JP5644046B2 - Underground steel - Google Patents

Underground steel Download PDF

Info

Publication number
JP5644046B2
JP5644046B2 JP2008321970A JP2008321970A JP5644046B2 JP 5644046 B2 JP5644046 B2 JP 5644046B2 JP 2008321970 A JP2008321970 A JP 2008321970A JP 2008321970 A JP2008321970 A JP 2008321970A JP 5644046 B2 JP5644046 B2 JP 5644046B2
Authority
JP
Japan
Prior art keywords
steel
steel material
resin layer
ions
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008321970A
Other languages
Japanese (ja)
Other versions
JP2010144210A (en
Inventor
村瀬 正次
正次 村瀬
雅仁 金子
雅仁 金子
星野 俊幸
俊幸 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008321970A priority Critical patent/JP5644046B2/en
Publication of JP2010144210A publication Critical patent/JP2010144210A/en
Application granted granted Critical
Publication of JP5644046B2 publication Critical patent/JP5644046B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

本発明は、土中埋設環境において耐食性に優れる鋼材に関する。   The present invention relates to a steel material having excellent corrosion resistance in a buried environment.

土中埋設環境は、土が水分を含んでいるため鋼材の腐食が進行しやすい環境であるが、従来、鋼構造物は基礎杭など深度の深い領域で使用されることが多く、その場合は、年間1mm(鋼材片面あたり)程度の腐食代で十分とされてきた。   Underground environment is an environment where the corrosion of steel is easy to progress because the soil contains moisture, but conventionally steel structures are often used in deep areas such as foundation piles. Therefore, a corrosion allowance of about 1 mm (per one side of steel material) per year has been considered sufficient.

建築物の基礎構造として基礎杭を使用する場合、埋設深さの浅いところに存在する梁などはRC構造を採用される例が多く、従来は鋼の腐食が、極めて特殊な土壌を除いて問題とされることはなかった。   When foundation piles are used as the foundation structure of buildings, there are many cases where RC structures are used for beams etc. that exist at shallow embedding depths. Conventionally, corrosion of steel is a problem except for extremely special soils. It was never taken.

しかしながら、最近では、建築物建造の工期を短縮することが求められ、鋼構造による建築物、基礎構造の一体化が求められるようになってきている。従って、埋設環境の浅い領域においても、鋼材の耐食性を向上させることが要求されるようになり、電気防食、塗覆または耐食鋼が検討されている。   However, recently, it has been required to shorten the construction period of building construction, and integration of buildings and foundation structures with steel structures has been required. Therefore, it is required to improve the corrosion resistance of steel materials even in a shallow embedding environment, and electrocorrosion protection, coating, or corrosion resistance steel has been studied.

特許文献1は、土中用耐食鋼に関し、鋼自体に土中における耐食性として耐全面腐食性および耐マクロセル腐食性を持たせるため、Cr含有量を限定し、Ni、Mo,Cuを適量添加する成分組成とすることが記載されている。   Patent Document 1 relates to a corrosion-resistant steel for underground, in order to give the steel itself a general corrosion resistance and a macrocell corrosion resistance as corrosion resistance in the soil, so as to limit the Cr content and add appropriate amounts of Ni, Mo, and Cu. It is described that the composition is a component.

また特許文献2には、鋼材表面に鋼材より卑な金属をめっき、溶射などで被覆し更に土壌中にZn粉末やZn酸化物粉末を添加する方法が開示されている。 特許文献3,4には鋼材の表面に硫酸Niや硫酸Crおよび炭酸イオンを含有したブチラール樹脂で被覆する技術が開示されている。
特開2000−336463号公報 特開平10−183386号公報 特開2002−167544号公報 特開2002−59076号公報
Patent Document 2 discloses a method in which a surface of a steel material is coated with a metal that is lower than the steel material by plating, thermal spraying, or the like, and Zn powder or Zn oxide powder is added to the soil. Patent Documents 3 and 4 disclose techniques for coating the surface of a steel material with a butyral resin containing Ni sulfate, Cr sulfate, and carbonate ions.
JP 2000-336463 A Japanese Patent Laid-Open No. 10-183386 JP 2002-167544 A JP 2002-59076 A

しかしながら、電気防食は土壌中の防食工法として良く知られているが、流電陽極式の場合には土壌中ではかなり細かく電極の取り付け部位を確保する必要があり、コストの点において従来のRC構造と対抗できず、塗装の場合は数百μm以上の厚さにおいて有効なため、塗装管理、コスト、埋め戻し時の傷対策などが課題となる。   However, although anticorrosion is well known as a method for preventing corrosion in soil, in the case of the galvanic anode type, it is necessary to secure the electrode mounting site in the soil quite finely, and the conventional RC structure is required in terms of cost. In the case of painting, it is effective at a thickness of several hundreds of μm or more. Therefore, management of coating, cost, and measures for scratches at the time of backfilling are problems.

一方、耐候性鋼のように、一般鋼の腐食生成物よりも緻密な構造を有し酸素の拡散や腐食の電気化学反応に必要なイオンなどの拡散を抑制し鋼材を防食する腐食生成物を用いて鋼材の腐食速度を低減させる機構は、土中においては水分量が多いため大気中のような腐食生成物が生成されず、埋設土中環境ではその効果は殆どないか極めて小さいと言われている。   On the other hand, corrosion products that have a denser structure than the corrosion products of general steel, such as weather resistant steel, and prevent the diffusion of oxygen and the diffusion of ions necessary for the electrochemical reaction of corrosion, prevent corrosion of steel materials. The mechanism used to reduce the corrosion rate of steel materials is said to have little or very little effect in the buried soil environment because no corrosion products are generated in the atmosphere due to the high moisture content in the soil. ing.

