JP5648568B2 - CFT column design method - Google Patents

CFT column design method Download PDF

Info

Publication number
JP5648568B2
JP5648568B2 JP2011096740A JP2011096740A JP5648568B2 JP 5648568 B2 JP5648568 B2 JP 5648568B2 JP 2011096740 A JP2011096740 A JP 2011096740A JP 2011096740 A JP2011096740 A JP 2011096740A JP 5648568 B2 JP5648568 B2 JP 5648568B2
Authority
JP
Japan
Prior art keywords
strength
steel pipe
column
cft
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011096740A
Other languages
Japanese (ja)
Other versions
JP2012229521A (en
Inventor
難波 隆行
隆行 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011096740A priority Critical patent/JP5648568B2/en
Publication of JP2012229521A publication Critical patent/JP2012229521A/en
Application granted granted Critical
Publication of JP5648568B2 publication Critical patent/JP5648568B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rod-Shaped Construction Members (AREA)
  • Joining Of Building Structures In Genera (AREA)

Description

本発明は、土木建築構造物に用いられるCFT(Concrete Filled Steel Tubeの略)柱の設計方法に関し、特にCFT柱として要求される性能を満足させる鋼管の選定方法に関する。   The present invention relates to a design method for CFT (Concrete Filled Steel Tube) columns used in civil engineering structures, and more particularly to a method for selecting a steel pipe that satisfies the performance required for CFT columns.

鋼管の内部にコンクリートを充填したコンクリート充填鋼管構造(CFT(Concrete Filled Steel Tubeの略)柱構造とも言う)は、コンクリートの特徴(圧縮力に強いが、引張り力に弱い特性)と鋼管の特徴(引張り力に強いが、圧縮力により座屈する特性)を組合わせることによって、それぞれの欠点を解消したもので変形性能に優れ、地震に強く、また耐火性も備えた構造である。   Concrete filled steel pipe structure filled with concrete inside the steel pipe (also called CFT (Concrete Filled Steel Tube) column structure) is characterized by concrete (characteristics strong against compressive force but weak against tensile force) and steel pipe ( It is a structure that is superior in deformation performance, strong against earthquakes, and also has fire resistance.

CFT柱構造は、変形させると、鋼管・コンクリートの降伏後も変形が進むにつれ耐力(曲げモーメントへの抵抗力)が上昇し、コンクリート耐力と鋼管耐力の単純和を上回る耐力の得られることが知られている。CFT柱構造の耐力評価には非特許文献1、2などで提案されている、M−Nインタラクションカーブが用いられる。   It is known that when the CFT column structure is deformed, the yield strength (resistance to bending moment) increases as the deformation progresses after the yield of steel pipe / concrete, and the yield strength exceeds the simple sum of concrete strength and steel pipe strength. It has been. The MN interaction curve proposed in Non-Patent Documents 1 and 2 is used for the strength evaluation of the CFT column structure.

図12は非特許文献2に記載された短期許容耐力評価方法(単純累加強度)によるM−Nインタラクションカーブの一例を示し、正の軸方向力はコンクリートが負担し、コンクリートが負担しきれない分は鉄骨が負担するものとして計算される。一方、負の軸方向力は鉄骨が負担するものとして計算される。短期許容耐力は設計上考慮される、塑性変形が生じない最大変形時の耐力である。   FIG. 12 shows an example of an MN interaction curve according to the short-term allowable yield strength evaluation method (simple cumulative strength) described in Non-Patent Document 2, in which the positive axial force is borne by the concrete and cannot be fully borne by the concrete. Is calculated as the burden of the steel frame. On the other hand, the negative axial force is calculated assuming that the steel frame bears. The short-term allowable yield strength is the maximum yield strength that does not cause plastic deformation.

図10は非特許文献1に記載されたCFT柱の終局耐力評価方法(一般化累加強度)を示し、角形鋼管および円形鋼管で幅高さ比が4を超え12以下で軸力・変形が小さい場合は、コンクリートは圧縮強度cσcb、鋼管は降伏応力Fyから算出されるM−Nインタラクションカーブ上の任意の軸耐力、曲げ耐力を加算し、そのうち最大耐力となるものをCFT柱の耐力としている。   FIG. 10 shows the ultimate strength evaluation method (generalized cumulative strength) of the CFT column described in Non-Patent Document 1, and the axial force / deformation is small when the width-to-height ratio is more than 4 and less than 12 for square steel pipes and circular steel pipes. In this case, the concrete is added with the compressive strength cσcb, and the steel pipe is added with arbitrary axial strength and bending strength on the MN interaction curve calculated from the yield stress Fy, and the maximum strength is the strength of the CFT column.

