JP5296350B2 - Damping member - Google Patents

Damping member Download PDF

Info

Publication number
JP5296350B2
JP5296350B2 JP2007220763A JP2007220763A JP5296350B2 JP 5296350 B2 JP5296350 B2 JP 5296350B2 JP 2007220763 A JP2007220763 A JP 2007220763A JP 2007220763 A JP2007220763 A JP 2007220763A JP 5296350 B2 JP5296350 B2 JP 5296350B2
Authority
JP
Japan
Prior art keywords
damping member
vibration damping
building
superelastic
superelastic alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007220763A
Other languages
Japanese (ja)
Other versions
JP2009052097A (en
Inventor
慶一 荒木
寛之 木村
裕治 聲高
清仁 石田
亮介 貝沼
祐司 須藤
俊洋 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPAN COPPER DEV ASSOCIATION
Original Assignee
JAPAN COPPER DEV ASSOCIATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPAN COPPER DEV ASSOCIATION filed Critical JAPAN COPPER DEV ASSOCIATION
Priority to JP2007220763A priority Critical patent/JP5296350B2/en
Publication of JP2009052097A publication Critical patent/JP2009052097A/en
Application granted granted Critical
Publication of JP5296350B2 publication Critical patent/JP5296350B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To improve machinability which has been a weak point in terms of construction, of a damping member using a superelastic alloy and combining earthquake energy absorbing function with a residual deformation suppressing function. <P>SOLUTION: The initial elastic modulus of a Cu-Al-Mn-based superelastic alloy used in this damping member is about 1/3 that of steel material, and has an extremely high value compared with that of a viscoelastic material. Consequently by the utilization of the damping member, high initial rigidity can be imparted to a building, which is remarkably different from a viscous damper and a viscoelastic damper. The earthquake energy can be absorbed besides the suppression of the residual deformation of a building occurring after a big earthquake, and the damage to the main structure can be effectively evaded by effectively utilizing the superelastic properties of the damping member. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、地震エネルギー吸収性能と残留変形抑制機能を併せ持つ、切削加工性が優れた超弾性合金を用いた制振部材に関するものである。   The present invention relates to a vibration damping member using a superelastic alloy having both seismic energy absorption performance and a residual deformation suppressing function and excellent in machinability.

1994年の米国ノースリッジ地震や、1995年の兵庫県南部地震を契機として、近年、地震による建造物の損傷の回避や、地震後の機能維持を目標とする性能が、強く求められるようになっている。このような目標性能を達成するために最適な構造形式として、制振構造や免震構造といった構造が、積極的に採用されるようになっている。   In recent years, with the 1994 Northridge earthquake in 1994 and the 1995 Hyogoken-Nanbu earthquake, performance aimed at avoiding damage to buildings and maintaining functions after the earthquake has been strongly demanded. ing. Structures such as vibration control structures and seismic isolation structures have been actively adopted as the optimal structure types to achieve such target performance.

制振構造においては、粘性ダンパー(特許文献1)、粘弾性ダンパー(特許文献2)、履歴ダンパー(特許文献3)、摩擦ダンパー(特許文献4)などに大別されるダンパー類が開発されており、これらのダンパーで地震エネルギーを吸収することで、地震による損傷から建造物の主体構造物を守ることができる。それらの中でも履歴ダンパーは、性能、価格、耐久性の全ての面において優れているため、近年、広く用いられている。履歴ダンパーは、鋼材などの金属の塑性変形により地震エネルギーを吸収することで、被害が主体構造物に及ばないようにするものである。   In the damping structure, dampers roughly classified into a viscous damper (Patent Document 1), a viscoelastic damper (Patent Document 2), a hysteresis damper (Patent Document 3), a friction damper (Patent Document 4) and the like have been developed. By absorbing seismic energy with these dampers, the main structure of the building can be protected from damage caused by the earthquake. Among them, the hysteresis damper has been widely used in recent years because it is excellent in all aspects of performance, price, and durability. Hysteresis dampers absorb earthquake energy by plastic deformation of metals such as steel, so that damage does not reach the main structure.

しかし、近年、我国で頻発しているM7クラスの直下型地震や、高い確率で発生が予測されているM8クラスの東海、東南海、南海地震などの海洋型地震など、現行の設計基準の想定を越える大地震の際には、履歴ダンパーに許容できない残留変形が発生する可能性があり、このような場合、ダンパーを新しいものと取り替えなければならない。地震発生後にダンパーを新しいものと交換するには、壁等の部材の撤去、部品交換、壁等の修復など、多大な労力とコストを要する。   However, the assumptions of the current design standards such as M7 class direct earthquakes that frequently occur in Japan and M8 class Tokai, Tonankai and Nankai earthquakes that are predicted to occur with high probability in recent years. In the event of a large earthquake that exceeds the limit, unacceptable residual deformation may occur in the history damper, and in such a case, the damper must be replaced with a new one. Replacing a damper with a new one after the occurrence of an earthquake requires a great deal of labor and cost, such as removing members such as walls, replacing parts, and repairing walls.

上記の問題を解決するため、形状記憶合金を用いた制振部材の開発が行われている(非特許文献1、2)。通常の金属では、弾性域を超える載荷により生じた非線形ひずみは、塑性ひずみとなり変形が回復せず残留する。形状記憶合金においても同様に非線形ひずみが残留するが、このひずみは加熱により消滅し、変形が回復する。この性質は形状記憶効果と呼ばれる。また、ある一定温度以上の温度域においては、荷重を除くのみで形状記憶合金の非線形ひずみが回復する。この性質は超弾性効果と呼ばれ、この効果を持つ形状記憶合金は、特に超弾性合金と呼ばれる。   In order to solve the above problems, vibration damping members using shape memory alloys have been developed (Non-Patent Documents 1 and 2). In a normal metal, the non-linear strain generated by the loading exceeding the elastic range becomes a plastic strain, and the deformation does not recover and remains. Similarly, non-linear strain remains in the shape memory alloy, but this strain disappears by heating and the deformation is recovered. This property is called the shape memory effect. Also, in a temperature range above a certain temperature, the non-linear strain of the shape memory alloy recovers only by removing the load. This property is called a superelastic effect, and a shape memory alloy having this effect is particularly called a superelastic alloy.

形状記憶特性を利用したダンパー(特許文献5)では、地震後に加熱することで残留変形を解消できる。しかし、加熱するための手段をあらかじめ講じておく必要があり、残留変形の解消には、少なからぬ労力やコストを要する。これに対して、超弾性合金を用いたダンパーでは、大地震後でも残留変形が生じないか、生じても非常にわずかであるため、ダンパーの交換や、加熱による残留変形解消の必要がない(特許文献6)。   In a damper (Patent Document 5) using shape memory characteristics, residual deformation can be eliminated by heating after an earthquake. However, it is necessary to take measures for heating in advance, and considerable labor and cost are required to eliminate the residual deformation. In contrast, a damper using a superelastic alloy does not require residual deformation even after a major earthquake or very little, so there is no need to replace the damper or eliminate residual deformation by heating ( Patent Document 6).

今まで実用材として使用されている超弾性合金は、材料の機械的特性が優れているNi−Ti基超弾性合金がほとんどをしめている。しかし、Ni−Ti基超弾性合金は素材が高価な上に、切削加工性が極めて低い。そのため、制振部材単体としての性能は優れていても、切断機を用いて材料を切り出すために必要なコストや、ボルトやナットなどの締結具を用いて制振部材を本体構造に接続する際に必要な、ねじ切り、穴あけ等の加工に要するコストが高額となる。このことが、超弾性合金を用いた制振部材を実用化するに当たっての、最大の障壁となっていた(非特許文献1)。
特開平5−263858号公報 特開2001−146855号公報 特開平5−26274号公報 特開2000−104338号公報 特開2006−194287号公報 特開2001−271510号公報 特開平7−62472号公報 特開2001−20026号公報 R. Desroches and B. Smith: Shape memory alloys in seismic resistant design and retrofit: a critical review of their potential and limitations, J. Earthquake Eng., Vol. 7, pp. 1−15, 2003. G. Song, N. Ma, and H.−N. Li: Applications of shape memory alloys in civil structures, Eng. Struct., Vol. 28, pp. 1266−1274, 2006.
Most of the superelastic alloys that have been used as practical materials so far are Ni—Ti based superelastic alloys having excellent mechanical properties. However, the Ni—Ti-based superelastic alloy is expensive and has extremely low machinability. Therefore, even if the performance of the damping member alone is excellent, the cost required to cut out the material using a cutting machine, and when connecting the damping member to the body structure using fasteners such as bolts and nuts The cost required for machining such as threading and drilling is high. This has been the biggest barrier in putting a damping member using a superelastic alloy into practical use (Non-Patent Document 1).
JP-A-5-263858 JP 2001-146855 A JP-A-5-26274 JP 2000-104338 A JP 2006-194287 A JP 2001-271510 A Japanese Patent Laid-Open No. 7-62472 Japanese Patent Laid-Open No. 2001-20026 R. Desroches and B.M. Smith: Shape memory allies in seismic resist design and retrofit: a critical review of the potential and limitations. Earthquake Eng. , Vol. 7, pp. 1-15, 2003. G. Song, N.M. Ma, and H.M. -N. Li: Applications of shape memory alloys in civil structures, Eng. Struct. , Vol. 28, pp. 1266-1274, 2006.

本発明は、地震エネルギー吸収機能と残留変形抑制機能を併せ持つ、超弾性合金を用いた制振部材の切削加工性を高めることで、制振部材を建造物本体に接合する際に必要な、ねじ切り、穴あけ、切断などの切削加工に要する労力とコストを、通常の鋼材と同程度に低減することを目的としている。   The present invention improves the machinability of a damping member using a superelastic alloy that has both a seismic energy absorbing function and a residual deformation suppressing function, and is necessary for threading a damping member to be joined to a building body. It aims to reduce the labor and cost required for cutting such as drilling and cutting to the same extent as ordinary steel materials.

本発明者らは、本発明者らの一部が先に特許出願したCu−Al−Mn基超弾性合金(特許文献7、特許文献8)にSを添加することで、MnS等の硫化物が材料内部に微量に形成され、優れた切削加工性が発現されるということを発見した。材料コストに加えて冷間加工コストが低く、疲労特性にも優れたCu−Al−Mn基超弾性合金において、Sを添加することで、高い切削加工性が発現しうるということは、これまで全く知られていなかったことであり、新しい知見である。本発明は、この知見に基づいてなされたものであり、その構成は、以下の(1)から(5)に記載する通りである。
(1)Al:7.5〜9質量%、Mn:8〜14質量%及び0.001〜0.5質量%を含み、残部Cuからなり、応力誘起マルテンサイト変態と除荷による逆変態との可逆変態により運動エネルギーを吸収する超弾性合金を用いた制振部材。
(2)さらにNi、Co、Fe、Ti、V、Cr、Si、Ge、Nb、Mo、W、Sn、Bi、Sb、Mg、P、Be、Zr、Zn、B、C、Ag及びミッシュメタルからなる群から選ばれた少なくとも一種の元素を合計で0.001〜5質量%含む超弾性合金を備えた制振部材。
(3)棒、パイプ、より線、平板、アングル材、H形材、もしくはチャンネル材の形状を有し、ねじ切り、穴あけ、切断のうち少なくとも一種の切削加工後に、締結具を用いて建造物へ取り付けられることを特徴とする、(1)と(2)の何れかに記載の制振部材。
(4)筋かい、方杖、シアリンクの何れかとして、または、主体構造部材の接合部における接合部材として、主として軸力で抵抗する部材として利用されることを特徴とする、(3)に記載の制振部材。
(5)建造物本体に接続された2個以上の構造要素のずれに対し、制振部材に常に引張力が生じるように上記構造要素に連結されることを特徴とする、(3)に記載の制振部材。
(6)(1)から(5)の何れかに記載の制振部材を利用して、新規に建設されたか、もしくは耐震補強を施されたことを特徴とする建造物。
The present inventors added sulfide to Cu-Al-Mn base superelastic alloys (Patent Documents 7 and 8) that some of the present inventors previously applied for patents to provide sulfides such as MnS. Has been found to be formed in a small amount inside the material, and exhibits excellent machinability. In Cu-Al-Mn-based superelastic alloys that have low cold working costs and excellent fatigue properties in addition to material costs, the addition of S can exhibit high machinability. This is a new finding that was not known at all. This invention is made | formed based on this knowledge, and the structure is as describing in the following (1) to (5).
(1) Al: 7.5~9 wt%, Mn: 8 to 14 wt% and S: comprises 0.001 to 0.5 wt%, Ri balance Cu Tona, due to stress-induced martensitic transformation and unloading A damping member using a superelastic alloy that absorbs kinetic energy by reversible transformation with reverse transformation .
(2) Further, Ni, Co, Fe, Ti, V, Cr, Si, Ge, Nb, Mo, W, Sn, Bi, Sb, Mg, P, Be, Zr, Zn, B, C, Ag, and Misch metal A damping member comprising a superelastic alloy containing at least 0.001 to 5 mass% in total of at least one element selected from the group consisting of:
(3) It has the shape of a rod, pipe, stranded wire, flat plate, angle material, H-shaped material, or channel material, and after at least one kind of cutting process among threading, drilling, and cutting, to the building using a fastener The vibration damping member according to any one of (1) and (2), wherein the vibration damping member is attached.
(4) The present invention is characterized in that it is used as a brace, a cane, a shear link, or as a joining member in a joining portion of a main structural member, mainly as a member that resists by axial force. The damping member as described.
(5) The structure described in (3), wherein the structural member is connected to the structural member such that a tensile force is always generated in the vibration damping member with respect to displacement of two or more structural elements connected to the building body. Damping member.
(6) A building that has been newly constructed using the damping member according to any one of (1) to (5) or has been subjected to earthquake-proof reinforcement.

本発明は、以上の構成によるものであり、Cu−Al−Mn基超弾性合金にSを添加することによって、これまでになかった高い切削加工性が付与された制振部材と、その実施形態を提案するものである。本発明の高切削性制振部材の利用により、Ni−Ti基超弾性合金を備える制振部材と比較して、制振部材の本体構造への取り付けに要する加工コストと施工コストを大幅に低減できる。   The present invention is based on the above-described configuration, and a damping member to which high cutting workability that has never been obtained by adding S to a Cu-Al-Mn base superelastic alloy and an embodiment thereof is provided. This is a proposal. By using the high cutting performance damping member of the present invention, the processing cost and construction cost required for mounting the damping member to the main body structure are significantly reduced compared to the damping member comprising a Ni-Ti based superelastic alloy. it can.

また、切削加工性に加えて冷間加工性も高いため、部材の成形に要する加工コストが低く、建造物を制振構造とする際の設計の自由度が非常に高くなる。さらに、材料の見かけ上の降伏点(応力誘起マルテンサイト変態が生じる点)以上での応力の増加はわずかであるため、設計の想定を超えるような大きさの地震動に建造物がさらされる場合にも、制振部材から主体構造物に過大な力が伝達されることがない。   Further, since the cold workability is high in addition to the cutting workability, the processing cost required for forming the member is low, and the degree of freedom of design when the building is made a vibration damping structure becomes very high. In addition, the increase in stress above the material's apparent yield point (where stress-induced martensitic transformation occurs) is negligible, so if the building is exposed to ground motions that exceed the design assumptions. However, an excessive force is not transmitted from the damping member to the main structure.

以下、本発明の実施の形態を、図面と表を参照して説明する。なお、各部の具体的な構成は、以下の実施形態のみに限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings and tables. In addition, the specific structure of each part is not limited only to the following embodiment.

先行特許として特開平7−62472号公報に記載されたCu−Al−Mn基超弾性合金は、現在、最も広く使用されているNi−Ti基超弾性合金と比較して、材料自体が1/10から1/5程度と安価であり、冷間加工性が高く、棒材、パイプ、より線、板材、アングル材、H形材、チャンネル材などの制振部材を低コストで作製できる。加えて、超弾性特性の温度依存性も低い。また、Cu−Zn−Al基、Cu−Al−Ni基などの他の銅系超弾性合金と比較して、疲労特性が非常に高い。   The Cu—Al—Mn base superelastic alloy described in Japanese Patent Application Laid-Open No. 7-62472 as a prior patent has a material that is less than that of the most widely used Ni—Ti base superelastic alloy. The cost is as low as about 10 to 1/5, the cold workability is high, and damping members such as bars, pipes, stranded wires, plates, angles, H-shapes, and channels can be manufactured at low cost. In addition, the temperature dependence of the superelastic properties is low. Moreover, compared with other copper-type superelastic alloys, such as Cu-Zn-Al group and Cu-Al-Ni group, fatigue characteristics are very high.

また、特開2004−10997公報、特開2005−298952公報、特開2007−119874公報(以降先行特許群と記載する)には、特開平7−62472号公報および特開2001−20026号公報に記載されたCu−Al−Mn基超弾性合金を、制振部材として利用する特許は既に出願されている。しかし、これらの特許では、材料自体の切削性や、切削加工を必要とする実施形態についての言及は、全くなされていない。本発明は、建築物や土木構造物などの建造物を対象として、超弾性合金を用いた制振部材を実用化するに当たって、最も大きな障壁となっている切削加工性を格段に高めようとするものであり、このような試みは新規である。   Japanese Patent Application Laid-Open No. 2004-10997, Japanese Patent Application Laid-Open No. 2005-298952 and Japanese Patent Application Laid-Open No. 2007-119874 (hereinafter referred to as the prior patent group) include Japanese Patent Application Laid-Open Nos. 7-62472 and 2001-20026. Patents using the described Cu-Al-Mn base superelastic alloy as a damping member have already been filed. However, in these patents, no mention is made of the machinability of the material itself or the embodiments that require cutting. The present invention intends to dramatically improve the machinability, which is the largest barrier, in putting a vibration damping member using a superelastic alloy into practical use for buildings such as buildings and civil engineering structures. Such an attempt is novel.

また、先行特許群では、0.5%を超えるような大ひずみ振幅領域において、残留変形抑制効果と制振効果(地震エネルギー吸収効果)が同時に要求される制振部材の材料として、Cu−Al−Mn基超弾性合金を利用することについての言及はなされていない。   In the prior patent group, Cu-Al is used as a material for a damping member that simultaneously requires a residual deformation suppressing effect and a damping effect (seismic energy absorption effect) in a large strain amplitude region exceeding 0.5%. There is no mention of utilizing a Mn-based superelastic alloy.

地震エネルギー吸収性能と残留変形抑制機能のみであれば、粘性ダンパーや粘弾性ダンパーの利用により実現できる。建造物には地震以外にも様々な種類の外乱が作用するため、水平方向の初期剛性が高いことが望ましい。しかし、粘性材料は剛性を有せず、粘弾性材料の剛性は、通常、鋼材などと比較すると非常に低い。そのため、粘性ダンパーや粘弾性ダンパーを利用することにより、建造物に高い初期剛性を付与することはできない。これに対し、本発明の制振部材で用いるCu−Al−Mn基超弾性合金の初期弾性係数は、鋼材の約1/3程度であり、粘弾性材料と比較して非常に高い値を持つ。そのため、本発明の制振部材の利用により、建造物に高い初期剛性を付与できる点が、粘性ダンパーや粘弾性ダンパーと大きく異なる。以上のように、本発明の制振部材の超弾性特性を有効に利用することで、大地震後に生じる建造物の残留変形を抑制した上で地震エネルギーを吸収でき、主体構造物の損傷を効果的に回避できる。   If only the seismic energy absorption performance and the residual deformation suppression function are used, it can be realized by using a viscous damper or a viscoelastic damper. Since various types of disturbances other than earthquakes act on the building, it is desirable that the initial stiffness in the horizontal direction be high. However, the viscous material does not have rigidity, and the rigidity of the viscoelastic material is usually very low as compared with steel. Therefore, high initial rigidity cannot be given to a building by using a viscous damper or a viscoelastic damper. On the other hand, the initial elastic modulus of the Cu-Al-Mn base superelastic alloy used in the vibration damping member of the present invention is about 1/3 that of steel, and has a very high value compared to the viscoelastic material. . Therefore, the point which can give high initial rigidity to a building by using the damping member of the present invention is greatly different from a viscous damper or a viscoelastic damper. As described above, by effectively utilizing the superelastic characteristics of the vibration damping member of the present invention, it is possible to absorb the seismic energy while suppressing the residual deformation of the building that occurs after a large earthquake, and to effectively damage the main structure. Can be avoided.

更に、先行特許群の制振部材は、相間の界面で生じる摩擦(塑性化)を利用して運動エネルギーを消費するため、変形が不可逆的であり、残留変形抑制効果を持たない。これに対して本発明の制振部材は、応力誘起マルテンサイト変態と、除荷による逆変態(超弾性効果)により運動エネルギーを吸収するため、変形が可逆的である。そのため、残留変形を効果的に抑制できる。   Furthermore, since the vibration damping member of the prior patent group consumes kinetic energy using friction (plasticization) generated at the interface between phases, the deformation is irreversible and does not have a residual deformation suppressing effect. On the other hand, the vibration damping member of the present invention absorbs kinetic energy by stress-induced martensitic transformation and reverse transformation (superelastic effect) by unloading, so that the deformation is reversible. Therefore, residual deformation can be effectively suppressed.

本発明のCu−Al−Mn基超弾性合金の材料コストは、Ni−Ti基超弾性合金と比較して1/10〜1/5程度と低コストであるものの、普通鋼と比較すると15〜30倍程度と高価であるため、材料を有効に活用した利用形態が必要となる。そこで、本発明の制振部材は、主として軸力により抵抗する部材として用いるのが良い。具体的には、筋かい、方杖、シアリンクとしての利用が考えられる。また、柱と梁の接合部や、柱脚における接合部材としての利用も有効である。このような利用形態では、制振部材を切り出した後に、ボルトやナットなどの締結具を用いて本体構造に接合するため、ねじ切り、穴あけ、切断などの切削加工が欠かせない。   The material cost of the Cu—Al—Mn base superelastic alloy of the present invention is about 1/10 to 1/5 as low as that of the Ni—Ti base superelastic alloy, but 15 to 15 Since it is about 30 times as expensive, a utilization form that effectively utilizes the material is required. Therefore, the vibration damping member of the present invention is preferably used as a member that resists mainly by axial force. Specifically, it can be used as a brace, a cane, or a sheer link. Moreover, the use as a joining member in a column-beam joint or a column base is also effective. In such a utilization form, after cutting the damping member, it is joined to the main body structure using a fastener such as a bolt or a nut, so that cutting such as threading, drilling, and cutting is indispensable.

なお、上記の利用形態では、地震時に建造物が振動する際に、制振部材に圧縮力と引張力が交互に生じる。制振部材に圧縮力が生じる場合には、座屈が生じる可能性があるため、繰り返し載荷時には極低サイクル疲労が生じる可能性がある。この問題を回避するには、建造物に接続された複数の構造要素がどの方向にずれても、制振部材に常に引張力が生じるように、制振部材を上記構造要素に連結することが有効である。   In the above utilization mode, when the building vibrates during an earthquake, a compressive force and a tensile force are alternately generated in the damping member. When compressive force is generated in the vibration damping member, buckling may occur, and therefore extremely low cycle fatigue may occur during repeated loading. In order to avoid this problem, the damping member may be coupled to the structural element so that a tensile force is always generated in the damping member regardless of the direction in which the plurality of structural elements connected to the building are displaced. It is valid.

また、Cu−Al−Mn基超弾性合金は、材料の粒径に対する、板厚や棒の直径の比が小さい程、良好な超弾性特性を有することが知られている。そのため、制振部材に良好な超弾性特性を付与するには、薄板を重ねる形や、より線として用いるのが望ましい。このような形態で利用する場合、座屈が生じる可能性がさらに高くなるため、制振部材に圧縮力が生じないように配慮を行うことは、制振部材の超弾性特性を効率良く利用するために、極めて有効である。   Further, it is known that the Cu—Al—Mn based superelastic alloy has better superelastic properties as the ratio of the plate thickness or the rod diameter to the material particle size is smaller. For this reason, in order to impart good superelastic characteristics to the vibration damping member, it is desirable to use a shape in which thin plates are stacked or a stranded wire. When used in such a form, the possibility of buckling is further increased, so it is efficient to use the superelastic characteristics of the damping member so as not to generate a compressive force on the damping member. Therefore, it is extremely effective.

本発明の制振部材の利用のみで、建造物を制振構造とすることができる。しかし、残留変形抑制機能を保持した上で、エネルギー吸収性能向上を図るため、粘性ダンパー、粘弾性ダンパーや、強度を調節した履歴ダンパーもしくは摩擦ダンパーの中から、少なくとも一種類のダンパーと並列に配置することも可能である。   A building can be made into a damping structure only by using the damping member of the present invention. However, in order to improve the energy absorption performance while maintaining the residual deformation suppression function, it is arranged in parallel with at least one kind of damper from among viscous dampers, viscoelastic dampers, hysteresis dampers with adjusted strength, or friction dampers It is also possible to do.

本発明の制振部材の利用形態を、図1から図4に示す。まず、各図の概要を述べる。
図1は筋かい、方杖、シアリンクとしての制振部材の設置例を示した図である。図1(a)は筋かい、図1(b)は方杖、図1(c)はシアリンクとして、本発明の制振部材を使用する例を示す。
図2は接合部における接合部材としての制振部材の利用例を示した図である。図2(a)は柱脚における接合部材として、また、図2(b)は柱−梁接合部における接合部材として、本発明の制振部材を利用する例を描いている。
図3と図4は、制振部材に常に圧縮力が生じないように、制振部材を本体構造に連結するための方法を示す。
図3は接合部材に常に引張力が生じるように設置する際の主要部の図である。図3(a)は、制振部材を本体構造に連結する際の主要部の構成を示しており、図3(b)は、この主要部の構成順序を示す。
図4は、図3で示した主要部を本体構造に連結した例である。図4(a)は、2本の間柱の間に制振部材を設置した例を示し、図4(b)は、ブレース下部のH形鋼と梁の間に制振部材を設置した例を示す。以下では、各図について詳細な説明を行う。
The utilization form of the vibration damping member of the present invention is shown in FIGS. First, the outline of each figure will be described.
FIG. 1 is a diagram showing an installation example of a damping member as a brace, a cane, and a shear link. FIG. 1 (a) shows a brace, FIG. 1 (b) shows a cane, and FIG. 1 (c) shows an example in which the damping member of the present invention is used as a shear link.
FIG. 2 is a view showing an example of use of the vibration damping member as a joining member in the joining portion. 2A shows an example in which the vibration damping member of the present invention is used as a joining member in a column base, and FIG. 2B shows a joining member in a column-beam joint.
3 and 4 show a method for connecting the damping member to the main body structure so that a compressive force is not always generated in the damping member.
FIG. 3 is a diagram of a main part when the joint member is installed so that a tensile force is always generated. FIG. 3A shows the configuration of the main part when the damping member is connected to the main body structure, and FIG. 3B shows the configuration order of the main part.
FIG. 4 is an example in which the main part shown in FIG. 3 is connected to the main body structure. FIG. 4A shows an example in which a damping member is installed between two studs, and FIG. 4B shows an example in which a damping member is installed between the H-shaped steel and the beam at the lower part of the brace. Show. Hereinafter, each figure will be described in detail.

図1(a)では、鋼柱1、鋼梁2、制振部材からなる筋かい3により骨組のユニットを構成する。図1(b)では、鋼柱1、鋼梁2、制振部材からなる方杖4によりユニット骨組を構成している。図1(c)では、鋼柱1、鋼梁2、鋼筋かい5、および、制振部材からなるシアリンク6でユニット骨組を構成する。   In FIG. 1A, a frame unit is constituted by a brace 3 composed of a steel column 1, a steel beam 2, and a damping member. In FIG.1 (b), the unit framework is comprised with the cane 4 which consists of the steel pillar 1, the steel beam 2, and the damping member. In FIG.1 (c), the unit frame is comprised with the shear link 6 which consists of the steel pillar 1, the steel beam 2, the steel brace 5, and the damping member.

図2(a)では、角形鋼管柱11とベースプレート12で構成される鋼構造柱脚と、コンクリート基礎梁14を、制振部材からなるアンカーボルト13により接合している。なお、図2(a)において、15は無収縮モルタルであり、16は鋼製プレートである。図2(b)では、H形鋼梁17aおよび17bとH形鋼柱18の接合部において、制振部材からなる添え板(スプライスプレート)19により、梁17aと梁17bを接合している。なお、図2(b)の20はエンドプレートを示す。   In FIG. 2A, a steel structure column base constituted by a square steel pipe column 11 and a base plate 12 and a concrete foundation beam 14 are joined by an anchor bolt 13 made of a damping member. In FIG. 2A, 15 is a non-shrink mortar, and 16 is a steel plate. In FIG. 2B, the beam 17a and the beam 17b are joined by a splicing plate (splice plate) 19 made of a damping member at the joint between the H-shaped steel beams 17a and 17b and the H-shaped steel column 18. In addition, 20 of FIG.2 (b) shows an end plate.

図3(a)は、常に圧縮力が生じないように、制振部材を本体構造に連結する際の、主要部の構成を示し、図3(b)は、この主要部の構成順序を示す。図3(a)において、制振部材21は4個のボルト穴を持つ。構造要素22は、3枚の鋼平板を溶接して製作されており、構造要素23は2枚の鋼平板を溶接して製作されている。鋼ブロック24は2個のボルト穴を有しており、ボルト25とナット26を用いて、これらの部材や要素は接続される。図3(b)では、まず、構造要素22の凹部と構造要素23の凸部を組み合わせる。これらの構造要素の上下に鋼ブロック24を配し、その後に、ボルト25とナット26を用いて、制振部材21を最外縁に取り付ける。このように構成することで、構造要素22と構造要素23にせん断力が作用して、構造要素22と構造要素23の間に上下方向のずれが生じる際に、制振部材1には常に伸び変形のみが生じる。このように構成することで、制振部材21に圧縮力が生じることを回避することが可能となる。なお、構造要素22は2枚のアングル材に、構造要素23はスプリットティに置換しても良い。   FIG. 3A shows the configuration of the main part when the damping member is connected to the main body structure so that the compressive force is not always generated, and FIG. 3B shows the configuration order of the main part. . In FIG. 3A, the damping member 21 has four bolt holes. The structural element 22 is manufactured by welding three steel flat plates, and the structural element 23 is manufactured by welding two steel flat plates. The steel block 24 has two bolt holes, and these members and elements are connected using bolts 25 and nuts 26. In FIG. 3B, first, the concave portion of the structural element 22 and the convex portion of the structural element 23 are combined. The steel blocks 24 are arranged above and below these structural elements, and then the vibration damping member 21 is attached to the outermost edge using bolts 25 and nuts 26. With this configuration, when a shearing force acts on the structural element 22 and the structural element 23 to cause a vertical displacement between the structural element 22 and the structural element 23, the vibration damping member 1 always extends. Only deformation occurs. By constituting in this way, it becomes possible to avoid that compressive force arises in damping member 21. The structural element 22 may be replaced with two angle members, and the structural element 23 may be replaced with a split tee.

図4(a)は2本の間柱の間に、図4(b)はブレース下部のH形鋼と下側梁の間に、それぞれ、図3と同様の構成の制振部材を設置した例を示す。図4(a)では、柱31と梁32で構成される骨組に、スプリットティ35を介して接続された2本のH形鋼間柱33の間に、制振部材34が設置されている。点線で囲まれた部分の拡大図において、構造要素45と構造要素46が、図3の構造要素22と構造要素23に、それぞれ対応する。図4(b)では、柱31と梁32および筋かい37で構成される骨組おいて、筋かい37に接合されたH形鋼38と、下側の梁32の間に制振部材34が設置されている。拡大図では、図4(a)と同様に、構造要素45と構造要素46が、図3の構造要素22と構造要素23に、それぞれ対応する。   FIG. 4A shows an example in which a damping member having the same configuration as FIG. 3 is installed between two studs, and FIG. 4B shows an example in which a damping member having the same configuration as FIG. Indicates. In FIG. 4 (a), a damping member 34 is installed between two H-shaped steel inter-columns 33 connected via a split tee 35 to a framework composed of columns 31 and beams 32. In the enlarged view of the portion surrounded by the dotted line, the structural element 45 and the structural element 46 correspond to the structural element 22 and the structural element 23 in FIG. 3, respectively. In FIG. 4 (b), the damping member 34 is arranged between the H-shaped steel 38 joined to the brace 37 and the lower beam 32 in the framework composed of the column 31, the beam 32 and the brace 37. is set up. In the enlarged view, similarly to FIG. 4A, the structural element 45 and the structural element 46 correspond to the structural element 22 and the structural element 23 of FIG. 3, respectively.

表1の組成を持つCu基合金を溶解し、鋳造、熱間圧延を経て板厚2mmまで冷間圧延し、更に600℃で30分間の熱処理を施した。   A Cu-based alloy having the composition shown in Table 1 was melted, cast, hot-rolled, cold-rolled to a plate thickness of 2 mm, and further heat-treated at 600 ° C. for 30 minutes.

各Cu基合金の切削加工性、冷間加工性、超弾性特性を調査した結果が表2である。
切削加工性は、板材をドリルで切削し、その切屑の1個あたりの重量(mg/個)を測定し、ドリル切屑20mg/個未満は◎、20mg以上25mg未満は○、25mg以上は×として評価した。冷間加工性は、冷間圧延により試料に割れが入るまでの板厚減少率が60%以上を◎、30%以上60%未満を○、30%未満を×として評価した。超弾性特性は、900℃で15分間の溶体化処理を施し、水焼入れの後に200℃で15分間の時効処理を行った試料を引張り試験により4%の歪を印加し、除荷したときの形状回復率が80%以上を◎、60%以上80%未満を○、60%未満を×として評価した。
Table 2 shows the results of investigating cutting workability, cold workability, and superelastic characteristics of each Cu-based alloy.
Cutting workability is determined by cutting a plate with a drill, measuring the weight (mg / piece) of each piece, ◎ for less than 20 mg / piece, ○ for 20 to 25 mg, and x for 25 and more. evaluated. The cold workability was evaluated with a thickness reduction rate of 60% or more until cracking occurred in the sample by cold rolling as ◎, 30% or more and less than 60% as ○, and less than 30% as ×. The superelastic property is obtained when a sample subjected to a solution treatment at 900 ° C. for 15 minutes and subjected to water quenching and then an aging treatment at 200 ° C. for 15 minutes is applied with 4% strain by a tensile test and unloaded. A shape recovery rate of 80% or more was evaluated as ◎, 60% or more and less than 80% as ○, and less than 60% as ×.

表2に見られるように、合金成分を適量に選択された発明合金No.1からNo.7は切削加工性に優れており、かつ、冷間加工性、超弾性特性も良好である。比較例1では超弾性特性が不十分であった。比較例2は冷間加工性が悪く、そのため引張り試験中に破断してしまい超弾性特性が得られなかった。また、切削試験においても試料に割れが発生し、切削加工性は悪かった。比較例3、比較例4ではS量が適量でないために十分な切削加工性や冷間加工性、超弾性特性などが得られなかった。   As can be seen in Table 2, the invention alloy No. selected with an appropriate amount of alloy components. 1 to No. No. 7 is excellent in cutting workability, and also has good cold workability and superelastic characteristics. In Comparative Example 1, the superelastic property was insufficient. In Comparative Example 2, the cold workability was poor, so that it broke during the tensile test and the superelastic property was not obtained. In the cutting test, the sample was cracked, and the cutting workability was poor. In Comparative Example 3 and Comparative Example 4, the amount of S was not an appropriate amount, so that sufficient cutting workability, cold workability, superelastic characteristics, and the like were not obtained.

加元素を含んだ表3の組成を持つCu基合金を溶解し、鋳造、熱間圧延を経て板厚2mmまで冷間圧延し、更に600℃で30分間の熱処理を施した。 Was dissolved C u based alloy having a composition of Table 3 containing added pressure elements, casting, after hot rolling and cold rolling to a sheet thickness 2 mm, was subjected to heat treatment for 30 minutes at further 600 ° C..

得られた各Cu基合金について、実施例1と同様の方法により切削加工性、冷間加工性、超弾性特性を評価した結果を表4に示す。いずれのCu基合金も切削加工性に優れ、冷間加工性、超弾性特性も優れていることがわかった。   Table 4 shows the results of evaluating the cutting workability, cold workability, and superelastic properties of the obtained Cu-based alloys by the same method as in Example 1. It was found that any Cu-based alloy was excellent in cutting workability, and was also excellent in cold workability and superelastic characteristics.

筋かい、方杖、シアリンクとしての制振部材の設置例を示した図で、図1(a)筋かいとしての設置例を示した図、図1(b)方杖としての設置例を示した図、図1(c)シアリンクとしての設置例を示した図である。It is the figure which showed the installation example of the damping member as a brace, a cane, and a shear link, and the figure which showed the installation example as FIG. 1 (a) brace, FIG.1 (b) the installation example as a brace It is the figure shown and the figure which showed the example of installation as FIG.1 (c) shear link. 接合部における接合部材としての制振部材の利用例を示した図で、図2(a)柱脚接合部における接合部材としての利用例を示した図、図2(b)柱−梁接合部における接合部材としての利用例を示した図である。FIG. 2A is a diagram illustrating an example of use of a damping member as a joining member in a joint portion, FIG. 2A is a diagram illustrating an example of use as a joining member in a column base joint portion, and FIG. 2B is a column-beam joint portion. It is the figure which showed the usage example as a joining member in. 接合部材に常に引張力が生じるように設置する際の主要部の図で、図3(a)主要部の構成を示した図、図3(b)主要部の構成順序を示した図である。FIGS. 3A and 3B are diagrams of a main part when installed so that a tensile force is always generated in the joining member, and FIG. 3A shows a configuration of the main part, and FIG. 3B shows a configuration order of the main part. . 接合部材に常に引張力が生じるように設置した例を示した図で、図4(a)2本の間柱の間に設置した例を示した図、図4(b)ブレース下部のH形鋼と下側梁の間に設置した例を示した図である。FIG. 4 (a) is a diagram showing an example in which a joining member is always provided with a tensile force, FIG. 4 (a) is a diagram showing an example in which it is installed between two studs, and FIG. It is the figure which showed the example installed between the lower beam.

符号の説明Explanation of symbols

1 鋼柱
2 鋼梁
3 筋かい
4 方杖
5 鋼筋かい
6 シアリンク
11 角形鋼管柱
12 ベースプレート
13 アンカーボルト
14 コンクリート基礎梁
15 無収縮モルタル
16 鋼製プレート
17a、17b H形鋼梁
18 H形鋼柱
19 添え板
21 制振部材
22、23 構造要素
24 鋼ブロック
25 ボルト
26 ナット
31 柱
32 梁
33 H形鋼間柱
34 制振部材
35 スプリットティ
37 筋かい
38 H形鋼
45、46 構造要素
DESCRIPTION OF SYMBOLS 1 Steel pillar 2 Steel beam 3 Brace 4 Brace 5 Steel brace 6 Shear link 11 Square steel pipe pillar 12 Base plate 13 Anchor bolt 14 Concrete foundation beam 15 Non-shrink mortar 16 Steel plate 17a, 17b H-shaped steel beam 18 H-section steel Column 19 Saddle plate 21 Damping members 22 and 23 Structural element 24 Steel block 25 Bolt 26 Nut 31 Column 32 Beam 33 H-shaped steel column 34 Damping member 35 Split tee 37 Brace 38 H-shaped steel 45 and 46 Structural element

Claims (6)

Al:7.5〜9質量%、Mn:8〜14質量%及び0.001〜0.5質量%を含み、残部Cuからなり、
応力誘起マルテンサイト変態と除荷による逆変態との可逆変態により運動エネルギーを吸収する超弾性合金を用いた
ことを特徴とする制振部材。
Al: 7.5 to 9 mass%, Mn: 8 to 14 wt% and S: 0.001 to 0.5 include mass%, Ri balance Cu Tona,
A damping member using a superelastic alloy that absorbs kinetic energy by reversible transformation between stress-induced martensitic transformation and reverse transformation by unloading .
前記超弾性合金は、さらに、Ni、Co、Fe、Ti、V、Cr、Si、Ge、Nb、Mo、W、Sn、Bi、Sb、Mg、P、Be、Zr、Zn、B、C、Ag及びミッシュメタルからなる群から選ばれた少なくとも一種の元素を合計で0.001〜5質量%含む超弾性合金を備えた
ことを特徴とする請求項1に記載の制振部材。
The superelastic alloy further includes Ni, Co, Fe, Ti, V, Cr, Si, Ge, Nb, Mo, W, Sn, Bi, Sb, Mg, P, Be, Zr, Zn, B, C, The vibration damping member according to claim 1, further comprising a superelastic alloy containing 0.001 to 5 mass% in total of at least one element selected from the group consisting of Ag and Misch metal.
棒、パイプ、より線、平板、アングル材、H形材、もしくはチャンネル材の形状を有し、ねじ切り、穴あけ、切断のうち少なくとも一種の切削加工後に、締結具を用いて建造物へ取り付けられる
ことを特徴とする請求項1又は2に記載の制振部材。
It has the shape of a rod, pipe, stranded wire, flat plate, angle material, H-shaped material, or channel material, and must be attached to the building using fasteners after at least one of cutting, drilling, and cutting. The vibration damping member according to claim 1 or 2, wherein
筋かい、方杖、シアリンクの何れかとして、または、主体構造部材の接合部における接合部材として、主として軸力で抵抗する部材として利用される
ことを特徴とする請求項3に記載の制振部材。
The vibration damping device according to claim 3, wherein the vibration damping device is used as a member that resists mainly by an axial force as a brace, a wand, a shear link, or as a joining member in a joint portion of a main structural member. Element.
建造物本体に接続された2個以上の構造要素のずれに対し、制振部材に常に引張力が生じるように上記構造要素に連結される
ことを特徴とする請求項3に記載の制振部材。
The vibration damping member according to claim 3, wherein the vibration damping member is coupled to the structural element such that a tensile force is always generated in the vibration damping member with respect to a displacement of two or more structural elements connected to the building body. .
請求項1から請求項5の何れかに記載の制振部材を利用して、新規に建設されたか、もしくは耐震補強を施された
ことを特徴とする建造物。
A building that is newly constructed or seismically reinforced using the damping member according to any one of claims 1 to 5.
JP2007220763A 2007-08-28 2007-08-28 Damping member Active JP5296350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007220763A JP5296350B2 (en) 2007-08-28 2007-08-28 Damping member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007220763A JP5296350B2 (en) 2007-08-28 2007-08-28 Damping member

Publications (2)

Publication Number Publication Date
JP2009052097A JP2009052097A (en) 2009-03-12
JP5296350B2 true JP5296350B2 (en) 2013-09-25

Family

ID=40503425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007220763A Active JP5296350B2 (en) 2007-08-28 2007-08-28 Damping member

Country Status (1)

Country Link
JP (1) JP5296350B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125264A1 (en) * 2010-04-07 2011-10-13 古河電気工業株式会社 Wrought copper alloy, copper alloy part, and process for producing wrought copper alloy
JP4630387B1 (en) * 2010-04-07 2011-02-09 古河電気工業株式会社 Copper alloy wrought material, copper alloy parts, and method for producing copper alloy wrought material
EP2578707A4 (en) * 2010-05-31 2013-12-25 Japan Copper Dev Ass Copper-based alloy and structural material comprising same
JP4824124B1 (en) * 2010-09-17 2011-11-30 古河電気工業株式会社 Copper alloy wrought material, copper alloy parts, and method for producing copper alloy wrought material
CN103122423A (en) * 2011-11-19 2013-05-29 大连得达科技发展有限公司 Alloy material
JP5059225B1 (en) * 2011-11-21 2012-10-24 株式会社ダイナミックデザイン Manufacturing method of seismic isolation device
CN102719695A (en) * 2012-06-25 2012-10-10 镇江忆诺唯记忆合金有限公司 Cu-Al-Mn memory alloy prepared by powder metallurgy method
CN105316522A (en) * 2015-12-02 2016-02-10 苏州龙腾万里化工科技有限公司 Copper-nickel alloy convenient to produce for casting processing
US11317658B2 (en) 2017-02-24 2022-05-03 Nike, Inc. Support garment
CN107574383B (en) * 2017-09-25 2019-01-11 佛山市中富明德不锈钢有限公司 A kind of high-damping ferrous alloy and preparation method thereof
JP7277401B2 (en) * 2020-02-20 2023-05-18 大成建設株式会社 Damping structure
CN116555620A (en) * 2023-04-24 2023-08-08 扬州地标金属制品有限公司 Multielement alloy material and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4130421A (en) * 1977-12-30 1978-12-19 Bell Telephone Laboratories, Incorporated Free machining Cu-Ni-Sn alloys
JP3300684B2 (en) * 1999-07-08 2002-07-08 清仁 石田 Copper-based alloy having shape memory characteristics and superelasticity, member made of the same, and method of manufacturing the same
JP2001271510A (en) * 2000-03-23 2001-10-05 Building Research Inst Ministry Of Construction Vibration control unit, damper for residence and device for detached steel-construction residence
JP2003073759A (en) * 2001-04-26 2003-03-12 Toto Ltd Cu-Zn-Sn ALLOY HAVING DAMPING CHARACTERISTIC
JP2004010997A (en) * 2002-06-10 2004-01-15 Chuo Spring Co Ltd High damping material, spring having excellent damping property and methods of producing them
JP2005298952A (en) * 2004-04-15 2005-10-27 Chuo Spring Co Ltd Damping material and its production method

Also Published As

Publication number Publication date
JP2009052097A (en) 2009-03-12

Similar Documents

Publication Publication Date Title
JP5296350B2 (en) Damping member
Chan et al. Evaluation of yielding shear panel device for passive energy dissipation
Farmani et al. Shape memory alloy-based moment connections with superior self-centering properties
JP2013087908A (en) Damping member
US20200291646A1 (en) Ductile Connections for Pre-Formed Construction Elements
Mahmoudi et al. Seismic performance of steel X-knee-braced frames equipped with shape memory alloy bars
Desroches et al. Shape memory alloys in seismic resistant design and retrofit: a critical review of their potential and limitations
JP2006194287A (en) Vibration-damping material using ferrous shape memory alloy and vibration-damping/vibration isolating device using the material
Nahar et al. Numerical seismic performance evaluation of concrete beam-column joint reinforced with different super elastic shape memory alloy rebars
JP2011058258A (en) Building seismic control damper and building structure
Debbarma et al. Review of Shape Memory Alloys applications in civil structures, and analysis for its potential as reinforcement in concrete flexural members
Rofooei et al. Investigation on the seismic behavior of steel MRF with shape memory alloy equipped connections
WO2023125063A1 (en) Core energy dissipation structure and axial steel damper
Köken et al. Waste rubber damper using on steel beam to column connection
KR101329358B1 (en) Moment connection structure using superelastic shape memory alloys fasteners
Kim et al. Mechanical characteristics of circular hollow section damper under bidirectional cyclic loading
Dolce et al. Passive seismic devices based on shape memory alloys
KR20150076386A (en) Damper having round bar
JP2007016918A (en) Impact absorbing plate
Sarno et al. Special metals for seismic retrofitting of steel buildings
WO2010074229A1 (en) Hysteretic damper
JPH09302621A (en) Low noise type base isolation stacked rubber bearing
JP4022379B2 (en) Axial type vibration damping device that can be used for both earthquake and wind
JP2000104787A (en) Base isolation device
JP5648569B2 (en) CFT column steel pipe design method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120829

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120910

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130613

R150 Certificate of patent or registration of utility model

Ref document number: 5296350

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350