尚、特許文献1記載の鋼材は、Cr,Ni,Mo,Cuを多量に含有するため鋼材コストが上昇し、特許文献2記載の方法もコストが上昇し、接合部位などの処理に問題が残る。   The steel material described in Patent Document 1 contains a large amount of Cr, Ni, Mo, and Cu, so that the cost of the steel material increases, and the method described in Patent Document 2 also increases the cost, and there remains a problem in the processing of the joining site and the like. .

特許文献3,4記載のブチラール樹脂で被覆する方法は、Ni,Crの有機被覆中への添加のみでは、十分な耐食性が得られず、また、鋼材に耐食元素を含有しない場合においては、その効果が小さい。   In the method of coating with butyral resin described in Patent Documents 3 and 4, sufficient corrosion resistance cannot be obtained only by adding Ni and Cr into the organic coating, and when the steel material does not contain a corrosion-resistant element, Small effect.

そこで、本発明は、深度の深い領域より腐食環境の厳しい浅埋設環境において耐食性に優れる鋼材を提供することを目的とする。   Then, an object of this invention is to provide the steel material which is excellent in corrosion resistance in the shallow embedding environment where a corrosive environment is severer than a deep region.

本発明者等は、土壌中では土圧で鋼材表面に腐食生成物が保持されやすいことに着目し、腐食生成物を用いて鋼材の腐食速度を低減させるため、浅埋設環境のように水分が多く腐食減量が大きな環境において腐食反応を抑制する腐食生成物および当該腐食生成物を保持する機構について鋭意検討し、以下の知見を得た。
(1)腐食生成物中にバナジン酸イオン、メタバナジン酸イオン、モリブデン酸イオン、タングステン酸イオン、ニオブ酸イオン、タンタル酸イオンが存在したときに腐食が抑制される。
(2)これらのイオンは、V,Mo,W,Nb,Taの元素群を、ブチラール樹脂中に含有された酸素酸塩(酸化物の加水分解)の形で鋼表面に供給したり、鋼材中に添加元素として含有させると腐食生成物中に含ませることが可能である。鋼材の腐食の進行とともに排出されるイオンが上記酸素酸塩に変化するためである。
(3)浅埋設環境における湿潤土壌の場合には腐食した鉄イオンなどが系外に流出しやすいが、有機層の存在が腐食生成物層の保持に有効である。
The present inventors pay attention to the fact that corrosion products are easily retained on the steel surface by earth pressure in the soil, and in order to reduce the corrosion rate of the steel materials using the corrosion products, moisture is present as in a shallow buried environment. The following findings were obtained by intensively studying the corrosion products that suppress the corrosion reaction in an environment with a large amount of corrosion weight loss and the mechanism for retaining the corrosion products.
(1) Corrosion is suppressed when vanadate, metavanadate, molybdate, tungstate, niobate, and tantalate ions are present in the corrosion product.
(2) These ions supply the element group of V, Mo, W, Nb, and Ta to the steel surface in the form of oxyacid salt (oxide hydrolysis) contained in the butyral resin. If it is contained as an additive element, it can be contained in the corrosion product. This is because ions discharged with the progress of corrosion of the steel material change to the oxyacid salt.
(3) In the case of moist soil in a shallow buried environment, corroded iron ions and the like are likely to flow out of the system, but the presence of an organic layer is effective in maintaining the corrosion product layer.