図11は非特許文献2に記載されたCFT柱の終局耐力評価方法(一般化累加強度)を示し、幅高さ比が6以下の場合、コンクリートは圧縮強度Fcに鉄骨の径厚比・強度に応じたコンファインド効果分を加算した応力、鉄骨は一軸降伏応力sσyに周方向力を加味して算出されるM−Nインタラクションカーブ上の任意の軸耐力、曲げ耐力を加算し、そのうち最大耐力となるものをCFT柱の耐力としている。   FIG. 11 shows the ultimate strength evaluation method (generalized cumulative strength) of the CFT column described in Non-Patent Document 2. When the width-height ratio is 6 or less, the concrete has a compressive strength Fc and a diameter-thickness ratio / strength of the steel frame. Add the confining effect according to the stress, and the steel frame adds the arbitrary axial strength and bending strength on the MN interaction curve calculated by adding the circumferential force to the uniaxial yield stress sσy, of which the maximum strength This is the strength of the CFT pillar.

このようにCFT柱構造ではコンクリート耐力と鋼管耐力の単純和を上回る耐力が得られるが、非特許文献1の耐力評価法は、鋼管部分の耐力を降伏応力ベースで決定するもので、CFT柱構造とともに変形する鋼管における強度特性の変化は反映されていない。   Thus, in the CFT column structure, a yield strength exceeding the simple sum of the concrete yield strength and the steel pipe yield strength can be obtained. However, the strength evaluation method of Non-Patent Document 1 determines the yield strength of the steel pipe portion on the basis of the yield stress. The change of the strength characteristics in the steel pipe which deforms with it is not reflected.

鋼管における強度特性の変化は、例えば、図9(非特許文献3より引用)のひずみ硬化で示され、ひずみ硬化により、最大耐力は降伏応力×塑性断面係数で算出した曲げ耐力を上回るようになるので、CFT柱構造の耐力を精度良く求めるためにはひずみ硬化分を反映させることが必要である。 The change in the strength characteristics of the steel pipe is shown by, for example, strain hardening in FIG. 9 (cited from Non-Patent Document 3) . With strain hardening, the maximum yield strength exceeds the bending strength calculated by yield stress x plastic section modulus. Therefore, in order to accurately obtain the proof stress of the CFT column structure, it is necessary to reflect the strain hardening.

尚、非特許文献2の終局耐力評価法の場合、CFT柱の降伏後耐力上昇を考慮し、コンクリート強度を割り増している。しかし、非特許文献2は400〜590N/mm級鋼と圧縮強度が90N/mm以下のコンクリートを用いるCFT柱を対象とするもので、より高強度のコンクリートと鋼管を用いるCFT柱の場合において合理的な設計方法を示唆するものではない。 In the case of the ultimate strength evaluation method of Non-Patent Document 2, the concrete strength is increased in consideration of the increase in yield strength after yielding of the CFT column. However, Non-Patent Document 2 is intended for CFT columns using 400 to 590 N / mm grade 2 steel and concrete having a compressive strength of 90 N / mm 2 or less. In the case of CFT columns using higher strength concrete and steel pipes It does not suggest a rational design method.

ところで、コンクリート単体の変形性能は高強度になるほど低下するため、CFT構造においても充填コンクリートの高強度化により変形性能が低下する傾向がある。   By the way, since the deformation performance of a concrete single body falls, so that it becomes high strength, also in CFT structure, there exists a tendency for a deformation performance to fall by the high intensity | strength of filling concrete.

図8は、充填コンクリートの強度が低い場合のCFT構造の特性を説明する模式図で、充填コンクリートの強度が低い場合は、鋼管・コンクリートで最大耐力が発揮される変形量が異なっても、その後の耐力低下がなだらかなため、CFT柱の最大耐力に与える影響は小さい。   FIG. 8 is a schematic diagram for explaining the characteristics of the CFT structure when the strength of the filled concrete is low. When the strength of the filled concrete is low, even if the deformation amount at which the maximum strength is exhibited in the steel pipe / concrete is different, Since the decrease in the proof stress is gentle, the effect on the maximum proof strength of the CFT column is small.

