JP5646940B2 - Electromagnetic wave transmission medium - Google Patents

Electromagnetic wave transmission medium Download PDF

Info

Publication number
JP5646940B2
JP5646940B2 JP2010220897A JP2010220897A JP5646940B2 JP 5646940 B2 JP5646940 B2 JP 5646940B2 JP 2010220897 A JP2010220897 A JP 2010220897A JP 2010220897 A JP2010220897 A JP 2010220897A JP 5646940 B2 JP5646940 B2 JP 5646940B2
Authority
JP
Japan
Prior art keywords
electromagnetic wave
circle
frequency
transmission medium
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010220897A
Other languages
Japanese (ja)
Other versions
JP2012080178A (en
Inventor
柳沢 和介
和介 柳沢
信太郎 高瀬
信太郎 高瀬
康信 石井
康信 石井
堀江 凉
凉 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokowo Co Ltd
Original Assignee
Yokowo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokowo Co Ltd filed Critical Yokowo Co Ltd
Priority to JP2010220897A priority Critical patent/JP5646940B2/en
Publication of JP2012080178A publication Critical patent/JP2012080178A/en
Application granted granted Critical
Publication of JP5646940B2 publication Critical patent/JP5646940B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、主として、マイクロ波帯以上、特に100GHz帯以上の高周波機器間もしくは高周波機器とデバイス間を接続する電磁波伝送媒体に関する。   The present invention mainly relates to an electromagnetic wave transmission medium for connecting between high-frequency devices in the microwave band or higher, particularly 100 GHz band or higher, or between high-frequency devices and devices.

その相対位置を正確に定めることができなかったり、一方又は双方の位置が変化したりする高周波機器同士を接続するための電磁波伝送媒体として、同軸線路や可撓性導波管がある。同軸線路は、可撓性に優れ、しかも比較的安価なために多用されているが、周波数が高くなるにつれて細径化が必要となり、伝送損失の増大、伝送特性維持のための機械加工精度の上昇、耐久性の低下等の問題が生じる。例えば、テフロン(登録商標)を絶縁体に使用し、同軸線路で遮断周波数fcを100[GHz]に選ぶと、その内径は、約1[mm]となる。このように細い同軸線路では、損失が増加するばかりでなく、わずかな機械的誤差が伝送特性に大きな影響を及ぼす。   There are coaxial lines and flexible waveguides as electromagnetic wave transmission media for connecting high-frequency devices whose relative positions cannot be accurately determined or where one or both positions change. Coaxial lines are often used because they are flexible and relatively inexpensive. However, as the frequency increases, the diameter needs to be reduced, increasing the transmission loss and improving the machining accuracy to maintain the transmission characteristics. Problems such as a rise and a decrease in durability occur. For example, when Teflon (registered trademark) is used as an insulator and the cutoff frequency fc is set to 100 [GHz] with a coaxial line, the inner diameter becomes about 1 [mm]. In such a thin coaxial line, not only the loss increases, but a slight mechanical error greatly affects the transmission characteristics.

伝送損失防止の観点からは可撓性導波管が優れているが、可撓性導波管は、管壁部分が特殊形状(例えばベローズ状)に成形する必要があるため(特許文献1、2参照)、生産効率が著しく悪い。加えて、可撓性導波管では、例えば30[GHz]を超えてミリ波帯まで使用できるような構造を実現するためには複雑かつ高度な加工技術が必要となる。また、そのような細い可撓性導波管では、耐久性に欠ける。   A flexible waveguide is excellent from the viewpoint of preventing transmission loss, but the flexible waveguide needs to be formed into a special shape (for example, bellows) in the tube wall portion (Patent Document 1, 2), production efficiency is extremely poor. In addition, the flexible waveguide requires a complicated and advanced processing technique in order to realize a structure that can be used up to, for example, a millimeter wave band exceeding 30 [GHz]. Further, such a thin flexible waveguide lacks durability.

ベローズ状の金属製導波管ではなく、誘電体棒の表面に薄い導体をすき間無く張り付けた、断面楕円状の導波管も存在する(特許文献3)。このような導波管は、誘電体棒を作成した後にその表面に金属テープを巻いたり、あるいは、導電メッキを施したりするだけで導波管が得られるので、低コストで製造できる利点がある。しかしこのような導波管では、伝送損失が大きく、また、柔軟性が十分でない。さらに、断面が楕円状であるために曲げに対して伝送モードが不安定になり、特性が変化するという課題が残る。   There is not a bellows-shaped metal waveguide but also a waveguide having an elliptical cross section in which a thin conductor is stuck on the surface of a dielectric rod without any gap (Patent Document 3). Such a waveguide has an advantage that it can be manufactured at a low cost because a waveguide can be obtained simply by winding a metal tape on the surface of the dielectric rod after forming the dielectric rod or applying a conductive plating. . However, such a waveguide has a large transmission loss and is not flexible enough. Furthermore, since the cross section is elliptical, the transmission mode becomes unstable with respect to bending, and the problem that the characteristics change remains.

このような課題を解決するため、本発明者らは、使用する電磁波の周波数帯が高くても製造コストを上昇させることなく、曲げが生じても伝送モードに悪影響を与えない電磁波伝送媒体を開示した(特許文献4)。この電磁波伝送媒体は、筒状管が、管軸と直交する方向の断面形状が管軸方向で同一となるように成型され、且つ、リッジ部によってマッチングするインピーダンス範囲を広くすることができるので、導波管や同軸線路等に比べて加工が容易となる。また、リッジ部が、曲げが生じたときの補強材として作用するとともに、伝送モードを安定にすることができるので、曲げによる特性の劣化も抑制できるという優れた効果を奏する。   In order to solve such problems, the present inventors have disclosed an electromagnetic wave transmission medium that does not adversely affect the transmission mode even if bending occurs without increasing the manufacturing cost even if the frequency band of the electromagnetic wave used is high. (Patent Document 4). In this electromagnetic wave transmission medium, the cylindrical tube is molded so that the cross-sectional shape in the direction orthogonal to the tube axis is the same in the tube axis direction, and the impedance range matched by the ridge portion can be widened. Processing becomes easier compared to waveguides, coaxial lines, and the like. Further, since the ridge portion acts as a reinforcing material when bending occurs and the transmission mode can be stabilized, an excellent effect is obtained in that deterioration of characteristics due to bending can be suppressed.

実公昭41−018451号公報Japanese Utility Model Publication No. 41-018451 実公昭45−018273号公報Japanese Utility Model Publication No. 45-018273 特開平8−195605号公報JP-A-8-195605 特開2010−16714号公報JP 2010-16714 A

特許文献4に開示された電磁波伝送媒体は、上記のように優れた効果を奏するものであるが、この電磁波伝送媒体では、筒状管の断面形状が中心に対して非対称となる態様が存在するため、従前構造の同軸線路等よりは加工がしやすいものの、加工の容易性をより高め、且つ、全方向の屈曲による変形耐性を強化できる構造のものに改善する必要があった。
本発明は、上記の問題に鑑みてなされたものであり、その目的は、加工がより容易で、屈曲による変形耐性もある電磁波伝送媒体を提供することにある。
The electromagnetic wave transmission medium disclosed in Patent Document 4 has excellent effects as described above. However, in this electromagnetic wave transmission medium, there is an aspect in which the cross-sectional shape of the cylindrical tube is asymmetric with respect to the center. Therefore, although it is easier to process than a coaxial line having a conventional structure, it has been necessary to improve to a structure that can further improve the ease of processing and enhance the deformation resistance due to bending in all directions.
The present invention has been made in view of the above problems, and an object of the present invention is to provide an electromagnetic wave transmission medium that is easier to process and that is resistant to deformation due to bending.

本発明が提供する電磁波伝送媒体は、管軸と直交する方向の断面が管軸方向で同一形状となるように成型された筒状管を有し、前記筒状管は、その内壁が表皮深さ以上の厚みを有する導電体で形成されており、前記断面の形状が、前記筒軸を指向するn対(nは1以上の自然数)のリッジ部を有し且つ前記筒状管が屈曲しても各対のリッジ部が線対称を維持する閉曲面形状であり、これにより、前記n対のリッジ部を通じてnの信号が互いに独立性を保ったまま伝送可能とされ、各対のリッジ部には、それぞれ他の対のリッジ部と異なる部位から、独立に高周波電力が給電されることを特徴とする。 An electromagnetic wave transmission medium provided by the present invention has a cylindrical tube formed so that a cross section in a direction orthogonal to the tube axis has the same shape in the tube axis direction, and the inner wall of the cylindrical tube has a skin depth. The cross-sectional shape has n pairs (n is a natural number of 1 or more) ridges directed to the cylinder axis, and the cylindrical tube is bent. and is also a closed surface shape ridge portions of each pair to keep the line symmetry, thereby, the n is can be transmitted while the signal n is maintaining mutually independent through the ridge portion of the pair, the ridge portions of each pair Is characterized in that high-frequency power is fed independently from a portion different from each of the other pair of ridge portions.

本発明の電磁波伝送媒体の前記断面の形状は、より具体的には、前記筒状管の内径に相当する第1の円と、この第1の円の内壁にそれぞれ当該第1の円よりも内径が小さいn対の小円の外壁とを一体に接続した閉曲面形状であり、各小円がそれぞれ前記リッジ部をなす。   More specifically, the shape of the cross section of the electromagnetic wave transmission medium of the present invention is more specifically the first circle corresponding to the inner diameter of the cylindrical tube, and the inner wall of the first circle than the first circle, respectively. A closed curved surface shape is formed by integrally connecting the outer walls of n pairs of small circles having a small inner diameter, and each small circle forms the ridge portion.

ある実施の態様では、対向するリッジ部同士を結ぶ線が前記断面上で直交する2対のリッジ部を含み、一方の対のリッジ部の所定部位には第1周波数の高周波電力を給電するための第1給電点が存在しており、他方の対のリッジ部の一つであって前記第1給電点から前記第1周波数の高周波電力の伝搬波長の略1/2だけ離れた部位には、前記第1周波数と異なる第2周波数の高周波電力を給電するための第2給電点が存在する。 In one embodiment, a line connecting opposing ridge portions includes two pairs of ridge portions that are orthogonal to each other on the cross section, and high frequency power of a first frequency is supplied to a predetermined portion of one pair of ridge portions. first and feed point exists of approximately 1/2 but only distant sites one at a by propagation wavelength of the RF power of the first frequency from the first feeding point of the ridge portion of the other pair Has a second feeding point for feeding high-frequency power having a second frequency different from the first frequency.

前記断面のサイズは、例えば、電磁波の自由空間速度がC、前記第1の円の断面内周を辿った円弧の長さの総計がL、前記筒状管の内部空間の誘電率がεである場合、前記内部空間に導入される電磁波を、遮断周波数fc(=1.84C/(√εL)で遮断するサイズである。前記内部空間は自由空間であっても良く、誘電体が充填されていても良い。   The size of the cross section is, for example, that the free space velocity of electromagnetic waves is C, the total length of arcs that follow the inner circumference of the first circle is L, and the dielectric constant of the internal space of the cylindrical tube is ε. In some cases, the electromagnetic wave introduced into the internal space has a size that blocks the electromagnetic wave with a cutoff frequency fc (= 1.84 C / (√εL). The internal space may be a free space and is filled with a dielectric. May be.

本発明の電磁波伝送媒体は、筒状管が、管軸と直交する方向の断面形状が管軸方向で同一となるように成型され、且つ、リッジ部によってマッチングするインピーダンス範囲を広くすることができるので、周波数が高くなっても(例えば100GHz以上のミリ波帯でも)加工が容易であり、量産性に優れる効果がある。
また、本発明の電磁波伝送媒体の断面形状は、n対のリッジ部がそれぞれ筒状管の中心に対して対称をなす円形リッジ導波管形状なので、加工が容易で、全方向の屈曲による変形耐性を既存のものよりも高めることができる。
n対のリッジ部は、曲げが生じたときの補強材として作用するので、屈曲による変形耐性を既存のものよりも高まるとともに、伝送姿態を安定にすることができるので、特性の劣化を抑制することができる。さらに、各対のリッジ部の一方のリッジ部にそれぞれ高周波電力が給電されるので、n種類の高周波電力を同時に伝送することができる。
In the electromagnetic wave transmission medium of the present invention, the cylindrical tube is molded so that the cross-sectional shape in the direction orthogonal to the tube axis is the same in the tube axis direction, and the impedance range matched by the ridge portion can be widened. Therefore, even if the frequency is increased (for example, even in a millimeter wave band of 100 GHz or more), the processing is easy, and there is an effect that the mass productivity is excellent.
Further, the cross-sectional shape of the electromagnetic wave transmission medium of the present invention is a circular ridge waveguide shape in which n pairs of ridge portions are symmetrical with respect to the center of the tubular tube, so that processing is easy and deformation by bending in all directions is possible. Resistance can be increased over existing ones.
Since the n pairs of ridge portions act as a reinforcing material when bending occurs, the deformation resistance due to bending can be increased as compared with the existing ones, and the transmission state can be stabilized, thereby suppressing deterioration of characteristics. be able to. Furthermore, since high frequency power is supplied to one ridge portion of each pair of ridge portions, n types of high frequency power can be transmitted simultaneously.

本発明を適用した筒状管の第1実施形態の断面構造例を示す斜視図。The perspective view which shows the cross-sectional structure example of 1st Embodiment of the cylindrical pipe | tube to which this invention is applied. 第1実施形態の筒状管の電界分布を示した説明図。Explanatory drawing which showed the electric field distribution of the cylindrical tube of 1st Embodiment. 筒状管と同軸線路との結合構造体を示す側面断面図。Side surface sectional drawing which shows the coupling structure of a cylindrical tube and a coaxial line. 図3のB点での断面図。Sectional drawing in the B point of FIG. 図3のC点での断面図。Sectional drawing in the C point of FIG. 第1実施形態の筒状管の通過特性図。The passage characteristic figure of the cylindrical tube of a 1st embodiment. 参考として示した同軸線路の通過特性図。The transmission characteristic figure of the coaxial line shown as reference. 第1実施形態の筒状管の信号分離度。The signal separation degree of the cylindrical tube of 1st Embodiment. 第1実施形態の筒状管の反射電力の変化を示した特性図。The characteristic view which showed the change of the reflected power of the cylindrical tube of 1st Embodiment. 筒状管の応用例として示した高周波デバイスの測定システムの説明図。Explanatory drawing of the measurement system of the high frequency device shown as an example of application of a cylindrical tube. 第2実施形態の筒状管の断面構造例を示す斜視図。The perspective view which shows the cross-section structural example of the cylindrical pipe | tube of 2nd Embodiment. 第2実施形態の筒状管の通過特性図。The passage characteristic figure of the cylindrical pipe of a 2nd embodiment. 第2実施形態の筒状管の反射電力の変化を示した特性図。The characteristic view which showed the change of the reflected power of the cylindrical tube of 2nd Embodiment. 第3実施形態の筒状管の断面図。Sectional drawing of the cylindrical pipe | tube of 3rd Embodiment. 第4実施形態の筒状管の断面図。Sectional drawing of the cylindrical pipe | tube of 4th Embodiment. 第4実施形態の筒状管の通過特性図。The passage characteristic figure of the cylindrical pipe of a 4th embodiment. 第4実施形態の筒状管の反射電力の変化を示した特性図。The characteristic view which showed the change of the reflected power of the cylindrical tube of 4th Embodiment. 第4実施形態の筒状管の信号分離度。The signal separation degree of the cylindrical tube of 4th Embodiment.

以下、図面を参照して、本発明の電磁波伝送媒体の実施の形態例を説明する。
[第1実施形態]
本発明を適用した電磁波伝送媒体は、可撓性の筒状管と、この筒状管の内壁にその外壁の一部を接続したn対(nは1以上の自然数)の内部導体とを主たる要素として含む。
図1は、nが2である筒状管において、管軸と直交する方向の断面形状例を示した斜視図である。図1に例示される筒状管1は、断面形状が、第1の円1aと、第1の円1aの内部で第1の円の中心(筒状管1の管軸)に対して対称に配置された第2の円1b及び第3の円1cの対と、第1の円1aの内部で第1の円の中心に対して対称で、第2の円1bの中心と第3の円1cの中心とを結ぶ軸線と直交する軸線上に位置する第4の円1d及び第5の円1eの対とを接続した閉曲面をなす。
第2〜第5の円1b〜1eの円弧で囲まれた空間を本明細書では陥没空間40と呼ぶ。第2〜第5の円1b〜1eの円弧角は、使用する周波数に応じて、それぞれ対象軸から左右方向にそれぞれ90度〜180度の範囲の値を採用し得る。180度の場合、陥没空間40は、第1の円1aの内壁に第2〜第5の円1b〜1eが内接した形となる。図1の断面形状は、筒状管1の管軸方向で同一となるように成型される。
Embodiments of an electromagnetic wave transmission medium according to the present invention will be described below with reference to the drawings.
[First Embodiment]
An electromagnetic wave transmission medium to which the present invention is applied mainly includes a flexible cylindrical tube and n pairs (n is a natural number of 1 or more) of internal conductors in which a part of the outer wall is connected to the inner wall of the cylindrical tube. Include as an element.
FIG. 1 is a perspective view showing an example of a cross-sectional shape in a direction perpendicular to the tube axis in a cylindrical tube where n is 2. As shown in FIG. The cylindrical tube 1 illustrated in FIG. 1 is symmetrical with respect to the first circle 1a and the center of the first circle (the tube axis of the tubular tube 1) inside the first circle 1a. A pair of the second circle 1b and the third circle 1c arranged in the first circle 1a, symmetrical with respect to the center of the first circle inside the first circle 1a, and the center of the second circle 1b and the third circle A closed curved surface is formed by connecting a pair of a fourth circle 1d and a fifth circle 1e located on an axis orthogonal to the axis connecting the center of the circle 1c.
A space surrounded by the arcs of the second to fifth circles 1b to 1e is referred to as a depressed space 40 in this specification. As the arc angles of the second to fifth circles 1b to 1e, values in the range of 90 degrees to 180 degrees in the left-right direction from the target axis can be employed, respectively, depending on the frequency to be used. In the case of 180 degrees, the depressed space 40 has a shape in which the second to fifth circles 1b to 1e are inscribed on the inner wall of the first circle 1a. The cross-sectional shape of FIG. 1 is molded so as to be the same in the tube axis direction of the tubular tube 1.

筒状管1のうち、第1の円1aに相当する部分は、その厚みが、少なくとも表皮深さ以上となる導電体で構成される。但し、電磁波を伝搬させるための伝送空間30と接する部分が導電体であれば良いので、樹脂等の加工しやすい部材の表面に表皮深さ以上の導電層を設けるようにしても良い。導電体又は導電層は、金、銀、銅のいずれか、あるいは、その組み合わせから成る。
「表皮深さ」は、表皮効果により高周波電流が表面の37%になる表面からの距離をいう。この距離で高周波電流が表面の値の1/e になる。eは自然対数の底(約2.72)であり、1/eが約0.37となる。導電体又は導電層で生ずる損失は、その表面から表皮深さの点まで一様に広がって流れていると仮定したときのオーム損失で近似的に与えられる。表皮深さは、ミリ波帯では、数ミクロン程度あるいはそれ以下となる。
A portion of the tubular tube 1 corresponding to the first circle 1a is made of a conductor whose thickness is at least equal to or greater than the skin depth. However, since the portion in contact with the transmission space 30 for propagating the electromagnetic wave only needs to be a conductor, a conductive layer having a skin depth or more may be provided on the surface of a member that can be easily processed, such as resin. The conductor or conductive layer is made of gold, silver, copper, or a combination thereof.
“Skin depth” refers to the distance from the surface where the high frequency current is 37% of the surface due to the skin effect. At this distance, the high frequency current becomes 1 / e of the surface value. e is the base of natural logarithm (about 2.72), and 1 / e is about 0.37. The loss that occurs in the conductor or conductive layer is approximately given by the ohmic loss when it is assumed that it flows uniformly from the surface to the skin depth. The skin depth is about several microns or less in the millimeter wave band.

この実施形態の筒状管1は、両端部を有しており、一端側の1対の内部導体に、第1周波数の高周波電力を印加するとともに、もう1対の内部導体に、第1周波数と異なる第2周波数の高周波電力を印加することにより、図2に示されるように、第1周波数の高周波電力により生じる電界E1(破線)と第2周波数の高周波電力により生じる電界E2(実線)とが励起される。   The tubular tube 1 of this embodiment has both ends, and applies high frequency power of a first frequency to a pair of inner conductors on one end side, and a first frequency to the other pair of inner conductors. 2, an electric field E1 (broken line) generated by the high frequency power of the first frequency and an electric field E2 (solid line) generated by the high frequency power of the second frequency, as shown in FIG. Is excited.

管軸を中心として対称となる1対の内部導体は、それぞれダブルリッジとして機能する。そこで、以後の説明では、その断面が第2の円1b及び第3の円1cの対から成る内部導体を第1ダブルリッジ、その断面が第4の円1d及び第5の円1eの対から成る内部導体を第2ダブルリッジと称する。また、それぞれの内部導体を特に区別する必要が無い場合は、「リッジ部」と呼ぶ。
電界E1の信号は、第1ダブルリッジを構成する内部導体間を最短で結ぶ方向に電界方向が拘束されたまま筒状管1の管軸方向に伝搬し、他方、電界E2の信号は、第2ダブルリッジを構成する内部導体間を最短で結ぶ方向に電界方向が拘束されたまま筒状管1の管軸方向に伝搬する。
A pair of inner conductors that are symmetrical about the tube axis function as a double ridge. Therefore, in the following description, the inner conductor whose cross section consists of a pair of the second circle 1b and the third circle 1c is the first double ridge, and the cross section thereof is the pair of the fourth circle 1d and the fifth circle 1e. The inner conductor formed is called a second double ridge. Further, when there is no need to distinguish each internal conductor, it is called a “ridge portion”.
The signal of the electric field E1 propagates in the tube axis direction of the tubular tube 1 while the electric field direction is constrained in the direction connecting the inner conductors constituting the first double ridge in the shortest direction, while the signal of the electric field E2 is 2 Propagates in the tube axis direction of the tubular tube 1 while the electric field direction is constrained in the direction connecting the inner conductors constituting the double ridge in the shortest direction.

その結果、電界E1の信号及び電界E2の信号は、筒状管1の他端の断面内において、独立に取り出すことができる。これらの2つの信号が伝搬する間、信号の電界方向、すなわち電界E1,E2の方向は、互いに電気的に直交しているので、信号が相互に結合することがない。すなわち、垂直偏波と水平偏波の電磁波が基本的に互いに影響を及ぼすことが無いのと同じで、電界E1の信号及び電界E2の信号は、伝搬中、相互に干渉することが無い。仮に、2つの信号の間にクロストークが発生したとしても、それは断面形状の機械的対称性の誤差、あるいは、直交性の誤差に応じて発生するものなので、これらの機械的条件を調整することによって、低減が可能である。筒状管1が、軸周りあるいは軸と垂直の方向に屈曲していても、断面内の機械的対称性が維持されていれば、2つの信号は、互いに独立性を保ったまま、伝送される。   As a result, the signal of the electric field E1 and the signal of the electric field E2 can be taken out independently in the cross section of the other end of the cylindrical tube 1. While these two signals propagate, the electric field directions of the signals, that is, the directions of the electric fields E1 and E2, are electrically orthogonal to each other, so that the signals are not coupled to each other. That is, the electromagnetic waves of the vertically polarized wave and the horizontally polarized wave basically do not affect each other, and the signal of the electric field E1 and the signal of the electric field E2 do not interfere with each other during propagation. Even if crosstalk occurs between two signals, it is generated depending on the mechanical symmetry error of the cross-sectional shape or the error of orthogonality, so adjust these mechanical conditions. Can be reduced. Even if the cylindrical tube 1 is bent around the axis or in a direction perpendicular to the axis, if the mechanical symmetry in the cross section is maintained, the two signals are transmitted while maintaining independence from each other. The

<同軸線路との結合体>
筒状管1への高周波電力の給電は、同軸線路等を通じて行われる。図3は筒状管1と同軸線路との結合構造体を示す筒状管1の管軸方向の側面断面図であり、図4は図3のB点での断面図であり、図5は図3のC点での断面図である。
同軸線路において、接続媒体2の中心に具備された中央導体2aは、筒状管1の短絡面(A点)から所定の距離L1(=略1/4λ(λは伝搬波長)だけ離れた距離)の部位(B点)に、断面が円1dとなるリッジ部を貫通する接続媒体2を介して、断面が円1eとなるリッジ部に接続され、この方向に電界E1を励起させる。
<Coupled with coaxial line>
High-frequency power is supplied to the tubular tube 1 through a coaxial line or the like. 3 is a side cross-sectional view in the tube axis direction of the tubular tube 1 showing a coupling structure of the tubular tube 1 and the coaxial line, FIG. 4 is a cross-sectional view at point B in FIG. 3, and FIG. It is sectional drawing in the C point of FIG.
In the coaxial line, the center conductor 2a provided at the center of the connection medium 2 is a distance away from the short-circuited surface (point A) of the tubular tube 1 by a predetermined distance L1 (= approximately ¼λ (λ is a propagation wavelength)). ) (Point B) is connected to a ridge portion having a cross section of a circle 1e through a connection medium 2 penetrating the ridge portion having a cross section of a circle 1d, and an electric field E1 is excited in this direction.

もう一本の同軸線路において、接続媒体2の中心に具備された中央導体2bは、B点からL2(=略1/2λ(λは伝搬波長)だけ離れた距離)の部位(C点)に、断面が円1cとなるリッジ部を貫通する接続媒体2を貫通して断面が円1bとなるリッジ部に接続され、この方向に電界E2を励起させる。
励起した電界E1,E2の信号は、それぞれ、電気的に直交しながら、筒状管1の伝送空間30内を筒状管の軸長方向に伝搬する。
受信側も図3〜図5と同じ位置関係の結合構造体により、電界E1,E2の信号が同軸線路に伝達される。
In the other coaxial line, the central conductor 2b provided at the center of the connection medium 2 is located at a portion (point C) of L2 (= a distance of about 1 / 2λ (λ is a propagation wavelength)) from the point B. The connection medium 2 passing through the ridge having a cross section of a circle 1c is connected to the ridge having a cross section of a circle 1b, and the electric field E2 is excited in this direction.
The excited signals of the electric fields E1 and E2 propagate in the axial direction of the cylindrical tube in the transmission space 30 of the cylindrical tube 1 while being electrically orthogonal to each other.
On the receiving side, the signals of the electric fields E1 and E2 are transmitted to the coaxial line by the coupling structure having the same positional relationship as in FIGS.

<特性>
次に、筒状管1の特性について説明する。
第1の円1aの内径をD、第2〜5の円1b〜1eの外径をd、第2〜5の円の数をN(=4)、遮断周波数をfc、遮断波長をλcとすると、第2〜5の円1b〜1eが、第1の円1aと接している場合の遮断周波数fcは、近似的に以下の式で求めることができる。Cは電磁波の自由空間速度である。
fc=C/λc
=1.84C/(π√ε(D+Nd))
<Characteristic>
Next, the characteristics of the cylindrical tube 1 will be described.
The inner diameter of the first circle 1a is D, the outer diameter of the second to fifth circles 1b to 1e is d, the number of the second to fifth circles is N (= 4), the cutoff frequency is fc, and the cutoff wavelength is λc. Then, the cut-off frequency fc when the second to fifth circles 1b to 1e are in contact with the first circle 1a can be approximately calculated by the following expression. C is the free space velocity of the electromagnetic wave.
fc = C / λc
= 1.84C / (π√ε (D + Nd))

また、第2〜5の円1b〜1eが第1の円1aと接する条件に対し、第2〜5の円1b〜1eの中心が外側にオフセットしていることによって、互いの円が部分的に重複し、円弧が欠損する位置に配置されている場合、断面の内周を辿って計った円弧の総計Lを用い、遮断周波数fc、及び、遮断波長λcを、以下のように置き換えることができる。
fc=C/λc
=1.84C/(√εL)
Further, the second to fifth circles 1b to 1e are in contact with the first circle 1a, and the centers of the second to fifth circles 1b to 1e are offset to the outside. And the cut-off frequency fc and cut-off wavelength λc can be replaced as follows using the total arc L measured along the inner circumference of the cross section. it can.
fc = C / λc
= 1.84C / (√εL)

遮断周波数fcは、同軸線路と逆に、使用周波数よりも低い周波数でなければならないから、同軸線路で太さの制約が課されるのに対し、筒状管1では、細さの制約が課せられる。このため、ごく高い周波数においては、加工上、格段に有利となる。また、伝送特性インピーダンスは、d/Dで定まるが、筒状管1の場合、d/Dは、0.25〜0.5の程度に選択することができる。この比は、外形サイズ、遮断周波数、損失、可撓性の関係から総合的に決定する。   The cut-off frequency fc must be lower than the operating frequency, contrary to the coaxial line, so that the thickness restriction is imposed on the coaxial line, whereas the tubular tube 1 is limited in thinness. It is done. For this reason, it is extremely advantageous in terms of processing at very high frequencies. The transmission characteristic impedance is determined by d / D. In the case of the tubular tube 1, d / D can be selected to be about 0.25 to 0.5. This ratio is comprehensively determined from the relationship between the external size, cutoff frequency, loss, and flexibility.

また、相対的に小さい第2〜5の円1b〜1eが、相対的に大きな第1の円と接する条件に対し、第2〜5の円1b〜1eの中心が、やや外側にオフセットしていることによって、互いの円が部分的に重複し、円弧の一部が欠損する。第2〜5の円1b〜1eの内接位置からの中心のずれ寸法/第2〜5の円1b〜1eの半径をオフセット量とすると、このオフセット量は、当該筒状管1のねじれ、曲げに対し、偏波が安定に伝送できることを目的として、0(第2〜5の円1b〜1eが第1の円1aに内接する位置)乃至0.5(第2〜5の円1b〜1eが第1の円1aに半分埋没する位置)以上の値が選択される。   Further, the center of the second to fifth circles 1b to 1e is slightly offset to the outside with respect to the condition that the relatively small second to fifth circles 1b to 1e are in contact with the relatively large first circle. As a result, the circles partially overlap and a part of the arc is lost. Assuming that the offset amount is the center shift dimension from the inscribed position of the second to fifth circles 1b to 1e / the radius of the second to fifth circles 1b to 1e, this offset amount is the twist of the tubular tube 1, For the purpose of stably transmitting polarized waves against bending, 0 (position where the second to fifth circles 1b to 1e are inscribed in the first circle 1a) to 0.5 (second to fifth circles 1b to 1b) A value greater than or equal to the position at which 1e is half buried in the first circle 1a is selected.

すなわち、当該筒状管1のねじれ、曲げが生じないか、生じても著しく小さい場合、オフセット量は、1(第2〜5の円1b〜1eが完全に第1の円1aに埋没し、実質的に存在しない状態)であっても良いが、当該伝送媒体のねじれ、曲げが増加する場合、これに耐えて偏波を安定に伝送するためには、オフセット量を0に近づくように減少させる必要がある。オフセット量が0に近づいて伝送空間30の断面積が減少し、接する円弧のなす角が鋭角になると、筒状管1の内壁面に流れる電流密度と表皮効果とが増加し、損失増加の原因となる。また、内部への凸が深くなると、その製作の困難度合いが増す。このような製作上の難易度と電気的特性(ねじれ、曲げに対する伝送姿態安定性と伝送損失)を勘案し、好ましくは、0.25〜0.75の間で、オフセット量を選択する。   That is, when the tubular tube 1 is not twisted or bent or is extremely small even if it occurs, the offset amount is 1 (the second to fifth circles 1b to 1e are completely buried in the first circle 1a, However, when the twist or bend of the transmission medium increases, the offset amount decreases so as to approach 0 in order to withstand this and transmit the polarization stably. It is necessary to let When the offset amount approaches 0, the cross-sectional area of the transmission space 30 decreases, and the angle formed by the arcs in contact therewith becomes an acute angle, the current density flowing on the inner wall surface of the tubular tube 1 and the skin effect increase, causing an increase in loss. It becomes. Further, when the convexity toward the inside becomes deep, the degree of difficulty in production increases. In consideration of such difficulty in manufacture and electrical characteristics (transmission state stability against transmission and bending and transmission loss), the offset amount is preferably selected between 0.25 and 0.75.

次に、D=2mm、d=0.6mm、オフセット=0.03mm/0.3mmに選んだ、d/D=0.3、オフセット=0.1、銅製の筒状管1の特性を具体的に説明する。
図6は、線路長5mmあたりの通過特性図であり、100GHz〜330GHzの範囲の例を示している。
また、図7は、330GHzまで使用できる同軸線路の通過特性図である。
このように高い周波数の信号を伝送する場合、同軸線路は、その外部導体の直径は0.3mmを下回る必要があるが、本実施形態の筒状管1は、その6倍のサイズで足りるため、加工が格段に容易になることがわかる。
また、同軸線路の場合、例えば150GHzにおける通過損失は100mm当たり少なくとも3dBを上回る程度であるのに対し、本実施形態の筒状管1では約0.7dBであり、大幅に通過損失を低減できることがわかる。
Next, D = 2mm, d = 0.6mm, offset = 0.03mm / 0.3mm, d / D = 0.3, offset = 0.1, the characteristics of the cylindrical tube 1 made of copper are concrete I will explain it.
FIG. 6 is a transmission characteristic diagram per line length of 5 mm, and shows an example in the range of 100 GHz to 330 GHz.
FIG. 7 is a pass characteristic diagram of a coaxial line that can be used up to 330 GHz.
When transmitting a signal with a high frequency in this way, the coaxial line needs to have a diameter of the outer conductor of less than 0.3 mm, but the cylindrical tube 1 of the present embodiment suffices with a size six times that of the coaxial line. It can be seen that the processing becomes much easier.
In the case of a coaxial line, for example, the passage loss at 150 GHz is at least about 3 dB per 100 mm, whereas the tubular tube 1 of the present embodiment is about 0.7 dB, and the passage loss can be greatly reduced. Recognize.

図8は、図6と同じ条件で構成した筒状管1の信号分離度の一例を、100GHz〜330GHzの範囲で示した特性図である。本実施形態の筒状管1は、120GHz〜300GHzの広帯域にわたり、概ね50dBの信号分離度が実現できており、実用上、独立な2つの信号を同時に伝送できることがわかる。   FIG. 8 is a characteristic diagram showing an example of the signal separation of the cylindrical tube 1 configured under the same conditions as in FIG. 6 in the range of 100 GHz to 330 GHz. It can be seen that the tubular tube 1 of the present embodiment can achieve a signal separation of approximately 50 dB over a wide band of 120 GHz to 300 GHz, and can transmit two signals that are practically independent simultaneously.

図9は、図6と同じ条件で構成した筒状管1の反射電力の一例を、100GHz〜330GHzの範囲で示した特性図である。反射電力も、広帯域にわたって良好であることがわかる。   FIG. 9 is a characteristic diagram showing an example of the reflected power of the cylindrical tube 1 configured under the same conditions as in FIG. 6 in the range of 100 GHz to 330 GHz. It can be seen that the reflected power is also good over a wide band.

<応用例>
図10は、本実施形態の筒状管1を、高周波デバイスの測定システムに応用した場合の説明図である。図示の測定システムは、高周波測定器3と二端子対高周波デバイス6との間に、同軸線路4と、信号(S)及び接地(G)を組み合わせた高周波2信号配列を有する試験探針5を介して、独立した2つの信号を同時に伝送できる筒状管1を設けている。筒状管1は同軸線路4よりも低損失なので、その分、距離を延長し、且つ、2つの信号を1本の柔軟で耐久性に優れ、廉価な伝送路で共用伝送できるので、測定システムにおける伝送路の取り回しは格段に円滑となり、測定の利便性を高めることができる。
<Application example>
FIG. 10 is an explanatory diagram when the cylindrical tube 1 of the present embodiment is applied to a measurement system for a high-frequency device. The illustrated measurement system includes a test probe 5 having a high-frequency two-signal arrangement in which a coaxial line 4 and a signal (S) and ground (G) are combined between a high-frequency measuring device 3 and a two-terminal pair high-frequency device 6. A cylindrical tube 1 capable of transmitting two independent signals simultaneously is provided. Since the cylindrical tube 1 has a lower loss than the coaxial line 4, the distance can be extended by that amount, and two signals can be shared and transmitted through a single flexible, durable and inexpensive transmission line. In this case, the transmission line can be routed smoothly and the convenience of measurement can be improved.

<製法>
筒状管1は、以下のようにして製造することができる。
まず、上記の閉曲面内の伝送空間30を残すような抜き型を作成し、この抜き型を用いて、基体を引き抜き成型する。これにより、外被シース(第1の円1aの外壁)と2対のダブルリッジとが形成され、全体的に円形断面とする。引き抜き成型は、基体を鋼製のダイから引き抜くことで断面が閉曲面状の筒を得る成型法である。筒状管の管軸と垂直な方向の断面に対して、ほぼ鉛直な方向に必要なだけ延出することができるので、同一の断面形状を維持したまま、一方向に強度を大きくした成型品(筒状管1)を量産することができる。
<Production method>
The cylindrical tube 1 can be manufactured as follows.
First, a die that leaves the transmission space 30 in the above-described closed curved surface is created, and the base is drawn and molded using this die. As a result, an outer sheath (outer wall of the first circle 1a) and two pairs of double ridges are formed, and the entire cross section is circular. The pultrusion molding is a molding method in which a base is drawn from a steel die to obtain a cylinder having a closed curved section. Because it can extend as much as necessary in a substantially vertical direction with respect to the cross section of the tube that is perpendicular to the tube axis, the molded product has increased strength in one direction while maintaining the same cross-sectional shape. The (tubular tube 1) can be mass-produced.

外被シースは、曲げに対する座屈強度を向上するためのガラス繊維やその他の補強部材を含む。曲げをより容易にするために、適度なエラストマー性を有していても良い。抜き型で引き抜き成型した後、必要に応じて、伝送空間30に剥離強度を増すための下地鍍金、表皮抵抗を低減するための表層鍍金を施す。下地鍍金と表層鍍金の間には、必要に応じて拡散防止層を挟んでも良い。表層鍍金は導電層を形成する。   The outer sheath includes glass fibers and other reinforcing members for improving the buckling strength against bending. In order to make bending easier, it may have an appropriate elastomeric property. After pultrusion with a punching die, base plating for increasing the peel strength and surface plating for reducing skin resistance are applied to the transmission space 30 as necessary. A diffusion prevention layer may be sandwiched between the base plating and the surface plating as necessary. The surface plating forms a conductive layer.

伝送空間30は自由空間なので、伝送損失の向上に資することができるが、この伝送空間30に誘電体を充填しても良い。この場合は、自由空間のときより損失は増加するものの、伝送路の曲げに対する座屈強度の向上と伝送路径の電気的短縮が実現できる。   Since the transmission space 30 is a free space, it can contribute to an improvement in transmission loss, but the transmission space 30 may be filled with a dielectric. In this case, although the loss increases compared with the free space, it is possible to improve the buckling strength against the bending of the transmission path and to electrically shorten the transmission path diameter.

このようにして製造される筒状管1において、伝送空間30に導入される電磁波の伝送モードは、断面内に一対の電界の極を有する点で、矩形導波管、円形導波管とほぼ同じとなる。すなわち、この筒状管1は、図2の電界分布図に示されるように、円形導波管、矩形導波管の応用であるダブルリッジ導波管の電界分布特性をほぼ受け継いでいる。
特に、本実施形態の例では、第2〜第5の円1b〜1eの円弧をそれぞれリッジ部として作用させることにより、インピーダンスが整合する範囲が拡大するばかりでなく、また、電界極の位置を固定することができるので、曲げが生じた場合であっても、伝送空間30における伝送モードを安定にすることができる。この点が、曲げによって電界分布が変化する円形導波管や同軸線路と大きく異なる。
In the cylindrical tube 1 manufactured in this way, the transmission mode of the electromagnetic wave introduced into the transmission space 30 is substantially the same as that of the rectangular waveguide and the circular waveguide in that it has a pair of electric field poles in the cross section. It will be the same. That is, as shown in the electric field distribution diagram of FIG. 2, the cylindrical tube 1 substantially inherits the electric field distribution characteristic of the double ridge waveguide, which is an application of a circular waveguide and a rectangular waveguide.
In particular, in the example of this embodiment, by making the arcs of the second to fifth circles 1b to 1e act as ridge portions, not only the impedance matching range is expanded, but also the position of the electric field electrode is changed. Since it can be fixed, the transmission mode in the transmission space 30 can be stabilized even when bending occurs. This is very different from a circular waveguide or coaxial line whose electric field distribution changes due to bending.

[第2実施形態]
本発明の電磁波伝送媒体は、第1実施形態以外の形態で実施することもできる。
例えば、図11に例示した筒状管は、管軸と直交する方向の断面形状が、第1の円1aの内壁に、1対のリッジ部、すなわち第2の円1b及び第3の円1cの対を接続した閉曲面をなす。この断面形状は、筒状管の管軸方向で同一となるように成型される。
図12は、D=1.8mm,d=0.9mm,(d/D=0.5),オフセット0.25mm/0.45mm=0.5の場合の通過特性図である。また、図13は、図12と同じ条件での反射電力の特性である。
[Second Embodiment]
The electromagnetic wave transmission medium of the present invention can be implemented in forms other than the first embodiment.
For example, the cylindrical tube illustrated in FIG. 11 has a cross-sectional shape in a direction orthogonal to the tube axis, and a pair of ridges, that is, a second circle 1b and a third circle 1c, on the inner wall of the first circle 1a. Forms a closed surface that connects pairs of. This cross-sectional shape is molded so as to be the same in the tube axis direction of the cylindrical tube.
FIG. 12 is a pass characteristic diagram when D = 1.8 mm, d = 0.9 mm, (d / D = 0.5), and offset 0.25 mm / 0.45 mm = 0.5. FIG. 13 shows the characteristics of the reflected power under the same conditions as in FIG.

[第3実施形態]
第1実施形態及び第2実施形態では、リッジ部がすべて同じ形状及びサイズである場合の例を示したが、対となるリッジ部が同じ形状及びサイズで、且つ、管軸に対して対称になれば良いので、例えば図14に示すように、これまで説明した第2の円1b及び第3の円1cの部位に、これらよりも径の異なる円1b’,1c’を設けるようにしても良い。
[Third Embodiment]
In the first embodiment and the second embodiment, an example in which all the ridge portions have the same shape and size is shown, but the paired ridge portions have the same shape and size and are symmetrical with respect to the tube axis. For example, as shown in FIG. 14, circles 1 b ′ and 1 c ′ having different diameters may be provided at the portions of the second circle 1 b and the third circle 1 c described so far. good.

[第4実施形態]
本発明の電磁波伝送媒体では、4対のリッジ部を設けることもできる。
例えば、図15は、第1実施形態において説明した第2の円1bと第4の円1dの間に第6の円1f、第4の円1dと第3の円1cの間に第8の円1h、第3の円1cと第5の円1eの間に第7の円1g、第5の円1eと第2の円1bの間に第9の円1iを設け、管軸に対して対称となる第6の円1fと第7の円1gとで第3のダブルブリッジを形成し、同じく管軸に対して対称となる第8の円1hと第9の円1iとで第4のダブルブリッジを形成している。第2〜第5の円1b〜1eの外径はd1、第6〜第9の円1f〜1iの外径はd2(<d1)である。
[Fourth Embodiment]
In the electromagnetic wave transmission medium of the present invention, four pairs of ridge portions can be provided.
For example, FIG. 15 shows the sixth circle 1f between the second circle 1b and the fourth circle 1d described in the first embodiment, and the eighth circle between the fourth circle 1d and the third circle 1c. A seventh circle 1g is provided between the circle 1h, the third circle 1c and the fifth circle 1e, and a ninth circle 1i is provided between the fifth circle 1e and the second circle 1b. The sixth circle 1f and the seventh circle 1g that are symmetric form a third double bridge, and the eighth circle 1h and the ninth circle 1i that are also symmetric with respect to the tube axis are the fourth A double bridge is formed. The outer diameters of the second to fifth circles 1b to 1e are d1, and the outer diameters of the sixth to ninth circles 1f to 1i are d2 (<d1).

図16は、第4実施形態における筒状管の通過特性図であり、D=2mm,d1=0.6mm(d1/D=0.3),オフセット0.03/0.3mm=0.1、d2=0.4mm(d2/D=0.2) ,オフセット0.04/0.2mm=0.2の場合の例を示している。また、図17は第4実施形態における筒状管の反射電力、図18は、4つの信号の信号分離度を表している。
いずれも実用的な結果が得られていることがわかる。
FIG. 16 is a passage characteristic diagram of the cylindrical tube in the fourth embodiment, where D = 2 mm, d1 = 0.6 mm (d1 / D = 0.3), and offset 0.03 / 0.3 mm = 0.1. , D2 = 0.4 mm (d2 / D = 0.2) and offset 0.04 / 0.2 mm = 0.2. FIG. 17 shows the reflected power of the tubular tube in the fourth embodiment, and FIG. 18 shows the signal separation of the four signals.
It can be seen that practical results are obtained in both cases.

以上説明したように、本発明の電磁波伝送媒体の一例となる筒状管は、管軸と直交する方向の断面が管軸方向で同一となる形状に成型され、伝送空間30と接触する内壁部分が表皮深さ以上の厚みを有する導電体で形成されており、断面の形状は筒軸を指向するn対(nは1以上の自然数)のリッジ部を有し且つ各対のリッジ部が線対称をなす閉曲面形状なので、リッジ部が補強材として作用し、屈曲による変形耐性を既存のものよりも高まるとともに、伝送姿態を安定にすることができるので、特性の劣化を抑制することができる。また、リッジ部の存在によりマッチングするインピーダンス範囲を広くすることができるので、100GHz以上のミリ波帯であってもサイズを小さくする必要がなくなる分、加工が容易となる。
さらに、各対のリッジ部に、それぞれ他の対のリッジ部と異なる部位から、独立に高周波電力が給電されるので、1本の筒状管で複数の信号を同時に伝送することができる。
As described above, the cylindrical tube as an example of the electromagnetic wave transmission medium of the present invention is formed into a shape in which the cross section in the direction orthogonal to the tube axis is the same in the tube axis direction, and is in contact with the transmission space 30 Is formed of a conductor having a thickness equal to or greater than the skin depth, and the cross-sectional shape has n pairs (n is a natural number of 1 or more) of ridges directed to the cylinder axis, and each pair of ridges is a line. Since it is a closed curved surface that is symmetrical, the ridge portion acts as a reinforcing material, and the deformation resistance due to bending can be increased compared to the existing ones, and the transmission state can be stabilized, so that deterioration of characteristics can be suppressed. . In addition, since the matching impedance range can be widened by the presence of the ridge portion, the processing is facilitated because it is not necessary to reduce the size even in the millimeter wave band of 100 GHz or higher.
Furthermore, since high frequency power is independently fed to each pair of ridge portions from a portion different from each other pair of ridge portions, a plurality of signals can be transmitted simultaneously with one cylindrical tube.

1 筒状管
1a 外部導体となる第1の円
1b〜1i,1b’,1c’ 内部導体となる第2〜第9の円
2 接続媒体
2a,2b 同軸線路の中央導体
3 高周波測定器
4 同軸線路
5 試験探針
6 2端子対高周波デバイス
20 外被シース
30 伝送空間
40 陥没空間
DESCRIPTION OF SYMBOLS 1 Cylindrical tube 1a 1st circle | round | yen 1b-1i, 1b ', 1c' used as an outer conductor 2nd-9th circle used as an inner conductor 2 Connection medium 2a, 2b Center conductor of a coaxial line 3 High frequency measuring instrument 4 Coaxial Line 5 Test probe 6 Two-terminal pair high-frequency device 20 Outer sheath 30 Transmission space 40 Sink space

Claims (6)

管軸と直交する方向の断面が管軸方向で同一形状となるように成型された筒状管を有し、
前記筒状管は、その内壁が表皮深さ以上の厚みを有する導電体で形成されており、
前記断面の形状が、前記筒軸を指向するn対(nは1以上の自然数)のリッジ部を有し且つ前記筒状管が屈曲しても各対のリッジ部が線対称を維持する閉曲面形状であり、これにより、前記n対のリッジ部を通じてnの信号が互いに独立性を保ったまま伝送可能とされ、
各対のリッジ部には、それぞれ他の対のリッジ部と異なる部位から、独立に高周波電力が給電される、電磁波伝送媒体。
Having a tubular tube molded so that the cross section in the direction perpendicular to the tube axis has the same shape in the tube axis direction;
The cylindrical tube is formed of a conductor whose inner wall has a thickness equal to or greater than the skin depth,
The cross-sectional shape has n pairs (n is a natural number greater than or equal to 1) of ridges directed to the cylinder axis, and each pair of ridges maintains line symmetry even when the cylindrical tube is bent. A curved surface , whereby the n signals can be transmitted while being independent from each other through the n pairs of ridges;
An electromagnetic wave transmission medium in which each pair of ridges is independently supplied with high-frequency power from a different part from the other pair of ridges.
前記断面は、当該筒状管の内径に相当する第1の円と、この第1の円の内壁にそれぞれ当該第1の円よりも内径が小さいn対の小円の外壁とを一体に接続した閉曲面形状であり、各小円がそれぞれ前記リッジ部をなす、請求項1記載の電磁波伝送媒体。   In the cross section, a first circle corresponding to the inner diameter of the cylindrical tube and an outer wall of n pairs of small circles each having an inner diameter smaller than the first circle are integrally connected to the inner wall of the first circle. The electromagnetic wave transmission medium according to claim 1, wherein each of the small circles forms the ridge portion. 対向するリッジ部同士を結ぶ線が前記断面上で直交する2対のリッジ部を含み、
一方の対のリッジ部の所定部位には第1周波数の高周波電力を給電するための第1給電点が存在しており、
他方の対のリッジ部の一つであって前記第1給電点から前記第1周波数の高周波電力の伝搬波長の略1/2だけ離れた部位には、前記第1周波数と異なる第2周波数の高周波電力を給電するための第2給電点が存在する、請求項2記載の電磁波伝送媒体。
The line connecting the opposing ridge portions includes two pairs of ridge portions orthogonal on the cross section,
There is a first feeding point for feeding high-frequency power of the first frequency at a predetermined portion of one pair of ridge portions,
Be one of the ridge portion of the other pair wherein the substantially 1/2 but only distant sites of the first propagation wavelength of the RF power of the first frequency from the feed point, a second frequency different from the first frequency The electromagnetic wave transmission medium according to claim 2, wherein there is a second feeding point for feeding the high-frequency power.
前記断面のサイズは、電磁波の自由空間速度がC、前記第1の円の断面内周を辿った円弧の長さの総計がL、前記筒状管の内部空間の誘電率がεである場合、前記内部空間に導入される電磁波を、遮断周波数fc(=1.84C/(√εL)で遮断するサイズである、請求項3記載の電磁波伝送媒体。   When the free space velocity of electromagnetic waves is C, the total length of arcs that follow the inner circumference of the first circle is L, and the dielectric constant of the internal space of the cylindrical tube is ε The electromagnetic wave transmission medium according to claim 3, wherein the electromagnetic wave introduced into the internal space has a size that blocks an electromagnetic wave at a cutoff frequency fc (= 1.84 C / (√εL). 前記内部空間が自由空間である、請求項4記載の電磁波伝送媒体。   The electromagnetic wave transmission medium according to claim 4, wherein the internal space is a free space. 前記内部空間に誘電体が充填されている、請求項4記載の電磁波伝送媒体。 The electromagnetic wave transmission medium according to claim 4, wherein the internal space is filled with a dielectric.
JP2010220897A 2010-09-30 2010-09-30 Electromagnetic wave transmission medium Active JP5646940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010220897A JP5646940B2 (en) 2010-09-30 2010-09-30 Electromagnetic wave transmission medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010220897A JP5646940B2 (en) 2010-09-30 2010-09-30 Electromagnetic wave transmission medium

Publications (2)

Publication Number Publication Date
JP2012080178A JP2012080178A (en) 2012-04-19
JP5646940B2 true JP5646940B2 (en) 2014-12-24

Family

ID=46239964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010220897A Active JP5646940B2 (en) 2010-09-30 2010-09-30 Electromagnetic wave transmission medium

Country Status (1)

Country Link
JP (1) JP5646940B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6257401B2 (en) * 2014-03-20 2018-01-10 三菱電機株式会社 Antenna device
JP7152716B2 (en) * 2018-10-09 2022-10-13 オリンパス株式会社 Flexible waveguide, image transmission device having flexible waveguide, endoscope and endoscope system having flexible waveguide
CN112928418B (en) * 2021-03-12 2022-06-10 南通大学 Fan-shaped loaded sub-terahertz dielectric waveguide

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9016A (en) * 1852-06-15 Improvement in machines for making cigars
US7026A (en) * 1850-01-15 Door-lock
JPH05226906A (en) * 1992-02-12 1993-09-03 Yagi Antenna Co Ltd Waveguide coupling structure
JP5129046B2 (en) * 2008-07-04 2013-01-23 株式会社ヨコオ Electromagnetic wave transmission medium
JP3156264U (en) * 2009-09-09 2009-12-24 株式会社 オリエントマイクロウェーブ Quadridge type antenna device

Also Published As

Publication number Publication date
JP2012080178A (en) 2012-04-19

Similar Documents

Publication Publication Date Title
JP5129046B2 (en) Electromagnetic wave transmission medium
US8546691B2 (en) Differential signal transmission cable
US7030827B2 (en) Planar antenna and antenna system
US7429903B2 (en) Dual directional coupler with multi-stepped forward and reverse coupling rods
US6724277B2 (en) Radio frequency antenna feed structures having a coaxial waveguide and asymmetric septum
JP2011086458A (en) Differential signaling cable and transmission cable using the same, and method of manufacturing differential signaling cable
EP2903081B1 (en) Matching and pattern control for dual band concentric antenna feed
JP2012169251A (en) Differential signal transmission cable
JP5454648B2 (en) Differential signal cable, transmission cable using the same, and method for manufacturing differential signal cable
US9672957B2 (en) Shielded electrical cable
JP5646940B2 (en) Electromagnetic wave transmission medium
US20110280518A1 (en) Photonic choke-joints for dual polarization waveguides
JP2014099404A (en) Cable for differential signal, transmission cable using the same, and direct attachment table
JP6093743B2 (en) Millimeter wave transmission line conversion structure
JP6907918B2 (en) Connector and connector flat line connection structure
JP2010056920A (en) Waveguide microstrip line converter
JP4712841B2 (en) Waveguide / stripline converter and high-frequency circuit
JP2014007456A (en) Coaxial waveguide converter and manufacturing method therefor
JP2007318692A (en) Dual sleeve antenna
JP2012175181A (en) Waveguide transmission line converter
JP5863156B2 (en) Differential signal transmission cable
KR20150000346A (en) Waveguide impedance matching structure and waveguide antenna using thereof
JP6865106B2 (en) Flexible waveguide
JP7387071B2 (en) Waveguide planar circuit converter
JP6186644B2 (en) T-shaped coaxial tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141106

R150 Certificate of patent or registration of utility model

Ref document number: 5646940

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250