本発明は上記知見を基に更に検討を加えてなされたもので、すなわち、本発明は、
1.埋設土中環境に曝された際、鋼表面の腐食生成物中にバナジン酸イオン、ニオブ酸イオンおよびタンタル酸イオンの1種以上を存在させる機構を備えた土中埋設用鋼材。
2.前記機構が、鋼材の表面に、樹脂層形成時の吸水率が10%以上、300%以下の水溶性ブチラール樹脂中に、バナジン酸イオン、ニオブ酸イオンおよびタンタル酸イオンの1種以上を含有した樹脂層を10〜100μm厚で被覆することである1記載の土中埋設用鋼材。
3.前記機構が、鋼材の表面に、樹脂層形成時の吸水率が10%以上、300%以下の水溶性ブチラール樹脂中に、バナジン酸ナトリウム、ニオブ酸ナトリウムおよびタンタル酸カリウムの1種以上を樹脂固形分100mass%に対して1mass%〜30mass%で含有した樹脂層を10〜100μm厚で被覆することである1または2記載の土中埋設用鋼材。
記鋼材の化学成分を、V、Mo、W、NbおよびTaの1種以上の元素を含むものとすることを特徴とする2または3記載の土中埋設用鋼材。
5.1乃至のいずれか一つに記載の土中埋設用鋼材を用いて作られた埋設土中鋼構造物。
6.埋設土中環境に曝された際、鋼表面の腐食生成物中にバナジン酸イオン、ニオブ酸イオンおよびタンタル酸イオンの一種以上を存在させる機構を鋼材表面に設けることを特徴とする土中埋設用鋼材の製造方法。
7.埋設土中環境に曝された際、鋼表面の腐食生成物中にバナジン酸イオン、ニオブ酸イオンおよびタンタル酸イオンの一種以上を供給するため、鋼材の表面に耐食性樹脂層を形成する土中埋設用鋼材の製造方法であって、前記耐食性樹脂層は、樹脂層形成時の吸水率が10%以上、300%以下の水溶性ブチラール樹脂中に、バナジン酸イオン、ニオブ酸イオンおよびタンタル酸イオンの1種以上含有した樹脂層を10〜100μm厚で被覆して形成することを特徴とする6記載の土中埋設用鋼材の製造方法。
8.前記耐食性樹脂層は、樹脂層形成時の吸水率が10%以上、300%以下の水溶性ブチラール樹脂中に、バナジン酸ナトリウム、ニオブ酸ナトリウム、およびタンタル酸カリウムの1種以上を樹脂固形分100mass%に対して1mass%〜30mass%で含有した樹脂層を10〜100μm厚で被覆して形成することを特徴とする6または7記載の土中埋設用鋼材の製造方法。
9.前記鋼材の化学成分を、V、Mo、W、NbおよびTaの1種以上の元素を含むものとしたことを特徴とする6乃至8のいずれか一つに記載の土中埋設用鋼材の製造方法。
The present invention has been made by further study based on the above knowledge, that is, the present invention,
1. When exposed to embedded soil environment, vanadate ions in the corrosion products of steel surfaces, ground burial steel materials having a mechanism for the presence of one or more niobium ion and tantalum ion.
2. The mechanism, on the surface of the steel material, water absorption during resin layer formed of 10% or more, in 300% or less of the water-soluble butyral resin, vanadate ions, one or more niobate ion and tantalum ion containing Yes 2. The steel material for embedding in soil according to 1, wherein the resin layer is coated with a thickness of 10 to 100 μm.
3. In the water-soluble butyral resin having a water absorption rate of 10% or more and 300% or less when the resin layer is formed on the surface of the steel material, the mechanism is a resin solid containing one or more of sodium vanadate, sodium niobate and potassium tantalate. 3. The steel material for embedding in soil according to 1 or 2, wherein the resin layer contained at 1 mass% to 30 mass% with respect to 100 mass% is coated with a thickness of 10 to 100 μm.
4 . Before Symbol chemical composition of the steel, V, Mo, W, soil burying steel 2 or 3, wherein a is intended to include one or more elements of Nb and Ta.
5. A buried underground steel structure made using the steel material for buried in earth according to any one of 1 to 4 .
6). Buried when exposed to soil environment, soil, characterized in that provided vanadate ions in the corrosion products of steel surfaces, the mechanism for the presence of one or more of niobium ion and tantalum ion to the steel sheet surface Manufacturing method for steel materials for underground use.
7). Buried when exposed to soil environment, vanadate ions in the corrosion products of steel surfaces, for supplying one or more niobium ion and tantalum ion, soil forming the corrosion-resistant resin layer on the surface of the steel material a method of manufacturing a medium for embedding steel, the corrosion-resistant resin layer, water absorption during resin layer formed of 10% or more, in 300% or less of the water-soluble butyral resin, vanadate ions, niobium ions, and method for producing a soil burying steel 6, wherein the forming by coating a resin layer containing one or more tantalate ions 10~100μm thickness.
8). The corrosion-resistant resin layer has a resin solid content of 100 mass with at least one of sodium vanadate, sodium niobate, and potassium tantalate in a water-soluble butyral resin having a water absorption rate of 10% to 300% when the resin layer is formed. The method for producing a steel material for embedding in soil according to 6 or 7, wherein a resin layer contained at 1 mass% to 30 mass% with respect to% is coated with a thickness of 10 to 100 μm.
9. The chemical component of the steel material includes one or more elements of V, Mo, W, Nb, and Ta. Manufacturing of a steel material for embedding in soil according to any one of 6 to 8, Method.

本発明によれば以下の作用効果が得られ、産業上極めて有用である。
1.浅埋設環境においても、深埋設環境と同様に腐食代により鋼材の腐食について対策することができる。
2.従来の土木建材用鋼材として使用される鋼材に対して腐食減量を1/3以下程度に抑制することが可能である。
3.また、従来の塗装に比較して薄膜で処理が可能であり、防食コストを低く抑制することが可能である。
According to the present invention, the following effects can be obtained, which is extremely useful industrially.
1. Even in a shallow embedding environment, it is possible to take measures against corrosion of steel materials by a corrosion allowance as in a deep embedding environment.
2. Corrosion weight loss can be suppressed to about 1/3 or less of steel materials used as conventional steel materials for civil engineering materials.
3. Moreover, it can process with a thin film compared with the conventional coating, and can suppress the anticorrosion cost low.

本発明に係る土中埋設用鋼材は、埋設土中環境に曝されて腐食する際、鋼表面の腐食生成物中にバナジン酸イオン、メタバナジン酸イオン、モリブデン酸イオン、タングステン酸イオン、ニオブ酸イオン、タンタル酸イオンを供給する働き(本発明では、機構と称する)を備える。   The steel material for buried in the soil according to the present invention corrodes when exposed to the environment in the buried soil, and vanadate ion, metavanadate ion, molybdate ion, tungstate ion, niobate ion in the corrosion product on the steel surface. And a function of supplying tantalate ions (referred to as a mechanism in the present invention).

[機構1]
機構1は、埋設土中環境において、鋼材の表面に、V,Mo,W,NbおよびTaの一種以上の元素群を、酸素酸塩(酸化物の加水分解)の形で供給する機構である。
[Mechanism 1]
The mechanism 1 is a mechanism for supplying one or more element groups of V, Mo, W, Nb, and Ta in the form of oxyacid salt (oxide hydrolysis) to the surface of the steel material in the buried soil environment. .