一方、コンクリートに高強度材料を用いた場合は、コンクリートの破壊が脆性的となるため、鋼管とコンクリートで最大強度が発揮される変形量が相違すると両者の性能が十分に生かされない(図7)。   On the other hand, when high-strength material is used for concrete, fracture of the concrete becomes brittle, so if the amount of deformation at which the maximum strength is exhibited differs between steel pipe and concrete, the performance of both is not fully utilized (Fig. 7). .

すなわち、CFT柱において、鋼管部分とコンクリート部分がそれぞれの最大耐力を発揮する変形量が大きく異なると、鋼管部分のひずみ硬化による耐力上昇をCFT柱の耐力向上に十分に反映できない可能性がある。また、鋼管の変形性能がCFT柱の(コンクリートの耐力低下により決まる)変形性能と比較して過剰となり、合理的なCFT構造とはいい難い。   That is, in the CFT column, if the deformation amount at which the steel pipe portion and the concrete portion exhibit the maximum proof stress is greatly different, the increase in the proof stress due to strain hardening of the steel pipe portion may not be sufficiently reflected in the improvement in the proof strength of the CFT column. Further, the deformation performance of the steel pipe becomes excessive compared with the deformation performance of the CFT column (determined by the decrease in the yield strength of the concrete), and it is difficult to say that a rational CFT structure is used.

そこで、本発明は、耐力と安全性に優れる、高強度コンクリートを用いたCFT柱を製造する際、適切な鋼管を選定することが可能なCFT柱の設計方法を提供することを目的とする。   Then, this invention aims at providing the design method of the CFT pillar which can select an appropriate steel pipe, when manufacturing the CFT pillar using the high strength concrete which is excellent in yield strength and safety | security.

本発明の課題は以下の手段で達成可能である。
1.鋼管内に充填するコンクリートとして高強度コンクリートを用いるCFT柱の設計方法であって、前記鋼管として、CFT柱において最大耐力が得られる柱変形角に安全率を乗じた柱変形角以上で破断が生じ、且つ前記柱変形角において最も耐力が大きい鋼管を所望の降伏強度・最大強度を有する候補鋼管のうちから選定することを特徴とするCFT柱の設計方法。
2.前記柱変形角において最も耐力が大きい鋼管としてひずみ硬化による耐力上昇が最も大きい鋼管を所望の降伏強度・最大強度を有する候補鋼管のうちから選定することを特徴とする1記載のCFT柱の設計方法。
The object of the present invention can be achieved by the following means.
1. A CFT column design method using high-strength concrete as concrete to be filled in a steel pipe, wherein the steel pipe breaks at a column deformation angle greater than the column deformation angle obtained by multiplying the column deformation angle at which the maximum strength is obtained in the CFT column by a safety factor. A method for designing a CFT column, wherein a steel pipe having the greatest yield strength at the column deformation angle is selected from candidate steel pipes having desired yield strength and maximum strength.
2. 2. The method of designing a CFT column according to 1, wherein a steel pipe having the largest yield strength increase by strain hardening is selected from candidate steel pipes having desired yield strength and maximum strength as the steel pipe having the greatest yield strength at the column deformation angle. .

本発明によれば、耐力と安全性に優れる、充填コンクリートとして高強度コンクリートを用いるCFT柱を設計する際に、コンクリートを充填する鋼管を適切に選定することが可能で、産業上極めて有用である。   According to the present invention, when designing a CFT column that uses high-strength concrete as filling concrete, which is excellent in yield strength and safety, it is possible to appropriately select a steel pipe filled with concrete, which is extremely useful industrially. .

