JP5644398B2 - Control device for electric vehicle - Google Patents

Control device for electric vehicle Download PDF

Info

Publication number
JP5644398B2
JP5644398B2 JP2010253794A JP2010253794A JP5644398B2 JP 5644398 B2 JP5644398 B2 JP 5644398B2 JP 2010253794 A JP2010253794 A JP 2010253794A JP 2010253794 A JP2010253794 A JP 2010253794A JP 5644398 B2 JP5644398 B2 JP 5644398B2
Authority
JP
Japan
Prior art keywords
power generation
fuel consumption
power
parking
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010253794A
Other languages
Japanese (ja)
Other versions
JP2012101747A (en
Inventor
上田 直樹
直樹 上田
中島 祐樹
祐樹 中島
敬介 鈴木
敬介 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2010253794A priority Critical patent/JP5644398B2/en
Publication of JP2012101747A publication Critical patent/JP2012101747A/en
Application granted granted Critical
Publication of JP5644398B2 publication Critical patent/JP5644398B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Description

本発明は、電動車両の制御装置に関し、特に、電池の充電量が少なくなった場合でも、外部電源により充電することなく電気走行(EV走行)の航続距離を延長させるための発電装置を備えた発電装置搭載型の電動車両の制御装置に関する。   The present invention relates to a control device for an electric vehicle, and in particular, includes a power generation device for extending the cruising distance of electric travel (EV travel) without being charged by an external power source even when the charge amount of a battery is reduced. The present invention relates to a control device for an electric vehicle equipped with a power generator.

発電装置搭載型の電動車両として、特許文献1には、アクセルペダルの踏み込み量と車速から発電量を算出して、ドライバーに音の違和感を与えないようなエンジン回転数に制御する技術が開示されている。   As an electric vehicle equipped with a power generator, Patent Document 1 discloses a technique for calculating the amount of power generation from the amount of depression of an accelerator pedal and the vehicle speed, and controlling the engine speed so that the driver does not feel uncomfortable with the sound. ing.

特開2000−236602号公報JP 2000-236602 A

特許文献1に示された開示技術では、車両負荷に応じてエンジン回転数を可変にし、それに伴い発電量も可変とするが、その場合に、エンジンの運転状態は最適燃費点からずれてしまうため燃費が低下することは否めない。   In the disclosed technique disclosed in Patent Document 1, the engine speed is made variable according to the vehicle load, and the power generation amount is made variable accordingly. In this case, the engine operating state deviates from the optimum fuel consumption point. It cannot be denied that the fuel consumption will be reduced.

そこで、本発明は発電装置を最適燃費点で稼働させることができて、発電による燃費の低下を抑制することができる電動車両の制御装置を提供するものである。   Therefore, the present invention provides a control device for an electric vehicle that can operate a power generation device at an optimum fuel consumption point and suppress a decrease in fuel consumption due to power generation.

本発明の電動車両の制御装置にあっては、駆動用モータと、この駆動用モータに電力供給を行う充放電可能な電池と、これら駆動用モータあるいは電池への電力供給のために発電を行う発電装置と、該発電装置を作動制御する発電制御装置と、を備えている。   In the control apparatus for an electric vehicle according to the present invention, a drive motor, a chargeable / dischargeable battery for supplying power to the drive motor, and power generation for supplying power to the drive motor or the battery are performed. A power generation device; and a power generation control device that controls the operation of the power generation device.

この発電制御装置は、車両の走行中に発電を行うか車両の起動スイッチをオフにした駐車中に発電を行うかを判断して、駐車中に発電装置を作動することで、駐車後における走行に必要な電力を前記電池に供給可能としたことを主要な特徴としている。   This power generation control device determines whether to generate power while the vehicle is traveling or whether to generate power during parking with the vehicle start switch turned off, and operates the power generation device while parking, thereby driving after parking The main feature is that it is possible to supply the battery with the power necessary for the above.

本発明によれば、発電制御装置の判断によって、車両の駐車中に発電を行わせることにより、発電装置を最適燃費点で稼働させることができるため、発電による燃費の低下を抑制することができる。   According to the present invention, since the power generation device can be operated at the optimum fuel consumption point by generating power while the vehicle is parked according to the determination of the power generation control device, it is possible to suppress a decrease in fuel consumption due to power generation. .

本発明に係る電動車両の制御装置の一実施形態を示すシステム構成図。The system block diagram which shows one Embodiment of the control apparatus of the electric vehicle which concerns on this invention. 本発明の実施形態における発電制御装置の機能構成を示すブロック図。The block diagram which shows the function structure of the electric power generation control apparatus in embodiment of this invention. 本発明の実施形態における発電装置の稼働による燃費と燃料消費量を、(A)に追従発電走行した場合と、(B)に駐車中発電した場合とで示す説明図。Explanatory drawing which shows the fuel consumption and fuel consumption by the operation | movement of the electric power generating apparatus in embodiment of this invention by the case where it carries out power generation driving | running | working following (A), and the case where it generate | occur | produces during parking in (B). 本発明の実施形態における発電制御装置の制御動作を示すフローチャート図。The flowchart figure which shows the control action of the electric power generation control apparatus in embodiment of this invention. 走行負荷情報の一例を示す説明図。Explanatory drawing which shows an example of driving | running | working load information. 駐車中発電を行う場合の燃料消費量演算の処理手順を示すフローチャート図。The flowchart figure which shows the process sequence of fuel consumption calculation in the case of performing electric power generation during parking. 駐車中発電を行う場合の目標総電力の算出を表す説明図。Explanatory drawing showing calculation of the target total electric power in the case of performing electric power generation during parking. 駆動モータ効率を表すマップ。A map representing drive motor efficiency. 電池放電効率を表すマップ。A map showing battery discharge efficiency. 電池充電効率を表すマップ。A map showing battery charging efficiency. 発電機効率を表すマップ。A map showing generator efficiency. 駐車中発電必要時間の算出に用いられるマップ。A map used to calculate the required power generation time during parking. 追従発電走行を行う場合の燃料消費量演算の処理手順を示すフローチャート図。The flowchart figure which shows the process sequence of the fuel consumption calculation in the case of performing a tracking power generation driving | running | working. 追従発電走行を行う場合の目標電力の算出を表す説明図。Explanatory drawing showing calculation of the target electric power in the case of performing tracking power generation driving | running | working. 燃費率を表すマップ。A map showing the fuel consumption rate. 図5に示す走行負荷情報の微少時間における燃料消費量を表す説明図。Explanatory drawing showing the fuel consumption in the micro time of the driving | running | working load information shown in FIG.

以下、本発明の一実施形態を図面と共に詳述する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

図1に示す実施形態の電動車両は、車両駆動源としての駆動用モータ1と、該駆動用モータ1に電力供給を行う充放電可能な電池2と、これら駆動用モータ1あるいは電池2への電力供給のために発電を行う発電装置3と、車両全体の作動システムの制御を司る車両コントローラー4と、を備えている。   An electric vehicle according to the embodiment shown in FIG. 1 includes a drive motor 1 as a vehicle drive source, a chargeable / dischargeable battery 2 that supplies power to the drive motor 1, and the drive motor 1 or the battery 2. A power generation device 3 that generates power for power supply and a vehicle controller 4 that controls the operation system of the entire vehicle are provided.

駆動用モータ1は、駆動輪5の動力伝達装置6に直結してあり、モータ制御装置7によりインバータ8を介して作動制御され、トルクを出して走行する力行状態や、減速時に回生エネルギーを電池2に吸収する回生状態などの車両状態に応じた回転制御を行っている。   The drive motor 1 is directly connected to the power transmission device 6 of the drive wheel 5 and is controlled by the motor control device 7 via the inverter 8 so that the power is driven by torque and the regenerative energy is transferred during deceleration. Rotational control is performed in accordance with the vehicle state such as the regenerative state absorbed in the vehicle 2.

電池2は、電池制御装置9により充放電制御され、駆動用モータ1への電力供給と、発電装置3で発電した電力,駆動用モータ1の減速時に回生した電力,充電器10のコンセント11を介して行われる外部電源からの電力の充電制御を行っている。   The battery 2 is charge / discharge controlled by the battery control device 9 to supply power to the drive motor 1, power generated by the power generation device 3, power regenerated when the drive motor 1 is decelerated, and an outlet 11 of the charger 10. The charge control of the electric power from the external power supply performed via the is performed.

発電装置3として本実施形態ではエンジン12と発電機13との組合わせを用いているが燃料電池スタックを用いることも可能である。エンジン12は、エンジン制御装置14により燃焼噴射量や吸入空気量、点火時期等の制御を行っている。また、発電機13は、発電機制御装置15によりインバータ16を介して、発電状態や電力消費状態に応じた回転制御を行っている。   In the present embodiment, a combination of the engine 12 and the generator 13 is used as the power generation device 3, but a fuel cell stack can also be used. The engine 12 controls the combustion injection amount, the intake air amount, the ignition timing, and the like by the engine control device 14. Further, the generator 13 performs rotation control according to the power generation state and the power consumption state via the inverter 16 by the generator control device 15.

車両コントローラ4は、上述の駆動用モータ制御系,電池制御系,エンジン制御系,および発電機制御系との間で情報のやり取りを行い、これらの情報と、ドライバーの操作入力や車速等の車両状態、および外気温等の外部環境状態を検出する各種のセンサ情報にもとづいてシステム全体の制御を行っている。即ち、ドライバーからの要求に応じて駆動用モータ1を駆動する信号をモータ制御装置7へ出力すると共に、電池2の充電量(SOC)などを電池制御装置9を介して読み取り、充電量がそのときの走行状態や今後の走行予定に対して適切となるような発電を行うように、エンジン制御装置14や発電機制御装置15を介してエンジン12や発電機13を制御する。また、車両の駐車中に外部電源から充電する場合に、電池制御装置9を介して電池2の状態をモニターしながら、充電器10を制御して電池2に適正量の電力の充電を行わせる。   The vehicle controller 4 exchanges information with the drive motor control system, battery control system, engine control system, and generator control system described above, and the vehicle, such as the driver's operation input and vehicle speed. The entire system is controlled based on various sensor information for detecting the state and external environmental conditions such as the outside air temperature. That is, a signal for driving the driving motor 1 is output to the motor control device 7 in response to a request from the driver, and the charge amount (SOC) of the battery 2 is read via the battery control device 9 and the charge amount is The engine 12 and the generator 13 are controlled via the engine control device 14 and the generator control device 15 so as to generate power that is appropriate for the current travel state and future travel schedule. Further, when charging from an external power source while the vehicle is parked, the battery 2 is charged by charging the battery 2 by controlling the charger 10 while monitoring the state of the battery 2 via the battery control device 9. .

駆動用モータ1、発電機13、それらのインバータ8,16、および充電器10等の高電圧部品は、ラジェータ17と冷却水ポンプ18を備えた電気部品冷却ユニットにより適切な冷却を行っている。同様にエンジン12は、ラジェータ19と冷却水ポンプ20を備えたエンジン冷却ユニットにより適切な冷却を行っている。同様にエンジン12は、ラジ
ェータ19と冷却水ポンプ20を備えたエンジン冷却ユニットにより適切な冷却を行っている。このエンジン冷却ユニットの循環冷却水をヒーターユニット21に導入すると共に、該ヒーターユニット21に電気ヒーター22を組付けて、エンジン冷却水の熱エネルギーと電気ヒーター22の熱エネルギーの両方を使い分けた室内暖房を行えるようにしている。
High voltage components such as the drive motor 1, the generator 13, their inverters 8 and 16, and the charger 10 are appropriately cooled by an electrical component cooling unit including a radiator 17 and a cooling water pump 18. Similarly, the engine 12 is appropriately cooled by an engine cooling unit including a radiator 19 and a cooling water pump 20. Similarly, the engine 12 is appropriately cooled by an engine cooling unit including a radiator 19 and a cooling water pump 20. Circulating cooling water of the engine cooling unit is introduced into the heater unit 21 and an electric heater 22 is assembled to the heater unit 21 so that both the heat energy of the engine cooling water and the heat energy of the electric heater 22 are properly used. Can be done.

上述の車両コントローラ4は、車両の走行中に発電を行うか車両の起動スイッチをオフにした駐車中に発電を行うかを判断して発電装置3を作動制御する発電制御機能を備えていて、この判断により駐車中に発電装置3を作動させることで、駐車後の走行に必要な電力を供給可能としている。   The vehicle controller 4 described above has a power generation control function for determining whether to generate power while the vehicle is running or to generate power during parking with the vehicle start switch turned off, and to control the power generation device 3 to operate. By operating the power generation device 3 during parking based on this determination, it is possible to supply electric power necessary for traveling after parking.

図2は、この車両コントローラ4における発電制御の機能構成を示すブロック図である。   FIG. 2 is a block diagram showing a functional configuration of power generation control in the vehicle controller 4.

車両コントローラ4は、走行負荷情報取得機能101と、駐車時間取得機能102と、車両状態検知機能103と、追従発電走行燃料消費量演算機能104と、駐車中発電燃料消費量演算機能105と、駐車中発電の実施を判断する判断機能106と、駐車中発電制御機能107と、を備えている。   The vehicle controller 4 includes a travel load information acquisition function 101, a parking time acquisition function 102, a vehicle state detection function 103, a follow-up power generation travel fuel consumption calculation function 104, a parked power generation fuel consumption calculation function 105, a parking A determination function 106 for determining execution of middle power generation and a power generation control function 107 during parking are provided.

走行負荷情報取得機能101は、車載したナビゲーションシステムの情報によって、予め設定された目的地までの走行経路から走行負荷を演算する。この走行負荷は、図5に示す走行プロフィールから目的地までの走行に必要な時間当りの電力量として演算され、これを追従発電走行燃料消費量演算機能104と、駐車中発電燃料消費量演算機能105に出力する。   The travel load information acquisition function 101 calculates a travel load from a travel route to a destination set in advance based on information from a vehicle-mounted navigation system. This travel load is calculated as the amount of power per hour required for traveling from the travel profile shown in FIG. 5 to the destination, and this is calculated as a follow-up power generation travel fuel consumption calculation function 104 and a parked power generation fuel consumption calculation function. To 105.

駐車時間取得機能102は、ドライバーが予め設定した駐車時間を読み出して、これを駐車中発電燃料消費量演算機能105に出力する。   The parking time acquisition function 102 reads the parking time set in advance by the driver and outputs this to the parking power generation fuel consumption calculation function 105.

車両状態検知機能103は、外気温等の環境状態、車両の起動スイッチやパーキングブレーキスイッチのオン/オフ等の車両状態を検出する各種のセンサ情報の中から、発電制御に必要な情報を選択して判断機能106に出力する。   The vehicle state detection function 103 selects information necessary for power generation control from various sensor information for detecting an environmental state such as an outside air temperature and a vehicle state such as ON / OFF of a vehicle start switch and a parking brake switch. To the determination function 106.

追従発電走行燃料消費量演算機能104は、走行負荷情報取得機能101の出力にもとづいて、走行しながら発電装置3を稼働させる追従発電走行した場合の燃料消費量を演算し、これを判断機能106に出力する。   The follow-up power generation travel fuel consumption calculation function 104 calculates the fuel consumption in the case of the follow-up power generation travel that operates the power generation device 3 while traveling based on the output of the travel load information acquisition function 101, and determines this Output to.

駐車中発電燃料消費量演算機能105は、走行負荷情報取得機能101と駐車時間取得機能102の出力にもとづいて、駐車中に発電装置3を稼働して発電,充電を行った場合の燃料消費量を演算し、または駐車中の発電,充電で不足した分を追従発電走行で補った場合の燃料消費量の総和を演算し、これを判断機能106に出力する。   The power generation fuel consumption calculation function 105 during parking is based on the outputs of the travel load information acquisition function 101 and the parking time acquisition function 102, and the fuel consumption when the power generation device 3 is operated to generate power and charge during parking. Or the sum of the fuel consumption when the shortage in the power generation and charging during parking is compensated by the follow-up power generation travel, and this is output to the determination function 106.

判断機能106は、車両状態検知機能103,追従発電走行燃料消費量演算機能104,駐車中発電燃料消費量演算機能105の出力にもとづいて、駐車中発電のオン/オフを判断し、オンの場合に駐車中発電制御機能107を動作させる。   Based on the outputs of the vehicle state detection function 103, the follow-up power generation travel fuel consumption calculation function 104, and the parked power generation fuel consumption calculation function 105, the determination function 106 determines on / off of power generation during parking. The parking power generation control function 107 is operated.

図3は、例えば買い物をするために車両を駐車場に駐車し、駐車時間と帰りの目的地までの走行経路を決めて、時間TOから時間Tsの間は買い物をし、時間Tsから時間Teの間を予め設定された目的地まで追従発電して走行した場合の燃費と、駐車中に発電,充電を行ってその充電電力で目的地まで電気走行(EV走行)した場合の燃費を比較した例を示している。   FIG. 3 shows, for example, that a vehicle is parked in a parking lot for shopping, a parking time and a travel route to a return destination are determined, shopping is performed from time TO to time Ts, and time Ts to time Te. Between the fuel consumption when driving to a preset destination between the vehicle and the fuel consumption when generating electricity and charging while parking and driving to the destination with that charged power (EV traveling) An example is shown.

図3(A)は、駐車中に発電装置3による発電,充電を行わずに、買い物から戻って来て走行しながら追従発電した場合を示す。この追従発電走行では、時間Tsから時間Teまで走行しながら必要な発電パワーを発電し、その発電パワーから燃費(g/kwh)、燃料消費量(g)を算出する。追従発電では走行負荷に応じて発電機動作点が変動するため、最適燃費領域以外での動作点が多く見られ、燃料消費量が多くなる。   FIG. 3A shows a case where tracking power generation is performed while returning from shopping and running without performing power generation and charging by the power generation device 3 during parking. In this follow-up power generation travel, necessary power generation is generated while traveling from time Ts to time Te, and fuel consumption (g / kwh) and fuel consumption (g) are calculated from the generated power. In follow-up power generation, the generator operating point fluctuates in accordance with the traveling load, so many operating points outside the optimum fuel efficiency region are seen, and fuel consumption increases.

図3(B)は、目的地までの走行に必要な電力量を時間TOから時間Tsの駐車中に最適な燃費領域の動作点で発電して充電し、時間Tsから時間TeまでをEV走行した場合を示す。この駐車中発電では、図3(A)の走行中に消費する走行に必要な電力量を、駐車中に発電装置3を最適な燃費領域で稼働して発電し、電池2に充電することによって、追従発電走行に較べて燃料消費量が少なくなっている。   Fig. 3 (B) shows the amount of electric power required for traveling to the destination generated during charging from the time TO to the time Ts at the optimum operating point in the fuel consumption area and charged, and EV traveled from the time Ts to the time Te. Shows the case. In this power generation during parking, the amount of power required for travel consumed during travel in FIG. 3A is generated by operating the power generation device 3 in the optimum fuel consumption region during parking and charging the battery 2. The fuel consumption is reduced compared to the follow-up power generation travel.

図4は、図2に示した車両コントローラ4の発電制御機能による制御動作を示すフローチャートである。   FIG. 4 is a flowchart showing a control operation by the power generation control function of the vehicle controller 4 shown in FIG.

ステップS2001では、ナビゲーション装置による目的地までの走行経路の設定の有無を判断し、走行経路設定無しの場合は終了する。走行経路設定がされている場合はステップS2002へ進む。ステップS2002では、駐車時間Tの設定の有無を判断し、駐車時間設定無しの場合は終了する。駐車時間Tが設定されている場合はステップS2003へ進む。ステップS2003では、外気温度を検出して駐車後の目的地までの走行時に発電装置3の廃熱による暖房が必要かを判断し、この廃熱による暖房が必要な場合は終了する。発電機廃熱による暖房が必要ない場合はステップS2004へ進む。ステップS2004では、図5に示す走行プロフィールを取得し、目的地までEV走行した場合の必要電力量を演算する。この走行プロフィールは、ナビゲーション装置に蓄積された過去の走行データから走行負荷を推定することによって容易に、かつ、正確に設定することが可能である。ステップS2005では、目的地までEV走行するのに必要な電力量を駐車中発電を行って得る場合の燃料消費量Aを演算する。ステップS2006では、目的地までEV走行するのに必要な電力量を追従発電走行を行って得る場合の燃料消費量Bを演算する。ステップS2007では、燃料消費量Aと燃料消費量Bとを比較し、燃料消費量A<燃料消費量Bでない場合は終了する。燃料消費量A<燃料消費量Bの場合はステップS2008へ進み、ステップS2008では、駐車中の発電,充電を実行して終了する。   In step S2001, it is determined whether or not a travel route to the destination is set by the navigation device, and the process ends if there is no travel route setting. If the travel route is set, the process proceeds to step S2002. In step S2002, it is determined whether or not the parking time T is set. If no parking time is set, the process ends. If the parking time T is set, the process proceeds to step S2003. In step S2003, the outside air temperature is detected to determine whether heating by the waste heat of the power generation device 3 is necessary when traveling to the destination after parking. If heating by the waste heat is necessary, the process ends. If heating by generator waste heat is not required, the process proceeds to step S2004. In step S2004, the travel profile shown in FIG. 5 is acquired, and the required electric energy when EV travels to the destination is calculated. This travel profile can be easily and accurately set by estimating the travel load from past travel data stored in the navigation device. In step S2005, a fuel consumption amount A is calculated in a case where the amount of electric power necessary for EV traveling to the destination is obtained by performing power generation during parking. In step S2006, a fuel consumption amount B is calculated in the case where the amount of electric power necessary for EV travel to the destination is obtained by performing follow-up power generation travel. In step S2007, the fuel consumption amount A and the fuel consumption amount B are compared, and if the fuel consumption amount A <the fuel consumption amount B is not satisfied, the process ends. If the fuel consumption A <the fuel consumption B, the process proceeds to step S2008. In step S2008, power generation and charging during parking are executed and the process ends.

図6は、図5のステップS2005の駐車中発電を行った場合の燃料消費量Aを算出する処理手順を示すフローチャートである。   FIG. 6 is a flowchart showing a processing procedure for calculating the fuel consumption A when the power generation during parking in step S2005 of FIG. 5 is performed.

ステップS2101では、走行プロフィールを読込み、ステップS2102では、走行プロフィールから駆動モータ損失を考慮し、目的地までの走行に必要な駆動モータ総電力量Qmを算出する(図7参照)。駆動モータ損失は、図8に示す駆動モータ効率ηgから算出する。ステップS2103では、必要駆動モータ総電力量Qmから電池温度によって異なる放電損失を考慮し、目的地までの走行に必要な電池総電力量Qbを算出する(図7参照)。電池放電損失は、図9に示す高電圧BAT放電効率ηdから算出する。ステップS2104では、必要電池総電力量Qbから電池温度によって異なる充電損失を考慮し、目的地までの走行に必要な発電機総電力量Qgを算出する(図7参照)。電池充電損失は、図10に示す高電圧BAT充電効率ηcから算出する。ステップS2105では、必要発電機総電力量Qgから発電機損失を考慮し、目的地までの走行に必要なエンジン(ENG)総出力Qeを算出する(図7参照)。発電機損失は、図11に示す発電機効率ηeから算出する。ステップS2106では、図12に示す定点発電量マップQ(kwh)=駐車中発電点(kw)×t(時間)と、ステップS2105で求めた必要ENG総出力Qeとの交点から駐車中必要発電時間t1を算出する。ステップS2107では、駐車時間T
と駐車中必要発電時間t1とを比較し、t1≦Tの場合はステップS2108へ進み、t1≦Tでない場合はステップS2109へ進む。ステップS2108では、駐車中発電点(kw)とその動作点の燃費α(g/kwh)、駐車中必要発電時間t1から燃料消費量Aを算出し、リターンする。ステップS2109では、駐車中発電点(kw)とその動作点の燃費α(g/kwh)、駐車時間Tから燃料消費量A1を算出する。ステップS2110では、ステップS2109で駐車中発電を行って充電された状態をスタートとして仮定してEV走行した後、目的地までの残りの走行経路を追従発電走行を行った場合の燃料消費量A2を算出する。ステップS2111では、燃料消費量A=燃料消費量A1+燃料消費量A2を算出し、リターンする。
In step S2101, the travel profile is read. In step S2102, the drive motor loss is calculated from the travel profile, and the drive motor total power amount Qm necessary for travel to the destination is calculated (see FIG. 7). The drive motor loss is calculated from the drive motor efficiency ηg shown in FIG. In step S2103, the battery total power amount Qb necessary for traveling to the destination is calculated from the required drive motor total power amount Qm in consideration of the discharge loss that varies depending on the battery temperature (see FIG. 7). The battery discharge loss is calculated from the high voltage BAT discharge efficiency ηd shown in FIG. In step S2104, the generator total power amount Qg required for traveling to the destination is calculated from the required battery total power amount Qb in consideration of the charge loss that varies depending on the battery temperature (see FIG. 7). The battery charge loss is calculated from the high voltage BAT charge efficiency ηc shown in FIG. In step S2105, an engine (ENG) total output Qe required for traveling to the destination is calculated in consideration of the generator loss from the required generator total power amount Qg (see FIG. 7). The generator loss is calculated from the generator efficiency ηe shown in FIG. In step S2106, the fixed power generation amount map Q (kwh) = parking power generation point (kw) × t (time) shown in FIG. 12 and the necessary power generation time during parking from the intersection of the required ENG total output Qe obtained in step S2105. t1 is calculated. In step S2107, the parking time T
And the required power generation time t1 during parking. When t1 ≦ T, the process proceeds to step S2108, and when t1 ≦ T is not satisfied, the process proceeds to step S2109. In step S2108, the fuel consumption A is calculated from the power generation point during parking (kw), the fuel consumption α (g / kwh) at the operating point, and the necessary power generation time t1 during parking, and the process returns. In step S2109, the fuel consumption A1 is calculated from the parking power generation point (kw), the fuel consumption α (g / kwh) at the operating point, and the parking time T. In step S2110, the fuel consumption amount A2 is calculated when the electric power generation during parking is performed in step S2109 and the electric power generation is performed following the remaining travel route to the destination after the EV traveling assuming the state of being charged. calculate. In step S2111, fuel consumption A = fuel consumption A1 + fuel consumption A2 is calculated, and the process returns.

図13は、図4のステップS2006の追従発電走行を行った場合の燃料消費量Bを算出する処理手順を示すフローチャートである。   FIG. 13 is a flowchart showing a processing procedure for calculating the fuel consumption amount B when the follow-up power generation traveling in step S2006 of FIG. 4 is performed.

ステップS2201では、走行プロフィールを読込み、ステップS2202では、走行プロフィールから駆動モータ損失を考慮し、目的地までの走行に必要な駆動モータ電力Pmを算出する(図14参照)。駆動モータ損失は、前述と同様に図8に示す駆動モータ効率ηgから算出する。ステップS2203では、必要駆動モータ電力Pmから発電機損失を考慮し、目的地までの走行に必要なエンジン(ENG)発電出力Peを算出する(図14参照)。発電機損失は、前述と同様に図11に示す発電機効率ηeから算出する。ステップS2204では、図15に示す燃費率マップにより求められる燃費L(g/kwh)と、必要ENG発電出力Peとから図16の走行プロフィールにおける微小時間Δtの燃料消費量ΔB=Pe・L(g/kwh)・Δtを算出する。ステップS2205では、この走行プロフィールと燃料消費量ΔBから合計燃料消費量B=∫ΔB=∫Pe・L・Δtを算出し、リターンする。   In step S2201, the travel profile is read. In step S2202, the drive motor power Pm necessary for travel to the destination is calculated from the travel profile in consideration of the drive motor loss (see FIG. 14). The drive motor loss is calculated from the drive motor efficiency ηg shown in FIG. 8 as described above. In step S2203, an engine (ENG) power generation output Pe required for traveling to the destination is calculated in consideration of the generator loss from the necessary drive motor power Pm (see FIG. 14). The generator loss is calculated from the generator efficiency ηe shown in FIG. 11 as described above. In step S2204, the fuel consumption amount ΔB = Pe · L (g) for the minute time Δt in the travel profile of FIG. 16 from the fuel efficiency L (g / kwh) obtained from the fuel efficiency rate map shown in FIG. 15 and the required ENG power generation output Pe. / Kwh) · Δt is calculated. In step S2205, the total fuel consumption B = ∫ΔB = ∫Pe · L · Δt is calculated from the travel profile and the fuel consumption ΔB, and the process returns.

上述の例では、暖房のために用いるエネルギー分は、図7,図14の走行電力量の中に含んでいるものとする。   In the above-described example, it is assumed that the energy used for heating is included in the travel power amount of FIGS.

図4,図6,図13の制御フローによる駐車中発電を行わない場合、走行持続に必要な電力の補充は追従発電走行によって行われる。   When power generation during parking according to the control flow of FIGS. 4, 6, and 13 is not performed, replenishment of electric power necessary for continuous travel is performed by follow-up power generation travel.

以上のように本実施形態の発電制御装置によれば、走行持続に必要な電力を、車両の起動スイッチをオフにした駐車中に、敢えて発電装置3を稼働して走行負荷変動のない定点発電を行うことによって補充するため、この発電装置3を最適燃費点で稼働させて発電,充電を行わせることができて、燃費を改善することができる。   As described above, according to the power generation control device of the present embodiment, the power necessary for continuing travel is fixedly generated by driving the power generation device 3 during parking with the start switch of the vehicle turned off and causing no fluctuation in travel load. Therefore, the power generation device 3 can be operated at the optimum fuel consumption point to generate power and charge, and the fuel consumption can be improved.

また、この発電装置3の駐車中発電制御は、ドライバーが設定した目的地までの走行経路から走行負荷を推定して、駐車中発電を行う場合の燃料消費量と、追従発電走行を行う場合の燃料消費量との比較の下に行っているので、燃料消費量の低減を図ることができる。   In addition, the power generation control during parking of the power generation device 3 estimates the travel load from the travel route to the destination set by the driver, the fuel consumption when performing power generation during parking, Since the comparison is made with comparison with the fuel consumption, the fuel consumption can be reduced.

しかも、この走行経路から予め設定された駐車時間を取得して、設定された駐車時間で駐車中発電を行ってEV走行と追従発電走行とを併用した場合と、追従発電走行を行った場合とでの燃料消費量を比較して運転方式を選択するようにしているため、最適な発電運転を行わせることができる。   In addition, when a preset parking time is acquired from the travel route, power generation during parking is performed at the set parking time, and EV traveling and tracking power generation traveling are used together, and when tracking power generation traveling is performed. Since the operation method is selected by comparing the amount of fuel consumed in each, the optimum power generation operation can be performed.

そして、上述の走行負荷は、過去の走行データの蓄積から推定することによって、燃料消費量を正確に算出することができる。特に、この走行負荷をナビゲーション装置から得られる走行状態情報によって推定しているため、燃料消費量をより正確に算出することができる。   And the above-mentioned driving | running | working load can calculate a fuel consumption correctly by estimating from accumulation | storage of the past driving | running | working data. In particular, since this travel load is estimated from travel state information obtained from the navigation device, the fuel consumption can be calculated more accurately.

また、本実施形態では、上述の燃料消費量を電池2の温度を考慮して算出しているので、電池2の充放電効率が悪化する低温状態であっても、正確な燃料消費量を算出して適正な発電制御を行わせることができる。   Further, in the present embodiment, since the above fuel consumption is calculated in consideration of the temperature of the battery 2, an accurate fuel consumption is calculated even in a low temperature state where the charge / discharge efficiency of the battery 2 deteriorates. Thus, proper power generation control can be performed.

更に、本実施形態では、外気温度が低く目的地までの走行時に発電装置3の廃熱による暖房が必要な場合には、駐車中発電を行わないで、追従発電走行を行ってその廃熱利用により暖房が可能となるので、暖房燃費を改善することもできる。   Furthermore, in this embodiment, when heating by the waste heat of the power generation apparatus 3 is necessary when traveling to the destination with a low outside air temperature, the power generation during parking is not performed but the following power generation travel is performed and the waste heat is used. Since heating is possible, heating fuel consumption can be improved.

なお、前記実施形態では発電装置3としてエンジン12と発電機13との組み合わせのものを例示したが、この他、燃料電池のスタックを用いることも可能である。   In addition, although the thing of the combination of the engine 12 and the generator 13 was illustrated as the electric power generating apparatus 3 in the said embodiment, the stack of a fuel cell can also be used besides this.

1…駆動用モータ
2…電池
3…発電装置
4…車両コントローラ(発電制御装置)
101…走行負荷情報取得機能(手段)
102…駐車時間取得機能(手段)
103…車両状態検知機能(手段)
104…追従発電走行燃料消費量演算機能(手段)
105…駐車中発電燃料消費量演算機能(手段)
106…駐車中発電判断機能(手段)
107…駐車中発電制御機能(手段)
DESCRIPTION OF SYMBOLS 1 ... Drive motor 2 ... Battery 3 ... Electric power generation apparatus 4 ... Vehicle controller (electric power generation control apparatus)
101 ... Travel load information acquisition function (means)
102 ... Parking time acquisition function (means)
103 ... Vehicle state detection function (means)
104 ... Follow-up power generation travel fuel consumption calculation function (means)
105... Power generation fuel consumption calculation function during parking (means)
106 ... Power generation judgment function during parking (means)
107 ... Power generation control function during parking (means)

Claims (8)

車両の駆動輪に伝達される駆動トルクを発生する駆動用モータと、前記駆動用モータに電力供給を行う充放電可能な電池と、前記駆動用モータ及び前記電池に供給する電力を発電する発電装置と、車両が駐車した時に、ユーザが設定した駐車後の目的地を受付ける目的地設定手段と、車両が駐車した時に、ユーザが設定した駐車時間を受付ける駐車時間設定手段と、前記駆動モータが車両を駐車した場所から前記目的地までの走行で消費する総電力量を算出する駆動モータ総電力量算出手段と、前記発電装置が前記駆動用モータに供給する電力を前記駆動トルクに基づいて制御する発電制御手段と、駐車時間を受付けた時に、駐車時間が所定時間以内か否かを判定する車両コントローラと、前記車両コントローラが駐車時間は所定時間以上と判定した時に、前記発電装置が駐車中に消費する第一燃料消費量を前記総電力量に基づいて算出する駐車中発電燃料消費量演算手段と、前記発電装置が前記駆動用モータに電力を直接供給することで、車両を駐車した場所から前記目的地まで走行する際に消費する第二燃料消費量を前記総電力量に基づいて算出する追従発電走行燃料消費量演算手段とを備える電動車両の制御装置において、前記車両コントローラは、前記第一燃料消費量が前記第二燃料消費量より小さい場合に駐車中発電を実施させることを特徴とする電動車両の制御装置。 A driving motor that generates driving torque transmitted to driving wheels of a vehicle, a chargeable / dischargeable battery that supplies power to the driving motor, and a power generation device that generates electric power to be supplied to the driving motor and the battery And a destination setting means for receiving the destination after parking set by the user when the vehicle is parked, a parking time setting means for receiving the parking time set by the user when the vehicle is parked, and the drive motor A drive motor total power amount calculating means for calculating a total power amount consumed in traveling from the place where the vehicle is parked to the destination, and the power supplied from the power generation device to the drive motor based on the drive torque a power generation control unit, and when accepting the parking time, parking time and the vehicle controller determines whether within a predetermined time, the vehicle controller parking time is a predetermined time or longer A first fuel consumption amount consumed during parking by the power generation device based on the total power amount, and a power generation fuel consumption calculation device during parking, wherein the power generation device directly supplies power to the drive motor. An electric vehicle comprising: a follow-up power generation travel fuel consumption calculating means that calculates a second fuel consumption consumed when traveling from a place where the vehicle is parked to the destination based on the total power. In the control device, the vehicle controller performs power generation during parking when the first fuel consumption amount is smaller than the second fuel consumption amount . 車両の駆動輪に伝達される駆動トルクを発生する駆動用モータと、前記駆動用モータに電力供給を行う充放電可能な電池と、前記駆動用モータ及び前記電池に供給する電力を発電する発電装置と、車両が駐車した時に、ユーザが設定した駐車後の目的地を受付ける目的地設定手段と、車両が駐車した時に、ユーザが設定した駐車時間を受付ける駐車時間設定手段と、前記駆動モータが車両を駐車した場所から前記目的地までの走行で消費する総電力量を算出する駆動モータ総電力量算出手段と、前記発電装置が前記駆動用モータに供給する電力を前記駆動トルクに基づいて制御する発電制御手段と、駐車時間を受付けた時に、駐車時間が所定時間以内か否かを判定する車両コントローラと、前記車両コントローラが駐車時間は所定時間未満と判定した時に、前記発電装置が駐車中に消費する駐車中燃料消費量と、前記総電力量と駐車中に発電した電力量との差分の電力量を前記発電装置が前記駆動用モータに電力を直接供給することで走行中に発電して消費する走行中燃料消費量とを前記総電力量に基づいて算出して、前記駐車中燃料消費量と前記走行中燃料消費量とを加算して第一燃料消費量を算出する駐車中発電燃料消費量演算手段と、前記発電装置が前記駆動用モータに電力を直接供給することで、車両を駐車した場所から前記目的地まで走行する際に消費する第二燃料消費量を前記総電力量に基づいて算出する追従発電走行燃料消費量演算手段とを備える電動車両の制御装置において、前記車両コントローラは、前記第一発電燃料消費量が前記第二燃料消費量より小さい場合に駐車中発電を実施させることを特徴とする電動車両の制御装置。A driving motor that generates driving torque transmitted to driving wheels of a vehicle, a chargeable / dischargeable battery that supplies power to the driving motor, and a power generation device that generates electric power to be supplied to the driving motor and the battery And a destination setting means for receiving the destination after parking set by the user when the vehicle is parked, a parking time setting means for receiving the parking time set by the user when the vehicle is parked, and the drive motor A drive motor total power amount calculating means for calculating a total power amount consumed in traveling from the place where the vehicle is parked to the destination, and the power supplied from the power generation device to the drive motor based on the drive torque A power generation control means, a vehicle controller that determines whether or not the parking time is within a predetermined time when the parking time is received, and the vehicle controller determines that the parking time is less than the predetermined time. When the power generation device is set, the power generation device supplies power to the drive motor with the difference between the total fuel consumption and the amount of power generated during parking. Based on the total power amount, a fuel consumption amount during driving that is generated and consumed while traveling directly is calculated based on the total power amount, and the fuel consumption amount during parking and the fuel consumption amount during traveling are added. A fuel consumption calculation unit for generating electricity during parking for calculating one fuel consumption, and the power generator directly supplies power to the drive motor, thereby consuming the vehicle when traveling from the parked location to the destination. A control device for an electric vehicle comprising: a follow-up power generation travel fuel consumption amount calculation means for calculating a second fuel consumption amount based on the total power amount; and the vehicle controller, wherein the first power generation fuel consumption amount is the second fuel consumption amount. Less than consumption Control device for an electric vehicle, characterized in that to implement the parked power generation. 前記駐車中発電燃料消費量演算手段は、前記駐車中の燃料消費量を前記電池の充放電効率と前記駆動用モータのモータ効率と前記発電装置の発電効率とに基づいて算出する、ことを特徴とする請求項1もしくは2の何れか一項に記載の電動車両の制御装置。The parking power generation fuel consumption calculating means calculates the parking fuel consumption based on charge / discharge efficiency of the battery, motor efficiency of the driving motor, and power generation efficiency of the power generation device. The control apparatus of the electric vehicle as described in any one of Claim 1 or 2. 前記追従発電走行燃料消費量演算手段は、前記走行中の燃料消費量を前記駆動用モータのモータ効率と前記発電装置の発電効率とに基づいて算出する、ことを特徴とする請求項1乃至3の何れか一項に記載の電動車両の制御装置。The follow-up power generation travel fuel consumption calculating means calculates the fuel consumption during travel based on the motor efficiency of the drive motor and the power generation efficiency of the power generation device. The control apparatus of the electric vehicle as described in any one of these. 前記駆動モータ総電力量算出手段は、過去の走行データに基づいて前記総電力量を推定することを特徴とする請求項1乃至4の何れか一項に記載の電動車両の制御装置。5. The electric vehicle control apparatus according to claim 1, wherein the drive motor total electric energy calculating unit estimates the total electric energy based on past travel data. 6. 前記駐車中発電燃料消費量演算手段は、前記駐車中の燃料消費量を前記電池の温度と前記駆動用モータの温度と前記発電装置の温度とに基づいて算出する、ことを特徴とする請求項1乃至5に記載の電動車両の制御装置。The parking power generation fuel consumption calculating means calculates the parking fuel consumption based on a temperature of the battery, a temperature of the drive motor, and a temperature of the power generation device. The control apparatus of the electric vehicle of 1 thru | or 5. 前記追従発電走行燃料消費量演算手段は、前記走行中の燃料消費量を前記駆動用モータの温度と前記発電装置の温度とに基づいて算出する、ことを特徴とする請求項1乃至6に記載の電動車両の制御装置。7. The follow-up power generation travel fuel consumption calculating means calculates the fuel consumption during travel based on the temperature of the drive motor and the temperature of the power generation device. Electric vehicle control device. 前記判断手段は、前記車両コントローラが外気温度に基づいて前記走行時における前記発電装置の廃熱を必要と判断した時に、前記駐車中発電を実施しないと判断することを特徴とする請求項1乃至7の何れか一項に記載の電動車両の制御装置。The said determination means determines that the said parking power generation is not implemented when the said vehicle controller determines that the waste heat of the said electric power generating apparatus at the time of the driving | running | working is required based on external temperature. The control apparatus of the electric vehicle as described in any one of 7.
JP2010253794A 2010-11-12 2010-11-12 Control device for electric vehicle Active JP5644398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010253794A JP5644398B2 (en) 2010-11-12 2010-11-12 Control device for electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010253794A JP5644398B2 (en) 2010-11-12 2010-11-12 Control device for electric vehicle

Publications (2)

Publication Number Publication Date
JP2012101747A JP2012101747A (en) 2012-05-31
JP5644398B2 true JP5644398B2 (en) 2014-12-24

Family

ID=46392677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010253794A Active JP5644398B2 (en) 2010-11-12 2010-11-12 Control device for electric vehicle

Country Status (1)

Country Link
JP (1) JP5644398B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014141209A (en) * 2013-01-25 2014-08-07 Toyota Motor Corp Hybrid vehicle
JP6102709B2 (en) * 2013-12-06 2017-03-29 トヨタ自動車株式会社 Power storage system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3180304B2 (en) * 1993-06-30 2001-06-25 株式会社エクォス・リサーチ Power circuit of hybrid car
JPH08237810A (en) * 1995-02-27 1996-09-13 Aqueous Res:Kk Hybrid vehicle
JP3654048B2 (en) * 1999-05-20 2005-06-02 日産自動車株式会社 Drive control apparatus for hybrid vehicle
JP3876817B2 (en) * 2002-10-25 2007-02-07 株式会社デンソー Vehicle power supply control device
JP4191149B2 (en) * 2005-02-14 2008-12-03 本田技研工業株式会社 Hybrid vehicle driving force control device
JP5082466B2 (en) * 2007-01-29 2012-11-28 マツダ株式会社 Control device for vehicle equipped with dual fuel engine
JP2009126456A (en) * 2007-11-27 2009-06-11 Fujitsu Ten Ltd Controller for hybrid vehicle
JP4924478B2 (en) * 2008-02-29 2012-04-25 アイシン・エィ・ダブリュ株式会社 Driving support apparatus, method and program
JP2010173390A (en) * 2009-01-28 2010-08-12 Nissan Motor Co Ltd Controller for vehicle
JP2010247801A (en) * 2009-04-20 2010-11-04 Toyota Motor Corp Charging system for plug-in hybrid vehicle

Also Published As

Publication number Publication date
JP2012101747A (en) 2012-05-31

Similar Documents

Publication Publication Date Title
US8242737B2 (en) Motor-driven vehicle
RU2434767C1 (en) Hybrid transport facility, method of its user notification
JP6436071B2 (en) Vehicle control device
US9707856B2 (en) Vehicle power management device
JP5223232B2 (en) Electric vehicle charge control system and electric vehicle charge control method
JP5899674B2 (en) Control device for hybrid vehicle
JP5366685B2 (en) Electric vehicle
KR20150133539A (en) Regenerative braking method for vehicle and apparatus of the same
JP2017087915A (en) Vehicle control device
JP5381888B2 (en) Hybrid car
JP5321204B2 (en) Control device for hybrid vehicle
CN111196265B (en) Control device, control method, and recording medium for hybrid vehicle
JP2012244664A (en) Vehicle and vehicle control method
JP2013056614A (en) Hybrid vehicle and vehicle control method
JP5454588B2 (en) Control device and hybrid vehicle
JP2010241185A (en) Charging controller for hybrid vehicle
JP5644398B2 (en) Control device for electric vehicle
JP2020072581A (en) Movable distance calculation device
JP5603404B2 (en) Vehicle temperature riser
JP2010214991A (en) Driving control device for hybrid vehicle
JP2013075561A (en) Electric driving vehicle
JP2017100469A (en) Device for controlling hybrid vehicle
JP2011213275A (en) Control device for hybrid vehicle
JP5370219B2 (en) In-vehicle battery charging support device, in-vehicle battery charging support method, and computer program
WO2019116585A1 (en) Fuel economy display control method and fuel economy display control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141020

R151 Written notification of patent or utility model registration

Ref document number: 5644398

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151