JP2006194287A - Vibration-damping material using ferrous shape memory alloy and vibration-damping/vibration isolating device using the material - Google Patents

Vibration-damping material using ferrous shape memory alloy and vibration-damping/vibration isolating device using the material Download PDF

Info

Publication number
JP2006194287A
JP2006194287A JP2005004498A JP2005004498A JP2006194287A JP 2006194287 A JP2006194287 A JP 2006194287A JP 2005004498 A JP2005004498 A JP 2005004498A JP 2005004498 A JP2005004498 A JP 2005004498A JP 2006194287 A JP2006194287 A JP 2006194287A
Authority
JP
Japan
Prior art keywords
vibration
damping
shape memory
memory alloy
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005004498A
Other languages
Japanese (ja)
Other versions
JP4709555B2 (en
Inventor
Takahiro Sawaguchi
孝宏 澤口
Takehiko Kikuchi
武丕児 菊池
Kazuyuki Ogawa
一行 小川
Setsuo Kajiwara
節夫 梶原
Takatoshi Ogawa
孝寿 小川
Atsumichi Kushibe
淳道 櫛部
Masayuki Tono
雅之 東野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Takenaka Komuten Co Ltd
Original Assignee
National Institute for Materials Science
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science, Takenaka Komuten Co Ltd filed Critical National Institute for Materials Science
Priority to JP2005004498A priority Critical patent/JP4709555B2/en
Publication of JP2006194287A publication Critical patent/JP2006194287A/en
Application granted granted Critical
Publication of JP4709555B2 publication Critical patent/JP4709555B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide vibration-damping material, vibration damping/vibration isolating device satisfying two different requirements to absorb earthquake energy and to have shape recovery function in vibration damping material design and vibration damping/vibration isolating device design. <P>SOLUTION: In ferrous vibration-damping structure material used for an earthquake-proof structure, ferrous shape memory alloy containing Fe-Mn-Si-based shape memory alloy containing NbC having anelasticity without strain hardening against strain vibration, strain deformation in a large strain amplitude zone in earthquake is used as vibration-damping material for earthquake-proof structure. Consequently, vibration-damping property and shape recovery property are given to the structure member. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、地震動による大ひずみ振幅領域においてひずみ硬化を生ずることなく擬弾性を有する鉄系形状記憶合金を使用することによって、構造部材に制振性と形状復元機能とを付与しうるようにした、耐震性構造部材用鉄合金系制振材料と、この材料を少なくとも使用してなる免震・制振装置に関する。詳しくは、前記大振幅領域において擬弾性を有する鉄系形状記憶合金が、NbCを含むFe−Mn−Si基形状記憶合金である、耐震性構造部材用鉄合金系制振材料と、この材料を少なくとも使用してなる免震・制振装置に関する。   By using an iron-based shape memory alloy having pseudoelasticity without causing strain hardening in a large strain amplitude region due to earthquake motion, the present invention can impart vibration damping and shape restoration function to a structural member. The present invention relates to an iron alloy vibration damping material for earthquake-resistant structural members and a seismic isolation / damping device using at least this material. Specifically, the iron-based shape memory alloy having pseudoelasticity in the large amplitude region is an Fe-Mn-Si-based shape memory alloy containing NbC, and an iron alloy-based vibration damping material for an earthquake-resistant structural member. At least the seismic isolation / vibration control device used.

さらに詳しくは、前記NbCを含むFe−Mn−Si基形状記憶合金が、Mn:15〜40重量%、Si:3〜15重量%、Cr:0〜20重量%、Ni:0〜20重量%、Nb:0.1〜1.5重量%、C:0.01〜0.2重量%を含み、残部Fe及び不可避的不純物として、Cu:3重量%以下、Mo:2重量%以下、A1:10重量%以下、Co:30重量%以下、N:5000ppm以下、含み、NbとCの原子比(Nb/C)が1.0〜1.2である、耐震性構造部材用制振材料と、この材料を少なくとも使用した免震・制振装置に関する。   More specifically, the Fe—Mn—Si based shape memory alloy containing NbC is Mn: 15-40 wt%, Si: 3-15 wt%, Cr: 0-20 wt%, Ni: 0-20 wt% Nb: 0.1 to 1.5% by weight, C: 0.01 to 0.2% by weight, and the balance Fe and inevitable impurities include Cu: 3% by weight or less, Mo: 2% by weight or less, A1 : 10% by weight or less, Co: 30% by weight or less, N: 5000ppm or less, and the atomic ratio of Nb to C (Nb / C) is 1.0 to 1.2. And a seismic isolation / vibration control device using at least this material.

さらにまた詳しくは、前記NbC添加Fe−Mn−Si基形状記憶合金が、室温、または、500℃〜1100℃の温度範囲で5〜40%加工され、次いで、400℃〜1100℃の温度範囲でかつ1分〜2時間時効加熱処理されて、NbC炭化物を析出させることによって形状を記憶させた、耐震性構造部材用鉄合金系制振材料と、この材料を少なくとも使用した免震・制振装置に関する。   More specifically, the NbC-added Fe—Mn—Si based shape memory alloy is processed at a room temperature or 5 to 40% at a temperature range of 500 ° C. to 1100 ° C., and then at a temperature range of 400 ° C. to 1100 ° C. Moreover, an iron alloy damping material for earthquake-resistant structural members that has been subjected to aging heat treatment for 1 minute to 2 hours and memorized the shape by precipitating NbC carbide, and a seismic isolation / damping device using at least this material About.

近年、激震災害対策が問題となっている。特に、神戸地震を期に都市インフラ機能を中心とした大規模構造物、建築物の免震設計、制振設計の見直しがなされ、さらに厳しい基準による有効な対策を講ずることが求められている。このような状況は、近年地震発生が予想される東海地区、首都圏は言うに及ばず、全国的に見直しが展開され、整備が急がれている。また、大型構造物に限らず、一般家屋についても、対策を講ずることが求められている。   In recent years, earthquake disaster countermeasures have become a problem. In particular, since the Kobe earthquake, large-scale structures centering on urban infrastructure functions, seismic isolation design and vibration control design of buildings have been reviewed, and more effective measures based on stricter standards are required. Such a situation is being reviewed nationwide, and is urgently being developed, not to mention the Tokai area and metropolitan area where earthquakes are expected in recent years. In addition, not only large structures but also general houses are required to take measures.

このような状況のもとで、これまでに多数の各種免震技術、制振手段が活発に提案され、開発されている。構造物本体を破壊から守る免震・制振手段としては、例えば、制振ダンパー、制振ブレース等が挙げられる。これらは、地震が生じたときにその振動エネルギーを吸収し、振動が構造物本体に及ばないようにする装置であるが、このようなダンパーについても、様々な提案がなされ、これを列記すると、粘性ダンパー(特許文献1参照)、粘弾性ダンパー(特許文献2参照)、鉛ダンパー(特許文献3)、弾塑性ダンパー(特許文献4)などに大別されるダンパー類が提案され、開発されている。   Under such circumstances, many various seismic isolation technologies and vibration control means have been actively proposed and developed so far. Examples of the seismic isolation / damping means for protecting the structure body from destruction include a damping damper and a damping brace. These are devices that absorb the vibrational energy when an earthquake occurs and prevent the vibration from reaching the structure body, but various proposals have been made for such dampers. Dampers roughly classified into viscous dampers (see Patent Document 1), viscoelastic dampers (see Patent Document 2), lead dampers (Patent Document 3), elasto-plastic dampers (Patent Document 4), etc. have been proposed and developed. Yes.

その中でも、極軟鋼を使用した弾塑性ダンパーが性能、コスト、メンテナンス性において優れていることから、近年、特に注目されている。この弾塑性ダンパーは、ダンパーの塑性変形により地震エネルギーの吸収をはかり、これによって、地震の際、地震エネルギーが直接構造物本体へおよばないようにエネルギーを吸収して防ぎ、構造物を重大な損壊から守り、極力被害が構造物本体に及ばないようにするもので、極めて有望な免震・制振手段として大いに期待されている。   Among them, elasto-plastic dampers using extremely mild steel have attracted particular attention in recent years because they are excellent in performance, cost, and maintainability. This elasto-plastic damper absorbs seismic energy by plastic deformation of the damper, thereby preventing and absorbing the energy so that the seismic energy does not directly reach the main body of the structure in the event of an earthquake. It is highly anticipated as an extremely promising seismic isolation / vibration control method.

しかしながら、弾塑性ダンパーをはじめ、これまでに提案、開発された免震・制振手段は、地震による被害が構造物本体に至らないようにするショックアブソーバとしてであって、地震が発生の際には、ショックアブソーバとして有効に機能することができるが、この制振装置自体を地震から守る手立てはない。すなわち、いずれの免震装置、制振装置も、地震発生後においては、ひずみが残留し、あるいは変形し、装置自体は、元の状態には復元することはない。従って、大規模地震に見舞われた後においては、これらの装置は、新しい部品、装置と交換することが必要となる。   However, the seismic isolation / damping means proposed and developed so far, including elasto-plastic dampers, are shock absorbers that prevent damage from earthquakes from reaching the main body of the structure. Can function effectively as a shock absorber, but there is no way to protect the vibration control device itself from an earthquake. That is, in any seismic isolation device and vibration control device, strain remains or deforms after the occurrence of the earthquake, and the device itself is not restored to its original state. Therefore, after a large earthquake, these devices need to be replaced with new parts and devices.

これらの装置は、通常、構造物中に、例えば、柱材、壁の中に取り付けられ、あるいは埋め込まれているため、地震発生後において、これを新しい部材と交換する場合には、妨げとなる壁等の部材の撤去、部品交換、壁等の修復と言った、多大な労力と繁雑な作業、そしてコストを要するものであった。このような繁雑でコストのかかる修復作業から解放され、その場においてそのままの状況で、元の状態に簡単に復元することができれば、極めて有益である。しかし現状は、このような装置はまだ開発されていない。制振・免震装置において、容易に元の形状に復元することができるものが開発されたならば、その意義は、その経済効果は計り知れず、社会全般に大きな貢献をもたらしうるものである。世界でも有数の経済力を有するわが国において、大規模地震の被害が発生すると、それによる経済的損失は計り知れず、結果的に世界的損失につながることが予想されることから、このような装置の開発、実現は、世界的に注目され、求められている。   These devices are usually mounted or embedded in structures, for example, pillars, walls, etc., which would be a hindrance when replacing them with new parts after an earthquake. It required a lot of labor, complicated work, and cost, such as removal of members such as walls, replacement of parts, and repair of walls. It would be extremely beneficial if it was freed from such complicated and costly repair work and could be easily restored to its original state in the situation. However, at present, such a device has not yet been developed. If a damping and seismic isolation device that can be easily restored to its original shape has been developed, its significance is immeasurable, and it can make a significant contribution to society as a whole. . In Japan, which has one of the world's leading economic powers, when a large-scale earthquake is damaged, the economic loss caused by this is immeasurable, and as a result it is expected to lead to global loss. The development and realization of is attracting worldwide attention and demand.

特開平5−263858号公報JP-A-5-263858 特開平2001−146855号公報Japanese Patent Laid-Open No. 2001-146855 特開平5−106367号公報JP-A-5-106367 特開平5−26274号公報JP-A-5-26274

本発明は、上記要請に応えようというものである。すなわち、制振材料設計、あるいは免震・制振装置設計において、地震エネルギーを吸収し、しかも形状回復機能を有する二つの異なる要請に対し、これに応えうる制振材料、免震・制振装置を提供しようというものである。   The present invention is intended to meet the above requirements. In other words, in damping material design or seismic isolation / damping device design, the damping material, seismic isolation / damping device that can respond to two different requests that absorb the seismic energy and have shape recovery function Is to provide.

そのため、本発明者らにおいては鋭意研究をした結果、本発明者らの一部において先に提案し、特許出願した、トレーニングなしでも良好な形状記憶特性を示し、変形後においても、加熱するだけで元の形状に容易に復元することができる鉄系形状記憶合金(特許文献1ないし4を参照のこと)が、ひずみ振幅±0.1%以上の大振幅領域において、制振特性が発現されるということを知見した。コストが安い鉄系形状記憶合金においてこのような制振機能を有し、発現しうるということは、これまで全く知られていなかったことであり、新しい知見である。本発明は、この知見に基づいてなされたものであり、その構成は、以下、(1)ないし(11)に記載するとおりである。
(1) 耐震性構造物に使用される鉄系制振性構造材料において、地震動による大ひずみ振幅領域のひずみ振動、ひずみ変形に対してひずみ硬化することなく擬弾性を有してなる鉄系形状記憶合金を耐震性構造部材用制振材料として使用することによって、構造部材に制振性と形状復元性とを付与しうるようにしたことを特徴とする、耐震性構造部材用鉄合金系制振材料。
(2) 前記地震動による大ひずみ振幅領域のひずみ振動、ひずみ変形に対してひずみ硬化することなく擬弾性を有してなる鉄系形状記憶合金が、NbCを含むFe−Mn−Si基形状記憶合金である、(1)記載の耐震性構造部材用鉄合金系制振材料。
(3) 前記NbCを含むFe−Mn−Si基形状記憶合金が、Mn:15〜40重量%、Si:3〜15重量%、Cr:0〜20重量%、Ni:0〜20重量%、Nb:0.1〜1.5重量%、C:0.01〜0.2重量%を含み、残部Fe及び不可避的不純物として、Cu:3重量%以下、Mo:2重量%以下、A1:10重量%以下、Co:30重量%以下、N:5000ppm以下、を含み、NbとCの原子比(Nb/C)が1.0〜1.2である、(2)記載の耐震性構造部材用鉄合金系制振材料。
(4) 前記NbC添加Fe−Mn−Si基形状記憶合金が、室温、または、500℃〜1100℃の温度範囲で5〜40%加工し、次いで、400℃〜1100℃の温度範囲でかつ1分〜2時間時効加熱処理して、NbC炭化物を析出させて形状記憶処理をした、(2)または(3)記載の耐震性構造部材用鉄合金系制振材料。
(5) 地震動に対して振動エネルギーを吸収し、構造物を保護する制振・免震装置において、地震動による大ひずみ振幅領域のひずみ振動、ひずみ変形に対してひずみ硬化することなく擬弾性を有してなる鉄系形状記憶合金を少なくとも制振材料として含み、使用することによって、振動エネルギーを吸収するとともに制振装置に形状回復機能を付与したことを特徴とする、制振・免震装置。
(6) 前記地震動による大ひずみ振幅領域のひずみ振動、ひずみ変形に対してひずみ硬化することなく擬弾性を有してなる鉄系形状記憶合金が、NbCを含むFe−Mn−Si基形状記憶合金である、(5)記載の制振・免震装置。
(7) 前記NbCを含むFe−Mn−Si基形状記憶合金が、Mn:15〜40重量%、Si:3〜15重量%、Cr:0〜20重量%、Ni:0〜20重量%、Nb:0.1〜1.5重量%、C:0.01〜0.2重量%を含み、残部Fe及び不可避的不純物として、Cu:3重量%以下、Mo:2重量%以下、A1:10重量%以下、Co:30重量%以下、N:5000ppm以下、を含み、NbとCの原子比(Nb/C)が1.0〜1.2である、(6)記載の制振・免震装置。
(8) 前記NbC添加Fe−Mn−Si基形状記憶合金が、室温、または、500℃〜1100℃の温度範囲で5〜40%加工し、次いで、400℃〜1100℃の温度範囲でかつ1分〜2時間時効加熱処理して、NbC炭化物を析出させて形状記憶処理をした、(6)または(7)記載の制振装置。
(9) 前記制振・免震装置には、制振ダンパー、制振ブレースが含まれる、(5)ないし(8)の何れか1項記載の制振・免震装置。
(10) 前記制振・免震装置には、形状を回復するための加熱手段が予め内蔵されている、(5)ないし(9)の何れか1項記載の制振・免震装置。
(11) 前記形状を回復するための加熱手段が、電気的加熱手段である、(10)記載の制振・免震装置。
Therefore, as a result of diligent research in the inventors, a part of the inventors previously proposed and applied for a patent, exhibiting good shape memory characteristics even without training, and only after heating even after deformation. The iron-based shape memory alloy (see Patent Documents 1 to 4) that can be easily restored to its original shape with the above exhibits damping characteristics in a large amplitude region with a strain amplitude of ± 0.1% or more. I found out that It has never been known so far and is a new finding that an iron-based shape memory alloy having a low cost has such a damping function and can be expressed. The present invention has been made based on this finding, and the configuration thereof is as described in (1) to (11) below.
(1) In iron-based vibration-damping structural materials used for earthquake-resistant structures, an iron-based shape that has pseudoelasticity without strain hardening against strain vibration and strain deformation in the large strain amplitude region due to earthquake motion The use of a memory alloy as a vibration-damping material for a seismic structural member enables the structural member to be imparted with a vibration-damping property and a shape restoration property. Vibration material.
(2) Fe-Mn-Si based shape memory alloy containing NbC, an iron-based shape memory alloy having pseudoelasticity without strain hardening against strain vibration and strain deformation in a large strain amplitude region due to the earthquake motion The iron alloy damping material for earthquake-resistant structural members according to (1).
(3) Fe-Mn-Si based shape memory alloy containing NbC is Mn: 15-40 wt%, Si: 3-15 wt%, Cr: 0-20 wt%, Ni: 0-20 wt%, Nb: 0.1 to 1.5% by weight, C: 0.01 to 0.2% by weight, remaining Fe and inevitable impurities include Cu: 3% by weight or less, Mo: 2% by weight or less, A1: 10% by weight or less, Co: 30% by weight or less, N: 5000 ppm or less, and the atomic ratio of Nb to C (Nb / C) is 1.0 to 1.2. Iron alloy damping material for parts.
(4) The NbC-added Fe—Mn—Si based shape memory alloy is processed 5 to 40% at room temperature or in a temperature range of 500 ° C. to 1100 ° C., and then in a temperature range of 400 ° C. to 1100 ° C. and 1 The iron alloy vibration damping material for earthquake-resistant structural members according to (2) or (3), which is subjected to a shape memory treatment by precipitating NbC carbides by aging heat treatment for minutes to 2 hours.
(5) A vibration damping and seismic isolation device that absorbs vibration energy and protects structures against earthquake motion, and has pseudoelasticity without strain hardening against strain vibration and strain deformation in the large strain amplitude region due to earthquake motion. A vibration damping and seismic isolation device characterized in that it contains at least an iron-based shape memory alloy as a vibration damping material and absorbs vibration energy and imparts a shape recovery function to the vibration damping device.
(6) Fe-Mn-Si based shape memory alloy containing NbC, wherein the iron-based shape memory alloy having pseudoelasticity without strain hardening against strain vibration and strain deformation in the large strain amplitude region due to the earthquake motion The vibration control and seismic isolation device according to (5).
(7) Fe-Mn-Si based shape memory alloy containing NbC is Mn: 15-40 wt%, Si: 3-15 wt%, Cr: 0-20 wt%, Ni: 0-20 wt%, Nb: 0.1 to 1.5% by weight, C: 0.01 to 0.2% by weight, remaining Fe and inevitable impurities include Cu: 3% by weight or less, Mo: 2% by weight or less, A1: 10% by weight or less, Co: 30% by weight or less, N: 5000 ppm or less, and the atomic ratio of Nb to C (Nb / C) is 1.0 to 1.2. Seismic isolation device.
(8) The NbC-added Fe—Mn—Si based shape memory alloy is processed 5 to 40% at room temperature or in a temperature range of 500 ° C. to 1100 ° C., and then in a temperature range of 400 ° C. to 1100 ° C. and 1 The vibration damping device according to (6) or (7), wherein the shape memory treatment is performed by precipitating NbC carbides by aging heat treatment for minutes to 2 hours.
(9) The vibration damping / isolation device according to any one of (5) to (8), wherein the vibration damping / isolation device includes a vibration damper and a vibration brace.
(10) The vibration damping and seismic isolation device according to any one of (5) to (9), wherein the vibration damping and seismic isolation device includes heating means for restoring the shape in advance.
(11) The vibration damping and seismic isolation device according to (10), wherein the heating means for restoring the shape is an electrical heating means.

ここに、本発明で使用する振動エネルギーを吸収する特性を有する鉄系形状記憶合金は、本発明者らの一部によって開発され、すでに先に特許出願してなるものであって、本発明はこれらの先行技術による鉄系形状記憶合金を前提にしてなされたものである。すなわち、本発明で制振材料として使用する形状記憶合金は、特許文献5ないし8に記載された、安価で高性能な形状記憶合金であり、具体的にはNbC添加Fe−Mn−Si基合金に基づいてなるものでそれ自体は、形状記憶合金としてはすでに公知のものである。   Here, the iron-based shape memory alloy having the characteristic of absorbing vibration energy used in the present invention has been developed by a part of the present inventors and has already been filed for a patent earlier. These are based on the prior art iron-based shape memory alloys. That is, the shape memory alloy used as a damping material in the present invention is an inexpensive and high-performance shape memory alloy described in Patent Documents 5 to 8, specifically, an NbC-added Fe—Mn—Si based alloy. Itself is already known as a shape memory alloy.

しかしながら、このFe−Mn−Si基形状記憶合金の引張・圧縮低サイクル疲労挙動については、下記論文(非特許文献1を参照)が発表されているだけにすぎず、これを制振合金、とりわけ地震による大ひずみ振幅領域において制振性が要求される耐震性構造部材設計における構造部材用制振材料として利用することについては全く言及されていない。また、NbCを添加したことにより強度を増加させ、加工硬化を抑制して長寿命の制振合金とできることや、形状記憶効果を併用することにより初期形状に復元できることについても報告されていない。本発明は、この鉄系記憶合金を制振材料として積極的に利用しようというものであり、このような試みは新規である。   However, only the following paper (see Non-Patent Document 1) has been published regarding the tensile / compressive low cycle fatigue behavior of this Fe—Mn—Si based shape memory alloy. No mention is made of use as a damping material for structural members in the design of seismic structural members that require damping in the region of large strain amplitude caused by earthquakes. In addition, it has not been reported that NbC can be added to increase the strength, suppress work hardening to obtain a long-life vibration damping alloy, and restore the initial shape by using the shape memory effect together. The present invention is to actively use this iron-based memory alloy as a vibration damping material, and such an attempt is novel.

本発明の構成において、(3)あるいは(7)で規定したMnおよびSiの濃度範囲は、当該合金系が室温で変形された場合に、fcc構造からhcp構造への応力誘起マルテンサイト変態を示すために必要な条件であって、良好な形状記憶特性を示すための条件であるとともに、制振特性を示す条件でもある。CrおよびNiの濃度は形状記憶特性や制振特性を損なわずに耐食性を向上させるためのものである。また、上記構成において、(3)、(7)で規定したNbおよびCに関する事項、および(4)、(8)で規定した熱処理条件は、NbCを微細析出させて応力誘起マルテンサイト変態と逆変態を可逆的に生ぜしめ、形状記憶特性を改善する意義を有しており、かつ制振合金として利用される場合においては、変形の繰り返しによるひずみ硬化(加工硬化)を抑制する意義を有している。また、制振・免震装置あるいは構造部材に予め加熱装置を内蔵しておくことによって(10または11)、地震は発生後にひずみによる変形等が生じた場合でも、交換作業のようにいちいち壁を撤去する等の煩雑な作業がいらず、容易に加熱することによって、形状を回復することができる。   In the configuration of the present invention, the Mn and Si concentration ranges defined in (3) or (7) indicate stress-induced martensitic transformation from the fcc structure to the hcp structure when the alloy system is deformed at room temperature. This is a condition necessary for the purpose, and is a condition for exhibiting good shape memory characteristics, and also a condition for exhibiting damping characteristics. The concentrations of Cr and Ni are for improving the corrosion resistance without impairing the shape memory characteristics and the vibration damping characteristics. In the above configuration, the matters relating to Nb and C defined in (3) and (7) and the heat treatment conditions defined in (4) and (8) are opposite to the stress-induced martensitic transformation by fine precipitation of NbC. It has the significance of reversibly causing transformation and improving shape memory characteristics, and when used as a damping alloy, it has the significance of suppressing strain hardening (work hardening) due to repeated deformation. ing. In addition, by installing a heating device in the vibration control / seismic isolation device or the structural member in advance (10 or 11), even if the earthquake is deformed due to strain after the occurrence of the earthquake, the wall must be removed one by one as in replacement work. No complicated operation such as removal is required, and the shape can be recovered by heating easily.

特許第3542754号Japanese Patent No. 3542754 特開2003−105438号公報JP 2003-105438 A 特開2003−277827号公報JP 2003-277827 A 特開2004−197161号公報JP 2004-197161 A Gu,N.J.,C.X.Lin,et al.(2001).Reversal transformation and smart characteristics of FeMnSiCrNi SMA.Shape Memory Materials and Its Applications.394−3:415−418.Gu, N .; J. et al. , C.I. X. Lin, et al. (2001). Reverse transformation and smart charactaristics of FeMnSiCrNi SMA. Shape Memory Materials and Its Applications. 394-3: 415-418.

本発明は、以上の構成によるものであり、加熱するだけの簡単な操作によって、元の形状に回復し得るものであり、もっぱら振動エネルギーを吸収することが求められている制振合金としては、これまでになかった新しい性質、新しい機能が与えられた制振材料であり、また、この材料を使用した制振装置も、同様で、本発明は、新しい制振装置を提案するものである。特に上記構成の(3)、(7)において規定した組成範囲の合金は、加熱するだけで80%以上(望ましくは98%以上)の形状回復率を有し、制振装置が地震によって変形を来したとしても、容易に元の形状に復元することができる。   The present invention is based on the above configuration, and can be restored to its original shape by a simple operation by heating.As a damping alloy that is required to absorb vibration energy exclusively, The vibration damping material is provided with a new property and a new function that have not been provided before, and the vibration damping device using this material is also the same. The present invention proposes a new vibration damping device. In particular, the alloy having the composition range defined in (3) and (7) having the above configuration has a shape recovery rate of 80% or more (preferably 98% or more) only by heating, and the damping device is deformed by an earthquake. Even if it comes, it can be easily restored to its original shape.

以上に加えて、本発明で使用する鉄系形状記憶合金を用いた制振材料とこの材料によって設計された制振装置は、粘性ダンパー、粘弾性ダンパーや鉛ダンパーに比して低コストであり、有害物質は一切発生することがない。したがって、取り扱いやすく、今後、この材料を用いることによって、制振ダンパー・制振ブレースをはじめとして、新しい免震・制振装置の開発を可能とし、有利である。類似の性質を有する弾塑性ダンパーと比較しても、加工硬化の影響が極めて小さいために繰り返し使用が可能であり、これに形状記憶効果が付加されたことによって、大規模地震に曝された後に生じる免震・制振装置自体の変形、残留ひずみを加熱するだけの簡単な処理によって容易に取り除くことが出来る。   In addition to the above, the damping material using the iron-based shape memory alloy used in the present invention and the damping device designed by this material are lower in cost than viscous dampers, viscoelastic dampers and lead dampers. No harmful substances are generated. Therefore, it is easy to handle, and using this material in the future will enable the development of new seismic isolation and damping devices, including damping dampers and damping braces. Compared to elastoplastic dampers with similar properties, the effects of work hardening are so small that they can be used repeatedly, and after being exposed to large-scale earthquakes due to the addition of the shape memory effect. The deformation and residual strain of the seismic isolation / damping device itself that occur can be easily removed by a simple process of heating.

さらに、合金自体が制振特性を有するために複雑な構造やシステムを負荷する必要が無く安価な制振機構が実現するといった、数々の利点があり、今後、建築、土木における大型構造物の耐震設計に大いに利用されることが期待される。   In addition, since the alloy itself has damping characteristics, there are numerous advantages such as realizing an inexpensive damping mechanism without the need to load complicated structures and systems. In the future, earthquake resistance of large structures in buildings and civil engineering will be realized. It is expected to be used greatly in design.

以下、本発明を、図面と実施例に基づいて説明する。ただし、これらの図面、および実施例は、本発明を容易に理解しえるようにするための一助として具体的に開示したものであって、これによって、本発明が限定されるものではない。   Hereinafter, the present invention will be described based on the drawings and examples. However, these drawings and examples are specifically disclosed as an aid for facilitating the understanding of the present invention, and the present invention is not limited thereby.

本発明の鉄系形状記憶合金の特性を、図1に示す低サイクル疲労試験結果によって示す。この試験に供した合金組成は、Fe−28Mn−6Si−5Cr−0.53Nb−0.06C(mass%)で示される合金であって、後述する実施例においても記載しているが、一定の形状復元機能を有している形状記憶合金である。この合金を、600℃で14%温間圧延後、800℃で10分間時効処理し、低サイクル疲労試験に供した。低サイクル疲労試験は0.5Hの正弦波形のひずみ振幅制御により行い、±0.1%、0.2%、0.4%、0.6%、0.8%、1.0%の各ひずみ振幅で10サイクルずつ、段階的にひずみ振幅を増やしながら一つの試験体で行った。紡錘型のひずみ履歴を伴った応力−ひずみ曲線から、この合金は制振特性を有することがわかる。 The characteristics of the iron-based shape memory alloy of the present invention are shown by the low cycle fatigue test results shown in FIG. The alloy composition subjected to this test is an alloy represented by Fe-28Mn-6Si-5Cr-0.53Nb-0.06C (mass%), and is described in the examples described later. It is a shape memory alloy having a shape restoration function. This alloy was warm-rolled at 600 ° C. for 14% and then aged at 800 ° C. for 10 minutes and subjected to a low cycle fatigue test. Low cycle fatigue test carried out by the strain amplitude control of the sine waveform 0.5H Z, ± 0.1%, 0.2 %, 0.4%, 0.6%, 0.8%, 1.0% of The test was carried out with one specimen while increasing the strain amplitude stepwise by 10 cycles at each strain amplitude. From the stress-strain curve with spindle-type strain history, it can be seen that this alloy has damping characteristics.

次に、この制振特性を定量的に評価するために、図1の各ひずみ振幅に対するひずみヒステリシスから計算される、前記形状記憶合金の振動減衰能(specific damping capacity(%)、以下SDCという)を求め、SDCのひずみ振幅依存性として図2に示す。この図2によると、ひずみ振幅0.1%以上で有意な振動減衰能(SDC10%以上)を示し始め、ひずみ振幅0.4%以上ではSDC80%以上にも達することを示している。この図からも、前記形状記憶合金は、有意な制振特性を有していることが分かる。   Next, in order to quantitatively evaluate this damping characteristic, the vibration damping capacity (specific damping capacity (%), hereinafter referred to as SDC) of the shape memory alloy calculated from the strain hysteresis for each strain amplitude in FIG. FIG. 2 shows the SDC distortion amplitude dependence. According to FIG. 2, a significant vibration damping ability (SDC 10% or more) starts to be exhibited when the strain amplitude is 0.1% or more, and SDC reaches 80% or more when the strain amplitude is 0.4% or more. Also from this figure, it can be seen that the shape memory alloy has a significant damping characteristic.

また、制振合金としては、繰り返し変形に曝された際の、特性の安定性も要求される。例えば、従来技術である弾塑性ダンパーの場合、合金の塑性変形、すなわち転位の運動をエネルギー吸収に利用しているが、運動する転位同士や転位と他の内部欠陥との相互作用により合金が加工硬化し、その結果、制振特性が変化する。このような現象は、材料一般に見られる現象であるが、構造材として使用される金属材料においてこのような現象は、極力避けなければならない。このため、弾塑性ダンパーとして利用するためには、加工硬化度を低下させる技術上の工夫が必要となる。   The damping alloy is also required to have stable characteristics when subjected to repeated deformation. For example, in the case of the conventional elasto-plastic damper, the plastic deformation of the alloy, that is, the movement of dislocation is used for energy absorption, but the alloy is processed by the interaction between moving dislocations and dislocations and other internal defects. As a result, the damping characteristics change. Such a phenomenon is a phenomenon commonly found in materials, but such a phenomenon must be avoided as much as possible in a metal material used as a structural material. For this reason, in order to use as an elastic-plastic damper, the technical device which reduces a work hardening degree is needed.

これに対して、本発明による前記形状記憶合金は、図1に示されているように、各ひずみ振幅において10サイクル繰り返し変形された際の加工硬化による発生応力の増加が非常に小さいことが読み取れる。例えば、ひずみ振幅±1.0%の場合、10サイクル目の最大応力(526MPa)は、1サイクル目の最大応力(510MPa)から3%ほど増加している程度である。この合金は、振動エネルギーを吸収する制振材料として充分に機能しえる材料でありうることが理解される。   On the other hand, the shape memory alloy according to the present invention, as shown in FIG. 1, shows that the increase in the generated stress due to work hardening when it is repeatedly deformed for 10 cycles at each strain amplitude is very small. . For example, when the strain amplitude is ± 1.0%, the maximum stress (526 MPa) at the 10th cycle is about 3% higher than the maximum stress (510 MPa) at the 1st cycle. It is understood that this alloy can be a material that can function satisfactorily as a damping material that absorbs vibration energy.

さらに、前記組成を有する形状記憶合金に引張変形負荷と除荷を繰り返し与え、これによって現れる擬弾性挙動のサイクル数および変形速度依存性を図3に示す。この組成を有する形状記憶合金は、サイクル数、変形速度にはほとんど依存せず、いずれのサイクル、変形速度においても安定であることを示している。   Further, the shape memory alloy having the above composition is repeatedly subjected to tensile deformation load and unloading, and the dependence of the pseudoelastic behavior appearing on the cycle number and deformation rate is shown in FIG. The shape memory alloy having this composition hardly depends on the number of cycles and the deformation rate, and shows that it is stable at any cycle and deformation rate.

図4は、上記組成を有する形状記憶合金の形状回復率と加熱温度の関係を示している。この図から、この合金の形状は200℃までの加熱により約80%、さらには、300℃までの加熱により約98%とほぼ完全に元の形状に回復することがわかる。すなわち、上記形状記憶合金は、振動エネルギーを吸収する目的に利用できるのみならず、制振合金として機能した後に残留する変形を200〜300℃程度の低温における加熱で取り除くことが出来るという、従来の制振合金では不可能な性能をも有していることを示すものである。   FIG. 4 shows the relationship between the shape recovery rate of the shape memory alloy having the above composition and the heating temperature. From this figure, it can be seen that the shape of this alloy is almost completely restored to its original shape of about 80% when heated to 200 ° C., and further about 98% when heated to 300 ° C. That is, the shape memory alloy can be used not only for the purpose of absorbing vibration energy, but also can remove deformation remaining after functioning as a damping alloy by heating at a low temperature of about 200 to 300 ° C. This indicates that the damping alloy has performance that is impossible.

図5は、前記組成を有する形状記憶合金において、直径17.6mmΦの円柱状試験片を用いて行った剪断強度試験結果である。破断は剪断変位2mmで生じ、その際の荷重は260kNである。その結果、合金は構造材料本体としても使用可能な1,100MPaもの剪断強度を示すことが判明した。この結果は、本合金が、制振特性を有する構造材料そのものとしても使用可能であることを示唆するものである。   FIG. 5 shows the results of a shear strength test conducted using a cylindrical test piece having a diameter of 17.6 mmΦ in the shape memory alloy having the above composition. The fracture occurs at a shear displacement of 2 mm, and the load at that time is 260 kN. As a result, it has been found that the alloy exhibits a shear strength of 1,100 MPa that can be used as a structural material body. This result suggests that the present alloy can also be used as a structural material itself having damping characteristics.

NbCが添加されてなるFe−28Mn−6Si−5Cr−0.53Nb−0.06C合金(数値は、mass%)を溶製し、NbC添加Fe−Mn−Si基合金を作製した。作製された合金を1200℃で10時間均一加熱処理後、600℃で圧下率14%の温間圧延を行い、さらに800℃、10分間の時効処理を施した。この合金は、前記特許文献1ないし4に記載された、本発明者らの発明によるNbC添加Fe−Mn−Si基形状記憶合金であって、約5%の変形が600℃での加熱によりおよそ95%元の形状に回復することが確かめられているものである。この合金を以下各種試験にかけ、その特性を明らかにした。その結果は、前記図1から図4に示すとおりであるが、以下においては、さらに補足するものである。   An Fe-28Mn-6Si-5Cr-0.53Nb-0.06C alloy (the numerical value is mass%) obtained by adding NbC was melted to produce an NbC-added Fe-Mn-Si based alloy. The produced alloy was subjected to a uniform heat treatment at 1200 ° C. for 10 hours, followed by warm rolling at 600 ° C. with a reduction rate of 14%, and further an aging treatment at 800 ° C. for 10 minutes. This alloy is an NbC-added Fe—Mn—Si based shape memory alloy according to the inventors' invention described in Patent Documents 1 to 4, and the deformation of about 5% is approximately caused by heating at 600 ° C. It has been confirmed that the original shape recovers to 95%. The alloy was subjected to various tests below to clarify its properties. The results are as shown in FIG. 1 to FIG. 4, but will be further supplemented below.

まず、上記に作製された形状記憶合金をひずみ振幅0.1%から1.0%のひずみ振幅領域での低サイクル疲労試験によって、その振動吸収性能を評価した。
上記作製された合金の試験体を作製した。試験体はゲージ部サイズがΦ8.0mm×15mmの標準的なダンベル型引張試片である。この試験片に振動周波数0.5Hの正弦波ひずみ制御による応力を負荷し、その応答を測定した。ひずみ振幅は±0.1%、0.2%、0.4%、0.6%、0.8%、1.0%の6種類とし、各ひずみ振幅10サイクルずつ、段階的にひずみ振幅を増やしながら一つの試験体で行った。その結果、前記図1に示す紡錘型のひずみ履歴を伴う応力―ひずみ曲線が得られた。この図から、この合金は、サイクル数の増加に伴う加工硬化は極めて小さく、例えば、ひずみ振幅±1.0%の場合、10サイクル目の最大応力(526MPa)は、1サイクル目の最大応力(510MPa)から3%ほど増加している程度であった。
First, the vibration absorption performance of the shape memory alloy produced above was evaluated by a low cycle fatigue test in a strain amplitude region of strain amplitude of 0.1% to 1.0%.
A test specimen of the above-prepared alloy was prepared. The specimen is a standard dumbbell-type tensile specimen having a gauge part size of Φ8.0 mm × 15 mm L. Sinusoidal strain stress due to the control of the vibration frequency 0.5H Z in this specimen was loaded, and measure the response. There are 6 types of strain amplitude: ± 0.1%, 0.2%, 0.4%, 0.6%, 0.8%, 1.0%, and each strain amplitude is 10 cycles at a time. The test was carried out with one specimen while increasing the number. As a result, a stress-strain curve with a spindle-type strain history shown in FIG. 1 was obtained. From this figure, this alloy has extremely small work hardening with an increase in the number of cycles. For example, when the strain amplitude is ± 1.0%, the maximum stress at the 10th cycle (526 MPa) is the maximum stress at the first cycle (526 MPa). It was about 3% increase from 510 MPa).

図2は、各ひずみ振幅において応力−ひずみ曲線が描くひずみ履歴から計算された振動減衰能SDC(Specific Damping Capacity)である。SDCが10%以上になると有意な制振作用が現れるとされている。ひずみ振幅0.1%を超えるとSDCは10%以上となり、更にSDCはひずみ振幅増加に伴って急激に増加していき、ひずみ振幅0.4%で約80%に達した後、緩やかに増加を続ける。以上により、この鉄系形状記憶合金が0.1%のひずみ振幅領域において加工硬化による劣化の極めて小さい良好な制振特性を示すことが確認された。M8クラスの地震の場合、瞬間的な最大ひずみ振幅は1%程度を想定しなければならないが、当該合金の制振特性はこうした大きなひずみ振幅に対してもほとんど劣化することがない。   FIG. 2 is a vibration damping capacity SDC (Specific Damping Capacity) calculated from a strain history drawn by a stress-strain curve at each strain amplitude. It is said that a significant damping effect appears when the SDC is 10% or more. When the strain amplitude exceeds 0.1%, the SDC increases to 10% or more. Further, the SDC increases rapidly as the strain amplitude increases. After reaching about 80% when the strain amplitude is 0.4%, it gradually increases. Continue. From the above, it was confirmed that this iron-based shape memory alloy exhibits good vibration damping characteristics with extremely little deterioration due to work hardening in a strain amplitude region of 0.1%. In the case of an M8 class earthquake, the instantaneous maximum strain amplitude must be assumed to be about 1%, but the damping characteristics of the alloy hardly deteriorate even with such a large strain amplitude.

図3は、前記と同組成、同加工熱処理条件で作製した試料に引張変形負荷と除荷を繰り返した際に現れる擬弾性挙動である。サイズ0.4mm×2.0mm×15mmの短冊形ゲージ部を有する引張試験片に、ベース幅1.4mmの微小ひずみゲージを取り付け引張ひずみを精密に測定した。クロスヘッド速度を0.1mm/minとして三回の測定を行った後、0.2mm/min、0.4mm/min、0.5mm/min、0.25mm/minの各変形速度で一回ずつ、最大負荷ひずみ0.2%までの応力−ひずみ特性を一つの試験片を用いて測定した。変形速度0.1mm/minで一回目の測定時のみ0.003%程度のわずかな残留ひずみが現れるが、二回目測定以降はひずみ履歴を伴いながら残留ひずみのない可逆的変形を示した。曲線の形状やヒステリシスはサイクル数や変形速度に依存せずほとんど一定であり、この合金の擬弾性や制振特性が変形速度(振動周波数)に依存しないことが判明した。 FIG. 3 shows pseudoelastic behavior that appears when a tensile deformation load and unloading are repeated on a sample produced under the same composition and the same heat treatment conditions as described above. A tensile strain was accurately measured by attaching a micro strain gauge having a base width of 1.4 mm to a tensile test piece having a rectangular gauge portion having a size of 0.4 mm T × 2.0 mm W × 15 mm L. After measuring three times with a crosshead speed of 0.1 mm / min, once at each deformation speed of 0.2 mm / min, 0.4 mm / min, 0.5 mm / min, and 0.25 mm / min The stress-strain characteristics up to a maximum load strain of 0.2% were measured using one test piece. Although a slight residual strain of about 0.003% appears only at the first measurement at a deformation rate of 0.1 mm / min, the second and subsequent measurements showed reversible deformation without residual strain with a strain history. The curve shape and hysteresis are almost constant without depending on the number of cycles and the deformation rate, and it was found that the pseudoelasticity and damping characteristics of this alloy do not depend on the deformation rate (vibration frequency).

図4は、この合金に約2.2%の引張変形を施した後、加熱による収縮(形状回復)を標点間距離の変化を測定することにより評価したものである。変形は200℃までの加熱により80%形状回復することが確認された。加熱温度を200℃以上に上げていくと、さらなる形状回復が徐々に進み、300℃では形状回復率が約98%とほぼ完全に元の形状に回復した。
図5は、前記と同組成、同加熱処理した合金の剪断強度試験結果である。試験片は円柱状で、剪断変形を施した部位断面の直径は17.6mmΦである。
FIG. 4 shows the evaluation of shrinkage (recovery of shape) due to heating by measuring the change in distance between the gauge points after applying about 2.2% tensile deformation to this alloy. It was confirmed that the deformation was recovered 80% by heating up to 200 ° C. As the heating temperature was raised to 200 ° C. or higher, further shape recovery progressed gradually, and at 300 ° C., the shape recovery rate was approximately 98%, which almost completely recovered to the original shape.
FIG. 5 shows a shear strength test result of the alloy having the same composition and heat treatment as described above. The test piece has a cylindrical shape, and the diameter of the cross section of the portion subjected to shear deformation is 17.6 mmΦ.

以上から、本発明で使用する制振合金は、本発明者らが先に特許出願したFe−Mn−Si基形状記憶合金であって、制振特性と、形状回復性能とを併せ持ち、形状変形が生じても、加熱するだけで形状が元の形状に復元することができ、形状回復機能を有する免震・制振材料として十分使用しうるものであることが明らかにされた。これによって、形状回復機能を有する免震・制振装置の設計が可能となり、今後、土木、建築等の大型構造物の免震・制振システム設計に大いに使用されることが期待される。   From the above, the damping alloy used in the present invention is an Fe-Mn-Si based shape memory alloy previously filed by the present inventors, having both damping characteristics and shape recovery performance, and deforming the shape. Even if this occurs, it has been clarified that the shape can be restored to its original shape simply by heating, and can be used as a seismic isolation / damping material having a shape recovery function. This makes it possible to design a seismic isolation / damping device having a shape recovery function, and it is expected that it will be greatly used in the design of seismic isolation / damping systems for large structures such as civil engineering and architecture.

本実施例においては、NbC添加Fe−Mn−Si基形状記憶合金は、特定の成分組成のものに基づいて説明し、これによって制振特性と形状回復機能とを併せ持つものであることを示したが、本発明で免震・製材料として使用しえる形状記憶合金は、この組成例には限らない。すなわち、前記先の特許出願に係る発明で開示されている領域の鉄系形状記憶合金、あるいは時効加熱処理されてなる鉄系形状記憶合金は、含まれるものである。   In this example, the NbC-added Fe-Mn-Si-based shape memory alloy was explained based on a specific component composition, thereby indicating that it has both vibration damping characteristics and a shape recovery function. However, the shape memory alloy that can be used as a base isolation material in the present invention is not limited to this composition example. That is, the iron-based shape memory alloy in the region disclosed in the invention according to the previous patent application or the iron-based shape memory alloy that has been subjected to the aging heat treatment is included.

本発明の鉄系記憶合金を制振材料として用いるに当たっては、合金単独で用いてもよく、あるいは他の材料と組み合わせて用いてもよく、本発明はそのいずれの態様も含みうる。また、合金自体が制振特性を有するため複雑な構造やシステムによる必要がなく安価な制振機構が実現する。勿論、制振ダンパー、制振ブレース等の装置態様を含みうることは勿論、十分な強度と耐食性(当該合金の耐食性については別途、特許申請中)を有し、ステンレス並みのコストが達成しうることから、ダンパーの様な装置・機器類としてだけではなく、構造物自体をこの新しい制振合金によって設計する態様も可能であり、含みうる。   When the iron-based memory alloy of the present invention is used as a vibration damping material, the alloy may be used alone or in combination with other materials, and the present invention may include any of the embodiments. Moreover, since the alloy itself has damping characteristics, an inexpensive damping mechanism is realized without the need for a complicated structure or system. Of course, it can include devices such as vibration dampers, vibration braces, etc. Therefore, not only as a device such as a damper, but also a mode in which the structure itself is designed by this new damping alloy is possible and may be included.

本発明で制振材料として使用されるFe−Mn−Si基形状記憶合金の、疲労サイクル挙動については、前述したとおりであり、これを積極的に制振合金として位置づけられたことはなく、むしろ、制振材料としては、劣ると考えられてきた。その理由の一つとして、制振特性の測定条件に関わる問題が挙げられ、もう一つの理由としては、当該合金系に超弾性特性の有無に関する問題が挙げられる。   The fatigue cycle behavior of the Fe-Mn-Si based shape memory alloy used as a damping material in the present invention is as described above, and this has not been positively positioned as a damping alloy, rather It has been considered inferior as a vibration damping material. One of the reasons is a problem related to the measurement condition of the vibration damping characteristics, and another reason is a problem related to the presence or absence of superelastic characteristics in the alloy system.

すなわち、同種のマルテンサイト変態を示す合金のうち、制振合金として知られるのはFe−Mn二元系合金であって、これにいかなる第三元素を添加しても、通常、制振特性は低下する。しかし、この議論は、従来の制振特性に関する研究が専ら金属の内耗に関する歴史的な研究を背景として進められ、10−3以下の小ひずみ振幅領域を対象としてきた事による。当該合金系の制振特性は著しいひずみ振幅依存性を示すものであって、10−3以上の大ひずみ振幅領域では新しい観点からの研究が必要となる。 That is, among alloys showing the same kind of martensitic transformation, what is known as a damping alloy is an Fe-Mn binary alloy, and even if any third element is added thereto, the damping characteristics are usually descend. However, this discussion is based on the fact that conventional research on damping characteristics has been progressed mainly in the context of historical research on metal wear, and has targeted a small strain amplitude region of 10 −3 or less. The damping characteristics of the alloy system show significant strain amplitude dependence, and research from a new viewpoint is necessary in a large strain amplitude region of 10 −3 or more.

10−3以上の大ひずみ振幅領域では通常金属には塑性変形が発生するが、近年、建築メーカーや鉄鋼メーカーが活発に商品開発に取り組んでいる各種の制振合金は、むしろこの塑性変形を利用して地震のエネルギーを吸収するものである。一方、本発明のNbC添加Fe−Mn−Si基合金は大ひずみ振幅領域においてすべり変形を生じる代わりに応力誘起マルテンサイト変態が関与した一種の擬弾性的な可逆的変形により制振特性を示すことが明らかになった。したがって、制振材料としての応用ターゲットを、地震動の制振に特定して大ひずみ振幅領域で性能を評価することにより、当該合金系は、制振合金として利用する可能性が開かれ、これに加えて、強度・耐食性・形状記憶特性などの付加価値を総合的に利用することによってFe−Mn二元系合金よりも優れた制振合金として利用されるものと期待される。 In a large strain amplitude region of 10 −3 or more, metal usually undergoes plastic deformation. However, in recent years, various damping alloys that are actively engaged in product development by building manufacturers and steel manufacturers use this plastic deformation rather. It absorbs the energy of the earthquake. On the other hand, the NbC-added Fe-Mn-Si based alloy of the present invention exhibits damping characteristics by a kind of pseudoelastic reversible deformation involving stress-induced martensitic transformation instead of causing slip deformation in the large strain amplitude region. Became clear. Therefore, by specifying the application target as a damping material for damping of seismic motion and evaluating the performance in the large strain amplitude region, the possibility of using the alloy system as a damping alloy is opened. In addition, it is expected to be used as a damping alloy superior to the Fe-Mn binary alloy by comprehensively utilizing added values such as strength, corrosion resistance, and shape memory characteristics.

さらに、Fe−Mn−Si基形状記憶合金が制振合金として注目されてこなかったもう一つの理由は、当該合金が超弾性を示さないと考えられている事による。超弾性はA点以上で変形することにより生じる応力誘起マルテンサイト変態と、除荷による逆変態によって発現する。ところがFe−Mn−Si基形状記憶合金は相変態の温度ヒステリシスが著しく大きく(300K程度)、Af点以上で変形すると応力誘起マルテンサイト変態ではなく、すべり変形を生じてしまう。その他当該合金系は熱弾性型と呼ばれる従来の形状記憶合金とは様々な点で性質が異なるため超弾性は示さないというのが一般的な見方であった。 Furthermore, another reason that the Fe—Mn—Si based shape memory alloy has not attracted attention as a vibration damping alloy is that the alloy is considered not to exhibit superelasticity. Superelasticity is manifested by stress-induced martensitic transformation caused by deformation above the Af point and reverse transformation by unloading. However, the Fe-Mn-Si-based shape memory alloy has a remarkably large phase transformation temperature hysteresis (about 300 K), and if it is deformed at the Af point or higher, it causes slip deformation rather than stress-induced martensitic transformation. In addition, the general view is that the alloy system does not exhibit superelasticity because the properties differ from the conventional shape memory alloy called thermoelastic type in various respects.

超弾性を示さなければNi−Ti系合金のような制振特性も期待できないとされてきたわけであるが、本発明者らにおいては、これを鋭意研究した結果、NbC添加Fe−Mn−Si基合金については、通常の超弾性とは別メカニズムの擬弾性を示すことを知見し、明らかにした。また、NbC析出強化・加工強化等各種強化方法により、すべり変形に対する降伏強度を高くすることができるとともに、マルテンサイト変態温度を適当に設計すれば超弾性をも示しうることについても明らかにしている。本発明はこうした基礎研究の成果に基づくものであり、制振材料設計における原理・原則にかかるものである。いずれにしても、従来の制振合金にはない形状回復機能をも併せ持つ上に低コスト化も容易に達成しうる制振材料を提案し、技術的に優れたものであり、実用化も十分に見込まれる。   If the superelasticity is not exhibited, it has been said that the vibration damping characteristics as in the Ni—Ti alloy cannot be expected. However, as a result of earnest researches by the present inventors, the NbC added Fe—Mn—Si group As for the alloy, it was discovered and revealed that it exhibits pseudoelasticity, which is a mechanism different from normal superelasticity. In addition, various strengthening methods such as NbC precipitation strengthening and work strengthening can increase the yield strength against slip deformation, and it is also clarified that super-elasticity can be exhibited if the martensitic transformation temperature is appropriately designed. . The present invention is based on the results of such basic research, and is based on the principle and principle of damping material design. In any case, we proposed a vibration damping material that has a shape recovery function not found in conventional vibration damping alloys and that can be easily achieved at low cost, and is technically superior and sufficiently practical. Is expected.

建築構造物の制振・免震技術は冒頭でも触れたが、社会的要請の極めて高いテーマである。近年、特に金属系のダンパーが種々商品化されていて、今や建築、土木分野、鉄鋼材料分野の主要な開発対象となりつつある。なかでも結晶粒を粗大化させて降伏点を低く設計した極軟鋼などの弾塑性変形タイプのダンパーはヒット商品である。本発明は、こうした業界の動向に対して、一石を投じ、この弾塑性変形タイプのダンパーを超える機能の材料を見出したものであり、その意義は極めて大きい。今後、制振材料、制振装置として積極的に使用され、各種構造物等の耐震設計に大いに採用されることが期待される   Although mentioned in the beginning of this article, the vibration control and seismic isolation technology for building structures is a highly demanding theme. In recent years, various metal dampers have been commercialized, and are now becoming major development targets in the fields of architecture, civil engineering, and steel materials. Among them, elasto-plastic deformation type dampers such as ultra-soft steel, which are designed with coarse crystal grains and a low yield point, are hit products. The present invention has invested a great deal of effort in such industry trends, and has found a material with a function exceeding this elastic-plastic deformation type damper, and its significance is extremely large. In the future, it will be actively used as a damping material and damping device, and is expected to be greatly adopted for seismic design of various structures.

本発明は、安価で、高性能な鉄系形状記憶合金を、免震・制振材料として使用するものであり、この材料を使用することによって、免震・制振装置は、地震エネルギーを吸収し、ひずみないしは変形が生じたとしても加熱による操作を行うだけで、容易に元の形状に復元することができるものである。従来は、この種免震・制振装置は、それが取り付けられている柱材、壁等を一旦取り壊して、新しい部材、装置と交換するものであったところ、本発明によれば、容易に元の形状に復元することができ、業界にのみならず社会的に大きな一石を投じ、その意義は極めて大きい。今後は、建築、土木等の大型構造物はいうに及ばず、一般家屋に対しても大いに使用され、普及することが予想される。   The present invention uses an inexpensive, high-performance iron-based shape memory alloy as a seismic isolation / damping material. By using this material, the seismic isolation / damping device absorbs seismic energy. However, even if distortion or deformation occurs, it can be easily restored to its original shape simply by performing an operation by heating. In the past, this type of seismic isolation / vibration control device was to once tear the column material, wall, etc. to which it was attached and replace it with a new member or device. It can be restored to its original shape, and it has a great significance not only in the industry but also in society. In the future, not only large structures such as architecture and civil engineering, but also large houses are expected to be used and spread.

実施例で示した鉄系形状記憶合金の低サイクル疲労試験結果を示した図。The figure which showed the low cycle fatigue test result of the iron-type shape memory alloy shown in the Example. 実施例で示した鉄系形状記憶合金の低サイクル疲労試験のひずみヒステリシスより求めた振動減衰能のひずみ振幅依存性を示した図。The figure which showed the strain amplitude dependence of the vibration damping ability calculated | required from the strain hysteresis of the low cycle fatigue test of the iron-type shape memory alloy shown in the Example. 実施例で示した鉄系形状記憶合金の引張変形負荷と除荷の繰り返しにより現れる擬弾性挙動のサイクル数および変形速度依存性を示す図。The figure which shows the cycle number and deformation rate dependence of the pseudoelastic behavior which appears by repetition of the tensile deformation load and unloading of the iron-type shape memory alloy shown in the Example. 実施例で示した鉄系形状記憶合金の形状回復率と加熱温度の関係を示す図。The figure which shows the relationship between the shape recovery rate of the iron-type shape memory alloy shown in the Example, and heating temperature. 実施例で示した鉄系形状記憶合金の剪断強度試験結果を示す図The figure which shows the shear strength test result of the iron-type shape memory alloy shown in the Example

Claims (11)

耐震性構造物に使用される鉄系制振性構造材料において、地震動による大ひずみ振幅領域のひずみ振動、ひずみ変形に対してひずみ硬化することなく擬弾性を有してなる鉄系形状記憶合金を耐震性構造部材用制振材料として使用することによって、構造部材に制振性と形状復元性とを付与しうるようにしたことを特徴とする、耐震性構造部材用鉄合金系制振材料。   An iron-based shape memory alloy that has pseudoelasticity without being hardened against strain vibration and strain deformation in a large strain amplitude region caused by ground motion in an iron-based vibration-damping structural material used for earthquake-resistant structures. An iron alloy-based vibration damping material for earthquake-resistant structural members, characterized in that the structural member can be provided with damping properties and shape restoration properties by being used as a vibration-damping material for earthquake-resistant structural members. 前記地震動による大ひずみ振幅領域のひずみ振動、ひずみ変形に対してひずみ硬化することなく擬弾性を有してなる鉄系形状記憶合金が、NbCを含むFe−Mn−Si基形状記憶合金である、請求項1記載の耐震性構造部材用鉄合金系制振材料。   The iron-based shape memory alloy having pseudoelasticity without strain hardening against strain vibration in the large strain amplitude region due to the earthquake motion and strain deformation is a Fe-Mn-Si based shape memory alloy containing NbC. The iron alloy damping material for earthquake-resistant structural members according to claim 1. 前記NbCを含むFe−Mn−Si基形状記憶合金が、Mn:15〜40重量%、Si:3〜15重量%、Cr:0〜20重量%、Ni:0〜20重量%、Nb:0.1〜1.5重量%、C:0.01〜0.2重量%を含み、残部Fe及び不可避的不純物として、Cu:3重量%以下、Mo:2重量%以下、A1:10重量%以下、Co:30重量%以下、N:5000ppm以下、を含み、NbとCの原子比(Nb/C)が1.0〜1.2である、請求項2記載の耐震性構造部材用鉄合金系制振材料。   The Fe—Mn—Si based shape memory alloy containing NbC is Mn: 15 to 40 wt%, Si: 3 to 15 wt%, Cr: 0 to 20 wt%, Ni: 0 to 20 wt%, Nb: 0 0.1 to 1.5% by weight, C: 0.01 to 0.2% by weight, remaining Fe and unavoidable impurities: Cu: 3% by weight or less, Mo: 2% by weight or less, A1: 10% by weight The iron for earthquake-resistant structural members according to claim 2, comprising Co: 30% by weight or less, N: 5000ppm or less, and an atomic ratio of Nb to C (Nb / C) of 1.0 to 1.2. Alloy-based damping material. 前記NbC添加Fe−Mn−Si基形状記憶合金が、室温、または、500℃〜1100℃の温度範囲で5〜40%加工し、次いで、400℃〜1100℃の温度範囲でかつ1分〜2時間時効加熱処理して、NbC炭化物を析出させて形状記憶処理をした、請求項2または3記載の耐震性構造部材用鉄合金系制振材料。   The NbC-added Fe—Mn—Si based shape memory alloy is processed 5% to 40% at room temperature or in a temperature range of 500 ° C. to 1100 ° C., and then in a temperature range of 400 ° C. to 1100 ° C. and 1 minute to 2 The iron alloy vibration-damping material for an earthquake-resistant structural member according to claim 2 or 3, wherein the shape memory treatment is performed by precipitating NbC carbides by time-aging heat treatment. 地震動に対して振動エネルギーを吸収し、構造物を保護する制振・免震装置において、地震動による大ひずみ振幅領域のひずみ振動、ひずみ変形に対してひずみ硬化することなく擬弾性を有してなる鉄系形状記憶合金を少なくとも制振材料として含み、使用することによって、振動エネルギーを吸収するとともに制振装置に形状回復機能を付与したことを特徴とする、制振・免震装置。   Absorbs vibration energy against seismic motion and protects structures. Damping and seismic isolation devices have pseudoelasticity without strain hardening in the large strain amplitude region due to seismic motion and strain deformation. A vibration damping and seismic isolation device characterized by including an iron-based shape memory alloy as a vibration damping material and using it to absorb vibration energy and to give the vibration damping device a shape recovery function. 前記地震動による大ひずみ振幅領域のひずみ振動、ひずみ変形に対してひずみ硬化することなく擬弾性を有してなる鉄系形状記憶合金が、NbCを含むFe−Mn−Si基形状記憶合金である、請求項5記載の制振・免震装置。   The iron-based shape memory alloy having pseudoelasticity without strain hardening against strain vibration in the large strain amplitude region due to the earthquake motion and strain deformation is a Fe-Mn-Si based shape memory alloy containing NbC. 6. A vibration damping and seismic isolation device according to claim 5. 前記NbCを含むFe−Mn−Si基形状記憶合金が、Mn:15〜40重量%、Si:3〜15重量%、Cr:0〜20重量%、Ni:0〜20重量%、Nb:0.1〜1.5重量%、C:0.01〜0.2重量%を含み、残部Fe及び不可避的不純物として、Cu:3重量%以下、Mo:2重量%以下、A1:10重量%以下、Co:30重量%以下、N:5000ppm以下、を含み、NbとCの原子比(Nb/C)が1.0〜1.2である、請求項6記載の制振・免震装置。   The Fe—Mn—Si based shape memory alloy containing NbC is Mn: 15 to 40 wt%, Si: 3 to 15 wt%, Cr: 0 to 20 wt%, Ni: 0 to 20 wt%, Nb: 0 0.1 to 1.5% by weight, C: 0.01 to 0.2% by weight, remaining Fe and unavoidable impurities: Cu: 3% by weight or less, Mo: 2% by weight or less, A1: 10% by weight The vibration damping and seismic isolation device according to claim 6, comprising Co: 30 wt% or less, N: 5000 ppm or less, and an atomic ratio of Nb to C (Nb / C) of 1.0 to 1.2. . 前記NbC添加Fe−Mn−Si基形状記憶合金が、室温、または、500℃〜1100℃の温度範囲で5〜40%加工し、次いで、400℃〜1100℃の温度範囲でかつ1分〜2時間時効加熱処理して、NbC炭化物を析出させて形状記憶処理をした、請求項6または7記載の制振装置。   The NbC-added Fe—Mn—Si based shape memory alloy is processed 5% to 40% at room temperature or in a temperature range of 500 ° C. to 1100 ° C., and then in a temperature range of 400 ° C. to 1100 ° C. and 1 minute to 2 The vibration damping device according to claim 6 or 7, wherein the shape memory treatment is performed by precipitating NbC carbide by a time aging heat treatment. 前記制振・免震装置には、制振ダンパー、制振ブレースが含まれる、請求項5ないし8の何れか1項記載の制振・免震装置。   The vibration damping / isolation device according to any one of claims 5 to 8, wherein the vibration damping / isolation device includes a vibration damper and a vibration brace. 前記制振・免震装置には、形状を回復するための加熱手段が予め内蔵されている、請求項5ないし9の何れか1項記載の制振・免震装置。   The vibration damping / isolation device according to any one of claims 5 to 9, wherein a heating means for restoring the shape is previously incorporated in the vibration damping / isolation device. 前記形状を回復するための加熱手段が、電気的加熱手段である、請求項10記載の制振・免震装置。   The vibration damping and seismic isolation device according to claim 10, wherein the heating means for recovering the shape is an electrical heating means.
JP2005004498A 2005-01-11 2005-01-11 Damping material using iron-based shape memory alloy, damping device using this material, and method of using iron alloy-based damping material Active JP4709555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005004498A JP4709555B2 (en) 2005-01-11 2005-01-11 Damping material using iron-based shape memory alloy, damping device using this material, and method of using iron alloy-based damping material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005004498A JP4709555B2 (en) 2005-01-11 2005-01-11 Damping material using iron-based shape memory alloy, damping device using this material, and method of using iron alloy-based damping material

Publications (2)

Publication Number Publication Date
JP2006194287A true JP2006194287A (en) 2006-07-27
JP4709555B2 JP4709555B2 (en) 2011-06-22

Family

ID=36800539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005004498A Active JP4709555B2 (en) 2005-01-11 2005-01-11 Damping material using iron-based shape memory alloy, damping device using this material, and method of using iron alloy-based damping material

Country Status (1)

Country Link
JP (1) JP4709555B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058258A (en) * 2009-09-10 2011-03-24 Nippon Steel Corp Building seismic control damper and building structure
JP2013108562A (en) * 2011-11-21 2013-06-06 Dynamic Design:Kk Method of fabricating seismic isolator
CN103163172A (en) * 2011-12-19 2013-06-19 中国科学院金属研究所 Testing method of shape memory alloy transient damping
JP2014040645A (en) * 2012-08-23 2014-03-06 National Institute For Materials Science Free-cutting iron based shape memory alloy
WO2014103884A1 (en) 2012-12-28 2014-07-03 独立行政法人物質・材料研究機構 Damping alloy
JP2015150586A (en) * 2014-02-14 2015-08-24 国立研究開発法人物質・材料研究機構 Welding wire for fms steel, and weld joint
JP2017193825A (en) * 2016-04-18 2017-10-26 株式会社ビービーエム Buckling-restrained vibration control device
CN108359978A (en) * 2018-04-13 2018-08-03 贵州大学 A kind of Fe-based shape memory alloy laser melting coating composite coating powder and its preparation and application
CN113817969A (en) * 2020-06-19 2021-12-21 香港大学 High-strength super-corrosion-resistant non-magnetic stainless steel and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1088851A (en) * 1996-09-10 1998-04-07 Yokohama Rubber Co Ltd:The Bearing device for vibration isolation
JP2003105438A (en) * 2001-09-27 2003-04-09 National Institute For Materials Science WORKING AND HEAT-TREATING METHOD FOR Fe-Mn-Si BASED SHAPE MEMORY ALLOY ADDED WITH NbC
JP2003277827A (en) * 2002-03-20 2003-10-02 National Institute For Materials Science WORKING AND HEAT-TREATMENT METHOD FOR NbC-ADDED Fe-Mn-Si SHAPE MEMORY ALLOY
JP2004331491A (en) * 2003-04-16 2004-11-25 Takenaka Komuten Co Ltd Method of manufacturing high strength and high toughness cement-based material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1088851A (en) * 1996-09-10 1998-04-07 Yokohama Rubber Co Ltd:The Bearing device for vibration isolation
JP2003105438A (en) * 2001-09-27 2003-04-09 National Institute For Materials Science WORKING AND HEAT-TREATING METHOD FOR Fe-Mn-Si BASED SHAPE MEMORY ALLOY ADDED WITH NbC
JP2003277827A (en) * 2002-03-20 2003-10-02 National Institute For Materials Science WORKING AND HEAT-TREATMENT METHOD FOR NbC-ADDED Fe-Mn-Si SHAPE MEMORY ALLOY
JP2004331491A (en) * 2003-04-16 2004-11-25 Takenaka Komuten Co Ltd Method of manufacturing high strength and high toughness cement-based material

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058258A (en) * 2009-09-10 2011-03-24 Nippon Steel Corp Building seismic control damper and building structure
JP2013108562A (en) * 2011-11-21 2013-06-06 Dynamic Design:Kk Method of fabricating seismic isolator
CN103163172A (en) * 2011-12-19 2013-06-19 中国科学院金属研究所 Testing method of shape memory alloy transient damping
JP2014040645A (en) * 2012-08-23 2014-03-06 National Institute For Materials Science Free-cutting iron based shape memory alloy
WO2014103884A1 (en) 2012-12-28 2014-07-03 独立行政法人物質・材料研究機構 Damping alloy
KR20150117637A (en) 2012-12-28 2015-10-20 코쿠리츠켄큐카이하츠호징 붓시쯔 자이료 켄큐키코 Damping alloy
EP2940175A4 (en) * 2012-12-28 2016-08-24 Nat Inst For Materials Science Damping alloy
JP2015150586A (en) * 2014-02-14 2015-08-24 国立研究開発法人物質・材料研究機構 Welding wire for fms steel, and weld joint
JP2017193825A (en) * 2016-04-18 2017-10-26 株式会社ビービーエム Buckling-restrained vibration control device
CN108359978A (en) * 2018-04-13 2018-08-03 贵州大学 A kind of Fe-based shape memory alloy laser melting coating composite coating powder and its preparation and application
CN113817969A (en) * 2020-06-19 2021-12-21 香港大学 High-strength super-corrosion-resistant non-magnetic stainless steel and preparation method thereof
CN113817969B (en) * 2020-06-19 2022-09-27 香港大学 High-strength super-corrosion-resistant non-magnetic stainless steel and preparation method thereof

Also Published As

Publication number Publication date
JP4709555B2 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
JP4709555B2 (en) Damping material using iron-based shape memory alloy, damping device using this material, and method of using iron alloy-based damping material
Wang et al. Large size superelastic SMA bars: Heat treatment strategy, mechanical property and seismic application
Wilson et al. Shape memory alloys for seismic response modification: a state-of-the-art review
Abolmaali et al. Hysteresis behavior of t-stub connections with superelastic shape memory fasteners
Choi et al. A new concept of isolation bearings for highway steel bridges using shape memory alloys
JP5296350B2 (en) Damping member
Zhang et al. Seismic performance of benchmark base‐isolated bridges with superelastic Cu–Al–Be restraining damping device
KR102144708B1 (en) Damping alloy
Choi et al. On mechanical properties of NiTi SMA wires prestrained by cold rolling
Saedi et al. Energy damping in shape memory alloys: A review
Leon et al. Innovative beam column connections using shape memory alloys
JP2011214127A (en) Vibration-suppression/base-isolation damper device
Mishra et al. A comparison of conventional and iron based shape memory alloys and their potential in structural applications
Chen et al. Thermomechanical testing of FeNiCoTi shape memory alloy for active confinement of concrete
WO2021261067A1 (en) WELDED STRUCTURE AND Fe-Mn-Cr-Ni-Si-BASED ALLOY
Mali et al. A review on shape memory alloy and its application in civil engineering
Salehi et al. Experimental evaluation of SMA-based multi-ring damping devices
Suhail et al. Testing of reinforced concrete external beam column joints retrofitted with shape memory alloys
McCormick et al. Damping properties of shape memory alloys for seismic applications
Zheng et al. Comparative seismic performance of conventional and resilient bridges with SMA-cable-based frictional sliding bearings
Qian et al. Seismic vibration control of civil structures using shape memory alloys: a review
Huang A Temperature Controlled Semi-active Tuned Mass Damper using Shape Memory Alloy for Vibration Reduction Applications
Ding et al. Parametric study of SMA helical spring braces for the seismic resistance of a frame structure
Abd Hamid et al. Correlation of Pseudoelastic NiTi Egineering and True Stress-Strain Curves on the Effects of Nickel Titanium Composition
Cai et al. Applications of smart materials in structural engineering.

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110318

R150 Certificate of patent or registration of utility model

Ref document number: 4709555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250