応力ーひずみ線図が異なる角形鋼管(その1)に高強度コンクリートを充填したCFT柱の鋼管部分の荷重(鋼管端部モーメント)−変形(柱変形角=柱の水平変形/柱高さ)関係を用いて、本発明における鋼管の選定基準を説明する図。Load (steel tube end moment) -deformation (column deformation angle = horizontal deformation of the column / column height) of CFT columns filled with high-strength concrete in square steel tubes with different stress-strain diagrams (Part 1) The figure explaining the selection criteria of the steel pipe in this invention using FIG. 応力ーひずみ線図が異なる角形鋼管(その2)に高強度コンクリートを充填したCFT柱の鋼管部分の荷重(鋼管端部モーメント)−変形(柱変形角=柱の水平変形/柱高さ)関係を用いて、本発明における鋼管の選定基準を説明する図。Load (steel pipe end moment) -deformation (column deformation angle = horizontal deformation of the column / column height) of CFT columns filled with high-strength concrete in square steel tubes (part 2) with different stress-strain diagrams The figure explaining the selection criteria of the steel pipe in this invention using FIG. 図1の角形鋼管(その1)の応力ーひずみ線図の模式図。The schematic diagram of the stress-strain diagram of the square steel pipe (the 1) of FIG. 図2の角形鋼管(その2)の応力ーひずみ線図の模式図。The schematic diagram of the stress-strain diagram of the square steel pipe (the 2) of FIG. 修正補エネルギーを説明する図。The figure explaining correction supplementary energy. 本発明の効果を説明する図。The figure explaining the effect of this invention. 充填コンクリートの強度がCFT構造の特性に及ぼす影響を説明する模式図で、コンクリートが低強度の場合。This is a schematic diagram illustrating the effect of the strength of filled concrete on the properties of the CFT structure, when the concrete is of low strength. 充填コンクリートの強度がCFT構造の特性に及ぼす影響を説明する模式図で、コンクリートが高強度の場合。This is a schematic diagram illustrating the effect of the strength of filled concrete on the properties of the CFT structure, when the concrete is of high strength. 中空鋼管の計算耐力と履歴曲線の比較図。Comparison of calculated yield strength and hysteresis curve of hollow steel pipe. M−NインタラクションカーブによるCFT柱の終局耐力評価方法(一般化累加強度)の一例を示す図。The figure which shows an example of the ultimate strength evaluation method (generalized progressive strength) of the CFT pillar by a MN interaction curve. M−NインタラクションカーブによるCFT柱の終局耐力評価方法(一般化累加強度)の他の例を示す図。The figure which shows the other example of the ultimate strength evaluation method (generalized progressive strength) of the CFT pillar by a MN interaction curve. M−NインタラクションカーブによるCFT柱の耐力評価方法で短期許容耐力評価方法(単純累加強度)を示す図。The figure which shows the short-term allowable strength evaluation method (simple cumulative strength) by the strength evaluation method of the CFT column by the MN interaction curve.

本発明に係るCFT柱の設計方法は複数の候補鋼管の中から、1.CFT柱に用いる鋼管の耐破断性能(破断時の変形の大きさ)に関する選定基準(1)、2.CFT柱の最大耐力を大きくするための鋼管特性への選定基準(2)を満足するように鋼管を選定することを特徴とする。候補鋼管は所望の引張強度を有する鋼管でCFT柱用として経済性に優れるものを指す。以下、具体的に説明する。   A method for designing a CFT column according to the present invention is as follows. Selection criteria (1) for fracture resistance (size of deformation at fracture) of steel pipes used for CFT columns. The steel pipe is selected so as to satisfy the selection criteria (2) for steel pipe characteristics for increasing the maximum proof stress of the CFT column. Candidate steel pipe refers to a steel pipe having a desired tensile strength and excellent in economic efficiency for CFT columns. This will be specifically described below.

図1、2を用いて1%ひずみ時の応力が異なる計8種の角形鋼管モデルを対象として、鋼材の引張破断で決まる角形鋼管の変形性能、所定の変形時における耐力上昇率について検討する。図3、4に上記8種類の角形鋼管の鋼管材のSSカーブを示す。
図1、2は応力ーひずみ線図(SSカーブと言う場合がある)が異なる鋼管材(角形鋼管の母材)を用いた8種類の、径700mm、長さ4000mmの角形鋼管に高強度コンクリートを充填したCFT柱を上下端の回転を拘束された状態で上端を水平方向に変形させたときの鋼管部分の荷重(鋼管端部モーメント)−変形(柱変形角=柱の水平変形/柱高さ)関係を計算で求めた結果を示す。ただし、CFT柱において、コンクリートのみが軸方向力を負担する場合を想定し、鋼管が負担する軸方向力を0とする。
With reference to FIGS. 1 and 2, the deformation performance of a square steel pipe determined by tensile fracture of the steel material and the rate of increase in yield strength at a predetermined deformation are examined for a total of eight types of square steel pipe models with different stresses at 1% strain. FIGS. 3 and 4 show the SS curves of the above eight types of square steel pipes.
Figures 1 and 2 show high-strength concrete in eight types of square steel pipes with a diameter of 700 mm and a length of 4000 mm using steel pipe materials (base materials of square steel pipes) with different stress-strain diagrams (sometimes referred to as SS curves). Steel tube part load (steel tube end moment)-deformation (column deformation angle = horizontal deformation of the column / column height) when the upper end of the CFT column filled with is deformed in the horizontal direction with the rotation of the upper and lower ends restricted A) The result of calculating the relationship is shown. However, assuming that only the concrete bears the axial force in the CFT column, the axial force that the steel pipe bears is zero.

図3は降伏応力440N/mm、引張強度590N/mmの鋼材の場合のSSカーブで、降伏比は約75%、図4は降伏応力500N/mm、引張強度590N/mmの鋼材のSSカーブで、降伏比は約85%の鋼材である。鋼材の一様伸び(引張強度発現時のひずみ)は8%とするが、柱材端接合部のひずみ集中係数を2と仮定し、平面保持仮定時の材端断面縁歪が4%となった時点で引張により破断するものとみなす。ただし、図3、4では4%ひずみ時にほぼ引張強度を発現しているものとして扱う。 Figure 3 is the yield stress 440 N / mm 2, in SS curve in the case of the tensile strength 590N / mm 2 steel, about 75% yield ratio, FIG. 4 is yield stress 500 N / mm 2, a tensile strength of 590N / mm 2 steel This is a steel material with a yield ratio of about 85%. The uniform elongation of steel (strain at the time of developing tensile strength) is 8%, but assuming that the strain concentration factor of the column end joint is 2 and the end edge strain at the end of the plane is 4%. It is considered that it will break when pulled. However, in FIGS. 3 and 4, it is assumed that the tensile strength is almost expressed at 4% strain.

上記選定基準1(CFT柱に用いる鋼管の耐破断性能(破断時の変形の大きさ)に関する要求)を満足させるため、鋼管として、CFT柱の最大柱変形角(設計目標値として設定する)に安全率を乗じた柱変形角以上で破断するものを選定する。   In order to satisfy the above selection criteria 1 (requirements regarding the fracture resistance of steel pipes used for CFT columns (the magnitude of deformation at the time of fracture)), the maximum column deformation angle of CFT columns (set as a design target value) as a steel pipe Select those that break at a column deformation angle multiplied by the safety factor.

CFT柱としての変形性能が0.01(rad)で、鋼管の破断に対する安全率を2とする場合、鋼管の破断で決まる変形性能は0.02(rad)以上必要である。この条件を満たすのはYR75%の場合case−1、2、3のSSカーブを有する鋼管、YR85%の場合case−5のSSカーブを有する鋼管である。   When the deformation performance as a CFT column is 0.01 (rad) and the safety factor against breakage of the steel pipe is 2, the deformation performance determined by the breakage of the steel pipe must be 0.02 (rad) or more. This condition satisfies steel pipes having an SS curve of cases-1, 2 and 3 when YR is 75%, and steel pipes having an SS curve of case-5 when YR is 85%.

上記選定基準2(CFT柱の最大耐力を大きくするための鋼管特性への要求)を満足させるため、鋼管として前記最大柱変形角において最もひずみ硬化が大きいものを選定する。CFT柱におけるコンクリートの最大耐力発揮変形が0.01(rad)である場合、同じ変形における鋼管の耐力上昇率が最も高いのはcase−1、2、3の鋼管の中ではcase−3の鋼管である。従って、前記の条件における最適なSSカーブはYR75%の場合case−3の鋼管となる。YR85%の場合は最適な鋼管はSSカーブがcase−5と6の中間程度となる鋼管である。   In order to satisfy the above selection criterion 2 (requirement for steel pipe characteristics for increasing the maximum proof stress of the CFT column), a steel pipe having the largest strain hardening at the maximum column deformation angle is selected. When the deformation of the maximum strength of concrete in the CFT column is 0.01 (rad), the rate of increase in the yield strength of the steel pipe in the same deformation is the highest in the steel pipes of case-1, 2, 3 It is. Therefore, the optimum SS curve under the above conditions is a case-3 steel pipe when YR is 75%. In the case of YR85%, the optimum steel pipe is a steel pipe whose SS curve is about halfway between cases-5 and 6.

本発明は、鋼管として、ひずみ硬化が早期に現れ(ラウンドハウス化したSSカーブを有することで可能となる)、それに伴い鋼管自体の引張側の破断により決まる変形能力(柱変形角)は低下するが、CFT柱の変形性能(柱変形角)に安全率を乗じた値以上の変形性能(柱変形角)を備えたものを候補鋼管より選定することで、CFT柱の安全性を損なうことなく、高い耐力を発揮させるものである。   In the present invention, strain hardening appears early as a steel pipe (which is possible by having a round housed SS curve), and the deformation capacity (column deformation angle) determined by the fracture on the tensile side of the steel pipe itself decreases accordingly. However, by selecting from the candidate steel pipes that have a deformation performance (column deformation angle) equal to or greater than the value obtained by multiplying the deformation performance (column deformation angle) of the CFT column by a safety factor, the safety of the CFT column is not impaired. , To demonstrate high proof stress.

なお、上記選定基準1である鋼管への耐破断性能(変形性能:破断時の変形の大きさ)は修正補エネルギー(図5参照)の降伏応力に対する大きさの比に左右される(例えば、非特許文献4〜6)。修正補エネルギーを大きくするには、1.YRを低くする、2.塑性化後の比較的早い段階での応力上昇を抑える、3.最大応力時のひずみを大きくすることのいずれも有効であるが、YRの低下、最大応力時のひずみの増大には限界があるので、塑性化直後の応力上昇(ひずみ硬化)を抑えることが経済的に有効である。   Note that the fracture resistance performance (deformation performance: the magnitude of deformation at the time of fracture) to the steel pipe, which is the above selection criterion 1, depends on the ratio of the magnitude of the corrected supplemental energy (see FIG. 5) to the yield stress (for example, Non-patent documents 4 to 6). To increase the corrected supplemental energy: 1. Lower YR 2. Suppress stress rise at a relatively early stage after plasticization. Increasing the strain at the maximum stress is effective, but there is a limit to the decrease in YR and the increase in strain at the maximum stress, so it is economical to suppress the stress increase (strain hardening) immediately after plasticization Effective.

一方、上記選定基準2ではCFT柱の最大柱変形角を大きくするために、鋼管として前記最大柱変形角において最もひずみ硬化が大きいものを選定する。CFT柱は、充填されるコンクリートが負担する荷重が最大となる柱変形が、鋼管単体の柱と比較して小さい場合が多く、鋼管のひずみ硬化による応力上昇が遅い場合にはCFT柱として鋼管とコンクリートの両方の耐荷重性能を最大限に利用できない。従って、鋼管のひずみ硬化が、ひずみが比較的小さい段階で起こる材料が望ましい。   On the other hand, in the above selection criterion 2, in order to increase the maximum column deformation angle of the CFT column, a steel pipe having the largest strain hardening at the maximum column deformation angle is selected. CFT columns are often smaller in deformation than the column of a single steel pipe, and the stress increase due to strain hardening of the steel pipe is slow. The load bearing performance of both concrete cannot be used to the maximum. Therefore, a material in which strain hardening of a steel pipe occurs at a stage where the strain is relatively small is desirable.

本発明において鋼管に対する上記選定基準1、2は相反するが、選定基準1に関しては、鋼管耐破断性能はコンクリート変形性能以上であれば良く、その範囲内で選定基準2を満足するSSカーブを備えた鋼管を選定するのが良い。ただし、鋼管の破断による耐力低下は急激に起こることから、選定基準1を満足させるよう鋼管を選定する場合は一定の安全率を有することが望ましい。選定基準1、2に関する具体的な検討は、FEM解析によるか、非特許文献7に記載されたCDC法により行うことが出来る。   In the present invention, the above selection criteria 1 and 2 for steel pipes are contradictory, but with respect to selection criteria 1, the steel pipe fracture resistance is only required to be greater than the concrete deformation performance, and the SS curve satisfying the selection criteria 2 is provided within that range. It is recommended to select a steel pipe. However, since the proof stress drop due to the breakage of the steel pipe occurs abruptly, it is desirable to have a certain safety factor when selecting the steel pipe to satisfy the selection criterion 1. Specific examination regarding the selection criteria 1 and 2 can be performed by FEM analysis or by the CDC method described in Non-Patent Document 7.

本発明によればCFT柱構造が変形する際、比較的早期に鋼管の耐力が上昇するため、当該CFT柱を用いた構造物は地震外力を受けた際に従来構造と比較して変形が小さく抑えられるか、倒壊を避けることができる(図6)。   According to the present invention, when the CFT column structure is deformed, the proof stress of the steel pipe is increased relatively early. Therefore, the structure using the CFT column is less deformed than the conventional structure when subjected to an earthquake external force. It can be suppressed or collapse can be avoided (FIG. 6).

早期にひずみ硬化する鋼管は、一般に鋼材の引張側の破断により決まる変形性能が低下するが、CFT柱としての変形性能としての変形性能に安全率を乗じた以上の鋼管としての変形性能を確保するため、構造性能を低下させることは無い。   Steel pipes that are strain-hardened at an early stage generally have a deformation performance that is determined by the fracture on the tensile side of the steel material. However, the deformation performance as a CFT column is ensured to be more than the product obtained by multiplying the deformation performance by the safety factor. Therefore, the structural performance is not deteriorated.

本発明は、CFT柱としての変形性能を満足するように選定基準1、2によって鋼管を選定するが、CFT柱自体の変形性能に替えてCFT柱を使用する構造物の層(複数階を有する構造物の床間)の変形性能としても良い。   In the present invention, the steel pipe is selected by the selection criteria 1 and 2 so as to satisfy the deformation performance as the CFT column, but the layer of the structure using the CFT column (having a plurality of floors) instead of the deformation performance of the CFT column itself. It may be the deformation performance between the floors of the structure.

コンクリート充填鋼管構造設計施工指針:日本建築学会Concrete filled steel pipe structure design and construction guidelines: Architectural Institute of Japan コンクリート充填鋼管(CFT)造技術基準・同解説の運用及び計算例等:(社)新都市ハウジング協会Concrete Filled Steel Pipe (CFT) Construction Technical Standards, Operation and Calculation Examples, etc .: New City Housing Association 590N/mm2級角形鋼管の部材性能に関する実験的研究:下川 他、鋼構造年次論文報告集、巻:16 頁:1−6、2008.11Experimental study on member performance of 590N / mm2 class square steel pipe: Shimokawa et al., Annual Report of Steel Structure, Volume: 16 pages: 1-6, 2008.11 延性き裂発生を考慮した梁部材の塑性変形能力、 学術講演梗概集. C−1、 2003、 pp.863−864、Summary of academic lecture lectures on plastic deformation capacity of beam members considering ductile crack initiation. C-1, 2003, pp. 863-864, 歪・補エネルギーによる素材特性と部材変形性能に関する検討:小野 他、日本建築学会大会学術講演梗概集 C分冊、p.1139、1993年Study on material properties and member deformation performance by strain and supplemental energy: Ono et al. 1139, 1993 金属系構造部材の局部座屈挙動における素材特性の影響(その3):伊藤 他、日本建築学会大会学術講演梗概集 C−1分冊、p.269、1996年Effect of material properties on local buckling behavior of metallic structural members (Part 3): Ito et al. 269, 1996 (財)日本建築センター:鉄骨梁端溶接接合部の脆性的破断防止ガイドライン・同解説Japan Building Center: Guidelines for Prevention of Brittle Fracture of Steel Beam End Welded Joints

Claims (2)

