JP5649066B2 - High temperature and high pressure fluid mixing equipment - Google Patents

High temperature and high pressure fluid mixing equipment Download PDF

Info

Publication number
JP5649066B2
JP5649066B2 JP2011135348A JP2011135348A JP5649066B2 JP 5649066 B2 JP5649066 B2 JP 5649066B2 JP 2011135348 A JP2011135348 A JP 2011135348A JP 2011135348 A JP2011135348 A JP 2011135348A JP 5649066 B2 JP5649066 B2 JP 5649066B2
Authority
JP
Japan
Prior art keywords
reaction solution
temperature
flow path
pressure fluid
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011135348A
Other languages
Japanese (ja)
Other versions
JP2013000677A (en
Inventor
究 陶
究 陶
伯田 幸也
幸也 伯田
武 古屋
武 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2011135348A priority Critical patent/JP5649066B2/en
Publication of JP2013000677A publication Critical patent/JP2013000677A/en
Application granted granted Critical
Publication of JP5649066B2 publication Critical patent/JP5649066B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、高温高圧流体を反応媒体として用いる高温高圧の反応場で使用する高温高圧流体混合装置に関するものであり、更に詳しくは、高温高圧流体を利用した反応晶析法において、第一反応溶液である基質を含む溶液と第二反応溶液である高温高圧水等の高温高圧流体を混合して瞬時に所定の温度の反応系を形成し、均質な微粒子を連続的に合成することを可能とする高温高圧流体混合装置に関するものである。
本発明は、高温高圧流体混合装置の第一反応溶液である基質を含む溶液供給管周囲に冷却水を直接通水する特定構造を採用することにより、混合点直近までの第一反応溶液の冷却が可能となり、晶析による微粒子生成を伴う反応系では、第一反応溶液からの混合点前での粒子の核発生を最小限に抑制し、さらに、混合部内において、第一反応溶液が流路の内壁と接触する箇所を最小限にすることで、均一核発生を誘起させて、平均粒径及び変動係数ともに最小の粒子合成を可能とする高温高圧流体混合装置に関する新技術・新製品を提供するものである。
The present invention relates to a high-temperature and high-pressure fluid mixing apparatus used in a high-temperature and high-pressure reaction field using a high-temperature and high-pressure fluid as a reaction medium, and more specifically, in a reaction crystallization method using a high-temperature and high-pressure fluid, It is possible to synthesize homogeneous fine particles continuously by mixing a solution containing a substrate and a high-temperature high-pressure fluid such as high-temperature high-pressure water as a second reaction solution to form a reaction system at a predetermined temperature instantly. The present invention relates to a high-temperature high-pressure fluid mixing apparatus.
The present invention employs a specific structure in which cooling water is directly passed around a solution supply pipe containing a substrate which is a first reaction solution of a high-temperature high-pressure fluid mixing apparatus, thereby cooling the first reaction solution up to the point near the mixing point. In a reaction system that involves generation of fine particles by crystallization, particle nucleation before the mixing point from the first reaction solution is minimized, and further, the first reaction solution flows in the mixing section. New technologies and products related to high-temperature and high-pressure fluid mixing equipment that can generate uniform nuclei and minimize the average particle size and coefficient of variation by minimizing the number of contact points with the inner wall To do.

一般に、高温高圧流体を利用した反応晶析法では、室温で供給される原料溶液を高温高圧流体との混合により急速昇温させることが必要である。その際に、晶析による微粒子生成を伴う反応系では、これまで、混合前の原料配管の内壁面や、混合部の内壁面での粒子の不均一核発生と、その進行を回避できないことが問題となっていた。
従来、高温高圧流体を利用した反応晶析法に関しては、例えば、高圧場の反応プロセスにおいて、微粒子を分離する捕集装置により、圧力変動を防止すること、及び、高圧場の流通式反応装置の混合部にティ型継手等を用いて、温度の異なる複数流体を混合した混合流体を導入して反応を行う反応システム(特許文献1)、が提案されている。
また、高温高圧水反応システムにおいて、高温高圧水を高温高圧水用ノズルにより反応器に導入すること(特許文献2)、また、高温高圧水を用いる微粒子製造装置において、混合前の流体原料を、高温高圧水との反応による固体析出温度よりも低温に間接冷却する冷却装置を設けたこと、及び、混合部前の原料溶液配管を、冷却装置により固体析出温度よりも低温に冷却すること(特許文献3)、が提案されている。
また、高温高圧流体を利用した反応晶析法において、ティ型マイクロ混合部(内径0.3mm)による急速昇温により、金属酸化物の10nm以下のナノ粒子をサイズを制御して合成したこと(非特許文献1)、また、内部流体と接触する部分のみが耐食材で形成されている高温高圧流体用の配管用継手、高温高圧水中において高純度製品を合成する上で、高耐食性材料であるチタンやタンタル等の材料の高温強度が低いことから、高温強度の高い材料で作製した配管及び継手に内接させて使用すること(特許文献4)、が提案されている。
また、他の先行技術として、高温高圧水を用いる微粒子製造装置の混合部において、第一反応溶液に対して、側面から第二反応溶液を衝突混合させる複数の第二反応溶液導入管を設けたこと、及び、混合部として、旋回流を利用することにより、速やかに混合を完結させること(特許文献5)、また、超臨界マイクロ混合デバイスにおいて、第一反応溶液を可動式のスピンドルを介して混合部に導入すること、及び、混合部として、可動式スピンドルを介して混合部流路径を任意に制御することで、より速やかに混合を完結させること(特許文献6)、が提案されている。また、さらに、先行技術として、高温高圧水を用いる微粒子製造装置の混合部において、鉛直下向き方向に流れる第一反応溶液に対して、水平の四方から第二反応溶液を衝突混合させる構造を持つマイクロ混合部を用いることにより、混合部内において、第一反応溶液が流路の内壁と接触する箇所を最小限にでき、均一核発生を誘起させて、平均粒径及び変動係数ともに最小の粒子合成を可能とするとともに、混合部に冷却ジャケットを設置することで、第一反応溶液からの混合点前での粒子の核発生を最小限に抑制し、均質な微粒子を製造すること(特許文献7)、が提案されている。
更に、先行技術として、高圧容器内にマイクロ混合デバイスを設けデバイス内外の圧力バランス構造を設けることで、デバイス自体の耐圧性を不要とし、よりデバイスの微細加工の容易性と材料の選択性を向上させる方法(特許文献7)、作動流体を1秒以下で昇温させる金属細管で構成された予熱器を設けた高温高圧流体製造装置(特許文献8)、ミキシング手段と高温高圧反応場を多段に設けた高温高圧反応システム(特許文献9)、高圧ミキシングと高温高圧反応場を多段に設けた反応システムを利用した有機化合物の反応方法(特許文献10)、が提案されている。
In general, in the reaction crystallization method using a high-temperature and high-pressure fluid, it is necessary to rapidly raise the temperature of the raw material solution supplied at room temperature by mixing with the high-temperature and high-pressure fluid. At that time, in the reaction system accompanied by the generation of fine particles by crystallization, generation of non-uniform nuclei of particles on the inner wall surface of the raw material pipe before mixing and the inner wall surface of the mixing part and the progress thereof cannot be avoided. It was a problem.
Conventionally, regarding a reaction crystallization method using a high-temperature and high-pressure fluid, for example, in a high-pressure field reaction process, by using a collection device that separates fine particles, pressure fluctuation is prevented, and There has been proposed a reaction system (Patent Document 1) that performs a reaction by introducing a mixed fluid obtained by mixing a plurality of fluids having different temperatures using a tee-type joint or the like in a mixing portion.
In addition, in a high-temperature high-pressure water reaction system, high-temperature high-pressure water is introduced into a reactor by a nozzle for high-temperature high-pressure water (Patent Document 2). In a fine particle production apparatus using high-temperature high-pressure water, Providing a cooling device that indirectly cools to a temperature lower than the solid precipitation temperature by reaction with high-temperature and high-pressure water, and cooling the raw material solution pipe before the mixing section to a temperature lower than the solid precipitation temperature by the cooling device (patent Document 3) has been proposed.
In addition, in the reactive crystallization method using a high-temperature and high-pressure fluid, nanoparticles with a size of 10 nm or less of metal oxide were synthesized by controlling the size by rapid temperature rise by a tee-type micro mixing part (inner diameter 0.3 mm) ( Non-Patent Document 1), a joint for piping for high-temperature and high-pressure fluid in which only a portion in contact with the internal fluid is formed of a corrosion-resistant material, and a high-corrosion-resistant material for synthesizing high-purity products in high-temperature and high-pressure water Since materials such as titanium and tantalum are low in strength at high temperatures, it has been proposed to use them inscribed in pipes and joints made of materials having high strength at high temperatures (Patent Document 4).
As another prior art, a plurality of second reaction solution introduction pipes that collide and mix the second reaction solution from the side surface with respect to the first reaction solution are provided in the mixing unit of the fine particle manufacturing apparatus using high-temperature and high-pressure water. In addition, by using a swirl flow as a mixing unit, the mixing is quickly completed (Patent Document 5), and in the supercritical micro mixing device, the first reaction solution is passed through a movable spindle. It has been proposed to introduce the mixing unit and to complete the mixing more quickly by arbitrarily controlling the mixing unit channel diameter via the movable spindle as a mixing unit (Patent Document 6). . Furthermore, as a prior art, in a mixing unit of a fine particle production apparatus using high-temperature high-pressure water, a micro having a structure in which a second reaction solution is collided and mixed from four horizontal directions with respect to a first reaction solution flowing in a vertically downward direction. By using the mixing section, the location where the first reaction solution contacts the inner wall of the flow path in the mixing section can be minimized, and uniform nucleation can be induced to minimize the average particle size and coefficient of variation for particle synthesis. It is possible to produce homogeneous fine particles by minimizing particle nucleation before the mixing point from the first reaction solution by installing a cooling jacket in the mixing section (Patent Document 7). , Has been proposed.
Furthermore, as a prior art, by providing a micro mixing device in the high-pressure vessel and providing a pressure balance structure inside and outside the device, the pressure resistance of the device itself becomes unnecessary, and the ease of microfabrication of the device and the selectivity of the material are improved. (Patent Document 7), a high-temperature and high-pressure fluid production apparatus (Patent Document 8) provided with a preheater composed of a metal thin tube that raises the temperature of the working fluid in 1 second or less, a mixing means and a high-temperature and high-pressure reaction field in multiple stages An organic compound reaction method (Patent Document 10) using a provided high-temperature / high-pressure reaction system (Patent Document 9) and a reaction system provided with high-pressure mixing and a high-temperature / high-pressure reaction field in multiple stages has been proposed.

特開2005−52715号公報JP 2005-52715 A 特開2002−52334号公報JP 2002-52334 A 特開2005−21724号公報JP-A-2005-21724 特開2008−128255号公報JP 2008-128255 A 特開2008−12453号公報JP 2008-12453 A 特開2007−268503号公報JP 2007-268503 A 特開2010−75914号公報JP 2010-75914 A 特開2006−159165号公報JP 2006-159165 A 特開2007−15994号公報JP 2007-15994 A 特開2007−16001号公報JP 2007-16001 A

Sue et al.,Green Chem.,8,634−638(2006)Sue et al. Green Chem. , 8, 634-638 (2006)

現在、化学合成では、環境調和型プロセスの開発が不可欠であり、新しい反応場として、高温高圧流体の利用は、これまでの概念を打破する新たな化学合成の場になるものとして注目を集めている。温度、圧力、滞在時間を厳密制御するための急速昇温・急速冷却・急速混合が可能で、更に、高耐食性を有する高温高圧流体混合装置の開発が達成されれば、温度圧力に応じて、溶媒特性の高い可変性を有する高温高圧流体の特徴を最大限に利用した革新的化学合成プロセスの開発につながることが想定される。
従来の高温高圧対応の混合部は、高耐温耐圧強度を有する合金を用いて作製されているため、特に、耐圧強度の点で、小型化、流路の微細加工等には限界があった。そのため、第一反応溶液の配管については、冷却装置等により、混合部導入前の原料溶液の加熱を抑制することができるものの、混合部本体内における混合点までの第一反応溶液の加熱を抑制することは困難であった。
また、上記従来技術において、混合部内で第一反応溶液が接触可能な内壁面の存在は、特に、晶析による微粒子生成を伴う反応系では、内壁表面での不均一核発生の誘発につながり、粒径分布の狭い均質な微粒子を合成することには限界があった。
加えて、従来技術において、鉛直下向き方向に流れる第一反応溶液に対して、水平の四方から第二反応溶液を衝突混合させる構造を持つ混合部を用いることにより、混合部内において、第一反応溶液が流路の内壁と接触する箇所を最小限にでき、不均一核発生の誘発を低減することができたが、高温高圧の第二反応溶液の混合部への導入において4流路に分割する必要があり、流路内の圧力損失が高い条件で均等な流量で分割することは現実的に難しく、さらに、混合部周囲の構造が複雑となることから、大量生産に向けたデバイスの積層化などの点で、実用的な混合部としては限界があった。
更に、上記従来技術における混合デバイスでは、複雑な流路やマイクロ流路の形成、流体の均等供給、圧力バランスの維持が困難であり、当技術分野においては、上記従来技術の問題点を確実に解消することを可能とする新しい高温高圧流体混合装置の開発が強く要請されていた。
At present, the development of environmentally conscious processes is indispensable for chemical synthesis, and the use of high-temperature and high-pressure fluid as a new reaction field has attracted attention as a new chemical synthesis field that breaks the existing concept. Yes. Rapid temperature rise, rapid cooling and rapid mixing are possible to strictly control temperature, pressure, and residence time.Furthermore, if development of a high temperature and high pressure fluid mixing device with high corrosion resistance is achieved, depending on the temperature and pressure, It is expected to lead to the development of innovative chemical synthesis processes that make the most of the characteristics of high-temperature and high-pressure fluids with high variability in solvent properties.
The conventional mixing section for high temperature and high pressure is made of an alloy with high temperature and pressure resistance, so there are limits to miniaturization, microfabrication of the flow path, etc., especially in terms of pressure resistance. . Therefore, for the piping of the first reaction solution, although heating of the raw material solution before introduction of the mixing unit can be suppressed by a cooling device or the like, heating of the first reaction solution up to the mixing point in the mixing unit main body is suppressed. It was difficult to do.
Further, in the above prior art, the presence of the inner wall surface that can be contacted by the first reaction solution in the mixing part leads to induction of heterogeneous nucleation on the inner wall surface, particularly in a reaction system accompanied by fine particle generation by crystallization, There was a limit to the synthesis of homogeneous fine particles with a narrow particle size distribution.
In addition, in the prior art, by using a mixing unit having a structure in which the second reaction solution is collided and mixed from four horizontal sides with respect to the first reaction solution flowing in the vertically downward direction, the first reaction solution is mixed in the mixing unit. The number of contact points with the inner wall of the flow path can be minimized and induction of heterogeneous nucleation can be reduced. However, when the high temperature and high pressure second reaction solution is introduced into the mixing portion, the flow path is divided into 4 flow paths. It is practically difficult to divide at a uniform flow rate under conditions where there is a high pressure loss in the flow path, and the structure around the mixing section is complicated, so devices can be stacked for mass production. For this reason, there was a limit as a practical mixing section.
Furthermore, in the above-described conventional mixing device, it is difficult to form complicated flow channels and micro flow channels, to uniformly supply fluid, and to maintain pressure balance. There has been a strong demand for the development of a new high-temperature and high-pressure fluid mixing device that can be eliminated.

このような状況の中で、本発明者らは、上記従来技術に鑑みて、高温高圧流体を用いた機能性ナノ粒子等の連続反応晶析法において、流通式装置を用いて供給した室温の第一反応溶液(原料溶液)を、別ラインから供給した第二反応溶液(高温高圧流体)と混合することにより、瞬時に所定の反応温度に急速昇温することを可能とする高温高圧流体混合装置を開発することを目標として鋭意研究を重ねた結果、原料溶液供給管の周囲に混合点直前まで冷却水を供給して混合点前での核発生を抑制しつつ、高温高圧流体供給配管の分岐をすることなく混合点において周囲全方向から高温高圧流体を供給し、瞬時に急速混合、急速昇温による均質核発生を進行させることが可能な高温高圧流体混合装置の開発に成功し、本発明を完成するに至った。
本発明では、例えば、高温高圧継手内に微細加工を施した脱着可能なマイクロパーツを設置する構造のデバイスとすることで、原料溶液の流路、冷却水の流路、混合液の流路の内径や高温高圧流体の流入方向を容易かつ個別に加工可能であるため、原料溶液や冷却水の混合部内への流入時の線流速を速く設定でき、原料溶液の混合前の加熱を最大限回避できとともに、旋回流の発生による混合速度を向上できる、新しいタイプの高温高圧流体混合装置を提供することを目的とするものである。
更に、本発明は、高温高圧水等の高温高圧流体を溶媒として、高純度、高機能、均質な機能性ナノ粒子をはじめとする種々の化合物を合成することを可能とする環境調和型合成法を提供することを目的とするものである。
In such a situation, in view of the above-mentioned conventional technology, the present inventors, in a continuous reaction crystallization method such as functional nanoparticles using a high-temperature and high-pressure fluid, at room temperature supplied using a flow-type apparatus. Mixing the first reaction solution (raw material solution) with the second reaction solution (high-temperature and high-pressure fluid) supplied from a separate line enables rapid temperature increase to a predetermined reaction temperature instantly. As a result of earnest research with the goal of developing the equipment, cooling water was supplied to the periphery of the raw material solution supply pipe just before the mixing point to suppress nucleation before the mixing point, and the high-temperature and high-pressure fluid supply pipe We succeeded in developing a high-temperature and high-pressure fluid mixing device that can supply high-temperature and high-pressure fluid from all directions at the mixing point without branching, and can rapidly generate homogeneous nucleation by rapid mixing and rapid temperature increase. Invented the invention
In the present invention, for example, a device having a structure in which a detachable micropart subjected to microfabrication is installed in a high-temperature high-pressure joint is used, so that the flow path of the raw material solution, the flow path of the cooling water, the flow path of the mixed liquid Since the inner diameter and the flow direction of high-temperature and high-pressure fluid can be processed easily and individually, the linear flow velocity when flowing into the mixing part of the raw material solution or cooling water can be set quickly, and heating before mixing of the raw material solution is maximally avoided. Another object of the present invention is to provide a new type of high-temperature and high-pressure fluid mixing apparatus that can improve the mixing speed due to the generation of swirling flow.
Furthermore, the present invention provides an environment-friendly synthesis method that makes it possible to synthesize various compounds including high-purity, high-function, and homogeneous functional nanoparticles using a high-temperature and high-pressure fluid such as high-temperature and high-pressure water as a solvent. Is intended to provide.

上記課題を解決するために、本発明の高温高圧流体混合装置は、第1反応溶液である基質を含む溶液を供給する第1反応溶液流路と、該第1反応溶液路に対して側面方向から第2反応溶液である高温高圧流体を供給する第2反応溶液流路と、前記第1反応溶液路の外周を囲むように設けられ、該第1反応溶液路の排出端にまで延出し前記第1反応溶液流路の外壁面を冷却する冷却水を供給する冷却水流路と、前記第1反応溶液と前記第2反応溶液と前記冷却水とを混合する混合域と、前記混合域で混合された混合溶液を排出するための混合溶液排出流路を備え、高温高圧用継手としてティ型継手またはクロス型継手を用いた高温高圧流体混合装置であって、前記ティ型継手の継手内でティ型に配置された3つの流路のうち、または、前記クロス型継手の継手内でクロス型に配置された4つの流路のうち、同軸一直線上に配置された2つの流路の一方を前記第1反応溶液流路および前記冷却水流路の二重流路とし、他方を前記混合溶液排出流路とし、残りの流路を第2反応溶液流路とし、前記二重流路は、前記第1反応溶液の排出端となる先端部外周に流路の中心軸がずれるのを防止するための突起を設けた前記第1反応溶液流路を、前記先端部が前記ティ型継手またはクロス型継手の継手内の流路の混合点の直前に位置するように設置して構成し、さらに前記突起の形状を冷却水の流れに対して角度を付与して冷却水自体をらせん状に旋回させながら前記混合点に供給させ、前記混合点直前まで第1反応溶液流路の外壁面を前記冷却水で冷却することにより、前記混合点前での前記第1反応溶液の加熱を抑制して混合点前での核発生を防止するとともに、前記混合点で前記第1反応溶液と高温高圧流体の前記第2反応溶液と前記冷却水とを混合することにより、前記第1反応溶液と高温高圧流体の前記第2反応溶液を瞬時に急速混合し、急速昇温による均質核発生を進行させて均質な微粒子を晶析法で連続的に合成することを特徴とする。
また、本発明は、上記高温高圧流体混合装置において、前記第2反応溶液流路は、旋回流により混合完結までの時間を短縮するための旋回流発生手段を備えることを特徴とする
また、本発明は、上記高温高圧流体混合装置において、前記混合溶液排出流路は、縮流発生手段を備えることを特徴とする
また、本発明は、上記高温高圧流体混合装置において、前記冷却水は、pH調整剤や酸化還元剤の基質を含む溶液であることを特徴とする
In order to solve the above problems, high-temperature high-pressure fluid mixing apparatus of the present invention, the solution to the first reaction solution flow path for supplying containing the substrate is a first reaction solution, a side with respect to the first reaction solution passage a second reaction solution flow path for supplying a high-temperature high-pressure fluid is a second reaction solution from the direction, provided to surround the outer periphery of the first reaction solution flow path, up to the discharge end of the first reaction solution passage a cooling water passage for supplying cooling water for cooling the outer wall surface of the extending out the first reaction solution passage, and a mixing zone for mixing the first reaction solution and the second reaction solution and the cooling water, the A high-temperature and high-pressure fluid mixing apparatus having a mixed solution discharge channel for discharging a mixed solution mixed in a mixing zone and using a tee-type joint or a cross-type joint as a high-temperature and high-pressure joint, Of the three channels arranged in a tee shape in the joint, or the front Of the four flow paths arranged in a cross shape within the joint of the cross type joint, one of the two flow paths arranged on the same straight line is used as a double flow of the first reaction solution flow path and the cooling water flow path. The other channel is the mixed solution discharge channel, the remaining channel is the second reaction solution channel, and the double channel is a channel on the outer periphery of the tip that is the discharge end of the first reaction solution. The first reaction solution channel provided with a protrusion for preventing the center axis from shifting is positioned so that the tip is immediately before the mixing point of the channel in the joint of the tee joint or the cross joint. In addition, the shape of the protrusion is given an angle with respect to the flow of the cooling water, and the cooling water itself is spirally swirled to be supplied to the mixing point, and the first reaction is performed immediately before the mixing point. By cooling the outer wall surface of the solution channel with the cooling water, before the mixing point The heating of the first reaction solution is suppressed to prevent nucleation before the mixing point, and the first reaction solution, the second reaction solution of the high temperature and high pressure fluid, and the cooling water are mixed at the mixing point. In this way, the first reaction solution and the second reaction solution of the high-temperature and high-pressure fluid are instantaneously and rapidly mixed to generate homogeneous nuclei by rapid temperature increase and to continuously synthesize homogeneous fine particles by a crystallization method. It is characterized by.
The present invention is also characterized in that, in the high-temperature and high-pressure fluid mixing apparatus, the second reaction solution flow path is provided with a swirling flow generating means for shortening the time until mixing is completed by swirling flow .
In the high-temperature and high-pressure fluid mixing apparatus according to the present invention, the mixed solution discharge flow path includes a contracted flow generation means .
In the high-temperature and high-pressure fluid mixing apparatus according to the present invention, the cooling water is a solution containing a substrate for a pH adjusting agent or a redox agent .

本発明により、次のような効果が奏される。
(1)高温高圧流体を反応媒体とする反応系において、加熱、冷却、混合操作を短時間、かつ高効率に行うことが可能な新規高温高圧流体混合装置を提供することができる。
(2)混合点直前まで第一反応溶液の流路外壁を冷却できるため、混合点以降での混合後に均一核発生を起こすことが可能な新規高温高圧流体混合装置を提供することができる。
(3)第一反応溶液の流路外壁を冷却する冷却水は混合点で他の溶液とともに混合される構造のため、冷却水をpH調整剤などの水溶液で代用することで、混合時にpH操作も同時に達成可能な、新規高温高圧流体混合装置を提供することができる。
(4)高温高圧流体混合装置は、簡易な構造の高温高圧用継手内に複雑に微細加工を施したマイクロパーツを配置、固定させる構造とした場合、従来の一体型デバイスでは困難な、微細加工、耐圧、耐食といった仕様を満たし、圧力バランス等の高度な制御も不要で、さらに、マイクロパーツの着脱、洗浄や交換、流路構造の変更が容易な、新規高温高圧流体混合装置を提供することが可能である。
(5)マイクロパーツの利用により、第二反応溶液を複数に分配することなく、鉛直下向き方向に流れる第一反応溶液である基質を含む溶液に対し、水平の周囲全方向から第二反応溶液である高温高圧流体を導入、混合させる構造が達成でき、混合点付近で、第一反応溶液が優先的に接触する内壁表面積を最小限とし、内壁表面での不均一核発生の誘発を抑制可能で、かつ急速に昇温可能な新規高温高圧流体混合装置を提供することができる。
(6)本発明の高温高圧流体混合装置を使用することで、温度や密度の異なる二流体混合系において、急速昇温や急速冷却を容易に実施することを可能とする高温高圧流体混合装置を構築し、提供することが可能となる。
The present invention has the following effects.
(1) In a reaction system using a high-temperature and high-pressure fluid as a reaction medium, a novel high-temperature and high-pressure fluid mixing apparatus capable of performing heating, cooling and mixing operations in a short time and with high efficiency can be provided.
(2) Since the flow channel outer wall of the first reaction solution can be cooled just before the mixing point, a novel high-temperature and high-pressure fluid mixing apparatus capable of generating uniform nuclei after mixing after the mixing point can be provided.
(3) Since the cooling water that cools the outer wall of the first reaction solution channel is mixed with other solutions at the mixing point, the pH is adjusted during mixing by substituting the cooling water with an aqueous solution such as a pH adjuster. In addition, a novel high-temperature high-pressure fluid mixing device that can be achieved simultaneously can be provided.
(4) The high-temperature and high-pressure fluid mixing device has a structure in which micro-parts that have undergone complicated micro-processing are placed and fixed in a joint for high-temperature and high-pressure with a simple structure, which is difficult to achieve with conventional integrated devices. To provide a new high-temperature and high-pressure fluid mixing device that satisfies specifications such as pressure resistance and corrosion resistance, does not require advanced control such as pressure balance, and is easy to attach / detach, clean and replace micro parts, and change the flow path structure Is possible.
(5) By using the microparts, the second reaction solution can be applied from all horizontal directions to the solution containing the substrate, which is the first reaction solution flowing vertically downward without distributing the second reaction solution into a plurality of parts. A structure that introduces and mixes a certain high-temperature and high-pressure fluid can be achieved, and the inner wall surface area where the first reaction solution preferentially contacts can be minimized near the mixing point, and induction of heterogeneous nucleation on the inner wall surface can be suppressed. In addition, a novel high-temperature and high-pressure fluid mixing apparatus capable of rapidly raising the temperature can be provided.
(6) A high-temperature and high-pressure fluid mixing apparatus that enables rapid heating and rapid cooling in a two-fluid mixing system having different temperatures and densities by using the high-temperature and high-pressure fluid mixing apparatus of the present invention. It will be possible to build and provide.

本発明の高温高圧流体混合装置の実施例1の概略図である。It is the schematic of Example 1 of the high temperature / high pressure fluid mixing apparatus of this invention. 本発明の高温高圧流体混合装置の実施例2の概略図である。It is the schematic of Example 2 of the high temperature / high pressure fluid mixing apparatus of this invention. 本発明の高温高圧流体混合装置の実施例3の概略図である。It is the schematic of Example 3 of the high temperature / high pressure fluid mixing apparatus of this invention. 本発明の高温高圧流体混合装置の実施例4の概略図である。It is the schematic of Example 4 of the high temperature / high pressure fluid mixing apparatus of this invention.

本発明の高温高圧流体混合装置は、第一反応溶液流路周囲に液媒体を流す構造とすることで第一反応溶液流路周囲の壁面を混合域直前まで冷却し、第一反応溶液が混合域に到達する前に壁面を介した伝熱により加熱され反応が進行してしまうことを回避する構造を有する。また、第1反応溶液の流路に対して、第2反応溶液を1ないし2方向から装置に導入するにもかかわらず、混合域において、第1反応溶液に対して周囲全方向から第2反応溶液が供給される構造を有する。従来の特許文献7においては、第2反応溶液を導入前に4分割し、周囲4方向から導入する構造としており、装置が複雑となることに加えて、均等に4分割するのも装置設計上難しく、現実的な装置ではなかった。本発明のように、1ないし2方向だと混合装置が平面的になり、装置の積層化が容易で、生産量制御にも柔軟に対応できる。
さらに、高温高圧流体混合装置では、材料として合金を使用するため、耐圧耐温構造を維持しつつ、上記二重流路の構造や、旋回流、縮流などの微細構造を有するデバイスの加工が難しく、種々の機能を盛り込むと装置製作コストが高価になることが問題であった。これに対して、例えば、耐温、耐圧は外部の市販の高温高圧継手を流用し、微細流路を作製するためのパーツを別途作製し、継手内部に配置する構造とすることにより、パーツの加工時に耐圧や耐温性能を考慮する必要がないため、より複雑で正確な微細加工ができ、パーツの作製コストも安価になるという利点も有する。
The high-temperature and high-pressure fluid mixing apparatus of the present invention has a structure in which a liquid medium flows around the first reaction solution channel, thereby cooling the wall surface around the first reaction solution channel to just before the mixing zone, and the first reaction solution is mixed. The structure prevents the reaction from proceeding due to heat transfer through the wall surface before reaching the zone. In addition, the second reaction solution is introduced into the apparatus from one or two directions with respect to the flow path of the first reaction solution, but the second reaction from all directions around the first reaction solution in the mixing zone. It has a structure in which a solution is supplied. In the conventional patent document 7, the second reaction solution is divided into four parts before introduction and introduced from four directions around the apparatus. In addition to the complexity of the apparatus, it can be equally divided into four parts in terms of the apparatus design. It was difficult and not a realistic device. As in the present invention, in one or two directions, the mixing apparatus becomes planar, the apparatus can be easily stacked, and the production volume can be flexibly handled.
Furthermore, since the high-temperature and high-pressure fluid mixing apparatus uses an alloy as a material, it is possible to process the device having the above-mentioned double channel structure and a micro structure such as a swirling flow and a contracted flow while maintaining a pressure-resistant and temperature-resistant structure. It is difficult, and it is a problem that the cost of manufacturing the device becomes expensive when various functions are incorporated. On the other hand, for example, by using a commercially available high-temperature and high-pressure joint on the outside for temperature resistance and pressure resistance, separately preparing parts for producing a fine flow path and arranging the parts inside the joint, Since there is no need to consider pressure resistance and temperature resistance performance during processing, there are also advantages that more complicated and accurate microfabrication can be performed, and the cost of producing parts can be reduced.

以下に、実施例1〜4に基づいて、本発明の高温高圧流体混合装置を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。   Below, based on Examples 1-4, the high temperature / high pressure fluid mixing apparatus of this invention is demonstrated concretely, However, This invention is not limited at all by the following Examples.

(実施例1)
図1に、本発明の高温高圧流体混合装置の実施例1を示す。本実施例では、ステンレス製ティ型継手を高温高圧用継手として用い、ステンレスチューブの先端部の外壁に冷却水用流路のための微細加工を施したマイクロパーツAを設置、固定することで、第一反応溶液の混合点前までの加熱を抑制可能な高温高圧流体混合装置を作製した。本高温高圧流体混合装置は、反応に関与する原料溶液(第一反応溶液)と高温高圧流体(第二反応溶液)、さらに冷却水の三流体がティ型継手中心の混合点で、一緒に混合される構造を有している。
本高温高圧流体混合装置の最高使用温度及び圧力は、450℃及び40MPaの仕様とした。ティ型継手やチューブ、マイクロパーツは容易に耐食性材料のものと交換することが可能である。また、マイクロパーツは継手上部のナットを緩めることで容易に脱着が可能である。
高温高圧流体混合装置では、鉛直下向き方向に流れる原料溶液である基質を含む溶液に対し、当該溶液供給配管周囲を混合点直前まで冷却水が流れる構造のため、混合点前で核発生を最大限抑制し、かつ急速に昇温することを可能とした。
なお、原料溶液の流入口については、穴径を0.25mmに設定し、原料溶液の流路内の滞在時間を減少させることにより、混合前の加熱回避と混合点への流入時の線流速の向上を達成することを可能とした。さらに、マイクロパーツ先端部周囲に突起を加工することで、ティ型継手流路内でのマイクロパーツ先端部の中心軸を正確に固定することを可能とした。なお、この突起部は冷却水の流路を妨げなければ形状に制限はない。また、意図的に鉛直下向き方向の流れに対して角度を付与した形状とすることで、冷却水自体をらせん状に旋回させながら混合中心に供給することも可能である。
Example 1
FIG. 1 shows a first embodiment of the high-temperature and high-pressure fluid mixing apparatus of the present invention. In this example, using a stainless steel tee-type joint as a joint for high temperature and high pressure, by installing and fixing the micropart A subjected to microfabrication for the cooling water channel on the outer wall of the tip of the stainless tube, A high-temperature and high-pressure fluid mixing apparatus capable of suppressing the heating up to the mixing point of the first reaction solution was produced. This high-temperature and high-pressure fluid mixing device mixes the raw material solution (first reaction solution) involved in the reaction, the high-temperature and high-pressure fluid (second reaction solution), and the three fluids of cooling water at the mixing point at the center of the tee joint. Has a structure.
The maximum operating temperature and pressure of the high-temperature and high-pressure fluid mixing apparatus were 450 ° C. and 40 MPa. Tee joints, tubes, and micro parts can be easily replaced with corrosion-resistant materials. Microparts can be easily detached by loosening the nut at the top of the joint.
In the high-temperature and high-pressure fluid mixing device, the cooling water flows around the solution supply pipe just before the mixing point for the solution containing the substrate, which is the raw material solution that flows vertically downward. It was possible to suppress the temperature and raise the temperature rapidly.
Regarding the inlet of the raw material solution, the hole diameter is set to 0.25 mm, and the residence time in the flow path of the raw material solution is reduced, thereby avoiding heating before mixing and the linear flow velocity when flowing into the mixing point. It was possible to achieve improvement. Furthermore, by processing a protrusion around the tip of the micropart, the center axis of the tip of the micropart in the tee joint channel can be accurately fixed. In addition, there is no restriction | limiting in a shape if this protrusion part does not block the flow path of cooling water. Moreover, it is also possible to supply cooling center itself to a mixing center, making it rotate spirally by making it the shape which provided the angle with respect to the flow of the perpendicular downward direction intentionally.

(実施例2)
図2に、本発明の高温高圧流体混合装置の実施例2を示す。本実施例では、ステンレス製ティ型継手を高温高圧用継手として用い、ステンレスチューブの先端部の流路を円錐型に微細加工することでテーパーを形成させたマイクロパーツBを設置、固定することで、縮流の発生により溶液の混合を促進することが可能な高温高圧流体混合装置を作製した。他の構成は上記実施例1と同様である。本高温高圧流体混合装置は、反応に関与する原料溶液(第一反応溶液)と高温高圧流体(第二反応溶液)、さらに冷却水の三流体がティ型継手中心の混合点で混合後に、マイクロパーツB内に導入されることで、縮流により混合完結までの時間を短縮させることが可能な構造を有している。
また、混合中心において、鉛直下向き方向に流れる原料溶液に対して、周囲全方向から高温高圧流体が流入する構造となっており、混合部内壁表面での、不均一核発生を回避できる。
本高温高圧流体混合装置の最高使用温度及び圧力は、450℃及び40MPaの仕様とした。マイクロパーツBは用意に耐食性材料のものと交換することが可能である。また、マイクロパーツは継手下部のナットを緩めることで容易に脱着が可能である。
なお、混合溶液の流入口については穴径を0.5mmに、出口については穴径を0.3mmに設定した。マイクロパーツA下部先端と、マイクロパーツBの上部先端の間の距離は0.5mmに設定した。
(Example 2)
FIG. 2 shows a second embodiment of the high-temperature high-pressure fluid mixing apparatus of the present invention. In this embodiment, a stainless steel tee joint is used as a joint for high temperature and high pressure, and the micropart B that is tapered by finely processing the flow path at the tip of the stainless tube into a conical shape is installed and fixed. Thus, a high-temperature and high-pressure fluid mixing device capable of promoting the mixing of the solution by generating a contracted flow was produced. Other configurations are the same as those of the first embodiment. This high-temperature and high-pressure fluid mixing device is composed of a raw material solution (first reaction solution) involved in the reaction, a high-temperature and high-pressure fluid (second reaction solution), and three fluids of cooling water mixed at the mixing point at the center of the tee joint. By being introduced into the part B, it has a structure capable of shortening the time until mixing is completed by contraction.
In addition, at the mixing center, the high-temperature high-pressure fluid flows from all the surrounding directions into the raw material solution flowing in the vertically downward direction, so that generation of non-uniform nuclei on the inner wall surface of the mixing unit can be avoided.
The maximum operating temperature and pressure of the high-temperature and high-pressure fluid mixing apparatus were 450 ° C. and 40 MPa. Micropart B can be easily replaced with a corrosion-resistant material. Microparts can be easily detached by loosening the nut at the bottom of the joint.
The inlet diameter of the mixed solution was set to 0.5 mm, and the outlet diameter was set to 0.3 mm. The distance between the lower tip of micropart A and the upper tip of micropart B was set to 0.5 mm.

(実施例3)
図3に、本発明の高温高圧流体混合装置の実施例3を示す。本実施例では、ステンレス製ティ型継手を高温高圧用継手として用い、ステンレス円柱表面に、第二反応溶液(高温高圧流体)用の流路を微細加工したマイクロパーツCを設置、固定することで、旋回流の発生により溶液の混合を促進することが可能な高温高圧流体混合装置を作製した。他の構成は上記実施例2と同様である。本高温高圧流体混合装置は、反応に関与する原料溶液(第一反応溶液)と冷却水の二流体が鉛直下向き方向の流れに対して、マイクロパーツCを介して高温高圧流体を供給することで、高温高圧流体が混合部中心に対して右側(図では奥側)から流れ込むにことになり、旋回流により混合完結までの時間を短縮させることが可能な構造を有している。
本高温高圧流体混合装置の最高使用温度及び圧力は、450℃及び40MPaの仕様とした。マイクロパーツCは用意に耐食性材料のものと交換することが可能である。また、マイクロパーツは継手右部のナットを緩めることで容易に脱着が可能である。
なお、混合部直前の加熱水流路径は0.5mmに設定した。
Example 3
FIG. 3 shows a third embodiment of the high-temperature and high-pressure fluid mixing apparatus of the present invention. In this embodiment, a stainless steel tee-type joint is used as a joint for high-temperature and high-pressure, and the micropart C in which the flow path for the second reaction solution (high-temperature and high-pressure fluid) is finely processed is installed and fixed on the stainless steel cylinder surface. A high-temperature and high-pressure fluid mixing device capable of promoting the mixing of the solution by generating a swirling flow was produced. Other configurations are the same as those of the second embodiment. This high-temperature and high-pressure fluid mixing device supplies the high-temperature and high-pressure fluid via the micropart C to the two fluids of the raw material solution (first reaction solution) and cooling water involved in the reaction in the vertically downward direction. The high-temperature and high-pressure fluid flows from the right side (the back side in the figure) with respect to the center of the mixing section, and has a structure capable of shortening the time until the mixing is completed by the swirling flow.
The maximum operating temperature and pressure of the high-temperature and high-pressure fluid mixing apparatus were 450 ° C. and 40 MPa. The micropart C can be easily replaced with a corrosion-resistant material. Microparts can be easily detached by loosening the nut on the right side of the joint.
In addition, the diameter of the heated water channel immediately before the mixing unit was set to 0.5 mm.

(実施例4)
図4に、本発明の高温高圧流体混合装置の実施例4を示す。本実施例では、ステンレス製クロス型継手を高温高圧用継手として用い、上部から第一反応溶液(原料溶液)と冷却水、左右より第二反応溶液(高温高圧流体)をそれぞれ供給する構造とし、実施例1〜3で説明したマイクロパーツA〜Cを設置、固定することで、原料溶液の混合点前での加熱の抑制、縮流による混合の促進、両側からの高温高圧流体の供給によるより強い旋回流の発生の促進を達成することが可能な高温高圧流体混合装置を作製した。
高温高圧流体混合装置では、鉛直下向き方向に流れる原料溶液に対し、当該溶液供給配管周囲を混合点直前まで冷却水が流れる構造のため、混合点前での原料溶液の加熱による核発生を最大限抑制し、混合点通過後に急速に昇温させることを可能とした。また、混合中心において、鉛直下向き方向に流れる原料溶液に対して、周囲全方向から高温高圧流体が流入する構造となっており、混合部内壁表面での、不均一核発生を回避できる。
また、冷却水の代わりにpH調整剤や酸化還元剤などを供給することで、反応場の溶液環境を高度に制御できる。
本高温高圧流体混合装置の最高使用温度及び圧力は、450℃及び40MPaの仕様とした。マイクロパーツA〜Cは用意に耐食性材料のものと交換することが可能である。また、マイクロパーツは継手のナットを緩めることで容易に脱着が可能である。
さらに、高温高圧流体混合装置は、左右や上下方向は各種パーツが接続されるものの、前後方向には接続物がなく、大量生産時の積層化が容易な構造である。
Example 4
FIG. 4 shows a fourth embodiment of the high-temperature high-pressure fluid mixing apparatus of the present invention. In this example, a stainless steel cross-type joint is used as a joint for high temperature and high pressure, and the first reaction solution (raw material solution) and cooling water are supplied from above, and the second reaction solution (high temperature and high pressure fluid) is supplied from the left and right. By installing and fixing the micro parts A to C described in Examples 1 to 3, the heating is suppressed before the mixing point of the raw material solution, the mixing is accelerated by the contraction, and the high temperature and high pressure fluid is supplied from both sides. A high-temperature and high-pressure fluid mixing device capable of promoting the generation of a strong swirling flow was fabricated.
In the high-temperature and high-pressure fluid mixing device, the cooling water flows around the solution supply pipe to the point just before the mixing point for the raw material solution flowing vertically downward, so that the nucleation due to heating of the raw material solution before the mixing point is maximized. It was possible to increase the temperature rapidly after passing through the mixing point. In addition, at the mixing center, the high-temperature high-pressure fluid flows from all the surrounding directions into the raw material solution flowing in the vertically downward direction, so that generation of non-uniform nuclei on the inner wall surface of the mixing unit can be avoided.
Moreover, the solution environment of the reaction field can be controlled to a high degree by supplying a pH adjusting agent, a redox agent, or the like instead of the cooling water.
The maximum operating temperature and pressure of the high-temperature and high-pressure fluid mixing apparatus were 450 ° C. and 40 MPa. Microparts A to C can be easily replaced with those of a corrosion-resistant material. Microparts can be easily detached by loosening the nuts of the joints.
Furthermore, the high-temperature and high-pressure fluid mixing apparatus has a structure that is easy to stack during mass production, although various parts are connected in the left-right and up-down directions, but there are no connections in the front-rear direction.

以上詳述したように、本発明は、高温高圧流体混合装置に係るものであり、本発明により、高温高圧流体を反応媒体とする微粒子合成システムにおける反応溶液と反応溶媒の急速混合及び急速昇温、急速冷却の手段として有用な高温高圧流体混合装置を提供することができる。本発明により、例えば、常温の第一反応溶液である原料溶液を第二反応溶液である高温高圧流体と急速に混合させて、所定温度まで急速に昇温させて、所定の高温高圧条件の反応系を設定するための新しいタイプの高温高圧流体混合装置を提供することができる。
本発明は、特に、高温高圧流体を利用した反応晶析法で、混合前の原料配管内面や混合部の内壁面での粒子の不均一核発生の進行を回避可能にして、高純度、高機能、均質な機能性ナノ粒子をはじめとする各種化合物の環境調和型合成法を提供するものとして有用である。
As described above in detail, the present invention relates to a high-temperature high-pressure fluid mixing apparatus, and according to the present invention, rapid mixing and rapid heating of a reaction solution and a reaction solvent in a fine particle synthesis system using a high-temperature high-pressure fluid as a reaction medium. In addition, a high-temperature and high-pressure fluid mixing apparatus useful as a means for rapid cooling can be provided. According to the present invention, for example, a raw material solution that is a first reaction solution at room temperature is rapidly mixed with a high-temperature and high-pressure fluid that is a second reaction solution, and the temperature is rapidly increased to a predetermined temperature, thereby reacting under a predetermined high-temperature and high-pressure condition. A new type of high temperature high pressure fluid mixing device for setting up the system can be provided.
In particular, the present invention is a reaction crystallization method using a high-temperature and high-pressure fluid, and can prevent the progress of heterogeneous nucleation of particles on the inner surface of the raw material pipe before mixing or on the inner wall surface of the mixing section. It is useful for providing an environmentally harmonious synthesis method for various compounds including functional and homogeneous functional nanoparticles.

Claims (4)

第1反応溶液である基質を含む溶液を供給する第1反応溶液流路と、該第1反応溶液路に対して側面方向から第2反応溶液である高温高圧流体を供給する第2反応溶液流路と、前記第1反応溶液路の外周を囲むように設けられ、該第1反応溶液路の排出端にまで延出し前記第1反応溶液流路の外壁面を冷却する冷却水を供給する冷却水流路と、前記第1反応溶液と前記第2反応溶液と前記冷却水とを混合する混合域と、前記混合域で混合された混合溶液を排出するための混合溶液排出流路を備え、高温高圧用継手としてティ型継手またはクロス型継手を用いた高温高圧流体混合装置であって
前記ティ型継手の継手内でティ型に配置された3つの流路のうち、または、前記クロス型継手の継手内でクロス型に配置された4つの流路のうち、同軸一直線上に配置された2つの流路の一方を前記第1反応溶液流路および前記冷却水流路の二重流路とし、他方を前記混合溶液排出流路とし、残りの流路を第2反応溶液流路とし
前記二重流路は、前記第1反応溶液の排出端となる先端部外周に流路の中心軸がずれるのを防止するための突起を設けた前記第1反応溶液流路を、前記先端部が前記ティ型継手またはクロス型継手の継手内の流路の混合点の直前に位置するように設置して構成し、さらに前記突起の形状を冷却水の流れに対して角度を付与して冷却水自体をらせん状に旋回させながら前記混合点に供給させ
前記混合点直前まで第1反応溶液流路の外壁面を前記冷却水で冷却することにより、前記混合点前での前記第1反応溶液の加熱を抑制して混合点前での核発生を防止するとともに、前記混合点で前記第1反応溶液と高温高圧流体の前記第2反応溶液と前記冷却水とを混合することにより、前記第1反応溶液と高温高圧流体の前記第2反応溶液を瞬時に急速混合し、急速昇温による均質核発生を進行させて均質な微粒子を晶析法で連続的に合成することを特徴とする高温高圧流体混合装置。
Solution and the first reaction solution flow path for supplying containing the substrate is a first reaction solution, the second reaction solution supplying high-temperature high-pressure fluid is a second reaction solution from the side with respect to the first reaction solution passage Cooling water is provided to surround the flow path and the outer periphery of the first reaction solution flow path, extends to the discharge end of the first reaction solution flow path, and cools the outer wall surface of the first reaction solution flow path. a cooling water passage for supplying the mixed solution discharge channel for discharging the mixing zone where the first reaction solution and the second reaction solution is mixed with the cooling water, a mixed solution mixture in the mixing zone A high-temperature and high-pressure fluid mixing device using a tee-type joint or a cross-type joint as a high-temperature and high-pressure joint ,
Of the three flow paths arranged in a tee shape in the joint of the tee joint, or in the four flow paths arranged in a cross shape in the joint of the cross joint, they are arranged on the same straight line. One of the two flow paths is a double flow path of the first reaction solution flow path and the cooling water flow path, the other is the mixed solution discharge flow path, and the remaining flow path is a second reaction solution flow path .
The double flow path includes the first reaction solution flow path provided with a protrusion for preventing the center axis of the flow path from shifting on the outer periphery of the front end part serving as the discharge end of the first reaction solution. Is installed so as to be located immediately before the mixing point of the flow path in the joint of the tee type joint or the cross type joint, and further, the shape of the projection is given an angle with respect to the flow of the cooling water to be cooled. The water itself is spirally swirled and supplied to the mixing point ,
By cooling the outer wall surface of the first reaction solution channel with the cooling water until just before the mixing point, the heating of the first reaction solution before the mixing point is suppressed to prevent nucleation before the mixing point. In addition, the first reaction solution, the second reaction solution of the high-temperature and high-pressure fluid, and the cooling water are mixed at the mixing point so that the first reaction solution and the second reaction solution of the high-temperature and high-pressure fluid are instantaneously mixed. A high-temperature and high-pressure fluid mixing device characterized in that homogeneous fine particles are continuously mixed by rapid crystallization and a homogeneous nucleation process is rapidly progressed .
前記第2反応溶液流路は、旋回流により混合完結までの時間を短縮するための旋回流発生手段をえることを特徴とする請求項記載の高温高圧流体混合装置。 The second reaction solution flow path, high-temperature high-pressure fluid mixing apparatus according to claim 1, wherein the obtaining Bei the swirl flow generation means for reducing the time to mix complete by the swirling flow. 前記混合溶液排出流路は、縮流発生手段をえることを特徴とする請求項1または2記載の高温高圧流体混合装置。 The mixed solution discharge flow path, high-temperature high-pressure fluid mixing apparatus according to claim 1 or 2, wherein the obtaining Bei the contraction flow generating means. 前記冷却水は、pH調整剤や酸化還元剤基質を含む溶液であることを特徴とする請求項1〜3のいずれか1項記載の高温高圧流体混合装置。 The high-temperature and high-pressure fluid mixing apparatus according to any one of claims 1 to 3 , wherein the cooling water is a solution containing a substrate for a pH adjusting agent or a redox agent.
JP2011135348A 2011-06-17 2011-06-17 High temperature and high pressure fluid mixing equipment Active JP5649066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011135348A JP5649066B2 (en) 2011-06-17 2011-06-17 High temperature and high pressure fluid mixing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011135348A JP5649066B2 (en) 2011-06-17 2011-06-17 High temperature and high pressure fluid mixing equipment

Publications (2)

Publication Number Publication Date
JP2013000677A JP2013000677A (en) 2013-01-07
JP5649066B2 true JP5649066B2 (en) 2015-01-07

Family

ID=47669827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011135348A Active JP5649066B2 (en) 2011-06-17 2011-06-17 High temperature and high pressure fluid mixing equipment

Country Status (1)

Country Link
JP (1) JP5649066B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6754572B2 (en) * 2013-01-15 2020-09-16 ザ ユニバーシティ オブ ノッティンガム Mixing reactor and related steps
JPWO2022085494A1 (en) * 2020-10-21 2022-04-28
CN113244833A (en) * 2021-05-28 2021-08-13 山东长信化学科技股份有限公司 Liquid mixing device, liquid high-pressure mixing method and application

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3704789B2 (en) * 1996-03-25 2005-10-12 東海ゴム工業株式会社 Tube for fuel piping
JP2001269566A (en) * 2000-03-28 2001-10-02 Japan Organo Co Ltd Supercritical water reaction apparatus
EP1600209A1 (en) * 2004-05-29 2005-11-30 Haldor Topsoe A/S Heat exchange process and reactor
US7708975B2 (en) * 2004-07-20 2010-05-04 E.I. Du Pont De Nemours And Company Process for making metal oxide nanoparticles
JP4840916B2 (en) * 2006-07-06 2011-12-21 独立行政法人産業技術総合研究所 High temperature high pressure micro mixer
JP2010069474A (en) * 2008-08-22 2010-04-02 National Institute Of Advanced Industrial Science & Technology Method and apparatus for synthesizing nanoparticle by circulation type supercritical hydrothermal synthesis
JP2010075914A (en) * 2008-08-25 2010-04-08 National Institute Of Advanced Industrial Science & Technology High temperature-high pressure micro mixing device

Also Published As

Publication number Publication date
JP2013000677A (en) 2013-01-07

Similar Documents

Publication Publication Date Title
JP4840916B2 (en) High temperature high pressure micro mixer
KR100383023B1 (en) Cyclone reactor
JP4555742B2 (en) Equipment for producing metal oxide nanopowder
CN103831074B (en) Counter current mixing reactor
US7708975B2 (en) Process for making metal oxide nanoparticles
US10722860B2 (en) Mixing reactor and related process
JP5649066B2 (en) High temperature and high pressure fluid mixing equipment
JP6193476B2 (en) Fluidized bed reactor and method for producing granular polysilicon
EP2576036A1 (en) Co -current mixer, apparatus, reactor and method for precipitaing nanoparticles
JP7013040B2 (en) Mixing reactor and method
CN106457192A (en) Enhanced homogenous catalyzed reactor systems
JP2010075914A (en) High temperature-high pressure micro mixing device
US20160074823A1 (en) Co current mixer, apparatus, reactor and method for precipitating nanoparticles
JP5753165B2 (en) Particle synthesis using thermal hydrolysis of inorganic precursors
JP7284706B2 (en) Fluidized bed reactor and method for producing trichlorosilane
RU2741735C1 (en) Microreactor-mixer in opposite swirled flows
KR101074833B1 (en) Apparatus for reaction capable of performing batch type and continuous type reaction with temperature gradient
TWI638653B (en) Apparatus for producing microparticles
CN116617967A (en) Mesa type continuous flow reaction system and preparation method of micro-nano material
KR101955287B1 (en) Horizontal Type Reactor For Producing Polycrystalline Silicon
CN108405875A (en) It is used to prepare the method and device of gold nanoparticle
CN105983376A (en) Quenching method of moving bed reactor
CN108793084A (en) Method for producing hydrogen sulfide in recycling catalytic bed reactor
CN105080462A (en) Reaction kettle for polymerization reaction of multiple organic monomers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141105

R150 Certificate of patent or registration of utility model

Ref document number: 5649066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250