上記元素群の酸素酸塩は、バナジン酸ナトリウム、メタバナジン酸ナトリウム、モリブデン酸ナトリウム、モリブデン酸アンモニウム、タングステン酸ナトリウム、ニオブ酸ナトリウムおよびタンタル酸カリウムの1種以上とする。それは、これらの酸素酸塩が鋼材表面に吸着することにより腐食反応を阻害すること、またこれらの塩が鉄酸化物(いわゆるさび)構造内に取り込まれ、複合さび層を形成することにより鋼表面での腐食反応を阻害すること、これらの物質は酸化物と異なり水への溶解度が高いこと、すなわち鋼表面への供給が比較的容易にできることが理由として挙げられる。   The oxyacid salt of the element group is at least one of sodium vanadate, sodium metavanadate, sodium molybdate, ammonium molybdate, sodium tungstate, sodium niobate and potassium tantalate. This is because these oxyacid salts adsorb on the steel surface to inhibit the corrosion reaction, and these salts are incorporated into the iron oxide (so-called rust) structure to form a composite rust layer. The reason for this is that these substances inhibit the corrosion reaction, and, unlike oxides, have high solubility in water, that is, they can be supplied to the steel surface relatively easily.

酸素酸塩は、腐食反応の進行とともに鋼材表面に供給することが必要であるため、水溶性の有機樹脂に混合して鋼材表面に塗布する。   Since the oxyacid salt needs to be supplied to the steel material surface as the corrosion reaction proceeds, it is mixed with a water-soluble organic resin and applied to the steel material surface.

水溶性の有機樹脂は、樹脂層形成時の吸水率が10%以上、300%以下の水溶性ブチラール樹脂とする。   The water-soluble organic resin is a water-soluble butyral resin having a water absorption rate of 10% or more and 300% or less when the resin layer is formed.

有機樹脂の下では腐食生成物の保存が容易で、水溶性樹脂層の場合、傷が入った場合においても、内部に存在する無機化合物(上記酸素酸塩)が水溶化して拡散しやすいため、水溶性の有機樹脂とし、本発明では水溶性ブチラール樹脂とする。
する。
Under the organic resin, it is easy to store corrosion products, and in the case of a water-soluble resin layer, even when scratched, the inorganic compound present inside (the above oxyacid salt) is water-soluble and easily diffuses, A water-soluble organic resin is used, and in the present invention, a water-soluble butyral resin is used.
To do.

図1は、水溶性ブチラール樹脂に酸素酸塩としてメタバナジン酸ナトリウムを混合し、吸水率を変化させた場合のメタバナジン酸ナトリウムの溶出量の変化を示す図で、10%以上において添加した酸素酸塩の溶出量が顕著に増加するが、300%を超えるとブチラール樹脂分子間に水が多量に入って樹脂が膨潤し溶出量が増加するので錆層の保持効果が無くなってしまうため、樹脂層形成時の吸水率は10%以上、300%以下とする。   FIG. 1 is a graph showing a change in the amount of sodium metavanadate eluted when sodium metavanadate is mixed as an oxyacid salt with a water-soluble butyral resin and the water absorption rate is changed. Oxyacid salt added at 10% or more The amount of elution increases significantly, but if it exceeds 300%, water enters between the butyral resin molecules and the resin swells to increase the amount of elution, so the effect of retaining the rust layer is lost. The water absorption at the time is 10% or more and 300% or less.

バナジン酸ナトリウム、モリブデン酸ナトリウム、モリブデン酸アンモニウム、タングステン酸ナトリウム、ニオブ酸ナトリウムおよびタンタル酸カリウムも同様の傾向を示す。   Sodium vanadate, sodium molybdate, ammonium molybdate, sodium tungstate, sodium niobate and potassium tantalate show similar trends.

水溶性ブチラール樹脂にバナジン酸ナトリウム、メタバナジン酸ナトリウム、モリブデン酸ナトリウム、モリブデン酸アンモニウム、タングステン酸ナトリウム、ニオブ酸ナトリウムおよびタンタル酸カリウムの1種以上を混合する場合は、樹脂固形分100mass%に対して1mass%〜30mass%で含有する。   When mixing one or more of sodium vanadate, sodium metavanadate, sodium molybdate, ammonium molybdate, sodium tungstate, sodium niobate and potassium tantalate with water-soluble butyral resin, the resin solid content is 100 mass%. It is contained at 1 mass% to 30 mass%.

樹脂固形分100mass%に対して1mass%以上で効果が顕著に現れ、30mass%以上の添加では水溶性樹脂による造膜がうまくできなくなるので、30mass%以下が好ましく、より好ましくは20mass%以下である。複数の無機化合物を添加する場合には、トータルが20mass%を超えないように添加するのが好ましい。尚、添加量の多いほうが腐食減量を減じる効果が大きい傾向にある。   The effect appears remarkably at 1 mass% or more with respect to the resin solid content of 100 mass%, and if it is added at 30 mass% or more, it becomes impossible to form a film with a water-soluble resin. Therefore, it is preferably 30 mass% or less, more preferably 20 mass% or less. . When adding a plurality of inorganic compounds, it is preferable to add so that the total does not exceed 20 mass%. In addition, the one where there is much addition amount exists in the tendency for the effect which reduces corrosion weight loss to be large.

水溶性ブチラール樹脂に酸素酸塩を混合した樹脂は鋼材の表面に10〜100μm厚で被覆する。鋼材表面に塗布する有機樹脂層の厚みは、10μm以下では、有機樹脂層の効果がなく、100μm以上の有機層の構成では、効果が飽和し、経済的に不利になるので、100μm以下が良い。尚、厚いほど腐食減量を減じ、好ましい膜厚範囲は、10〜30μmである。   A resin obtained by mixing an oxyacid salt with a water-soluble butyral resin covers the surface of a steel material with a thickness of 10 to 100 μm. The thickness of the organic resin layer applied to the surface of the steel material is less than 10 μm, and the effect of the organic resin layer is not obtained. In the structure of the organic layer of 100 μm or more, the effect is saturated and economically disadvantageous. . In addition, the weight loss of corrosion is reduced as the thickness increases, and a preferable film thickness range is 10 to 30 μm.

水溶性有機樹脂を鋼材に塗布する方法は、スプレー、刷毛塗り、溶液状にして表面に流し掛け など、所定の厚みが確保できる方法であれば良い。また鋼材の前処理など特に必要なく既にさび層が形成されている上に上記水溶性有機樹脂有機層を形成しても良い。尚、耐久性は劣るが、鋼材の表面にこれら酸素酸塩の溶解した水溶液を塗布しても良い。
[機構2]
機構2は、鋼組成をV,Mo,W,NbおよびTaの一種以上を含有する鋼を埋設土中環境用鋼材とする。鋼組成にV,Mo,W,NbおよびTaの一種以上を含有する鋼の内部から腐食による溶出するバナジン酸イオン、メタバナジン酸イオン、モリブデン酸イオン、タングステン酸イオン、ニオブ酸イオンおよびタンタル酸イオンの一種以上は酸化され、酸素酸塩に変化する。
The method for applying the water-soluble organic resin to the steel material may be any method that can ensure a predetermined thickness, such as spraying, brushing, or pouring the solution on the surface. Further, the water-soluble organic resin organic layer may be formed on the rust layer already formed without the necessity of pretreatment of the steel material. Although the durability is inferior, an aqueous solution in which these oxyacid salts are dissolved may be applied to the surface of the steel material.
[Mechanism 2]
Mechanism 2 uses steel containing one or more of V, Mo, W, Nb, and Ta as a steel composition for buried soil environment. Vanadate ion, metavanadate ion, molybdate ion, tungstate ion, niobate ion and tantalate ion eluted from the inside of steel containing one or more of V, Mo, W, Nb and Ta in the steel composition One or more are oxidized and converted to oxyacid salts.

上記酸素酸塩は、腐食生成物(錆層)の内側から供給されて、機構1の外部から供給される酸素酸塩と同様に腐食減量を減じる効果が得られる。機構1と機構2を併用した場合、腐食生成物(錆層)の上層と下層から、酸素酸塩が供給されるのでより優れた効果が得られる。   The oxyacid salt is supplied from the inside of the corrosion product (rust layer), and the effect of reducing the corrosion weight loss is obtained in the same manner as the oxyacid salt supplied from the outside of the mechanism 1. When mechanism 1 and mechanism 2 are used in combination, an oxyacid salt is supplied from the upper layer and lower layer of the corrosion product (rust layer), so that a more excellent effect can be obtained.

尚、鋼組成中のV,Mo,W,NbおよびTaの一種以上の含有量(mass%)は、Vは、0.05mass%以上1.0mass%以下、Moは0.05mass%以上0.5mass%以下、Wは0.01mass%以上0.2mass%以下,Nbは0.01mass%以上0.1mass%以下、Taは0.01mass%以上0.1mass%以下とすることが好ましい。V,Mo,W,NbおよびTa以外は、構造用鋼としての価格と性能を確保する成分組成であれば良く、例えば、0.1mass%C−0.65mass%Si−0.95mass%Mn系に適宜合金元素を添加したものとする。鋼組成においてV,Mo,W,NbおよびTaの一種以上を含有する鋼として、JFE商標名JFE−HITEN540,570,610,780,JFE ACL 400A Type1、JFE LT415,JFE−EH360、材などが利用可能である。以下実施例を用いて本発明を詳細に説明する。   In addition, as for content (mass%) of 1 or more types of V, Mo, W, Nb, and Ta in a steel composition, V is 0.05 mass% or more and 1.0 mass% or less, Mo is 0.05 mass% or more and 0.00. 5 mass% or less, W is preferably 0.01 mass% or more and 0.2 mass% or less, Nb is preferably 0.01 mass% or more and 0.1 mass% or less, and Ta is preferably 0.01 mass% or more and 0.1 mass% or less. Components other than V, Mo, W, Nb and Ta may be used as long as they have a component composition that ensures the price and performance as structural steel. For example, 0.1 mass% C-0.65 mass% Si-0.95 mass% Mn system It is assumed that an alloy element is appropriately added to the above. As steel containing at least one of V, Mo, W, Nb and Ta in steel composition, JFE trade names JFE-HITEN540, 570, 610, 780, JFE ACL 400A Type1, JFE LT415, JFE-EH360, materials, etc. are used. Is possible. Hereinafter, the present invention will be described in detail with reference to examples.

<供試鋼板の作製>
供試鋼板は、100×50×6t(mm)の鋼板で黒皮をブラスト処理で取り除いて供試した。黒皮をブラスト処理で取り除いた状態で重量を0.1mgまで測定し、初期重量とした。表1に化学成分を示す。表面に塗布する処理剤は、下記の要領で作成した。
1.イオン交換水中にブチラール樹脂を重量比率で400g/l混合したブチラール樹脂の水分散溶液を作成した。ブチラール樹脂は、その分子量を1000〜1000000まで変えたものを使用し、吸水率が異なるものを用いた。吸水率は、300μm×10cm×10cmのフリーフィルムを作製し、40℃で10日間乾燥させた後、常温のイオン交換水に24時間浸漬し、その浸漬前後の重量差から吸水率を求めた。
2.得られたブチラール樹脂の水分散溶液に、表2に示す配合で各種の無機材料(バナジン酸ナトリウム、メタバナジン酸ナトリウム、モリブデン酸ナトリウム、モリブデン酸アンモニウム、タングステン酸ナトリウム、ニオブ酸ナトリウム、タンタル酸カリウム、いずれも試薬、純度99.9%のものを使用)を混合した(無機材料の含有量は、樹脂固形分100mass%に対する量とする)。
<Production of test steel plate>
The test steel plate was a 100 × 50 × 6 t (mm) steel plate, and the black skin was removed by blasting, and the test steel plate was tested. With the black skin removed by blasting, the weight was measured to 0.1 mg, which was the initial weight. Table 1 shows chemical components. The treating agent applied to the surface was prepared as follows.
1. An aqueous dispersion of butyral resin was prepared by mixing 400 g / l of butyral resin by weight in ion-exchanged water. As the butyral resin, those having different molecular weights from 1000 to 1000000 were used, and those having different water absorption rates were used. For the water absorption, a free film of 300 μm × 10 cm × 10 cm was prepared, dried at 40 ° C. for 10 days, then immersed in room temperature ion-exchanged water for 24 hours, and the water absorption was determined from the weight difference before and after the immersion.
2. Various inorganic materials (sodium vanadate, sodium metavanadate, sodium molybdate, ammonium molybdate, sodium tungstate, sodium niobate, potassium tantalate) with the composition shown in Table 2 were added to the aqueous dispersion of the resulting butyral resin. In each case, a reagent having a purity of 99.9% was mixed) (the content of the inorganic material is an amount based on 100 mass% of the resin solid content).

無機混合体は、粉体が主であるがこれを乳鉢ですりつぶし、概ね1μm以下の粉体状にしたものを、所定の量上記水分散液に投入し、攪拌機により強攪拌した(投入無機物においては水溶液中で溶解するものもあれば、溶解度が低いものもあるので沈殿しないような分散液とした)。
3.攪拌を継続しながら当該分散液を鋼材表面に流しかけバーコーターにて分散液の水膜を一定(水乾燥後の膜厚が20μmとなるように調整)とした。水膜が5μm,1μmのものは、上記水分散液を更にイオン交換水で4倍、20倍に希釈したものを斜め45°に立てかけた鋼板上に分散液を流しかけし、付着した量により膜厚を調整した。
4.常温で1週間乾燥させ水分を蒸発させた。図2に得られた試験材のマクロ断面説明図を示す。
The inorganic mixture is mainly a powder, but this is ground in a mortar, and a powder of approximately 1 μm or less is put into a predetermined amount of the above aqueous dispersion and stirred vigorously with a stirrer (in the input inorganic material). Some of them are soluble in an aqueous solution, and others have low solubility.
3. The dispersion was poured over the steel surface while stirring was continued, and the water film of the dispersion was made constant (adjusted so that the film thickness after water drying was 20 μm) with a bar coater. When the water film is 5 μm or 1 μm, the water dispersion is further diluted 4 times or 20 times with ion-exchanged water, and the dispersion is poured on a steel plate leaning at an angle of 45 °. The film thickness was adjusted.
4). Water was evaporated by drying for 1 week at room temperature. FIG. 2 shows a macro sectional explanatory view of the test material obtained.

<耐食性の調査>
鋼材の耐食性の調査は、上記表面処理を施した鋼材の裏・端面をシールテープにより腐食しないようマスキングを行い、対象面積(80×40mm)のみが腐食するようにした。その後作成した試験材を関東ローム(土)を入れたビーカー 200mmΦ×200mm高さ中に埋め込み、0.5mass%のNaCl溶液を土に対して20mass%添加した後、30℃の一定の温度に保持された恒温室に静置した。
<Investigation of corrosion resistance>
In the investigation of the corrosion resistance of the steel material, masking was performed so that the back and end surfaces of the steel material subjected to the above surface treatment were not corroded by the seal tape so that only the target area (80 × 40 mm) was corroded. After that, the prepared test material was embedded in a beaker with 200 mm Φ × 200 mm height containing Kanto loam (soil), and after adding 20 mass% of 0.5 mass% NaCl solution to the soil, the temperature was maintained at a constant temperature of 30 ° C. Left in a constant temperature room.

その後1週間毎に土に対して10mass%のイオン交換水を継ぎ足した。91日後に試験材を取り出し、水洗後皮膜を塗膜剥離剤で剥離し、塩酸中にインヒビターを入れた溶液でさび層を取り除いた後、鋼材の重量を0.1mgまで測定した。初期重量と試験後の重量差から腐食した想定面積(80×40mm)に対して、平均の腐食厚み(腐食減量(mm/90日))を以下の式で求めた。   Thereafter, 10 mass% of ion exchange water was added to the soil every week. After 91 days, the test material was taken out, washed with water, the film was peeled off with a coating film remover, the rust layer was removed with a solution containing an inhibitor in hydrochloric acid, and the weight of the steel material was measured to 0.1 mg. The average corrosion thickness (corrosion weight loss (mm / 90 days)) was determined by the following formula with respect to the assumed area (80 × 40 mm) corroded from the difference between the initial weight and the weight after the test.

鋼材の腐食量=(初期重量−腐食試験後重量)/(32cm×7.8g/cm
表2〜4に試験結果を示す。No.1〜42は本発明例で、腐食減量(mm/90日)は0.41(mm/90日)以下で、一方、No.43〜53は、比較例で、腐食減量(mm/90日)は0.52(mm/90日)以上であった。
Corrosion amount of steel material = (initial weight−weight after corrosion test) / (32 cm 2 × 7.8 g / cm 3 )
Tables 2 to 4 show the test results. No. 1-42 is an example of this invention, and corrosion weight loss (mm / 90 days) is 0.41 (mm / 90 days) or less. Nos. 43 to 53 were comparative examples, and the corrosion weight loss (mm / 90 days) was 0.52 (mm / 90 days) or more.

No.16の本発明例は、同種の元素を含む鋼材と組み合わせた場合の結果を示し、No.15の同種の元素を含まない鋼材と組み合わせた場合の結果より優れた耐食性能が確保されていることが認められる。   No. No. 16 of the present invention shows the result when combined with a steel material containing the same kind of element. It is recognized that the corrosion resistance superior to the result in the case of combining with 15 steel materials not containing the same kind of element is ensured.

Figure 0005644046
Figure 0005644046

Figure 0005644046
Figure 0005644046

Figure 0005644046
Figure 0005644046

Figure 0005644046
Figure 0005644046

水溶性ブチラール樹脂に酸素酸塩としてメタバナジン酸ナトリウムを混合し、吸水率を変化させた場合のメタバナジン酸ナトリウムの溶出量の変化を示す図。The figure which shows the change of the elution amount of sodium metavanadate when sodium metavanadate as an oxyacid salt is mixed with water-soluble butyral resin, and a water absorption is changed. 試験材のマクロ断面説明図。Macro sectional explanatory drawing of a test material.

符号の説明Explanation of symbols

1 鋼板
2 有機樹脂+無機物混合物層
1 Steel plate 2 Organic resin + inorganic mixture layer

Claims (9)

埋設土中環境に曝された際、鋼表面の腐食生成物中にニオブ酸イオンおよびタンタル酸イオンの1種以上を存在させる機構を備え、前記機構は、鋼材の表面に、樹脂層形成時の吸水率が10%以上、300%以下の水溶性ブチラール樹脂中に、ニオブ酸イオンおよびタンタル酸イオンの1種以上を含有した樹脂層を10〜100μm厚で被覆することである土中埋設用鋼材。   When exposed to the environment in the buried soil, it has a mechanism that causes one or more of niobate ions and tantalate ions to be present in the corrosion product of the steel surface, and the mechanism is formed on the surface of the steel material when the resin layer is formed. A steel material for embedding in soil, which is to coat a water-soluble butyral resin having a water absorption of 10% or more and 300% or less with a resin layer containing at least one of niobate ions and tantalate ions in a thickness of 10 to 100 μm. . 前記機構が、鋼材の表面に、樹脂層形成時の吸水率が10%以上、300%以下の水溶性ブチラール樹脂中に、ニオブ酸ナトリウムおよびタンタル酸カリウムの1種以上を樹脂固形分100mass%に対して1mass%〜30mass%で含有した樹脂層を10〜100μm厚で被覆することである請求項1記載の土中埋設用鋼材。   In the water-soluble butyral resin having a water absorption rate of 10% or more and 300% or less when the resin layer is formed on the surface of the steel material, the mechanism has at least one kind of sodium niobate and potassium tantalate at a resin solid content of 100 mass%. The steel material for embedding in soil according to claim 1, wherein the resin layer contained at 1 mass% to 30 mass% is coated with a thickness of 10 to 100 µm. 前記鋼材の化学成分を、V、Mo、W、NbおよびTaの1種以上の元素を含むものとすることを特徴とする請求項1または2記載の土中埋設用鋼材。   The steel material for embedding in soil according to claim 1 or 2, wherein the chemical component of the steel material includes one or more elements of V, Mo, W, Nb and Ta. 請求項1乃至3のいずれか一つに記載の土中埋設用鋼材を用いて作られた埋設土中鋼構造物。   A buried underground steel structure made using the steel material for buried in earth according to any one of claims 1 to 3. 埋設土中環境に曝された際、鋼表面の腐食生成物中にニオブ酸イオンおよびタンタル酸イオンの一種以上を存在させる機構を鋼材表面に設け、前記機構は、鋼材の表面に、樹脂層形成時の吸水率が10%以上、300%以下の水溶性ブチラール樹脂中に、ニオブ酸イオンおよびタンタル酸イオンの1種以上を含有した樹脂層を10〜100μm厚で被覆して形成することを特徴とする土中埋設用鋼材の製造方法。   When exposed to the environment in the buried soil, a mechanism is provided on the steel surface to cause one or more of niobate ions and tantalate ions to be present in the corrosion products on the steel surface, and the mechanism forms a resin layer on the surface of the steel material. A water-soluble butyral resin having a water absorption rate of 10% or more and 300% or less is formed by coating a resin layer containing at least one of niobate ions and tantalate ions with a thickness of 10 to 100 μm. A method of manufacturing steel materials for underground use. 埋設土中環境に曝された際、鋼表面の腐食生成物中にニオブ酸イオンおよびタンタル酸イオンの一種以上を供給するため、鋼材の表面に耐食性樹脂層を形成する土中埋設用鋼材の製造方法であって、前記耐食性樹脂層は、樹脂層形成時の吸水率が10%以上、300%以下の水溶性ブチラール樹脂中に、ニオブ酸イオン、およびタンタル酸イオンの1種以上を含有した樹脂層を10〜100μm厚で被覆して形成することを特徴とする土中埋設用鋼材の製造方法。   Manufacture of steel for underground use that forms a corrosion-resistant resin layer on the surface of steel to supply one or more of niobate ions and tantalate ions to the corrosion products on the steel surface when exposed to the environment in the buried soil The corrosion-resistant resin layer is a resin containing at least one of niobate ions and tantalate ions in a water-soluble butyral resin having a water absorption rate of 10% or more and 300% or less when forming the resin layer. A method for producing a steel material for embedding in soil, wherein the layer is formed by covering with a thickness of 10 to 100 μm. 前記機構は、樹脂層形成時の吸水率が10%以上、300%以下の水溶性ブチラール樹脂中に、ニオブ酸ナトリウム、およびタンタル酸カリウムの1種以上を樹脂固形分100mass%に対して1mass%〜30mass%で含有した樹脂層を10〜100μm厚で被覆して形成することを特徴とする請求項記載の土中埋設用鋼材の製造方法。 The Organization has water absorption during resin layer formed of 10% or more, in 300% or less of the water-soluble butyral resin, 1 mass sodium niobate, and one or more potassium tantalate solid content of the resin 100 mass% The method for producing a steel material for embedding in soil according to claim 5, wherein the resin layer is contained by coating with a thickness of 10 to 100 μm. 前記耐食性樹脂層は、樹脂層形成時の吸水率が10%以上、300%以下の水溶性ブチラール樹脂中に、ニオブ酸ナトリウム、およびタンタル酸カリウムの1種以上を樹脂固形分100mass%に対して1mass%〜30mass%で含有した樹脂層を10〜100μm厚で被覆して形成することを特徴とする請求項6記載の土中埋設用鋼材の製造方法。In the water-soluble butyral resin having a water absorption rate of 10% or more and 300% or less when the resin layer is formed, the corrosion-resistant resin layer contains at least one kind of sodium niobate and potassium tantalate with respect to 100 mass% of the resin solid content. The method for producing a steel material for embedding in soil according to claim 6, wherein the resin layer contained at 1 mass% to 30 mass% is coated and formed with a thickness of 10 to 100 µm. 前記鋼材の化学成分を、V、Mo、W、NbおよびTaの1種以上の元素を含むものとしたことを特徴とする請求項5乃至のいずれか一つに記載の土中埋設用鋼材の製造方法。 The steel material for embedding in soil according to any one of claims 5 to 8 , wherein the chemical component of the steel material includes one or more elements of V, Mo, W, Nb, and Ta. Manufacturing method.
JP2008321970A 2008-12-18 2008-12-18 Underground steel Active JP5644046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008321970A JP5644046B2 (en) 2008-12-18 2008-12-18 Underground steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008321970A JP5644046B2 (en) 2008-12-18 2008-12-18 Underground steel

Publications (2)

Publication Number Publication Date
JP2010144210A JP2010144210A (en) 2010-07-01
JP5644046B2 true JP5644046B2 (en) 2014-12-24

Family

ID=42564929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008321970A Active JP5644046B2 (en) 2008-12-18 2008-12-18 Underground steel

Country Status (1)

Country Link
JP (1) JP5644046B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9222019B2 (en) * 2013-10-29 2015-12-29 Ecolab Usa Inc. Use of niobate containing compounds as corrosion inhibitors
JP2018119242A (en) * 2017-01-26 2018-08-02 新日鐵住金株式会社 Steel cord and rubber-steel cord composite

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2795710B2 (en) * 1990-01-19 1998-09-10 日本ペイント株式会社 Rust inhibitor composition
JPH10195678A (en) * 1997-01-08 1998-07-28 Hitachi Ltd Formation of anticorrosive coating
JP3297800B2 (en) * 1997-08-21 2002-07-02 住友金属工業株式会社 Anticorrosion surface treatment method, anticorrosion surface treatment steel and its use
JP2004217992A (en) * 2003-01-14 2004-08-05 Sumitomo Metal Ind Ltd Electric resistance welded tube and production method therefor
JP5396693B2 (en) * 2007-04-12 2014-01-22 新日鐵住金株式会社 Surface-treated weathering steel

Also Published As

Publication number Publication date
JP2010144210A (en) 2010-07-01

Similar Documents

Publication Publication Date Title
ES2230595T3 (en) METALLIC MATERIAL TREATED SUPERFICIALLY WITH CORROSION RESISTANCE AND SURFACE TREATMENT USED FOR IT.
JP5600992B2 (en) Surface-treated corrosion-resistant steel with excellent weather resistance
JP2008081844A (en) Non-chromate corrosion inhibitor for aluminum alloy
JP2010248567A (en) Surface-treated steel material excellent in corrosion resistance
Treacy et al. Behaviour of molybdate-passivated zinc coated steel exposed to corrosive chloride environments
JP4687231B2 (en) Structural steel and surface treatment agent with excellent beach weather resistance
JP2002059076A (en) Method for corrosion-preventive surface treatment, and steel material surface-treated for corrosion protection and its use
JP5644046B2 (en) Underground steel
JP2013166991A (en) Surface-treated steel material having excellent corrosion resistance
JP4552746B2 (en) Weather-resistant structural steel with excellent long-term durability in high-flying chloride environments
JP4245165B2 (en) Anticorrosion coating for metal, anticorrosion coating, composite coating, and metal anticorrosion method
JP4455712B2 (en) Coated steel with atmospheric corrosion resistance
JP4603502B2 (en) Coated steel
JP3911136B2 (en) Composite structure of galvanized steel and concrete
JP4937960B2 (en) Weatherproof steel
US10479896B2 (en) Anti-corrosion and/or passivation compositions for metal-containing substrates and methods for making, enhancing, and applying the same
JP4701798B2 (en) Surface-treated steel with excellent weather resistance in chloride environments
JPH0133552B2 (en)
JPH0251996B2 (en)
JP3297800B2 (en) Anticorrosion surface treatment method, anticorrosion surface treatment steel and its use
JP7307324B2 (en) Composite structure
JP2002167544A (en) Surface treating method for corrosion protection and steel stock having corrosion protection-treated surface
Ibrahim Effect of different sodium chloride (NaCl) concentration on corrosion of coated steel
US20030091726A1 (en) Active steel repassivator for corroded steel in chloride contaminated reinforced concrete structures
JP3972806B2 (en) Surface-treated steel with excellent salt resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141020

R150 Certificate of patent or registration of utility model

Ref document number: 5644046

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250