synthesis gas, and method for producing hydrocarbons from synthesis gas using the catalyst | |
CN105396588A (en) | Preparation method and application of antiwear microspherical CuO/SiO2 catalyst | |
CN107519880B (en) | Iron-based Fischer-Tropsch synthesis catalyst, preparation method and application thereof, and Fischer-Tropsch synthesis method of synthesis gas | |
CN110614099A (en) | Iron-based Fischer-Tropsch synthesis catalyst, preparation method thereof and Fischer-Tropsch synthesis method | |
CN107930640B (en) | Catalyst for coproduction of 4-methyl-2-pentanone and 4-methyl-2-pentanol by one-step method | |
JP5595005B2 (en) | Method for producing catalyst for oxychlorination | |
JP2017029874A (en) | Metal catalyst, production method thereof and regeneration process thereof | |
JP6920952B2 (en) | Catalysts for producing hydrocarbons from syngas, methods for producing catalysts, and methods for producing hydrocarbons from syngas | |
JP7145653B2 (en) | Method for producing catalyst for producing hydrocarbons from synthesis gas, and method for producing hydrocarbons from synthesis gas | |
JP2019188340A (en) | Process for producing catalyst for producing hydrocarbon from carbon dioxide and hydrogen, and process for producing hydrocarbon from carbon dioxide and hydrogen | |
JP6858109B2 (en) | A method for producing a catalyst for producing a hydrocarbon from a synthetic gas, and a method for producing a hydrocarbon from a synthetic gas. | |
JP6839602B2 (en) | A method for producing a catalyst for producing a hydrocarbon from a synthetic gas, and a method for producing a hydrocarbon for producing a hydrocarbon from a synthetic gas. | |
JP2015157249A (en) | Catalyst for producing hydrocarbon from synthesis gas, method for producing catalyst for producing hydrocarbon from synthesis gas, method for producing hydrocarbon from synthesis gas and catalyst carrier | |
JP7012596B2 (en) | A method for producing a catalyst for producing a hydrocarbon from syngas, and a method for producing a hydrocarbon from syngas. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130319 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140109 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140212 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140411 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141104 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141112 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5649849 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |