JP5645102B2 - Laminated molding method and laminated molded product of fiber reinforced resin - Google Patents

Laminated molding method and laminated molded product of fiber reinforced resin Download PDF

Info

Publication number
JP5645102B2
JP5645102B2 JP2010039604A JP2010039604A JP5645102B2 JP 5645102 B2 JP5645102 B2 JP 5645102B2 JP 2010039604 A JP2010039604 A JP 2010039604A JP 2010039604 A JP2010039604 A JP 2010039604A JP 5645102 B2 JP5645102 B2 JP 5645102B2
Authority
JP
Japan
Prior art keywords
fiber
resin
layer
surface layer
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010039604A
Other languages
Japanese (ja)
Other versions
JP2011173344A (en
Inventor
高取 宏幸
宏幸 高取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Machinery Corp Ltd
Original Assignee
Ube Machinery Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Machinery Corp Ltd filed Critical Ube Machinery Corp Ltd
Priority to JP2010039604A priority Critical patent/JP5645102B2/en
Publication of JP2011173344A publication Critical patent/JP2011173344A/en
Application granted granted Critical
Publication of JP5645102B2 publication Critical patent/JP5645102B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、樹脂を繊維材で強化した射出成形品の成形方法及び成形品に関し、特に樹脂を積層状態に射出成形して積層品を得る繊維強化樹脂の積層成形方法及び積層成形品に関する。   The present invention relates to a molding method and a molded product of an injection-molded product in which a resin is reinforced with a fiber material, and more particularly to a laminate-molding method and a laminated molded product of a fiber-reinforced resin in which a resin is injection-molded into a laminated state to obtain a laminated product.

樹脂の性質を損なうことなく、熱的及び機械的性質や寸法安定性を高めることを目的としてガラス繊維などを樹脂に混合した繊維強化樹脂が成形品に用いられている。この繊維強化樹脂を単層で射出成形する場合、混合したガラス繊維は樹脂の流れ方向に配列するために成形収縮率に方向性を有し、ソリの発生や強度の方向性などの問題を有している。   For the purpose of improving thermal and mechanical properties and dimensional stability without impairing the properties of the resin, a fiber reinforced resin in which glass fiber or the like is mixed with the resin is used for the molded product. When this fiber reinforced resin is injection-molded in a single layer, the mixed glass fibers are aligned in the resin flow direction, and thus have a directionality in the molding shrinkage, which causes problems such as warpage and strength directionality. doing.

前記従来技術の問題を解決するため、金型キャビティを目標の成形品の厚さより小さい間隔に保持して繊維材を含む溶融樹脂を充填し、次いで金型キャビティを所定の間隔に拡大、該拡大したキャビティに前記溶融樹脂の充填方向と交差する方向から繊維材を含む溶融樹脂を充填して、積層状態の成形品を得る射出成形方法が開示されている。
この成形方法では、複数層に形成される成形品の各層における繊維が互いに交差する方向に配向されるので、機械的強度を増大させることができる。(特許文献1参照)
In order to solve the problems of the prior art, the mold cavity is held at an interval smaller than the thickness of the target molded article and filled with a molten resin containing a fiber material, and then the mold cavity is enlarged to a predetermined interval, and the enlargement is performed. An injection molding method is disclosed in which a melted resin containing a fiber material is filled in a cavity that intersects the filling direction of the molten resin to obtain a molded product in a laminated state.
In this molding method, the fibers in each layer of the molded product formed in a plurality of layers are oriented in a direction crossing each other, so that the mechanical strength can be increased. (See Patent Document 1)

また、金型キャビティに長繊維材を含む第1の溶融樹脂を充填してスキン層を形成し、前記スキン層が未硬化のタイミングで短繊維材を含む第2の溶融樹脂を充填してコア層を形成、サンドイッチ状態の成形品を得る射出成形方法が開示されている。
この成形方法では、表面付近では長繊維が流れ方向に配向し、厚み方向の中心部付近では短繊維が流れと直角方向に配向するので、成形品の強度の低下率を小さくすることができる。(特許文献2参照)
Further, a skin layer is formed by filling the mold cavity with the first molten resin containing the long fiber material, and the core is filled with the second molten resin containing the short fiber material when the skin layer is uncured. An injection molding method is disclosed in which a layer is formed to obtain a sandwich molded product.
In this molding method, the long fibers are oriented in the flow direction near the surface, and the short fibers are oriented in the direction perpendicular to the flow near the center in the thickness direction, so that the rate of decrease in strength of the molded product can be reduced. (See Patent Document 2)

しかしながら、予め繊維材をチョップドストランドして一定の配合比率で樹脂とドライブレンドし、ペレット化した樹脂材料を用いる前記従来の射出成形方法では、積層した各層毎に繊維材の配合比率が異なる成形品を得ることが困難であった。
また、成形品の表面付近に繊維が配向することから、特に長繊維材を含む場合や繊維材の配合率を高くした場合、表面性が低下して後加工や塗装が必要となるという問題を有していた。
However, in the conventional injection molding method using a resin material that is chopped strand of fiber material in advance and dry-blended with a resin at a certain blending ratio and pelletized, a molded product in which the blending ratio of the fiber material is different for each laminated layer It was difficult to get.
In addition, since the fibers are oriented near the surface of the molded product, particularly when long fiber materials are included or when the blending ratio of the fiber materials is increased, the surface property deteriorates and post-processing or painting is required. Had.

特開昭63−315218号公報JP-A-63-315218 特開平05−329886号公報JP 05-329886 A

本発明は、上記した従来の射出成形方法や成形品の問題点に鑑みてなされたもので、積層した層毎に繊維材の配合率が異なるとともに、意匠面の表面性に優れた繊維強化樹脂の積層成形方法及び、積層成形品を提供することを目的とする。   The present invention has been made in view of the above-described conventional injection molding methods and problems of molded products, and the fiber reinforced resin has a different surface area on the design surface while the blending ratio of the fiber material varies from layer to layer. An object of the present invention is to provide a laminate molding method and a laminate molded product.

本発明の請求項1に記載の繊維強化樹脂の積層成形方法は、繊維材を含む溶融樹脂を充填して基材層を成形する第1の射出装置と、繊維材を含む溶融樹脂を充填して表層を成形する第2の射出装置とを用い、繊維材で樹脂を強化するとともに、前記基材層に前記表層を積層する繊維強化樹脂の積層成形方法において、前記第1及び第2の射出装置に用いる樹脂成形材料が、積層成形品を成形する直前に所定量の、樹脂ペレットと、前記繊維材と、複数の添加剤とを混合手段により直接混ぜ合わせたもので、且つ前記基材層及び前記表層がそれぞれ異なる繊維材の配合率(重量含有率)とすることを特徴とする。
本発明の請求項2に記載の繊維強化樹脂の積層成形方法は請求項1に記載の発明において、基材層の充填後に表層を充填することを特徴とする。
本発明の請求項3に記載の繊維強化樹脂の積層成形方法は請求項1に記載の発明において、表層と基材層とを略同時に充填することを特徴とする。
According to a first aspect of the present invention, there is provided a method for laminating and forming a fiber reinforced resin, comprising: a first injection device for forming a base material layer by filling a molten resin containing a fiber material; and a molten resin containing a fiber material. In the method for laminating and forming a fiber reinforced resin using a second injection device for forming a surface layer and reinforcing the resin with a fiber material and laminating the surface layer on the base material layer, the first and second injections The resin molding material used for the apparatus is a material obtained by directly mixing a predetermined amount of resin pellets, the fiber material, and a plurality of additives immediately before molding a laminated molded product, and the base material layer. And the said surface layer is set as the compounding rate (weight content rate) of a different fiber material, respectively.
According to a second aspect of the present invention, there is provided a method for laminating a fiber reinforced resin according to the first aspect, wherein the surface layer is filled after the base material layer is filled.
According to a third aspect of the present invention, there is provided a method for laminating a fiber reinforced resin according to the first aspect, wherein the surface layer and the base material layer are filled substantially simultaneously.