鋼管内に充填するコンクリートとして高強度コンクリートを用いるCFT柱の設計方法であって、前記鋼管として、CFT柱において最大耐力が得られる柱変形角に安全率を乗じた柱変形角以上で破断が生じ、且つ前記安全率を乗じた柱変形角において最も耐力が大きい鋼管を所望の降伏強度・最大強度を有する候補鋼管のうちから選定することを特徴とするCFT柱の設計方法。   A CFT column design method using high-strength concrete as concrete to be filled in a steel pipe, wherein the steel pipe breaks at a column deformation angle greater than the column deformation angle obtained by multiplying the column deformation angle at which the maximum strength is obtained in the CFT column by a safety factor. And a method of designing a CFT column, wherein a steel pipe having the greatest yield strength at a column deformation angle multiplied by the safety factor is selected from candidate steel pipes having desired yield strength and maximum strength. 前記安全率を乗じた柱変形角において最も耐力が大きい鋼管としてひずみ硬化による耐力上昇が最も大きい鋼管を所望の降伏強度・最大強度を有する候補鋼管のうちから選定することを特徴とする請求項1記載のCFT柱の設計方法。   The steel pipe having the greatest increase in yield strength due to strain hardening is selected from candidate steel pipes having desired yield strength and maximum strength as the steel pipe having the greatest yield strength at the column deformation angle multiplied by the safety factor. The CFT pillar design method described.
JP2011096740A 2011-04-25 2011-04-25 CFT column design method Expired - Fee Related JP5648568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011096740A JP5648568B2 (en) 2011-04-25 2011-04-25 CFT column design method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011096740A JP5648568B2 (en) 2011-04-25 2011-04-25 CFT column design method

Publications (2)

Publication Number Publication Date
JP2012229521A JP2012229521A (en) 2012-11-22
JP5648568B2 true JP5648568B2 (en) 2015-01-07

Family

ID=47431279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011096740A Expired - Fee Related JP5648568B2 (en) 2011-04-25 2011-04-25 CFT column design method

Country Status (1)

Country Link
JP (1) JP5648568B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0654049B2 (en) * 1986-09-01 1994-07-20 清水建設株式会社 Filled steel tubular concrete columns and method of constructing filled tubular concrete columns
JP3456479B2 (en) * 2001-03-30 2003-10-14 Jfeスチール株式会社 Concrete filled circular steel tubular column
JP2006309306A (en) * 2005-04-26 2006-11-09 Takenaka Komuten Co Ltd Method for analyzing shearing force and deformation of post and method for analyzing all plastic bending moment of post

Also Published As

Publication number Publication date
JP2012229521A (en) 2012-11-22

Similar Documents

Publication Publication Date Title
Nakamura et al. Gravity load collapse of reinforced concrete columns with brittle failure modes
González et al. Performance of stainless steel winery tanks during the 02/27/2010 Maule Earthquake
JP5296350B2 (en) Damping member
Feng et al. Seismic performance of hybrid columns of concrete-filled square steel tube with FRP-confined concrete core
Zubydan et al. Monotonic and cyclic behavior of concrete-filled steel-tube beam-columns considering local buckling effect
KR20160048298A (en) Circular Shear Panel Damper
JP2011001792A (en) Beam-column joint part structure of rigid frame skeleton and rolled h-steel
WO2009125774A1 (en) Load bearing material
Choi et al. Behavior and modeling of confined concrete cylinders in axial compression using FRP rings
JP5648569B2 (en) CFT column steel pipe design method
Quan et al. Cyclic behavior of stiffened joints between concrete-filled steel tubular column and steel beam with narrow outer diaphragm and partial joint penetration welds
JP4829384B1 (en) Four corner reinforcement structure of rectangular metal flat plate
JP5648568B2 (en) CFT column design method
JP6226177B2 (en) Steel pipe joint structure
JP6152809B2 (en) Beam-column joint structure
Kibriya Performance of concrete filled steel tubular columns
Ho Experimental tests on high-strength concrete columns subjected to combined medium axial load and flexure
JP5385510B2 (en) Flexible element damping structure and flexible mixed damping structure
JP2012188872A (en) Concrete filled circular steel pipe column
FUJINAGA et al. Experimental Study on Continuous Beam Type Square CFST Beam-to-Column Connection
JP6216644B2 (en) Wall pillar structure and building
JP5903792B2 (en) Load bearing material
Asha et al. Seismic behaviour of exterior beam-column joints with square spiral confinement
KR20210151970A (en) brace material
JPWO2015045872A1 (en) Composite structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141014

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141027

R150 Certificate of patent or registration of utility model

Ref document number: 5648568

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees