JP5646962B2 - Crystalline resin composite material and manufacturing method thereof - Google Patents

Crystalline resin composite material and manufacturing method thereof Download PDF

Info

Publication number
JP5646962B2
JP5646962B2 JP2010255065A JP2010255065A JP5646962B2 JP 5646962 B2 JP5646962 B2 JP 5646962B2 JP 2010255065 A JP2010255065 A JP 2010255065A JP 2010255065 A JP2010255065 A JP 2010255065A JP 5646962 B2 JP5646962 B2 JP 5646962B2
Authority
JP
Japan
Prior art keywords
crystalline resin
graphite
composite material
exfoliated graphite
crystallinity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010255065A
Other languages
Japanese (ja)
Other versions
JP2012107084A (en
Inventor
和田 拓也
拓也 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2010255065A priority Critical patent/JP5646962B2/en
Publication of JP2012107084A publication Critical patent/JP2012107084A/en
Application granted granted Critical
Publication of JP5646962B2 publication Critical patent/JP5646962B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Description

本発明は、結晶性樹脂に無機フィラーが分散されている結晶性樹脂複合材料及びその製造方法に関し、より詳細には、薄片化黒鉛を分散させることにより結晶化度が低められた結晶性樹脂複合材料及びその製造方法に関する。   The present invention relates to a crystalline resin composite material in which an inorganic filler is dispersed in a crystalline resin and a method for producing the same, and more specifically, a crystalline resin composite having a reduced crystallinity by dispersing exfoliated graphite. The present invention relates to a material and a manufacturing method thereof.

従来、様々な合成樹脂の物性を調整するために、種々の無機充填材を配合する方法が広く用いられている。例えば下記の特許文献1では、熱可塑性樹脂に層状珪酸塩が微細に分散されている熱可塑性樹脂複合材料が開示されている。ここでは、層状珪酸塩を微細に分散させることにより、強度と柔軟性とのバランスに優れた熱可塑性樹脂複合材料が得られるとされている。   Conventionally, in order to adjust the physical properties of various synthetic resins, a method of blending various inorganic fillers has been widely used. For example, Patent Document 1 below discloses a thermoplastic resin composite material in which a layered silicate is finely dispersed in a thermoplastic resin. Here, it is said that a thermoplastic resin composite material having an excellent balance between strength and flexibility can be obtained by finely dispersing the layered silicate.

また、下記の特許文献2には、熱可塑性樹脂と、グラファイトなどの炭素系材料からなるフィラーを溶融混練し、得られた溶融混練物を成形することにより樹脂成形物を得る方法が開示されている。   Patent Document 2 listed below discloses a method of obtaining a resin molded product by melt-kneading a thermoplastic resin and a filler made of a carbon-based material such as graphite, and molding the obtained melt-kneaded product. Yes.

特開2001−26724号公報JP 2001-26724 A 特開2008−266577号公報JP 2008-266577 A

特許文献1や特許文献2に記載のように、従来、熱可塑性樹脂からなる成形体の物性を調整するために、熱可塑性樹脂に層状珪酸塩やグラファイトなどの無機フィラーを分散させる方法が知られている。しかしながら、この種の無機フィラーを熱可塑樹脂に溶融混練させるだけでは、無機フィラーを均一に分散させることが困難であった。また、得られた溶融混練物を各種成形方法により成形したとしても、目的とする物性を有する成形体を得ることは困難であった。   As described in Patent Document 1 and Patent Document 2, conventionally, a method of dispersing an inorganic filler such as layered silicate or graphite in a thermoplastic resin is known in order to adjust the physical properties of a molded body made of a thermoplastic resin. ing. However, it has been difficult to uniformly disperse the inorganic filler only by melt-kneading this kind of inorganic filler in the thermoplastic resin. Further, even if the obtained melt-kneaded product is molded by various molding methods, it has been difficult to obtain a molded product having the desired physical properties.

近年、特許文献1に記載の層状珪酸塩のように、nmオーダーのフィラーを複合化してなる、いわゆるナノコンポジットが注目されている。ナノコンポジットでは微細なフィラーが分散されているため、得られる熱可塑性樹脂複合材料からなるシートや各種形状の成
形体の物性を高めたり、柔軟性を付与したりすることができるとされている。しかしながら、このようなナノコンポジットにおいても、フィラーが均一に分散され難かった。そのため、所望とする物性を有する成形体を確実に提供することが困難であった。
In recent years, so-called nanocomposites in which fillers in the order of nm are combined, such as the layered silicate described in Patent Document 1, have attracted attention. In the nanocomposite, fine fillers are dispersed. Therefore, it is said that the physical properties of the resulting sheet made of a thermoplastic resin composite material and various shaped molded articles can be enhanced or flexibility can be imparted. However, even in such a nanocomposite, it is difficult to uniformly disperse the filler. Therefore, it has been difficult to reliably provide a molded article having desired physical properties.

さらに、熱可塑樹脂の中でも、ポリプロピレンのような結晶性樹脂では、結晶化度が高いため、低い温度で成形することは困難であった。従って、結晶性樹脂を用いた場合においても、より低い温度で成形可能な方法が求められている。   Further, among thermoplastic resins, a crystalline resin such as polypropylene has a high degree of crystallinity, and thus it has been difficult to mold at a low temperature. Therefore, even when a crystalline resin is used, a method that can be molded at a lower temperature is demanded.

本発明の目的は、上述した従来技術の現状に鑑み、結晶性樹脂を用いた結晶性樹脂複合材料であって、結晶化度が低く、より低い温度で成形することが可能な結晶性樹脂複合材料を提供することにある。   An object of the present invention is a crystalline resin composite material using a crystalline resin in view of the above-described current state of the prior art, and has a low crystallinity and can be molded at a lower temperature. To provide materials.

本発明に係る結晶性樹脂複合材料の製造方法は、層状黒鉛を剥離することにより、層状黒鉛よりも層数が少なくなった薄片化黒鉛を分散してなる薄片化黒鉛分散液と、結晶性樹脂溶液とを用意する工程と、前記薄片化黒鉛分散液を加熱下で前記結晶性樹脂溶液に添加し、混練することにより、膨張化黒鉛を剥離し薄片化黒鉛とする工程と、冷却により前記薄片化黒鉛と前記結晶性樹脂との複合材料を析出させる工程とを備える。   The method for producing a crystalline resin composite material according to the present invention includes a exfoliated graphite dispersion liquid in which exfoliated graphite having a smaller number of layers than that of lamellar graphite is dispersed by exfoliating lamellar graphite, and a crystalline resin Preparing a solution; adding the exfoliated graphite dispersion to the crystalline resin solution under heating; kneading to exfoliate the expanded graphite into exfoliated graphite; and cooling the exfoliated graphite And a step of depositing a composite material of graphite oxide and the crystalline resin.

本発明に係る結晶性樹脂複合材料の製造方法では、好ましくは、上記結晶性樹脂100重量部に対し、上記薄片化黒鉛を1重量部以下の割合で添加する。それによって、結晶性樹脂複合材料の結晶化度を十分に低めることができる。   In the method for producing a crystalline resin composite material according to the present invention, preferably, the exfoliated graphite is added at a ratio of 1 part by weight or less with respect to 100 parts by weight of the crystalline resin. Thereby, the crystallinity of the crystalline resin composite material can be sufficiently reduced.

好ましくは、上記結晶性樹脂として、ポリプロピレン、ポリエチレン及びポリ乳酸からなる群から選択された一種の結晶性樹脂が用いられる。それによって、これらの結晶性樹脂を用いた結晶性樹脂複合材料の結晶化度を効果的に低めることができる。   Preferably, as the crystalline resin, a kind of crystalline resin selected from the group consisting of polypropylene, polyethylene and polylactic acid is used. Thereby, the crystallinity of the crystalline resin composite material using these crystalline resins can be effectively reduced.

本発明に係る結晶性樹脂は、結晶性樹脂と、結晶性樹脂に分散されており、かつ層状黒鉛を薄片化することにより形成されている薄片化黒鉛とを含み、前記結晶性樹脂の結晶化度を100%としたときに、相対的結晶化度が57%〜91%の範囲にある。   The crystalline resin according to the present invention includes a crystalline resin and exfoliated graphite which is dispersed in the crystalline resin and formed by exfoliating layered graphite, and crystallizes the crystalline resin. When the degree is 100%, the relative crystallinity is in the range of 57% to 91%.

本発明に係る結晶性樹脂複合材料では、好ましくは、上記結晶性樹脂100重量部に対し、上記薄片化黒鉛が1重量部以下の割合で配合されている。それによって、結晶化度を、確実に上記範囲内とすることができる。   In the crystalline resin composite material according to the present invention, the exfoliated graphite is preferably blended at a ratio of 1 part by weight or less with respect to 100 parts by weight of the crystalline resin. Thereby, the crystallinity can be reliably within the above range.

本発明に係る結晶性樹脂複合材料では、上記結晶性樹脂が、好ましくは、ポリプロピレン、ポリエチレン及びポリ乳酸からなる群から選択された少なくとも一種の結晶性樹脂である。この場合には、結晶化度を確実に低めることができる。   In the crystalline resin composite material according to the present invention, the crystalline resin is preferably at least one crystalline resin selected from the group consisting of polypropylene, polyethylene, and polylactic acid. In this case, the crystallinity can be reliably lowered.

本発明に係る結晶性樹脂複合材料の製造方法によれば、加熱下で、結晶性樹脂溶液に薄片化黒鉛分散液を添加し、混練し、しかる後冷却により薄片化黒鉛が分散された結晶性樹脂複合材料を析出させることができる。冷却に際し結晶性が抑制されるので、結晶化度が低い結晶性樹脂複合材料を得ることができる。よって、より低い温度で成形することができるので、成形品の工程の簡略化及びコストの低減を果たすことが可能となる。加えて、低弾性率の成形品を得ることができる。   According to the method for producing a crystalline resin composite material according to the present invention, the exfoliated graphite dispersion is added to the crystalline resin solution under heating, kneaded, and then cooled to obtain a crystallinity in which the exfoliated graphite is dispersed. A resin composite material can be deposited. Since the crystallinity is suppressed during cooling, a crystalline resin composite material having a low crystallinity can be obtained. Therefore, since it can shape | mold at lower temperature, it becomes possible to achieve the simplification of the process of a molded article, and cost reduction. In addition, a molded article having a low elastic modulus can be obtained.

以下、本発明の詳細を説明する。   Details of the present invention will be described below.

(結晶性樹脂)
本発明の結晶性樹脂複合材料の製造方法で用いられる結晶性樹脂としては、特に限定されるわけではないが、好ましくは、ポリプロピレン、ポリエチレンまたはポリ乳酸を用いることができる。本発明によれば、ポリエチレンやポリプロピレンを用いた結晶性樹脂複合材料の結晶化度を低め、より低い温度で成形することが可能となる。また、弾性率を低めることもできる。また、ポリ乳酸を用いた結晶性樹脂複合材料では、結晶化度を低めて、生分解性を高めることができる。
(Crystalline resin)
Although it does not necessarily limit as crystalline resin used with the manufacturing method of the crystalline resin composite material of this invention, Preferably, polypropylene, polyethylene, or polylactic acid can be used. According to the present invention, the crystallinity of a crystalline resin composite material using polyethylene or polypropylene can be lowered and molded at a lower temperature. Also, the elastic modulus can be lowered. Moreover, in the crystalline resin composite material using polylactic acid, the degree of crystallinity can be lowered and the biodegradability can be improved.

(層状黒鉛、膨張化黒鉛及び薄片化黒鉛)
本発明の製造方法では、通常入手し得る黒鉛すなわちグラフェン積層体である層状黒鉛に層間物質を挿入し、層間距離を広げることにより膨張化黒鉛とする。ここで、通常の黒鉛を層状黒鉛とし、層間が広げられた黒鉛を上記膨張化黒鉛として区別する。また、薄片化黒鉛とは、膨張化黒鉛を剥離処理することにより、もとの黒鉛よりもグラフェンの積層数が少ない黒鉛とされたものをいうものとする。
(Layered graphite, expanded graphite and exfoliated graphite)
In the production method of the present invention, expanded graphite is obtained by inserting an interlayer material into graphite that is usually available, that is, layered graphite that is a graphene laminate, and widening the interlayer distance. Here, ordinary graphite is classified as layered graphite, and graphite with expanded layers is distinguished as expanded graphite. In addition, exfoliated graphite refers to graphite obtained by exfoliating expanded graphite so that the number of graphene layers is lower than that of the original graphite.

上記薄片化黒鉛としては、官能基を有するものを用いてもよい。このような官能基としては、OH基、COOH基、SH基、NH基などを挙げることができる。このような官能基を薄片化黒鉛が有していたとしても、結晶性樹脂側の官能基存在量が低ければ、結晶性樹脂と薄片化黒鉛との相互作用を生じ難い。従って、上記の通り、結晶性樹脂複合材料の結晶化度をやはり効果的に低めることができる。   As said exfoliated graphite, you may use what has a functional group. Examples of such functional groups include OH groups, COOH groups, SH groups, and NH groups. Even if exfoliated graphite has such a functional group, the interaction between the crystalline resin and exfoliated graphite is unlikely to occur if the amount of functional group present on the crystalline resin side is low. Therefore, as described above, the crystallinity of the crystalline resin composite material can still be effectively reduced.

本発明の結晶性樹脂複合材料では、好ましくは、結晶性樹脂100重量部に対し、上記薄片化黒鉛を1重量部以下の割合で添加されることが望ましい。それによって、得られている結晶性樹脂複合材料の結晶化度をより一層低めることができる。   In the crystalline resin composite material of the present invention, the exfoliated graphite is preferably added in a proportion of 1 part by weight or less with respect to 100 parts by weight of the crystalline resin. Thereby, the crystallinity of the obtained crystalline resin composite material can be further reduced.

(製造方法)
本発明の製造方法では、まず、結晶性樹脂溶液と、薄片化黒鉛分散液とを用意する。
(Production method)
In the production method of the present invention, first, a crystalline resin solution and a exfoliated graphite dispersion are prepared.

結晶性樹脂溶液は、結晶性樹脂を、結晶性樹脂を溶媒に溶解することにより調整される。好ましくは、加熱下において、結晶性樹脂を溶媒に添加・撹拌することにより上記結晶性樹脂溶液を得ることができる。例えば、結晶性樹脂がポリプロピレンの場合、120〜135℃程度の温度に加熱されたキシレンに添加し撹拌することにより、ポリプロピレン溶液を得ることができる。上記結晶性樹脂を溶解するための溶媒としては、使用する結晶性樹脂に応じて適宜に選択すればよい。このような溶媒としては、キシレン、アセトン、NMP、THF、トルエン、超臨界水、液化炭酸ガスなどを挙げることができる。   The crystalline resin solution is prepared by dissolving the crystalline resin in a solvent. Preferably, the crystalline resin solution can be obtained by adding and stirring the crystalline resin to a solvent under heating. For example, when the crystalline resin is polypropylene, a polypropylene solution can be obtained by adding to xylene heated to a temperature of about 120 to 135 ° C. and stirring. What is necessary is just to select suitably as a solvent for melt | dissolving the said crystalline resin according to the crystalline resin to be used. Examples of such a solvent include xylene, acetone, NMP, THF, toluene, supercritical water, liquefied carbon dioxide gas, and the like.

上記結晶性樹脂溶液を調製するに際しての結晶性樹脂の濃度は、特に限定されないが、膨張化黒鉛を均一に分散させるには、0.1〜5重量%の範囲であることが望ましい。   The concentration of the crystalline resin in preparing the crystalline resin solution is not particularly limited, but is desirably in the range of 0.1 to 5% by weight in order to uniformly disperse the expanded graphite.

上記薄片化黒鉛分散液を得るにあたっては、まず、層状黒鉛を電解質水溶液中に投入し、必要に応じて加熱することで層間に電解質を挿入した膨張化黒鉛とした後、水溶液から取り出して余分な水分を取り除いた後、急速に加熱することにより電解質を気化させ、その気化圧により黒鉛の薄片化が行われる。この薄片化された黒鉛を溶媒に分散させることで薄片化黒鉛分散液が得られる。また、他の方法では既知のHummers法などの化学的手法によっても薄片化黒鉛分散液を得ることが出来る。しかし、化学的手法を用いる場合は一般に黒鉛の酸化と黒鉛の薄片化(剥離)が同時に行われるため、得られる薄片化黒鉛の分散液はその黒鉛の酸化度は高くなっている。   In obtaining the exfoliated graphite dispersion, first, lamellar graphite is put into an aqueous electrolyte solution, and heated as necessary to obtain expanded graphite in which an electrolyte is inserted between the layers. After removing moisture, the electrolyte is vaporized by rapid heating, and the graphite is exfoliated by the vaporization pressure. The exfoliated graphite dispersion can be obtained by dispersing the exfoliated graphite in a solvent. In other methods, exfoliated graphite dispersion can also be obtained by chemical methods such as the known Hummers method. However, when a chemical method is used, generally, oxidation of graphite and exfoliation (peeling) of graphite are performed at the same time, and thus the exfoliated graphite dispersion obtained has a high degree of oxidation of the graphite.

前者の方法、すなわち電解質水溶液中に層状黒鉛を分散させ加熱する方法では、電解質イオンが層間にインターカレートされ、層間が広げられる。このような電解質水溶液としては、硝酸、硫酸などを用いることができる。また、薄片化(剥離)するための加熱温度については、300〜1200℃程度とすればよい。この温度範囲内の温度に加熱することにより、層状黒鉛を速やかに剥離することができる。   In the former method, that is, a method in which layered graphite is dispersed in an aqueous electrolyte solution and heated, electrolyte ions are intercalated between layers, and the layers are expanded. As such an electrolyte aqueous solution, nitric acid, sulfuric acid, or the like can be used. Moreover, what is necessary is just to be about 300-1200 degreeC about the heating temperature for making thin (peeling). By heating to a temperature within this temperature range, the layered graphite can be quickly peeled off.

上記のようにして得られた薄片化黒鉛分散液を、上記結晶性樹脂溶液に加熱下で添加し、撹拌する。それによって、薄片化黒鉛分散液と結晶性樹脂溶液がよく混ざり合い、薄片化黒鉛と結晶性樹脂分子が混ざり合う。   The exfoliated graphite dispersion obtained as described above is added to the crystalline resin solution under heating and stirred. As a result, the exfoliated graphite dispersion and the crystalline resin solution mix well, and the exfoliated graphite and the crystalline resin molecules mix.

次に、反応系を冷却することにより、結晶性樹脂に薄片化黒鉛が分散されている結晶性樹脂複合材料を析出させることができる。この冷却温度については、結晶性樹脂が析出すればよく、結晶性樹脂と溶媒の種類に応じて適宜選択すればよい。結晶性樹脂にポリプロピレンを用い、溶媒にキシレンを用いた場合は、好ましくは、60℃以下とすることにより、確実に結晶性樹脂複合材料を析出させることができる。   Next, the crystalline resin composite material in which exfoliated graphite is dispersed in the crystalline resin can be precipitated by cooling the reaction system. About this cooling temperature, crystalline resin should just precipitate, and what is necessary is just to select suitably according to the kind of crystalline resin and a solvent. When polypropylene is used as the crystalline resin and xylene is used as the solvent, the crystalline resin composite material can be surely deposited by setting the temperature to 60 ° C. or lower.

上記のようにして析出した結晶性樹脂複合材料では、薄片化黒鉛が結晶性樹脂に均一に分散されている。   In the crystalline resin composite material deposited as described above, exfoliated graphite is uniformly dispersed in the crystalline resin.

本発明では、上記のようにして析出した結晶性樹脂複合材料の結晶化度をもとの結晶性樹脂よりも低くすることができる。これは、結晶性樹脂が溶融している状態で薄片化黒鉛が分散し、その状態で冷却により析出するに際し、薄片化黒鉛による立体障害により結晶成長が抑制されるためと考えられる。   In the present invention, the crystallinity of the crystalline resin composite material deposited as described above can be made lower than that of the original crystalline resin. This is presumably because exfoliated graphite is dispersed in a state where the crystalline resin is melted, and crystal growth is suppressed due to steric hindrance due to exfoliated graphite when it is precipitated by cooling in that state.

従って、本発明によれば、結晶性樹脂の融点よりも、上記結晶性樹脂を用いた上記結晶性樹脂複合材料の融点を低めることができ、すなわち結晶化度を低めることができる。なお、結晶化度については、DSCで測定された融点に基づき測定することができ、好ましくは、元の結晶性樹脂の結晶化度を100%としたとき、57〜91%の範囲とされる。従って、本発明の製造方法により得られる結晶性樹脂複合材料では、結晶化度が上記のように低められるため、すなわち融点が低められることになるため、より低い温度で成形することができる。加えて、弾性率を低めることができる。また、結晶性樹脂としてポリ乳酸を用いた場合には、生分解性を高めることができる。   Therefore, according to the present invention, the melting point of the crystalline resin composite material using the crystalline resin can be made lower than the melting point of the crystalline resin, that is, the crystallinity can be lowered. The crystallinity can be measured based on the melting point measured by DSC, and is preferably in the range of 57 to 91% when the crystallinity of the original crystalline resin is 100%. . Therefore, the crystalline resin composite material obtained by the production method of the present invention can be molded at a lower temperature because the crystallinity is lowered as described above, that is, the melting point is lowered. In addition, the elastic modulus can be lowered. Moreover, when polylactic acid is used as the crystalline resin, biodegradability can be enhanced.

本発明の製造方法においては、上記薄片化黒鉛が結晶性樹脂100重量部に対して1重量部以下の割合で含有されていることが好ましく、従って、結晶性樹脂100重量部に対し原料として上記層状黒鉛を1重量部以下の割合で用いることが望ましい。それによって、結晶化度を効果的に低めることができる。   In the production method of the present invention, the exfoliated graphite is preferably contained in a proportion of 1 part by weight or less with respect to 100 parts by weight of the crystalline resin. It is desirable to use layered graphite at a ratio of 1 part by weight or less. Thereby, the crystallinity can be effectively reduced.

なお、最終的に分散される薄片化黒鉛の割合が高くなりすぎると、結晶化度はもとの結晶性樹脂に近づくこととなる。これは、薄片化黒鉛はアスペクト比が高いうえにパッキング性も持つため、多量の薄片化黒鉛を添加した場合は薄片化黒鉛同士が凝集(パッキング)し、薄片化黒鉛集合体となるため、全体として薄片化黒鉛(集合体を含む)の絶対数が少なくなる。つまり、再結晶に際しての立体障害を起こす薄片化黒鉛数が見かけ上減るため、樹脂の結晶成長を阻害する効果が抑制されるためと考えられる。   In addition, when the ratio of exfoliated graphite finally disperse | distributed becomes too high, a crystallinity will approach the original crystalline resin. This is because exfoliated graphite has a high aspect ratio and also has packing properties. When a large amount of exfoliated graphite is added, exfoliated graphite aggregates (packing) and becomes an exfoliated graphite aggregate. As a result, the absolute number of exfoliated graphite (including aggregates) decreases. That is, the number of exfoliated graphite that causes steric hindrance during recrystallization is apparently reduced, and thus the effect of inhibiting resin crystal growth is suppressed.

本発明により得られる樹脂複合材料では、結晶化度を低めることができるので、融点及び弾性率を低めることができる。従って、低い温度で成形することができ、かつ低い弾性率の柔軟性に優れた成形体を提供することが可能となる。   In the resin composite material obtained by the present invention, the crystallinity can be lowered, so that the melting point and elastic modulus can be lowered. Therefore, it is possible to provide a molded body that can be molded at a low temperature and has a low elasticity and excellent flexibility.

次に、具体的な実施例及び比較例を挙げることにより、本発明を明らかにする。本発明は以下の実施例に限定されるものではない。   Next, the present invention will be clarified by giving specific examples and comparative examples. The present invention is not limited to the following examples.

(実施例1)
黒鉛(天然高純度黒鉛、東洋炭素社製、品番:PF100−UHP、グラフェン積層数約130層)1g陽極として60%硝酸水溶液に浸漬し、陰極に白金線を用い、電極間に電圧を印加して電流を流し、黒鉛の層間に硝酸イオンを挿入して膨張化黒鉛を作製した。この膨張化黒鉛をXRD測定により層間距離を特定したところ、層間距離は約9Åに広がっていることが確かめられた。この膨張化黒鉛をアルゴンガス雰囲気下で1000℃に加熱された管状炉を用いて約20秒間に渡って加熱した後、加熱により薄片化された薄片化黒鉛を取り出した。得られた薄片化黒鉛の比表面積を島津製作(株)製ASAP2020にて窒素ガスを用いて測定したところ約700m/gであった。単層の薄片化黒鉛の比表面積が理論上、2600m/gであることから、得られた薄片化黒鉛は平均して約4層のグラフェン積層物となっていることが推測される。この薄片化黒鉛0.1gを50gのキシレン溶液に添加し、28kHzにて30分間の超音波処理を行い、薄片化黒鉛分散液を得た。
Example 1
Graphite (natural high-purity graphite, manufactured by Toyo Tanso Co., Ltd., product number: PF100-UHP, about 130 layers of graphene) 1 g Anode is immersed in a 60% nitric acid aqueous solution, a platinum wire is used as the cathode, and a voltage is applied between the electrodes. An expanded graphite was prepared by inserting nitrate ions between the graphite layers. When the interlayer distance of the expanded graphite was specified by XRD measurement, it was confirmed that the interlayer distance spreads to about 9 mm. The expanded graphite was heated for about 20 seconds using a tubular furnace heated to 1000 ° C. in an argon gas atmosphere, and then exfoliated graphite exfoliated by heating was taken out. It was about 700 m < 2 > / g when the specific surface area of the obtained exfoliated graphite was measured using Shimadzu make ASAP2020 using nitrogen gas. Since the specific surface area of the exfoliated graphite of a single layer is theoretically 2600 m 2 / g, the exfoliated graphite obtained is estimated to be an average of about 4 layers of graphene laminate. 0.1 g of this exfoliated graphite was added to 50 g of a xylene solution and subjected to ultrasonic treatment at 28 kHz for 30 minutes to obtain an exfoliated graphite dispersion.

他方、ポリプロピレン樹脂ペレット(日本ポリプロ社製、品名:ノバテックPP、グレード:MA3H)2gを、キシレン200gに添加し、130℃に加熱しポリプロピレンを溶解し、ポリプロピレン樹脂溶液を得た。このポリプロピレン樹脂溶液を130℃の温度で攪拌しつつ、上記薄片化黒鉛分散液をポリプロピレン100重量部に対し、薄片化黒鉛0.1重量部となるように添加し混合した。しかる後、20℃の温度まで冷却し、樹脂複合材料を析出させた。析出した樹脂複合材料を取り出し、真空乾燥によりキシレンを除去し、実施例1の樹脂複合材料とした。   On the other hand, 2 g of polypropylene resin pellets (manufactured by Nippon Polypro Co., Ltd., product name: Novatec PP, grade: MA3H) were added to 200 g of xylene and heated to 130 ° C. to dissolve the polypropylene to obtain a polypropylene resin solution. While stirring the polypropylene resin solution at a temperature of 130 ° C., the exfoliated graphite dispersion was added to and mixed with 100 parts by weight of polypropylene so that the exfoliated graphite was 0.1 part by weight. Thereafter, it was cooled to a temperature of 20 ° C. to precipitate a resin composite material. The precipitated resin composite material was taken out, and xylene was removed by vacuum drying to obtain a resin composite material of Example 1.

(実施例2)
ポリプロピレンに対する薄片化黒鉛の添加量を0.1重量部から0.5重量部に変更したことを除いては、実施例1と同様にして樹脂複合材料を得た。
(Example 2)
A resin composite material was obtained in the same manner as in Example 1 except that the amount of exfoliated graphite added to polypropylene was changed from 0.1 parts by weight to 0.5 parts by weight.

(実施例3)
薄片化黒鉛の添加量を、0.1重量部から1.0重量部に変更したことを除いては、実施例1と同様にして樹脂複合材料を得た。
Example 3
A resin composite material was obtained in the same manner as in Example 1 except that the amount of exfoliated graphite was changed from 0.1 parts by weight to 1.0 part by weight.

(比較例)
実施例1で用いたポリプロピレンペレットを比較例として用意した。
(Comparative example)
The polypropylene pellet used in Example 1 was prepared as a comparative example.

(実施例及び比較例の評価)
実施例1〜3の樹脂複合材料及び比較例のポリプロピレンペレットについて、DSCにて昇温速度10℃/minで測定し、得られた熱融解曲線のピークを融点(Tm)とした。結果を下記の表1に示す。また、このようにして測定された融解熱(ΔH)に基づき、結晶化度を以下の式により求めた。ここで、ΔH PP は結晶化度100%のPPの融解熱を表し、ΔH PP =209J/gである。
(Evaluation of Examples and Comparative Examples)
About the resin composite material of Examples 1-3 and the polypropylene pellet of a comparative example, it measured by DSC at the temperature increase rate of 10 degree-C / min, and made the peak of the obtained thermal melting curve the melting point (Tm). The results are shown in Table 1 below. Further, based on the heat of fusion (ΔH) measured in this way, the crystallinity was determined by the following equation. Here, ΔH 0 PP represents the heat of fusion of PP with a crystallinity of 100%, and ΔH 0 PP = 209 J / g.

結晶化度=ΔH/ΔH PP Crystallinity = ΔH / ΔH 0 PP

下記の表1に求められた結晶化度を示す。また、下記の表1の右欄に、相対的結晶化度を示す。相対的結晶化度とは、比較例のポリプロピレンの場合の結晶化度を100%としたとき、相対的結晶化度=(結晶化度/63)×100%で表わされる。すなわち、黒鉛を添加していない場合の結晶化度を100%とした相対的な結晶化度を示す。   Table 1 below shows the obtained crystallinity. Moreover, relative crystallization degree is shown in the right column of Table 1 below. The relative crystallinity is expressed by relative crystallinity = (crystallinity / 63) × 100%, where the crystallinity in the case of the comparative polypropylene is 100%. That is, it shows the relative crystallinity with 100% crystallinity when no graphite is added.

Figure 0005646962
Figure 0005646962

表1から明らかなように、比較例では結晶化度が63%であり、融点が168℃であったのに対し、実施例1〜3では、融点が低くなり、かつ結晶化度が低くなっていることがわかる。従って、膨張化黒鉛をポリプロピレン溶液に添加し、冷却して析出させることにより、結晶化度の低いポリプロピレン系複合材料の得られることがわかる。   As is clear from Table 1, in the comparative example, the crystallinity was 63% and the melting point was 168 ° C., whereas in Examples 1 to 3, the melting point was low and the crystallinity was low. You can see that Therefore, it can be seen that a polypropylene-based composite material having a low degree of crystallinity can be obtained by adding expanded graphite to a polypropylene solution and cooling to precipitate.

また、実施例1〜3との対比から明らかなように、膨張化黒鉛添加量を1.0重量部とした場合の実施例3に比べ、0.5重量部以下とした実施例1及び2において、結晶化度をより一層低め得ることがわかる。従って、好ましくは、膨張化黒鉛添加量は0.5重量部以下とすることが望ましいことがわかる。   Further, as is clear from the comparison with Examples 1 to 3, Examples 1 and 2 in which the amount of expanded graphite added was 0.5 parts by weight or less compared to Example 3 when the amount of expanded graphite was 1.0 part by weight. It can be seen that the crystallinity can be further reduced. Therefore, it can be seen that the amount of expanded graphite is preferably 0.5 parts by weight or less.

Claims (3)

層状黒鉛を剥離することにより、層状黒鉛よりも層数が少なくなった薄片化黒鉛を分散してなる薄片化黒鉛分散液と、結晶性樹脂溶液とを用意する工程と、
前記薄片化黒鉛分散液を加熱下で前記結晶性樹脂溶液に添加する工程と、
冷却により前記薄片化黒鉛と前記結晶性樹脂との複合材料を析出させる工程とを備える、結晶性樹脂複合材料の製造方法。
Preparing a exfoliated graphite dispersion liquid obtained by dispersing exfoliated graphite having a number of layers smaller than that of the layered graphite by peeling the layered graphite, and a crystalline resin solution;
Adding the exfoliated graphite dispersion to the crystalline resin solution under heating;
A method for producing a crystalline resin composite material, comprising: a step of precipitating the composite material of exfoliated graphite and the crystalline resin by cooling.
前記結晶性樹脂100重量部に対し、前記薄片化黒鉛を1重量部以下の範囲で添加する、請求項1に記載の結晶性樹脂複合材料の製造方法。   The method for producing a crystalline resin composite material according to claim 1, wherein the exfoliated graphite is added in an amount of 1 part by weight or less with respect to 100 parts by weight of the crystalline resin. 前記結晶性樹脂が、ポリプロピレン、ポリエチレン及びポリ乳酸からなる群から選択された少なくとも一種の結晶性樹脂である、請求項1または2に記載の結晶性樹脂複合材料の製造方法。   The method for producing a crystalline resin composite material according to claim 1 or 2, wherein the crystalline resin is at least one crystalline resin selected from the group consisting of polypropylene, polyethylene, and polylactic acid.
JP2010255065A 2010-11-15 2010-11-15 Crystalline resin composite material and manufacturing method thereof Active JP5646962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010255065A JP5646962B2 (en) 2010-11-15 2010-11-15 Crystalline resin composite material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010255065A JP5646962B2 (en) 2010-11-15 2010-11-15 Crystalline resin composite material and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014225679A Division JP5914617B2 (en) 2014-11-06 2014-11-06 Crystalline resin composite material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012107084A JP2012107084A (en) 2012-06-07
JP5646962B2 true JP5646962B2 (en) 2014-12-24

Family

ID=46493054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010255065A Active JP5646962B2 (en) 2010-11-15 2010-11-15 Crystalline resin composite material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5646962B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015025144A (en) * 2014-11-06 2015-02-05 積水化学工業株式会社 Crystalline resin composite material and manufacturing method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2977637B1 (en) * 2013-03-22 2020-03-11 Nisshinbo Brake Inc. Friction material
KR102406253B1 (en) * 2014-07-24 2022-06-10 닛신보 브레이크 가부시키가이샤 Friction material
KR102577920B1 (en) * 2021-09-06 2023-09-14 주식회사 네오엔프라 Eco-friendly buoy composition containing highly crystalline polypropylene and graphene oxide

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3419093B2 (en) * 1994-08-11 2003-06-23 三菱化学株式会社 Thermoplastic resin composition, method for producing the same, and electromagnetic wave shield molded product comprising the composition
JP2005264059A (en) * 2004-03-19 2005-09-29 Calp Corp Method for producing composite resin composition, composite resin composition and composite resin molding
JP4681382B2 (en) * 2005-07-28 2011-05-11 帝人化成株式会社 Thermoplastic resin composition
US8110026B2 (en) * 2006-10-06 2012-02-07 The Trustees Of Princeton University Functional graphene-polymer nanocomposites for gas barrier applications
WO2009106507A2 (en) * 2008-02-28 2009-09-03 Basf Se Graphite nanoplatelets and compositions
CN102076750A (en) * 2008-06-30 2011-05-25 陶氏环球技术公司 Polymer composite with intumescent graphene

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015025144A (en) * 2014-11-06 2015-02-05 積水化学工業株式会社 Crystalline resin composite material and manufacturing method thereof

Also Published As

Publication number Publication date
JP2012107084A (en) 2012-06-07

Similar Documents

Publication Publication Date Title
Shao et al. PVA/polyethyleneimine-functionalized graphene composites with optimized properties
Chen et al. Phenolic resin-enhanced three-dimensional graphene aerogels and their epoxy nanocomposites with high mechanical and electromagnetic interference shielding performances
Liu et al. Research progress of graphene‐based rubber nanocomposites
JP2016160430A (en) Polypropylene-graphene composite body and method for producing the same
JP2013233790A (en) Method for manufacturing resin molded article, and resin molded article
JP5646962B2 (en) Crystalline resin composite material and manufacturing method thereof
EP1786858A2 (en) Conductive thermosets by extrusion
Wang et al. Crystallization behavior, thermal and mechanical properties of PHBV/graphene nanosheet composites
JP5605363B2 (en) Conductive polyamide resin composition
JPWO2013058181A1 (en) Manufacturing method of resin composite material and resin composite material
EP2062931A1 (en) Carbon Nanotube Reinforced Polymer
KR20160021180A (en) Composition made from polyamide mxd.10
Antunes et al. Graphene nanoplatelets as a multifunctional filler for polymer foams
WO2013150973A1 (en) Process for manufacturing resin composite material, and resin composite material
Pedrosa et al. Chemical surface modification and characterization of carbon nanostructures without shape damage
JP2008166641A (en) Expanded carbon fiber composite material for electromagnetic shield with thermal conductivity and electric conductivity, and manufacturing method thereof
JP5914617B2 (en) Crystalline resin composite material and manufacturing method thereof
Shahamatifard et al. Thermal and mechanical properties of carbon-based rubber nanocomposites: A review
WO2014119462A1 (en) Heat-conductive filler, method for producing said filler, resin composition using said filler, molded article produced from said resin composition, and highly heat-conductive material
JP2015151297A (en) Method for producing magnesium oxide particle
JP6279199B2 (en) Resin composite material and method for producing resin composite material
Sorrentino et al. Influence of multi-walled carbon nanotubes on the β form crystallization of syndiotactic polystyrene at low temperature
Korivi Preparation, characterization, and applications of poly (ethylene terephthalate) nanocomposites
JP7074268B2 (en) Thin-film molded product and its manufacturing method
JP2012224810A (en) Mixed liquid, resin composite material, and method for producing resin composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141106

R150 Certificate of patent or registration of utility model

Ref document number: 5646962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150