本発明の請求項4に記載の繊維強化樹脂の積層成形方法は請求項1乃至請求項3の何れかに記載の発明において、前記表層を成形する繊維材の配合率(重量含有率)を、前記基材層を成形する繊維材の配合率(重量含有率)より小さい値としたとしたことを特徴とする。
本発明の請求項5に記載の繊維強化樹脂の積層成形方法は請求項1乃至請求項4の何れかに記載の発明において、前記繊維材は、ガラス繊維、炭素繊維、有機繊維群の中から選択することを特徴とする。
本発明の請求項6に記載の繊維強化樹脂の積層成形方法は請求項1乃至請求項5の何れかに記載の発明において、前記繊維材の配合率(重量含有率)を、5〜60重量%としたことを特徴とする。
In the invention according to any one of claims 1 to 3, the fiber reinforced resin laminate molding method according to claim 4 of the present invention is the ratio of the fiber material forming the surface layer (weight content), The base material layer is characterized by having a value smaller than the blending ratio (weight content) of the fiber material to be molded.
The fiber reinforced resin laminate molding method according to claim 5 of the present invention is the invention according to any one of claims 1 to 4, wherein the fiber material is selected from a group of glass fibers, carbon fibers, and organic fibers. It is characterized by selecting.
The fiber reinforced resin laminate molding method according to claim 6 of the present invention is the invention according to any one of claims 1 to 5, wherein the fiber material has a blending ratio (weight content) of 5 to 60 weights. %.

本発明の請求項7に記載の繊維強化樹脂の積層成形方法は請求項1乃至請求項6の何れかに記載の発明において、前記樹脂成形材料に用いる前記繊維材の長さを、繊維束径の5〜1000倍としたことを特徴とする。
本発明の請求項8に記載の繊維強化樹脂の積層成形方法は請求項1乃至請求項7の何れかに記載の発明において、前記樹脂成形材料に供給する前記複数の添加剤は、改質剤、着色剤、充填材、帯電防止剤、滑剤、安定剤、難燃剤、界面活性剤等の中から複数選択することを特徴とする。
The fiber reinforced resin laminate molding method according to claim 7 of the present invention is the invention according to any one of claims 1 to 6, wherein the length of the fiber material used for the resin molding material is defined as a fiber bundle diameter. 5 to 1000 times greater than
The fiber reinforced resin laminate molding method according to claim 8 of the present invention is the invention according to any one of claims 1 to 7, wherein the plurality of additives supplied to the resin molding material are modifiers. A plurality of colorants, fillers, antistatic agents, lubricants, stabilizers, flame retardants, surfactants, and the like.

本発明の請求項9に記載の繊維強化樹脂の積層成形品は、金型キャビティに基材層となる繊維材を含む溶融樹脂を充填、次いで、前記基材層の充填完了後に表層となる繊維材を含む溶融樹脂を充填して、基材層に表層を積層した積層成形品において、前記積層品の樹脂成形材料に、積層成形品を成形する直前に所定量の、樹脂ペレットと、繊維材と、複数の添加剤とを混合手段により直接混合したものを用い、前記基材層及び前記表層の前記樹脂成形材料をそれぞれ異なる繊維材の配合率(重量含有率)とし、前記表層を成形する繊維材の配合率(重量含有率)を、前記基材層を成形する繊維材の配合率(重量含有率)より小さい値としたことを特徴とする。   A laminated product of fiber reinforced resin according to claim 9 of the present invention is a fiber in which a mold cavity is filled with a molten resin containing a fiber material serving as a base material layer, and then a fiber that becomes a surface layer after filling of the base material layer is completed. In a laminated molded product in which a molten resin containing a material is filled and a surface layer is laminated on a base material layer, a predetermined amount of resin pellets and a fiber material are formed on the resin molded material of the laminated product immediately before molding the laminated molded product. And a plurality of additives directly mixed by a mixing means, the resin molding materials of the base material layer and the surface layer are set to different fiber material mixing ratios (weight contents), and the surface layer is molded. The blending ratio (weight content) of the fiber material is set to a value smaller than the blending ratio (weight content) of the fiber material forming the base material layer.

本発明の請求項10に記載の繊維強化樹脂の積層成形品は、金型キャビティに表層となる繊維材を含む溶融樹脂と、基材層となる繊維材を含む溶融樹脂とを略同時に充填して、基材層に表層を積層した積層成形品において、前記積層品の樹脂成形材料に、積層成形品を成形する直前に所定量の、樹脂ペレットと、繊維材と、複数の添加剤とを混合手段により直接混合したものを用い、前記基材層及び前記表層の前記樹脂成形材料をそれぞれ異なる繊維材の配合率(重量含有率)とし、前記表層を成形する繊維材の配合率(重量含有率)を、前記基材層を成形する繊維材の配合率(重量含有率)より小さい値としたことを特徴とする。   The laminated molded product of fiber reinforced resin according to claim 10 of the present invention is filled with a molten resin containing a fiber material as a surface layer in a mold cavity and a molten resin containing a fiber material as a base layer substantially simultaneously. Then, in the laminated molded product in which the surface layer is laminated on the base material layer, a predetermined amount of resin pellets, a fiber material, and a plurality of additives are added to the resin molded material of the laminated product immediately before molding the laminated molded product. Using the material directly mixed by the mixing means, the resin molding material of the base material layer and the surface layer is set to a blending rate (weight content) of different fiber materials, and the blending rate (weight content of the fiber material forming the surface layer) The ratio is set to a value smaller than the blending ratio (weight content) of the fiber material forming the base material layer.

本発明の成形方法では成形直前に、基材層と表層とで異なる繊維材の配合率で樹脂と添加剤をダイレクトブレンドして混合した成形材料をそれぞれの射出装置に供給する構成としたので、繊維配合率の異なる樹脂層で積層した成形品を得ることができる。
樹脂成形材料はダイレクトブレンドとし、樹脂に繊維材をブレンドして含有するペレットの製造工程を省略したので、樹脂材料は熱履歴が少なく、また、繊維材の折損も少なく、成形品の品質が向上する。そして、ペレット製造のためのエネルギーが削減でき、成形品のコストを低減することができる。
剛性、表面性や変形(反り)を加味した成形品に最適な繊維材の配合率を任意に得ることができる。
In the molding method of the present invention, immediately before molding, since the composition is such that the resin and additive are directly blended and mixed at different fiber materials in the base layer and the surface layer, the mixed molding material is supplied to each injection device. A molded product laminated with resin layers having different fiber blending ratios can be obtained.
The resin molding material is a direct blend, and the manufacturing process of pellets containing blended fiber material with resin is omitted, so the resin material has less heat history and less fiber material breakage, improving the quality of the molded product. To do. And the energy for pellet manufacture can be reduced and the cost of a molded article can be reduced.
It is possible to arbitrarily obtain a fiber material mixing ratio that is optimal for a molded product that takes rigidity, surface properties, and deformation (warpage) into account.

本発明の成形方法に用いる射出成形装置の構成を説明する図面である。It is drawing explaining the structure of the injection molding apparatus used for the shaping | molding method of this invention. 本発明の成形方法により図1に示す可動型が後退して表層のキャビティを形成する金型を用いた成形工程を説明する図面である。It is drawing explaining the shaping | molding process using the metal mold | die which recedes the movable mold | type shown in FIG. 1 by the shaping | molding method of this invention, and forms the cavity of a surface layer. 本発明の成形方法により可動型がスライドして表層のキャビティを形成する金型を用いた成形工程を説明する図面である。It is drawing explaining the shaping | molding process using the metal mold | die which a movable type | mold slides and forms the cavity of a surface layer by the shaping | molding method of this invention. 本発明の成形方法により可動型が回転して表層のキャビティを形成する金型を用いた成形工程を説明する図面である。It is drawing explaining the shaping | molding process using the metal mold | die which a movable mold | type rotates by the shaping | molding method of this invention and forms the cavity of a surface layer. 表層と基材層を略同時に充填する成形工程を説明する図面である。It is drawing explaining the formation process which fills a surface layer and a base material layer substantially simultaneously.

本実施の形態に係る繊維強化樹脂の積層成形方法に使用される成形装置100は、図1に示すように、射出装置10と金型20と射出装置10に成形材料を供給する材料供給装置30及び図示しない型締装置を備えて構成される。
射出装置10は、繊維材を含む溶融樹脂を充填して基材層を成形する第1の射出装置10Aと、繊維材を含む溶融樹脂を充填して表層を成形する第2の射出装置10Bとで構成される。金型20は型締装置の固定盤1に取り付けられた固定型21と可動盤2に取り付けられた可動型22とからなる。図1では、基材層(1層目)を成形した後に可動盤2を所望の寸法Sだけ後退させ、表層(2層目)を成形するためにキャビティ23の容積を拡大した状態を示している。
As shown in FIG. 1, a molding apparatus 100 used in the fiber reinforced resin laminate molding method according to the present embodiment includes an injection apparatus 10, a mold 20, and a material supply apparatus 30 that supplies a molding material to the injection apparatus 10. And a mold clamping device (not shown).
The injection device 10 includes a first injection device 10A for filling a molten resin containing a fiber material to form a base material layer, and a second injection device 10B for filling a molten resin containing a fiber material to form a surface layer. Consists of. The mold 20 includes a fixed mold 21 attached to the fixed platen 1 of the mold clamping device and a movable mold 22 attached to the movable platen 2. FIG. 1 shows a state in which the movable platen 2 is retracted by a desired dimension S after forming the base material layer (first layer), and the volume of the cavity 23 is enlarged to form the surface layer (second layer). Yes.

射出装置10A及び10Bは、バレル(11A、11B)、バレルに内装されスクリュフライトを有するスクリュ(12A、12B)、固定型21に当接して溶融樹脂をキャビティ23内に充填可能とするノズル(13A、13B)、バレル(11A、11B)内に樹脂成形材料を供給するホッパ(14A、14B)、そして、図示しないスクリュ(12A、12B)の回転駆動及び前進移動手段と、により要部が構成されている。
スクリュ(12A、12B)を回転駆動することにより、ホッパ(14A、14B)からペレット形状の樹脂がバレル(11A、11B)内に供給され、該供給された樹脂はスクリュの回転によって混練圧縮作用を受けて溶融し、スクリュ前方に送られ所定量が蓄えられる。
スクリュ前方に蓄えられた溶融樹脂は、スクリュ(12A、12B)を前進移動させることによりノズル(13A、13B)及び金型の樹脂流路を介して金型のキャビティ23へ供給することができる。
The injection devices 10A and 10B include a barrel (11A, 11B), a screw (12A, 12B) that is built in the barrel and has a screw flight, and a nozzle (13A) that can contact the fixed mold 21 and fill molten resin into the cavity 23. 13B), the hopper (14A, 14B) for supplying the resin molding material into the barrel (11A, 11B), and the rotational drive and forward movement means of the screws (12A, 12B) (not shown) constitute the main part. ing.
By rotating the screws (12A, 12B), pellet-shaped resin is supplied from the hoppers (14A, 14B) into the barrels (11A, 11B), and the supplied resin undergoes a kneading compression action by the rotation of the screws. It is received and melted, sent to the front of the screw, and a predetermined amount is stored.
The molten resin stored in front of the screw can be supplied to the mold cavity 23 through the nozzle (13A, 13B) and the mold resin flow path by moving the screw (12A, 12B) forward.

材料供給装置30A及び30Bは、樹脂ペレットを貯えるタンク(31A、31B)、樹脂ペレットを所定量計量する樹脂ペレット計量装置(32A、32B)、繊維材を所定量計量する繊維材の計量装置(33A、33B)、添加剤を所定量計量する添加剤の計量装置(34A、34B)、所定量に計量された樹脂ペレットと繊維材と添加剤とを混合して成形材料とする成形材料の混合装置(35A、35B)及びこれらの輸送手段で要部が構成される。
所望する配合率を設定することにより、所定量の各材料が混合装置(35A、35B)に供給され、所定量の配合率で撹拌して混合された成形材料をホッパ(14A、14B)に送り出すことができる。前述した材料供給装置30A及び30Bは、公知の機器類で構成することができ、前記それぞれの計量装置は高い精度で配合率を得ることのできる重量計測式を用いることが好ましい。また、混合装置には公知の撹拌式が好適に用いられる。
The material supply devices 30A and 30B include tanks (31A, 31B) for storing resin pellets, resin pellet measuring devices (32A, 32B) for measuring a predetermined amount of resin pellets, and fiber material measuring devices (33A) for measuring a predetermined amount of fiber material. 33B), additive metering device (34A, 34B) for metering a predetermined amount of additive, and a molding material mixing device that mixes resin pellets, fiber material, and additive metered in a predetermined amount into a molding material (35A, 35B) and their transportation means constitute the main part.
By setting the desired blending ratio, a predetermined amount of each material is supplied to the mixing device (35A, 35B), and the molding material mixed by stirring at the predetermined blending ratio is sent to the hopper (14A, 14B). be able to. The above-described material supply devices 30A and 30B can be configured with known devices, and it is preferable that each weighing device uses a weight measurement type capable of obtaining a blending ratio with high accuracy. Moreover, a well-known stirring type is used suitably for a mixing apparatus.

本発明に用いる樹脂の種類は、基材層と表層とが金型内において接合して一体化して成形されるように選定されればよく、一般的に射出成形で使用されている公知の熱可塑性樹脂材料を用いることができる。例えば、スチレン系樹脂、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂など、及びそのブレンド材料が挙げられる。
ここで、スチレン系樹脂としては、例えばアクリロニトリル・ブタジエン・スチレン共重合樹脂(ABS樹脂)、ポリスチレン樹脂(一般用、体衝撃用、耐熱用など)等を挙げることができる。ポリオレフィン系樹脂としては、ポリエチレン樹脂(高密度、中密度、低密度など)、ポリプロピレン樹脂(アイソタックチック、シンジオタクチックなど)などを挙げることができる。また、ポリエステル系樹脂では、ポリエチレンテレフタレートやポリブチレンテレフタレートなどが挙げられ、ポリアミド系樹脂としては、6−ナイロン、12−ナイロン等を挙げることができる。
The type of resin used in the present invention may be selected so that the base material layer and the surface layer are joined and integrally molded in the mold, and is generally known heat used in injection molding. A plastic resin material can be used. Examples include styrene resins, polyolefin resins, polyester resins, polyamide resins, and blended materials thereof.
Examples of the styrene resin include acrylonitrile / butadiene / styrene copolymer resin (ABS resin), polystyrene resin (for general use, for body impact, for heat resistance, etc.). Examples of the polyolefin resin include polyethylene resins (high density, medium density, low density, etc.), polypropylene resins (isotactic, syndiotactic, etc.) and the like. Examples of the polyester resin include polyethylene terephthalate and polybutylene terephthalate, and examples of the polyamide resin include 6-nylon and 12-nylon.

本発明においては、前記熱可塑性樹脂を単独で用いてもよく、二種以上を組み合わせて用いても良い。また、樹脂組成物は、使用樹脂材料の使用分野においてその目的を損なわない範囲で前記成分の他に、他の有機系高分子物質を添加して使用できる。例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、またはその共重合体、ポリ塩化等のビニル系化合物、ポリブタジエン、ブチルゴム等のゴム状高分子物質、ポリアクリレート樹脂からなる変性材、熱可塑性ポリエステル樹脂からなる変性材等が挙げられる。
そして、これらの有機系高分子物質もまた、二種以上を組み合わせて用いても良い。
In the present invention, the thermoplastic resins may be used alone or in combination of two or more. Further, the resin composition can be used by adding other organic polymer substances in addition to the above-mentioned components within a range that does not impair the purpose in the field of use of the resin material used. For example, polyolefins such as polyethylene and polypropylene, or copolymers thereof, vinyl compounds such as polychlorinated materials, rubbery polymeric substances such as polybutadiene and butyl rubber, modified materials composed of polyacrylate resins, modified materials composed of thermoplastic polyester resins Etc.
These organic polymer substances may also be used in combination of two or more.

本発明に用いる繊維材の種類は、ガラス繊維、炭素繊維、有機繊維群の中から選択されればよく、繊維材は、樹脂と繊維との親和性、接着性を高めるために表面処理剤で処理されることが好ましい。例えば、繊維材がガラス繊維の場合には、ガラス繊維は紡糸された直径が10〜100μのフィラメントを、100〜5000本の範囲で表面処理剤を含む集束剤で束ねて、ガラスチョッパーで繊維束径の5〜1000倍の長さに切断したチョップストランドが好適に用いられる。ここで、表面処理剤としては種々のものが知られているが、例えば、シラン系、チタネート系、エポキシ系などが挙げられる。
なお、チョップドストランドでの供給に替え、繊維束をロービングした状態で繊維材の計量装置(33A、33B)においてガラスチョッパーにより切断し、供給する構成であっても良い。
The fiber material used in the present invention may be selected from glass fiber, carbon fiber, and organic fiber group, and the fiber material is a surface treatment agent in order to increase the affinity and adhesion between the resin and the fiber. Preferably it is processed. For example, in the case where the fiber material is glass fiber, the glass fiber is bundled by spinning a filament having a diameter of 10 to 100 μm with a sizing agent containing a surface treatment agent in a range of 100 to 5000, and a fiber bundle with a glass chopper. Chop strands cut to a length of 5 to 1000 times the diameter are preferably used. Here, various types of surface treatment agents are known, and examples thereof include silane, titanate, and epoxy.
In addition, it may replace with supply with chopped strand, and the structure which cut | disconnects and supplies with a glass chopper in the fiber material measuring device (33A, 33B) in the state which roved the fiber bundle may be sufficient.

本発明に用いる繊維材の長さを繊維束径の5〜1000倍としたが、より好ましい範囲は10〜100のである。繊維の長さが繊維束径の5倍より小さいときは、所望する成形品の強度を得ることができず、1000倍より大きいときは樹脂の流動性や表面性への影響が大きい。
また、成形材料に占める繊維材の配合率(重量含有率)を5〜60重量%の範囲としたが、より好ましい範囲は20〜50重量%の範囲である。配合比率が5重量%以下の場合は所望する成形品の強度を得ることができず、60重量%より大きいときは樹脂の流動性や表面性への影響が大きい。そして、本発明においては基材層への繊維材の配合率を表層のそれよりも大きく設定している。
The length of the fiber material used in the present invention is 5 to 1000 times the fiber bundle diameter, but a more preferable range is 10 to 100 times . When the fiber length is smaller than 5 times the fiber bundle diameter, the desired strength of the molded product cannot be obtained, and when it is larger than 1000 times, the influence on the fluidity and surface property of the resin is large.
Moreover, although the mixture ratio (weight content) of the fiber material which occupies for a molding material was made into the range of 5 to 60 weight%, a more preferable range is the range of 20 to 50 weight%. When the blending ratio is 5% by weight or less, the desired strength of the molded product cannot be obtained, and when it is greater than 60% by weight, the influence on the fluidity and surface property of the resin is large. And in this invention, the mixture ratio of the fiber material to a base material layer is set larger than that of a surface layer.

本発明に用いる添加剤の種類は、改質剤、着色剤、充填材、帯電防止剤、滑剤、安定剤、難燃剤、界面活性剤等の中から複数選択されればよい。さらに、タルク、クレー、ガラスビーズ等の無機充填剤を本発明の目的を損なわない範囲で、且つ、それぞれの使用目的に応じてその性質を損なわない範囲で添加しても良い。
添加剤の計量装置(34A、34B)へ添加剤を供給するときは、選択された複数の添加剤を予め所望の配合率で混合したものを用いる。
A plurality of types of additives used in the present invention may be selected from among modifiers, colorants, fillers, antistatic agents, lubricants, stabilizers, flame retardants, surfactants, and the like. Furthermore, inorganic fillers such as talc, clay, and glass beads may be added within a range that does not impair the object of the present invention and within a range that does not impair the properties depending on the intended use.
When the additive is supplied to the additive metering device (34A, 34B), a mixture of a plurality of selected additives in a desired blending ratio is used.

本発明の成形方法で使用する樹脂ペレット、繊維材、添加剤は、上記のように射出装置(10A、10B)のポッパ上部に設けたそれぞれの計量装置に供給される。そして、計量された所定量の樹脂ペレット、繊維材、添加剤を混合装置で混合して成形装置へ送り出す構成としたが、タンブラー装置等の混合手段を用いそれぞれ所定量の樹脂ペレット、繊維材、添加剤を投入して混合し、前記混合した樹脂成形材料を輸送して射出装置のホッパに供給する構成であっても良い。
本発明の繊維強化樹脂の積層成形方法では、成形材料を成形の直前にドライブレンドして成形装置へ供給する方法を用いたが、他の公知の樹脂と繊維材及び添加剤をドライブレンドする手段により成形装置へ供給される構成であっても良い。
The resin pellet, fiber material, and additive used in the molding method of the present invention are supplied to each weighing device provided on the popper upper portion of the injection device (10A, 10B) as described above. And it was set as the structure which mixes the measured predetermined amount of resin pellets, fiber material, and additive with a mixing device, and sends out to a molding device, but using a mixing means such as a tumbler device, respectively, a predetermined amount of resin pellets, fiber material, A configuration may be employed in which additives are added and mixed, and the mixed resin molding material is transported and supplied to the hopper of the injection apparatus.
In the fiber reinforced resin laminate molding method of the present invention, a method of dry blending the molding material immediately before molding and supplying the molding material to the molding apparatus is used, but means for dry blending other known resins with fiber materials and additives May be configured to be supplied to the molding apparatus.

図1により繊維強化樹脂の積層成形方法に用いる金型20の構成について説明する。図1に示す金型20は、キャビティ23の周囲を囲むようにシェアエッジ構造の嵌合部を有する固定型21と可動型22とからなり、可動型22を固定型21に対して前後進させることによって、可動型22と固定型21を嵌合部で嵌合したまま摺動できるように構成されている。そのため、可動型22を固定型21に対して後進させて、金型20を所望の寸法Sだけ型開き(コアバック)することで、キャビティ容積を拡大することができる。そして、固定型21にはノズル(13A、13B)とキャビティ23とを連通する樹脂流路が設けられている。
このような構成の金型を用いるので、金型を寸法Sだけ型開きした状態でキャビティ内に溶融樹脂を充填しても、該充填した溶融樹脂は漏れ出すことがない。
With reference to FIG. 1, the structure of a mold 20 used in a method for laminating fiber reinforced resin will be described. A mold 20 shown in FIG. 1 includes a fixed mold 21 and a movable mold 22 having a fitting portion having a shear edge structure so as to surround a cavity 23, and the movable mold 22 is moved forward and backward with respect to the fixed mold 21. Thus, the movable mold 22 and the fixed mold 21 are configured to be slidable while being fitted in the fitting portion. Therefore, the cavity volume can be expanded by moving the movable mold 22 backward relative to the fixed mold 21 and opening the mold 20 by a desired dimension S (core back). The fixed mold 21 is provided with a resin flow path that communicates the nozzles (13 A, 13 B) and the cavity 23.
Since the mold having such a configuration is used, even if the cavity is filled with the molten resin with the mold opened by the dimension S, the filled molten resin does not leak out.

次に、図1に示す構成の金型を用いた成形工程について図2(a)、(b)に基づいて以下に説明する。
図2(a)は、可動型22と固定型21とが型閉じされ、基材層を成形する第1の射出装置10Aのスクリュ12Aが前進して基材層25が成形された状態を示している。基材層25を成形する際に表層のゲート部は、可動型22と固定型21の嵌合部で塞がれているので、射出充填された溶融樹脂が表層を成形する第2の射出装置10B側に逆流することがない。そして、第2の射出装置10Bには、表層を成形する所定量の溶融樹脂が蓄えられえている。
図2(b)は、所定の冷却時間の経過後に、基材層25を固定型21に残した状態で可動型22を所定の寸法Sほど型開きして金型キャビティを拡大、次いで、該拡大したキャビティに溶融樹脂を充填して表層26を基材層25と積層一体化した状態を示している。これにより基材層25に表層26が積層された積層成形品を得ることができる。
Next, a molding process using the mold having the configuration shown in FIG. 1 will be described with reference to FIGS. 2 (a) and 2 (b).
FIG. 2A shows a state in which the movable mold 22 and the fixed mold 21 are closed, the screw 12A of the first injection apparatus 10A that molds the base material layer moves forward, and the base material layer 25 is molded. ing. Since the gate part of the surface layer is closed by the fitting part of the movable mold 22 and the fixed mold 21 when the base material layer 25 is molded, the second injection device for molding the surface layer by the injection-filled molten resin There is no backflow to the 10B side. In the second injection device 10B, a predetermined amount of molten resin for forming the surface layer can be stored.
FIG. 2B shows that after a predetermined cooling time has elapsed, the movable mold 22 is opened by a predetermined dimension S with the base material layer 25 left in the fixed mold 21, and the mold cavity is expanded. A state in which the enlarged cavity is filled with molten resin and the surface layer 26 is laminated and integrated with the base material layer 25 is shown. Thereby, a laminated molded product in which the surface layer 26 is laminated on the base material layer 25 can be obtained.

図2(a)、(b)に示すように、基材層25を固定型21側に固着させ、次いで型開きを行なって可動型22と基材層25との間に表層となるキャビティを形成、該形成したキャビティで表層26を成形して積層する構成としたが、基材層25を可動型22側に固着させ、次いで型開きを行なって固定型21と基材層25との間にキャビティを形成、該形成したキャビティで表層26を形成する構成であってよく、その場合は、溶融樹脂を充填できるようキャビティにゲートが配置されていればよい。   As shown in FIGS. 2A and 2B, the base material layer 25 is fixed to the fixed mold 21 side, and then the mold is opened to form a surface layer cavity between the movable mold 22 and the base material layer 25. The surface layer 26 is formed and laminated with the formed cavities, but the base layer 25 is fixed to the movable mold 22 side, and then the mold is opened to provide a space between the fixed mold 21 and the base layer 25. In this case, a gate may be disposed in the cavity so as to be filled with the molten resin.

なお、図1に示す構成の金型では基材層25の成形後に、一旦金型を後退させて型開き状態として基材層25と可動型22のキャビティ面との間にキャビティイを形成したが、金型のキャビティ部に可動コアを配してキャビティ可変機構とし、基材層25の成形後に金型を閉じた状態で、油圧シリンダ等の駆動手段により可動コアを移動させて前記キャビティを形成する構成であっても良い。   In the mold having the configuration shown in FIG. 1, after forming the base material layer 25, the mold is once retracted to open the mold, and a cavity is formed between the base material layer 25 and the cavity surface of the movable mold 22. However, the movable core is arranged in the cavity portion of the mold to form a cavity variable mechanism, and the mold is closed after the base material layer 25 is molded, and the movable core is moved by driving means such as a hydraulic cylinder to move the cavity. The structure to form may be sufficient.

図3(a)、(b)に基づいて、可動型がスライドして表層のキャビティを形成する金型を用いた実施の形態を説明する。
まず、図3(a)、(b)に示す金型50は、図示しない型締装置の固定盤に取り付けられた固定型51と、基材層用のキャビティと表層用のキャビティの二つのキャビティ面57、58とを有するスライド型52とで基本構成される。スライド型52は型締装置の図示しない可動盤に設けられスライド型52のスライド機構を有する中間盤3に取り付けられ、固定型51に対して接離自在となっている。
また、固定型51にはノズル(13A、13B)とキャビティとを連通する樹脂流路が設けられている。
Based on FIGS. 3A and 3B, an embodiment using a mold in which a movable mold slides to form a surface cavity will be described.
First, a mold 50 shown in FIGS. 3A and 3B includes a fixed mold 51 attached to a fixed plate of a mold clamping device (not shown), two cavities, a base layer cavity and a surface layer cavity. It is basically composed of a slide mold 52 having surfaces 57 and 58. The slide mold 52 is attached to an intermediate board 3 provided on a movable board (not shown) of the mold clamping device and having a slide mechanism of the slide mold 52, and can be brought into and out of contact with the fixed mold 51.
The fixed mold 51 is provided with a resin flow path that communicates the nozzles (13A, 13B) and the cavity.

可動型52の基材層用のキャビティ面58には基材層55を成形するときに表層を成形するゲートを塞ぐ突起物59が設けられている。このために、基材層55を成形する際に溶融樹脂が流路を介して第2の射出装置10Bへ逆流することがない。また、この突起物59によって基材層55に表層を成形するときの流路(孔)を設けるのである。
基材層用のキャビティと表層用のキャビティの二つのキャビティ面57、58とを可動型52に一体で設ける構成としたが、それぞれのキャビティが独立した型であり、該型同士を連結する構成であっても良い。
The cavity surface 58 for the base material layer of the movable mold 52 is provided with a protrusion 59 that closes the gate for forming the surface layer when the base material layer 55 is formed. For this reason, when the base material layer 55 is formed, the molten resin does not flow back to the second injection device 10B via the flow path. In addition, a channel (hole) for forming a surface layer on the base material layer 55 is provided by the protrusion 59.
Although the cavity surfaces 57 and 58 of the base layer cavity and the surface layer cavity are integrally provided on the movable mold 52, the respective cavities are independent molds, and the molds are connected to each other. It may be.

可動型がスライドする金型を用いた成形工程について図3(a)、(b)により以下説明する。
図3(a)は、可動型52と固定型51とが型閉じされ、基材層を成形する第1の射出装置10Aのスクリュ12Aが前進して基材層55が成形された状態を示している。基材層55を成形する際に表層のゲート部は、ゲートを塞ぐ突起物59で塞がれているので、射出充填された溶融樹脂が表層を成形する第2の射出装置10B側に逆流することがない。そして、第2の射出装置10Bには、表層を成形する所定量の溶融樹脂が蓄えられえている。
A molding process using a mold on which the movable mold slides will be described below with reference to FIGS.
FIG. 3A shows a state in which the movable mold 52 and the fixed mold 51 are closed, the screw 12A of the first injection apparatus 10A that molds the base material layer is advanced, and the base material layer 55 is molded. ing. When the base material layer 55 is formed, the gate portion of the surface layer is closed by the protrusion 59 that closes the gate, so that the injection-filled molten resin flows back to the second injection device 10B side for forming the surface layer. There is nothing. In the second injection device 10B, a predetermined amount of molten resin for forming the surface layer can be stored.

図3(b)は、所定の冷却時間の経過後に、基材層55を固定型51に残した状態で可動型52を所定の寸法型開きして可動型52を移動させる。次いで、可動型52を表層用のキャビティ57が固定型51と対向するようにスライド移動させ再び型閉を行い、表層用のキャビティ面58と基材層55との間に形成されたキャビティに表層56を成形した状態を示している。これにより、基材層55と表層56が積層されて一体化した積層成形品を得ることができる。表層56を成形するときに溶融樹脂は、基材層55に設けた流路(孔)を介してキャビティに充填されるのである。
所定の冷却時間の経過後に型開を行なって成形品を金型から取り出すここによって成形は完了する。前述した動作を繰り返すことで連続して成形品を得ることができる。
In FIG. 3B, after a predetermined cooling time, the movable mold 52 is moved by opening the movable mold 52 with a predetermined dimension while the base material layer 55 remains on the fixed mold 51. Next, the movable mold 52 is slid so that the surface layer cavity 57 faces the fixed mold 51 and is closed again, and the surface layer is formed in the cavity formed between the surface cavity surface 58 and the base material layer 55. The state which shape | molded 56 is shown. Thereby, the base material layer 55 and the surface layer 56 are laminated | stacked and the laminated molded product which was integrated can be obtained. When the surface layer 56 is molded, the molten resin is filled into the cavity through the flow path (hole) provided in the base material layer 55.
Molding is completed by opening the mold after a predetermined cooling time has elapsed and taking out the molded product from the mold. By repeating the above-described operation, a molded product can be obtained continuously.

図4(a)、(b)に基づいて、可動型が回転して表層のキャビティを形成する金型を用いた実施の形態を説明する。
図4(a)、(b)に示す金型60は、図示しない型締装置の固定盤に取り付けられた固定型61と、同じく図示しない可動盤に係動して摺動自在に、且つ、成形装置の軸線を水平面、又は垂直面として回転自在に配された中間盤5に取り付けられたキャビティ容積の異なる複数の可動型、即ち、基材層成形用の可動型62及び表層成形用の可動型63とにより基本構成される。
そして、固定型61にはノズル(13A、13B)とキャビティとを連通する樹脂流路が設けられている。
符号6は、型開の状態で回転する中間盤5の回転中心であり、図においては紙面を水平面として回転する。
An embodiment using a mold in which a movable mold rotates to form a surface cavity will be described with reference to FIGS.
A mold 60 shown in FIGS. 4 (a) and 4 (b) is slidably engaged with a fixed mold 61 attached to a fixed plate of a mold clamping device (not shown) and a movable plate (not shown), and A plurality of movable molds having different cavity volumes attached to an intermediate plate 5 that is rotatably arranged with the axis of the molding apparatus as a horizontal plane or a vertical plane, that is, a movable mold 62 for molding a base layer and a movable mold for surface layer molding. Basically constituted by the mold 63.
The fixed mold 61 is provided with a resin flow path that connects the nozzles (13A, 13B) and the cavity.
Reference numeral 6 denotes a rotation center of the intermediate plate 5 that rotates in a mold-open state, and in the figure, rotates with the paper surface as a horizontal plane.

基材層成形用の可動型62のキャビティ面58には基材層65を成形するときに表層を成形するゲートを塞ぐ突起物69が設けられている。このために、基材層65を成形する際に溶融樹脂が流路を介して第2の射出装置10Bへ逆流することがない。また、突起物69によって基材層65に表層を成形するときの流路(孔)を設けるのである。そして、表層66を成形するときに溶融樹脂は、基材層65に設けた流路(孔)を介してキャビティに充填されるのである。   The cavity surface 58 of the movable mold 62 for forming the base material layer is provided with a protrusion 69 that closes the gate for forming the surface layer when the base material layer 65 is formed. For this reason, when the base material layer 65 is formed, the molten resin does not flow back to the second injection device 10B via the flow path. Further, a flow path (hole) for forming a surface layer on the base material layer 65 by the protrusion 69 is provided. Then, when the surface layer 66 is formed, the molten resin is filled into the cavity through the flow path (hole) provided in the base material layer 65.

可動型が回転する金型を用いた成形工程について図4(a)、(b)により以下説明する。
図4(a)は、可動型62と固定型61とが型閉じされ基材層成形用のキャビティが形成され、基材層を成形する第1の射出装置10Aのスクリュ12Aが前進して基材層65が成形された状態を示している。基材層65を成形する際に表層のゲート部は、ゲートを塞ぐ突起物69で塞がれているので、射出充填された溶融樹脂が表層を成形する第2の射出装置10B側に逆流することがない。そして、第2の射出装置10Bには、表層を成形する所定量の溶融樹脂が蓄えられえている。
A molding process using a mold in which the movable mold rotates will be described below with reference to FIGS. 4 (a) and 4 (b).
In FIG. 4A, the movable mold 62 and the fixed mold 61 are closed to form a base material layer forming cavity, and the screw 12A of the first injection apparatus 10A for forming the base material layer is advanced to advance the base. A state in which the material layer 65 is formed is shown. When the base material layer 65 is formed, the gate portion of the surface layer is closed by the protrusion 69 that closes the gate, so that the injection-filled molten resin flows back to the second injection device 10B side for forming the surface layer. There is nothing. In the second injection device 10B, a predetermined amount of molten resin for forming the surface layer can be stored.

図4(b)は、所定の冷却時間の経過後に、基材層65を固定型61に残した状態で可動型52を所定の寸法型開きして中間盤5を回転させ、表層成形用の可動型62のキャビティ67が固定型61と対向するようにさせ再び型閉を行い、表層用のキャビティ面と基材層65との間に形成されたキャビティに表層66を成形した状態を示している。これにより、基材層65と表層66が積層されて一体化した積層成形品を得ることができる。
そして、所定の冷却時間の経過後に型開を行なって成形品を金型から取り出すここによって成形は完了する。前述した動作を繰り返すことで連続して成形品を得ることができる。
FIG. 4B shows a state in which the movable plate 52 is opened by a predetermined size and the intermediate plate 5 is rotated with the base material layer 65 left on the fixed die 61 after a predetermined cooling time has passed, and the surface layer forming step is performed. The state where the cavity 67 of the movable mold 62 is opposed to the fixed mold 61 and the mold is closed again, and the surface layer 66 is formed in the cavity formed between the surface of the cavity for the surface layer and the base material layer 65 is shown. Yes. Thereby, the base material layer 65 and the surface layer 66 are laminated | stacked and the laminated molded product which was integrated can be obtained.
Then, after a predetermined cooling time has elapsed, the mold is opened, and the molded product is taken out of the mold, thereby completing the molding. By repeating the above-described operation, a molded product can be obtained continuously.

図5(a)、(b)に基づき表層と基材層とを略同時に充填する実施の形態について説明する。
図5(a)、(b)に示す金型70は、図示しない型締装置の固定盤に取り付けられた固定型71と、同じく図示しない可動盤に係動して摺動自在に取り付けられた可動型72により基本構成される。そして、固定型71にはノズル16とキャビティとを連通し、表層と基材層とが流動可能な樹脂流路が設けられている。
ノズル16は、2重構造で同心状に樹脂流路を配置して射出装置10A、10Bより送り出される溶融樹脂を金型キャビティ内へ略同時に充填することができる構成となっている。図に示すように、同時充填中は表層の溶融樹脂内を基材層の溶融樹脂が同心で流動する。
An embodiment in which the surface layer and the base material layer are filled substantially simultaneously will be described with reference to FIGS. 5 (a) and 5 (b).
The mold 70 shown in FIGS. 5A and 5B is slidably attached to a fixed mold 71 attached to a fixed plate of a mold clamping device (not shown) and also to a movable plate (not shown). Basically constituted by the movable mold 72. The fixed mold 71 is provided with a resin flow path that allows the nozzle 16 and the cavity to communicate with each other and allows the surface layer and the base material layer to flow.
The nozzle 16 has a double structure and has a structure in which resin flow paths are arranged concentrically and the molten resin fed from the injection devices 10A and 10B can be filled into the mold cavity almost simultaneously. As shown in the figure, during simultaneous filling, the molten resin of the base material layer flows concentrically within the molten resin of the surface layer.

金型を閉じた状態で表層と基材層を略同時に充填してサンドイッチ構造の積層成形品を得る構成としたが、溶融樹脂を充填するときに樹脂の圧力で可動型を後退させ、充填完了後に再び金型を閉じる構成(射出圧縮成形)や、予め金型を所定の寸法開いて溶融樹脂を充填し、充填完了後に金型を閉じる構成(射出プレス成形)が用いられても良い。
そして、金型70は、嵌め込み部(インロー部)を有する半押し込み構造としたが、樹脂の充填に際して可動型を移動させることが無い場合は、嵌め込み部を有しない平押し構造が用いられても良い。
While the mold is closed, the surface layer and base material layer are filled almost simultaneously to obtain a laminated molded product with a sandwich structure. However, when filling with molten resin, the movable mold is retracted by the pressure of the resin and filling is completed. A configuration in which the mold is closed again (injection compression molding) or a configuration in which the mold is opened in advance by a predetermined dimension and filled with molten resin and the mold is closed after completion of filling (injection press molding) may be used.
The mold 70 has a half-push structure having a fitting part (inlay part). However, if the movable mold is not moved during the filling of the resin, a flat push structure having no fitting part may be used. good.

サンドイッチ構造の積層成形品を得る成形工程について図5(a)、(b)により以下説明する。
図5(a)は、可動型72と固定型71とが型閉じされて成形品のキャビティが形成され、表層76の溶融樹脂が基材層75の溶融樹脂に先行して充填され、次いで基材層75の溶融樹脂が表層76の溶融樹脂内に充填されている状態を示している。射出装置10A、10Bから送り出された溶融樹脂は混ざり合うことなく、ノズル16と固定型71の樹脂流路を介してキャビティに供給される。
A molding process for obtaining a laminated molded product having a sandwich structure will be described below with reference to FIGS.
In FIG. 5A, the movable mold 72 and the fixed mold 71 are closed to form a cavity of a molded product, the molten resin of the surface layer 76 is filled in advance with the molten resin of the base layer 75, and then the base A state in which the molten resin of the material layer 75 is filled in the molten resin of the surface layer 76 is shown. The molten resin delivered from the injection devices 10A and 10B is supplied to the cavity through the resin flow path of the nozzle 16 and the fixed mold 71 without being mixed.

図5(b)は、表層76及び基材層76の溶融樹樹脂が充填完了され、表層76の内部に基材層75を有するサンドイッチ構造の成形品が得られた状態を示している。そして、所定の冷却時間の経過後に型開を行なって成形品を金型から取り出すここによって成形は完了する。樹脂の計量動作と型閉じ動作及び射出動作を繰り返すことにより連続して成形品を得ることができる。   FIG. 5B shows a state in which the molten resin of the surface layer 76 and the base material layer 76 has been filled, and a molded article having a sandwich structure having the base material layer 75 inside the surface layer 76 is obtained. Then, after a predetermined cooling time has elapsed, the mold is opened, and the molded product is taken out of the mold, thereby completing the molding. By repeating the resin weighing operation, the mold closing operation, and the injection operation, a molded product can be obtained continuously.

以上説明したように、従来の成形方法で得られる繊維強化樹脂の単層成形品は、成形品の表面部付近繊維が樹脂の流動方向に配向し、成形品の厚み方向の中心部分では厚み方向に配向する。したがって、必要な製品強度を得ることができない。このために、繊維を含む溶融樹脂を二層又は多層に積層することで成形品の強度を得ようとすると、成形品の表面性が低下するという問題を有していた。
本発明の成形方法では、成形品の剛性、表面性や変形(反り)を加味した最適な繊維配合率を任意に得ることができる。そして、積層する二層、即ち、表層と基材層それぞれに用いる樹脂成形材料の繊維配合率(重量含有率)を違える(表層の繊維材の含有量を基材層のそれよりも小さくする)ことにより強度と表面を平滑に改善した繊維強化樹脂の積層成形品を得ることができた。
As described above, the fiber reinforced resin single-layer molded product obtained by the conventional molding method is such that the fibers near the surface of the molded product are oriented in the flow direction of the resin, and the thickness direction is at the center of the molded product in the thickness direction. Oriented to Therefore, the required product strength cannot be obtained. For this reason, when it was going to obtain the intensity | strength of a molded article by laminating | stacking the molten resin containing a fiber in two layers or a multilayer, there existed a problem that the surface property of a molded article fell.
In the molding method of the present invention, an optimum fiber blending ratio can be arbitrarily obtained in consideration of the rigidity, surface property and deformation (warpage) of the molded product. Then, the two layers to be laminated, that is, the fiber blending ratio (weight content) of the resin molding material used for each of the surface layer and the base material layer is changed (the fiber content of the surface layer is made smaller than that of the base material layer). As a result, it was possible to obtain a laminated product of fiber reinforced resin having improved strength and surface smoothly.

10A 第1の射出装置
10B 第2の射出装置
23 金型キャビティ
25、55、65、75 基材層
26、56、66、76 表層
35A 混合手段
10A 1st injection device 10B 2nd injection device 23 Mold cavity 25, 55, 65, 75 Base material layer 26, 56, 66, 76 Surface layer 35A Mixing means

Claims (10)

繊維材を含む溶融樹脂を充填して基材層を成形する第1の射出装置と、繊維材を含む溶融樹脂を充填して表層を成形する第2の射出装置とを用い、繊維材で樹脂を強化するとともに、前記基材層に前記表層を積層する繊維強化樹脂の積層成形方法において、
前記第1及び第2の射出装置に用いる樹脂成形材料が、積層成形品を成形する直前に所定量の、樹脂ペレットと、前記繊維材と、複数の添加剤とを混合手段により直接混ぜ合わせたもので、且つ前記基材層及び前記表層がそれぞれ異なる繊維材の配合率(重量含有率)とする繊維強化樹脂の積層成形方法。
Resin with a fiber material using a first injection device that fills a molten resin containing a fiber material and molds a base material layer, and a second injection device that fills the molten resin containing a fiber material and shapes a surface layer In the laminate molding method of fiber reinforced resin for laminating the surface layer on the base material layer,
The resin molding material used for the first and second injection devices was directly mixed with a predetermined amount of resin pellets, the fiber material, and a plurality of additives immediately before molding a laminated molded product. A fiber-reinforced resin laminate molding method in which the base material layer and the surface layer have different fiber material mixing ratios (weight contents).
前記基材層と表層とを成形するに際して、基材層の充填後に表層を充填する請求項1に記載の繊維強化樹脂の積層成形方法。   The method for laminating and forming a fiber reinforced resin according to claim 1, wherein when the base material layer and the surface layer are formed, the surface layer is filled after the base material layer is filled. 前記表層と基材層とを成形するに際して、基材層と表層を略同時に充填する請求項1に記載の繊維強化樹脂の積層成形方法。   The method for laminating and forming a fiber reinforced resin according to claim 1, wherein the base layer and the surface layer are filled substantially simultaneously when the surface layer and the base layer are formed. 前記表層を成形する繊維材の配合率(重量含有率)を、前記基材層を成形する繊維材の配合率(重量含有率)より小さい値とした請求項1乃至請求項3の何れかに記載の繊維強化樹脂の積層成形方法。   The composition ratio (weight content) of the fiber material forming the surface layer is set to a value smaller than the composition ratio (weight content ratio) of the fiber material forming the base material layer. A method for laminating a fiber-reinforced resin as described. 前記繊維材は、ガラス繊維、炭素繊維、有機繊維群の中から選択する請求項1乃至請求項4の何れかに記載の繊維強化樹脂の積層成形方法。   The fiber-reinforced resin laminate molding method according to any one of claims 1 to 4, wherein the fiber material is selected from a group of glass fibers, carbon fibers, and organic fibers. 前記繊維材の配合率(重量含有率)を、5〜60重量%とした請求項1乃至請求項5の何れかに記載の繊維強化樹脂の積層成形方法。   The fiber reinforced resin laminate molding method according to any one of claims 1 to 5, wherein a blending ratio (weight content) of the fiber material is 5 to 60% by weight. 前記樹脂成形材料に用いる前記繊維材の長さを、繊維束径の5〜1000倍とした請求項1乃至請求項6の何れかに記載の繊維強化樹脂の積層成形方法。   The fiber-reinforced resin laminate molding method according to any one of claims 1 to 6, wherein a length of the fiber material used for the resin molding material is 5 to 1000 times a fiber bundle diameter. 前記樹脂成形材料に供給する前記複数の添加剤は、改質剤、着色剤、充填材、帯電防止剤、滑剤、安定剤、難燃剤、界面活性剤等の中から複数選択する請求項1乃至請求項7の何れかに記載の繊維強化樹脂の積層成形方法。   The plurality of additives to be supplied to the resin molding material are selected from a plurality of modifiers, colorants, fillers, antistatic agents, lubricants, stabilizers, flame retardants, surfactants, and the like. A method for laminating and forming a fiber reinforced resin according to claim 7. 金型キャビティに基材層となる繊維材を含む溶融樹脂を充填、次いで、前記基材層の充填完了後に表層となる繊維材を含む溶融樹脂を充填して、基材層に表層を積層した積層成形品において、
前記積層品の樹脂成形材料に、積層成形品を成形する直前に所定量の、樹脂ペレットと、繊維材と、複数の添加剤とを混合手段により直接混合したものを用い、
前記基材層及び表層の前記樹脂成形材料をそれぞれ異なる繊維材の配合比率(重量含有率)とし、前記表層を成形する繊維材の配合率(重量含有率)を、前記基材層を成形する繊維材の配合率(重量含有率)より小さい値とした繊維強化樹脂の積層成形品。
The mold cavity was filled with a molten resin containing a fiber material to be a base material layer, and then filled with a molten resin containing a fiber material to be a surface layer after completion of filling the base material layer, and the surface layer was laminated on the base material layer In laminated molded products,
In the resin molding material of the laminate, a predetermined amount of resin pellets, a fiber material, and a plurality of additives directly mixed immediately before molding the laminate molded product are used.
The resin molding material of the base material layer and the surface layer is made into a blending ratio (weight content) of different fiber materials, and the base material layer is molded with the blending rate (weight content) of the fiber material forming the surface layer. Laminated molded product of fiber reinforced resin with a value smaller than the blending ratio (weight content) of the fiber material.
金型キャビティに表層となる繊維材を含む溶融樹脂と、基材層となる繊維材を含む溶融樹脂とを略同時に充填して、基材層に表層を積層した積層成形品において、
前記積層品の樹脂成形材料に、積層成形品を成形する直前に所定量の、樹脂ペレットと、繊維材と、複数の添加剤とを混合手段により直接混合したものを用い、
前記基材層及び前記表層の前記樹脂成形材料をそれぞれ異なる繊維材の配合比率(重量含有率)とし、前記表層を成形する繊維材の配合率(重量含有率)を、前記基材層を成形する繊維材の配合率(重量含有率)より小さい値とした繊維強化樹脂の積層成形品。
In a laminated molded product in which a molten resin containing a fiber material as a surface layer in a mold cavity and a molten resin containing a fiber material as a base material layer are filled almost simultaneously, and the surface layer is laminated on the base material layer,
In the resin molding material of the laminate, a predetermined amount of resin pellets, a fiber material, and a plurality of additives directly mixed immediately before molding the laminate molded product are used.
The resin molding materials of the base material layer and the surface layer are made into different fiber material blending ratios (weight content ratios), and the fiber material molding ratio (weight content ratio) for molding the surface layer is molded into the base material layer. A laminated product of fiber reinforced resin having a value smaller than the mixing ratio (weight content) of the fiber material to be processed.
JP2010039604A 2010-02-25 2010-02-25 Laminated molding method and laminated molded product of fiber reinforced resin Active JP5645102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010039604A JP5645102B2 (en) 2010-02-25 2010-02-25 Laminated molding method and laminated molded product of fiber reinforced resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010039604A JP5645102B2 (en) 2010-02-25 2010-02-25 Laminated molding method and laminated molded product of fiber reinforced resin

Publications (2)

Publication Number Publication Date
JP2011173344A JP2011173344A (en) 2011-09-08
JP5645102B2 true JP5645102B2 (en) 2014-12-24

Family

ID=44686681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010039604A Active JP5645102B2 (en) 2010-02-25 2010-02-25 Laminated molding method and laminated molded product of fiber reinforced resin

Country Status (1)

Country Link
JP (1) JP5645102B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6522456B2 (en) * 2015-07-29 2019-05-29 東芝機械株式会社 Method and apparatus for molding composite material molding
JP6821539B2 (en) * 2017-10-20 2021-01-27 株式会社日本製鋼所 Molding method for composite reinforced fiber resin molded products

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH068278A (en) * 1992-06-29 1994-01-18 Toshiba Corp Production of glass-fiber reinforced resin component
US5798162A (en) * 1996-09-04 1998-08-25 The Dow Chemical Company Composites of crystalline polymers
JP2001009984A (en) * 1999-06-30 2001-01-16 Idemitsu Petrochem Co Ltd Multilayered molded product and production thereof
JP2001353749A (en) * 2000-06-14 2001-12-25 Idemitsu Petrochem Co Ltd Injection multilayered molded article and method for manufacturing the same
JP2003260759A (en) * 2002-03-07 2003-09-16 Toray Ind Inc Polyester multilayered injection molded article
JP2008155395A (en) * 2006-12-21 2008-07-10 Kasai Kogyo Co Ltd Method and apparatus for molding laminated molding

Also Published As

Publication number Publication date
JP2011173344A (en) 2011-09-08

Similar Documents

Publication Publication Date Title
Peng et al. 3D printing with core–shell filaments containing high or low density polyethylene shells
Goodship ARBURG practical guide to injection moulding
US20180126636A1 (en) 3d printer head for ejecting multi-molding melt and 3d printer including the same
US20080063869A1 (en) Compounding molding system, amongst other things
US20110272847A1 (en) Device and method for producing molded parts from plasticisable material and from fibrous inserts
CN111670106B (en) Material for three-dimensional molding, filament for three-dimensional molding, wound body of the filament, and three-dimensional printer cartridge
JP5655154B2 (en) Manufacturing method of undercover using extrusion-injection-foaming continuous molding method
JP5645102B2 (en) Laminated molding method and laminated molded product of fiber reinforced resin
KR20130001472A (en) Extrusion and injection simultaneous forming device preventing solidification and hydrolysis and manufacturing method of long fiber thermoplastic strength complex material using the same
JP6426460B2 (en) Melt molding pellet mixture and molded article produced using the same
WO2002074515A1 (en) Composite moulded parts comprising a film coating and method for producing the same
JP4557485B2 (en) Moldable material molding
Ramos‐De Valle Principles of polymer processing
US20080081876A1 (en) Methods for making fiber reinforced polystyrene composites
US20080303185A1 (en) Molding System and Process for Making Product having Reduced Warpage Susceptibility
JP2020069730A (en) Method of extrusion molding of sheathing board for concrete formwork and equipment thereof
JP4633585B2 (en) Method for producing resin-containing laminate
JP2023513686A (en) Low pressure molding system
JP3960660B2 (en) Manufacturing method of lightweight molded product of fiber reinforced thermoplastic resin
Goodship Injection Moulding: A Practical Guide
KR20210036726A (en) Injection mold, injection molding machine comprising and the method for preparing mold product using the same
KR20160115157A (en) plastic resin including Al powder, plastic resin pellet, and producing method
KR102473146B1 (en) Composition for 3D Printing and Filament for 3D Printer
Srithep et al. A study on material distribution and mechanical properties in co-injection molding
JP2003094477A (en) Method for injection molding polymer alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141023

R150 Certificate of patent or registration of utility model

Ref document number: 5645102

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250