JP4552746B2 - Weather-resistant structural steel with excellent long-term durability in high-flying chloride environments - Google Patents

Weather-resistant structural steel with excellent long-term durability in high-flying chloride environments Download PDF

Info

Publication number
JP4552746B2
JP4552746B2 JP2005138516A JP2005138516A JP4552746B2 JP 4552746 B2 JP4552746 B2 JP 4552746B2 JP 2005138516 A JP2005138516 A JP 2005138516A JP 2005138516 A JP2005138516 A JP 2005138516A JP 4552746 B2 JP4552746 B2 JP 4552746B2
Authority
JP
Japan
Prior art keywords
steel
layer
ions
steel material
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005138516A
Other languages
Japanese (ja)
Other versions
JP2006315238A (en
Inventor
隆之 上村
英昭 幸
和幸 鹿島
赳夫 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2005138516A priority Critical patent/JP4552746B2/en
Publication of JP2006315238A publication Critical patent/JP2006315238A/en
Application granted granted Critical
Publication of JP4552746B2 publication Critical patent/JP4552746B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、大気腐食、特に塩分が飛来する海岸地帯や、岩塩などの凍結防止剤が散布される地域のような高飛来塩化物環境下という腐食性の高い大気環境において腐食を長期的に抑制することができる、長期耐久性に優れた耐候性構造用鋼材に関する。   The present invention suppresses long-term corrosion in atmospheric corrosive atmospheres, such as in high air chloride environments such as coastal areas where salinity flies and areas where anti-freezing agents such as rock salt are sprayed. The present invention relates to a weather-resistant structural steel material having excellent long-term durability.

本発明の耐候性構造用鋼材は、海浜地域や融雪塩/凍結防止剤が散布される地域といった、飛来塩分量が多い高飛来塩化物環境下でもミニマムメンテナンス材料として使用することができるという意味での耐候性(海浜耐候性)を有し、しかもその耐候性が長期間持続する。   The weather-resistant structural steel material of the present invention means that it can be used as a minimum maintenance material even in a high-flying chloride environment with a large amount of incoming salt, such as a beach area or an area where snow melting salt / freezing agents are sprayed. Weather resistance (seaside weather resistance), and the weather resistance lasts for a long time.

一般に、耐候性鋼材は、それを大気腐食環境中に暴露すると、保護性のあるさび層が表面に形成され、それ以降の鋼材腐食が抑制されることにより耐候性を発揮する。そのため、耐候性鋼材は、塗装せずに裸のまま使用できるミニマムメンテナンス鋼材として、橋梁等の構造物に用いられている。   In general, when weathering steel is exposed to an atmospheric corrosive environment, a protective rust layer is formed on the surface, and the subsequent corrosion of steel is suppressed, thereby exhibiting weather resistance. Therefore, the weather-resistant steel is used for structures such as bridges as a minimum maintenance steel that can be used as it is without being painted.

ところが、海浜地域や、内陸部でも融雪塩が散布される地域のように、飛来塩分量が多い環境下(すなわち、高飛来塩化物環境下)では、耐候性鋼材の表面に保護性のあるさび層が形成されず、腐食を抑制する効果が発揮されない。そのため、海浜部では、塗装なしで裸のままの耐候性鋼材を用いることができなかった。   However, in environments where there is a large amount of incoming salt (that is, under high-flying chloride environments), such as beach areas and areas where snow melting salt is scattered even in the inland areas, the surface of the weathering steel is protected. The layer is not formed, and the effect of suppressing corrosion is not exhibited. For this reason, it was not possible to use a weather-resistant steel material that has not been painted on the beach.

日本工業規格(JIS)の耐候性鋼(JIS G3114:溶接構造用耐候性熱間圧延鋼材)の規格においても、飛来塩分量がNaClとして0.05mg/dm2/day(0.05mdd)以上の地域、すなわち、海浜地域や融雪塩/凍結防止剤が散布される地域(以下、海浜地域と総称する)では、ウロコ状錆や層状錆等の発生による腐食減量が大きいため、無塗装では使用できないことになっている(建設省土木研究所、(社)鋼材倶楽部、(社)日本橋梁建設協会:耐候性鋼の橋梁への適用に関する共同研究報告書(XX)−無塗耐候性橋梁の設計・施工要領(改訂版−1993.3))。 Also in the standard of Japanese Industrial Standard (JIS) weathering steel (JIS G3114: weathering hot rolled steel for welded structure), the amount of incoming salt is 0.05 mg / dm 2 / day (0.05 mdd) or more as NaCl. In areas such as beach areas and areas where snowmelt salt / freezing agents are sprayed (hereinafter collectively referred to as beach areas), corrosion loss due to the occurrence of scale-like rust, layered rust, etc. is so large that it cannot be used without painting. (Ministry of Construction Public Works Research Institute, Steel Club, Japan Bridge Construction Association: Joint Research Report on the Application of Weatherproof Steel to Bridges (XX)-Design of Uncoated Weatherproof Bridges・ Guidelines for construction (revised version-1993.3)).

このため、海浜地域では、普通鋼材に塗装を施して使用する普通鋼の塗装使用が一般的である。しかし、河口付近の海浜地域や融雪塩を撒く山間部等の道路に建設される橋梁では腐食が著しく、腐食による塗膜劣化のため、約10年毎に再塗装を行う必要がある。再塗装には多大な工数がかかり、維持管理に莫大な費用がかかることから、海浜地域においても、無塗装で使用できる海浜耐候性に優れた鋼材への要望が強い。   For this reason, in the beach area, it is common to use ordinary steel that is coated with ordinary steel. However, in bridges constructed in the coastal area near the river mouth and roads such as mountainous areas where snow melt is salted, the corrosion is significant and the coating film deteriorates due to corrosion, so it is necessary to repaint every 10 years. Since repainting takes a lot of man-hours and enormous costs for maintenance, there is a strong demand for steel materials with excellent beach weather resistance that can be used without painting even in the beach area.

最近、Niを1〜3%程度添加したNi系高耐候性鋼が開発され、実用化されている。例えば、下記特許文献1を参照。しかし、このような鋼へのNi添加だけでは、飛来塩分量が0.3〜0.4mddを超える高飛来塩化物環境となる地域では適用が難しいことが判明してきた。   Recently, a Ni-based high weathering steel added with about 1 to 3% of Ni has been developed and put into practical use. For example, see Patent Document 1 below. However, it has been found that application of Ni alone to such steels is difficult in areas where the amount of incoming salt exceeds 0.3 to 0.4 mdd, resulting in a high incoming chloride environment.

鋼材の腐食は、飛来塩分量が多くなるにつれて激しくなるため、耐食性と経済性の観点からは、飛来塩分量に応じた耐候性鋼材が必要になる。また、橋梁といっても、使用される場所や部位により鋼材の腐食環境は同じではない。例えば、桁外部では、降雨、結露水および日照に曝される。一方、桁内部では、結露水に曝されるが、雨掛かりはない。一般に、飛来塩分量が多い環境では、雨で洗われる桁外部より桁内部の方が、腐食が激しいと言われている。   Since corrosion of steel materials becomes more severe as the amount of flying salt increases, a weather-resistant steel material corresponding to the amount of flying salt is required from the viewpoint of corrosion resistance and economy. Moreover, even if it is called a bridge, the corrosive environment of steel materials is not the same by the place and site | part used. For example, outside the girders, they are exposed to rainfall, condensed water and sunlight. On the other hand, inside the girders, they are exposed to condensed water, but there is no rain. In general, in an environment with a large amount of incoming salt, it is said that corrosion is more severe inside the girders than outside the girders that are washed with rain.

また、融雪塩を道路に撒く環境では、その塩が走行中の車に巻き上げられ、道路を支える橋梁に付着し、厳しい腐食環境となる。さらに、海岸から少し離れた軒下等も厳しい塩害環境に曝され、このような地域では、飛来塩分量が1mdd以上の厳しい腐食環境になる。   In addition, in an environment where snow melting salt is sprinkled on the road, the salt is wound up on a running car and adheres to the bridge supporting the road, creating a severe corrosive environment. Furthermore, the eaves under the eaves a little away from the coast are also exposed to severe salt damage environments, and in such areas, the amount of incoming salt becomes a severe corrosive environment with 1 mdd or more.

飛来塩分量が多い環境での腐食を防止する鋼材も従来から開発が進められている。例えば、特許文献2には、硫酸クロムまたは硫酸銅を1〜65質量%含む有機樹脂塗料を被覆して安定さびを早期に育成させる方法が開示されている。特許文献3には、下層に硫酸クロムを0.1〜15質量%含む、乾燥膜厚5〜50μmの有機樹脂塗膜を形成し、上層に硫酸クロムを含まない、乾燥膜厚5〜20μmの有機樹脂塗膜を形成する処理法が開示されている。これらのいずれの方法も、保護性さび層の生成を促進し、早期に高耐食性を示すため、耐候性の著しく改善が可能であることが実証されている。   Steel materials that prevent corrosion in environments with a high amount of incoming salt have also been developed. For example, Patent Document 2 discloses a method for growing stable rust at an early stage by coating an organic resin paint containing 1 to 65% by mass of chromium sulfate or copper sulfate. In Patent Document 3, an organic resin coating film having a dry film thickness of 5 to 50 μm containing 0.1 to 15% by mass of chromium sulfate in the lower layer is formed, and a dry film thickness of 5 to 20 μm not containing chromium sulfate in the upper layer. A treatment method for forming an organic resin coating film is disclosed. Both of these methods have been demonstrated to facilitate the formation of a protective rust layer and to exhibit high corrosion resistance at an early stage, so that weatherability can be significantly improved.

特許文献4には、鋼材の表面あるいは鋼材の錆層上に、硫酸アルミニウムを乾燥質量で1〜65質量%含む有機樹脂塗料により乾燥膜厚5μm以上、150μm以下の被膜を形成した耐候性鋼材が開示されている。上記被膜の形成前に、Alと、場合によりCu,Fe,P,Cr,Niの1種または2種以上の金属イオンを含む水溶液を塗布し、乾燥させる下地処理を行ってもよい。
特開平11−172370号公報 特開平6−226198号公報 特開2001−81575号公報 特開平8−13158号公報
Patent Document 4 discloses a weather-resistant steel material in which a coating having a dry film thickness of 5 μm or more and 150 μm or less is formed on the surface of a steel material or a rust layer of the steel material with an organic resin paint containing 1 to 65% by mass of aluminum sulfate in a dry mass. It is disclosed. Prior to the formation of the coating film, a base treatment may be performed in which an aqueous solution containing Al and optionally one or more metal ions of Cu, Fe, P, Cr, and Ni is applied and dried.
JP-A-11-172370 JP-A-6-226198 JP 2001-81575 A JP-A-8-13158

本発明は、従来の耐候性鋼等が内包する問題の解消を目指したものであり、海浜地域や融雪塩が散布される地域等のように飛来塩分量が多い環境下(特に1mddを超えるような厳しい腐食環境下)、または原油を貯蔵するタンク内の環境下でも、優れた耐候性を長期的に発揮する、耐候性に優れた低コストの土木用、建築用、オイルタンク用といった用途に適用可能な構造用鋼材を提供することを目的とする。   The present invention aims to solve the problems of conventional weathering steel and the like, and is in an environment with a large amount of incoming salt (especially exceeding 1 mdd) such as a beach area or an area where snowmelt salt is sprayed. For use in low-cost civil engineering, construction, and oil tanks that exhibit excellent weather resistance for a long period of time, even in an environment where crude oil is stored. It aims at providing applicable structural steel materials.

本発明者らの一人が既に報告しているように(「材料と環境」第43巻(1994)第1号26頁)、耐候性鋼材においてさび層が保護性を有するのは、Feの一部がCrで置換された微細なα−(Fe1-XCrX)OOHからなるさび層が生成することによる。しかし、このさび層の形成を促進するための鋼へのCrの添加は、飛来塩分量が比較的少ない環境では耐候性の向上に有効であるが、飛来塩分量が1mdd以上と多い環境では、逆に耐候性を劣化させることが判明した。一方、Niの添加は、飛来塩分量の多い地域での耐候性の向上に有効であるとされてきた。 As already reported by one of the present inventors ("Materials and the Environment", Vol. 43 (1994), No. 1, page 26), the rust layer has a protective property in weathering steel. This is because a rust layer composed of fine α- (Fe 1-X Cr x ) OOH in which part is replaced with Cr is formed. However, the addition of Cr to the steel to promote the formation of the rust layer is effective in improving the weather resistance in an environment where the amount of incoming salt is relatively small, but in an environment where the amount of incoming salt is as high as 1 mdd or more, Conversely, it has been found that the weather resistance deteriorates. On the other hand, it has been considered that the addition of Ni is effective for improving the weather resistance in an area where the amount of incoming salt is large.

本発明者らは、これらの知見を踏まえて、飛来塩分量の多い環境での腐食について検討した結果、このような環境下では、FeCl3溶液の乾湿繰り返し(この溶液の乾燥と水による再溶解の繰り返し)が本質的な条件となり、Fe3+の加水分解によりpHが低下した状態で、かつFe3+が酸化剤として作用することによって、腐食が加速されることが判明した。このときの腐食反応は次式で示される。 Based on these findings, the present inventors examined corrosion in an environment with a large amount of incoming salt. As a result, in such an environment, the FeCl 3 solution was repeatedly dried and wet (this solution was dried and redissolved with water). of repetition) is an essential condition, while pH is lowered by hydrolysis of Fe 3+, and by the Fe 3+ acts as an oxidizing agent, it has been found that the corrosion is accelerated. The corrosion reaction at this time is expressed by the following equation.

カソード反応:Fe3+ +e- → Fe2+ (Fe3+の還元反応)
もちろん、この反応以外に、
2H2O + O2 + 2e- → 4OH-
2H+ + 2e- → H2
のカソード反応も併発する。
Cathode reaction: Fe 3+ + e → Fe 2+ (reduction reaction of Fe 3+ )
Of course, besides this reaction,
2H 2 O + O 2 + 2e → 4OH
2H + + 2e - → H 2
The cathodic reaction also occurs.

一方、上記還元反応に対して
アノード反応:Fe→Fe2++2e- (Feの溶解反応)
も起こる。従って、腐食の総括反応は、
2Fe3+ + Fe → 3Fe2+ ・・・ 反応1
となる。
On the other hand, for the above reduction reaction, anode reaction: Fe → Fe 2+ + 2e (Fe dissolution reaction)
Also happens. Therefore, the overall reaction of corrosion is
2Fe 3+ + Fe → 3Fe 2+ ... Reaction 1
It becomes.

上記反応1により生成したFe2+は空気酸化によってFe3+に酸化され、生成したFe3+は再び酸化剤として腐食を加速する。この際、Fe2+の空気酸化の反応速度は、低pH環境では一般に遅いが、濃厚塩化物溶液中では加速され、Fe3+が生成され易くなる。このようなサイクリックな反応のため、飛来塩分量が非常に多い環境では、Fe3+が常に供給され続け、鋼の腐食が加速され、耐食性が著しく劣化することが判明した。 The Fe 2+ generated by the reaction 1 is oxidized to Fe 3+ by air oxidation, and the generated Fe 3+ again accelerates corrosion as an oxidant. At this time, the reaction rate of air oxidation of Fe 2+ is generally slow in a low pH environment, but is accelerated in a concentrated chloride solution, and Fe 3+ is easily generated. It was found that due to such a cyclic reaction, in an environment where the amount of incoming salt is very large, Fe 3+ is constantly supplied, the corrosion of steel is accelerated, and the corrosion resistance is significantly deteriorated.

このように、飛来塩分量が非常に多い環境では、さび層による保護は期待できないため、鋼自身のアノード溶解反応を遅くするのが有効である。すなわち、飛来塩分量が非常に多い環境では、Crを含有する鋼はアノード反応(Feの溶解反応)が促進されるため、耐候性が劣化するのに対し、Niを含有する鋼は、アノード反応を遅延させるので、耐候性が向上すると推測される。   In this way, in an environment where the amount of incoming salt is very large, protection by the rust layer cannot be expected, so it is effective to slow the anodic dissolution reaction of the steel itself. That is, in an environment where the amount of flying salt is very large, the steel containing Cr accelerates the anode reaction (Fe dissolution reaction), so the weather resistance deteriorates, whereas the steel containing Ni does not react with the anode reaction. It is estimated that the weather resistance is improved.

上述した飛来塩分量の多い環境での腐食メカニズムを基に、種々の合金元素の耐候性への影響について検討した結果、Snが上記メカニズムによる鋼材の腐食の抑制に有効であることを見出した。さらに、Sn含有皮膜を厚い樹脂皮膜で被覆することにより、構造用鋼材に長期的な耐候性、すなわち、長期耐久性を付与できることも見出し、本発明を完成した。   As a result of studying the influence of various alloy elements on the weather resistance based on the above-described corrosion mechanism in an environment with a large amount of incoming salt, it was found that Sn is effective in suppressing the corrosion of steel materials by the above mechanism. Furthermore, it discovered that long-term weather resistance, ie, long-term durability, could be imparted to the structural steel material by coating the Sn-containing film with a thick resin film, and the present invention was completed.

本発明は、構造用鋼材の表面または鋼材上に形成された錆層の上に、バインダー樹脂中に金属Sn換算量で1〜54質量%の量の酸可溶性のSnイオン供給源物質であるSn化合物を含有する、膜厚5〜50μmのSn含有層と、その上層の膜厚100μm以上の有機樹脂層とを有することを特徴とする、耐候性構造用鋼材である。 The present invention is Sn, which is an acid-soluble Sn ion source material in an amount of 1 to 54% by mass in terms of metal Sn in a binder resin on the surface of a structural steel material or on a rust layer formed on the steel material. It is a weather resistant structural steel material comprising a compound- containing Sn-containing layer having a thickness of 5 to 50 μm and an organic resin layer having a thickness of 100 μm or more as an upper layer.

前記Sn含有層は、Cu2+イオン、Ni2+イオンまたはCr3+イオンの供給源となる少なくとも1種の酸可溶性の追加の金属イオン供給源物質である金属化合物をさらに含有していてもよく、その場合には、これらの追加の金属イオン供給源物質と前記Snイオン供給源物質との金属換算での合計量が65質量%以下となるようにする。
The Sn-containing layer may further contain a metal compound that is at least one acid-soluble additional metal ion source material that serves as a source of Cu 2+ ions, Ni 2+ ions, or Cr 3+ ions. In that case, the total amount of these additional metal ion source materials and the Sn ion source material in terms of metal is 65% by mass or less.

「酸可溶性のSnイオン供給源物質」とは、酸性溶液に溶解してSn2+イオンとSn4+イオンの一方または両方を供給することができる物質を意味する。そのようなSnイオン供給源物質は、具体的には、2価Sn化合物、4価Sn化合物、さらには金属Snを包含する。次に説明するように、塩化物環境下で鋼材に水が接触して生ずる鉄イオンを含む酸性溶液中では、Sn⇔Sn2+イオン⇔Sn4+イオンの両方向の反応が起こりうる。 “Acid-soluble Sn ion source material” means a material that can be dissolved in an acidic solution to supply one or both of Sn 2+ ions and Sn 4+ ions. Such Sn ion source materials specifically include divalent Sn compounds, tetravalent Sn compounds, and metal Sn. As will be described below, in an acidic solution containing iron ions generated by contact of water with steel in a chloride environment, reactions in both directions of Sn⇔Sn 2+ ions⇔Sn 4+ ions can occur.

高飛来塩化物環境下での鋼材の腐食に対するSnの抑制効果は、次のメカニズムによるものであると考えられる。
(a) Snは、Sn2+として溶解すると、2Fe3++ Sn2+ → 2Fe2+ + Sn4+ という反応によってFe3+の濃度を低下させることにより、上記反応1を抑制する。Snには、さらにアノード溶解を抑制するという作用もある。
The inhibitory effect of Sn on the corrosion of steel materials in a high flying chloride environment is considered to be due to the following mechanism.
(a) When Sn is dissolved as Sn 2+ , the concentration of Fe 3+ is decreased by a reaction of 2Fe 3+ + Sn 2+ → 2Fe 2+ + Sn 4+ , thereby suppressing the reaction 1 described above. Sn also has an effect of suppressing anodic dissolution.

(b) Sn2+として溶解したSnのうち、上記(a)に記載した反応を受けなかった過剰分は、鋼材表面に金属Snとして析出する。
(c) この析出したSnは、鋼の溶出反応(アノード反応)の対反応(カソード反応)である2H++ 2e- → H2 の反応を著しく抑制する。これは、高水素過電圧によるものと考えられる。
(b) Of the Sn dissolved as Sn 2+ , the excess not receiving the reaction described in (a) above is deposited as metal Sn on the steel material surface.
(c) The precipitated Sn significantly suppresses the reaction of 2H + + 2e → H 2 , which is a counter reaction (cathode reaction) of the steel elution reaction (anode reaction). This is thought to be due to high hydrogen overvoltage.

(d) Snの析出は、鋼の溶出部に集中するため、溶出したSn2+は腐食している部分のみに効率的にSnとして析出する。
(e) 一度析出したSnは、この析出部の直下またはその付近で腐食が進行する場合には、Sn2+として再溶出し、再び腐食している部分のみにSnとして析出し、腐食を抑制する。
(d) Since precipitation of Sn concentrates on the elution part of steel, the eluted Sn <2+ > precipitates as Sn efficiently only in the corroded part.
(e) Once the deposited Sn is corroded directly under or near the deposited portion, it re-elutes as Sn 2+ and precipitates as Sn only on the corroded portion, thereby suppressing the corrosion. To do.

(f) Sn4+も、Sn4++ 2e-→Sn2+ の反応により、鋼表面近傍でSn2+となるため、上記(c)から(e)の効果を有することになる。
したがって、Sn2+イオンおよび/またはSn4+イオンの供給源となるSnイオン供給源物質を含有するSn含有層を鋼材表面に形成すれば、Snイオンが枯渇することなく、繰り返し鋼材の腐食を抑制でき、半永久的にその効果を発揮する。
(f) Sn 4+ also becomes Sn 2+ in the vicinity of the steel surface due to the reaction of Sn 4+ + 2e → Sn 2+ , and thus has the effects (c) to (e).
Therefore, if a Sn-containing layer containing a Sn ion source material that serves as a Sn 2+ ion and / or Sn 4+ ion source is formed on the surface of the steel material, the corrosion of the steel material is repeated without depletion of Sn ions. It can be suppressed and exerts its effect semi-permanently.

本発明の耐候性構造用鋼材は、多量の塩化物が飛来する腐食性の強い高飛来塩化物環境下でも、長期に耐食性を維持することができる長期耐久性を示す。特に海浜地域に建造される土木または建築構造物もしくはオイルタンクの鋼材として本発明を適用すると、鋼材の防食に関するメンテナンスコストが著しく低減されるので、本発明の経済効果は高い。   The weather-resistant structural steel material of the present invention exhibits long-term durability capable of maintaining corrosion resistance for a long time even in a highly corrosive high-flying chloride environment in which a large amount of chlorides fly. In particular, when the present invention is applied as a steel material for civil engineering or building structures or oil tanks constructed in a beach area, the maintenance cost related to the corrosion prevention of the steel material is remarkably reduced, so the economic effect of the present invention is high.

上述したように、Clの濃化する濃厚塩化物環境下では、FeCl3溶液の乾湿繰り返しが本質的な条件となり、Fe3+の加水分解によりpHが低下した状態で、かつFe3+が酸化剤として作用することによって、腐食が加速される。すなわち、水が鋼材界面に接触すると、母材のFeが溶出してFe2+が生成し、その一部はFe3+に酸化されることになる。そこに塩化物イオンが存在すれば、加水分解を促進し、pHが著しく低下する。 As described above, in the concentrated chloride environment where thickening of Cl, wet and dry repetition of FeCl 3 solution is an essential condition, while pH is lowered by hydrolysis of Fe 3+, and Fe 3+ oxidation By acting as an agent, corrosion is accelerated. That is, when water contacts the steel material interface, Fe as a base material is eluted to produce Fe 2+ , and a part thereof is oxidized to Fe 3+ . If chloride ions are present there, hydrolysis is accelerated and the pH is significantly reduced.

本発明に従って、鋼材の鉄表面または錆層に接する下層の皮膜を、Sn2+イオンおよび/またはSn4+イオンを供給できるSn含有層とすることにより、Sn含有層を通って水分が鋼表面に到達する際に、Sn含有層中のSnイオン供給源物質からSn2+イオンおよび/またはSn4+イオンが生成し、腐食している部分の表面にSnとして優先的に析出する。析出したSn上では、水素還元反応(カソード反応)が著しく抑制され、腐食が抑制されることとなる。さらに、Sn2+イオンの一部は、Fe3+イオンと反応して、Fe3+イオンの濃度を低下させ、上記反応1を抑制する。 According to the present invention, the lower surface film in contact with the iron surface or rust layer of the steel material is an Sn-containing layer capable of supplying Sn 2+ ions and / or Sn 4+ ions, so that moisture can be passed through the Sn-containing layer. In this case, Sn 2+ ions and / or Sn 4+ ions are generated from the Sn ion source material in the Sn-containing layer and are preferentially deposited as Sn on the surface of the corroded portion. On the deposited Sn, the hydrogen reduction reaction (cathode reaction) is remarkably suppressed, and corrosion is suppressed. Furthermore, some of the Sn 2+ ions react with the Fe 3+ ions reduces the concentration of Fe 3+ ions, suppressing the reaction 1.

Snによる上記効果を得るためには、下層のSn含有層中のSnイオン供給源物質の量が金属Sn換算量で1質量%以上でなければならない。一方、この量が54質量%を超えると、Snイオン供給源物質を結合するバインダー樹脂の量の不足し、Sn含有層が脆くなる上、Sn含有層表面から鋼面に達する貫通孔が形成されて、流れ錆が発生する原因となる。したがって、Snイオン供給源物質の量は金属Sn換算量で1〜54質量%の範囲とする。この量の好ましい範囲は、2〜40質量%である。   In order to acquire the said effect by Sn, the quantity of Sn ion supply source material in the lower Sn content layer must be 1 mass% or more in metal Sn conversion amount. On the other hand, when this amount exceeds 54% by mass, the amount of the binder resin that binds the Sn ion source material becomes insufficient, the Sn-containing layer becomes brittle, and through-holes that reach the steel surface from the Sn-containing layer surface are formed. This causes flow rust. Therefore, the amount of the Sn ion source material is in the range of 1 to 54% by mass in terms of metal Sn. A preferred range for this amount is 2-40% by weight.

Snイオン供給源物質がSn化合物である場合の金属Sn換算量は、次式にしたがって算出できる:
(Sn化合物の添加量)×[(Sn原子量)/(Sn化合物の分子量)]。
When the Sn ion source material is a Sn compound, the metal Sn equivalent can be calculated according to the following formula:
(Addition amount of Sn compound) × [(Sn atomic weight) / (Molecular weight of Sn compound)].

用いるSnイオン供給源物質は、低pH領域で溶解してイオン化し、Sn2+イオンまたはSn4+イオンを生ずるSn化合物、即ち、酸可溶性の2価Sn化合物および4価Sn化合物と、金属Snとから選ばれた、少なくとも1種であれば良い。好ましいのは2価Sn化合物である。2価Sn化合物は、Sn4++2e-→Sn2+の反応を経由せずに直接的に、2Fe3++Sn2+→2Fe2++Sn4+なる反応によりFe3+の濃度を低下させることによって上記反応1を抑制することができるからである。2価Sn化合物の具体例としては、硫酸スズ(II)、酸化スズ(II)、ピロリン酸スズ(II)を例示することができる。塩化スズ(II)などのハロゲン化物は酸可溶性であるが、腐食性の塩素イオンまたは他のハロゲンイオンの発生源となるので、好ましくない。中でも、酸化スズ(II)は、中性領域で溶解しがたく、低pH領域になると溶解するので、塩化物濃縮部分でのみ溶解し、効果を発揮することになり、本発明において使用するのに特に好ましいSnイオン供給源物質である。 The Sn ion source material used is an Sn compound that dissolves and ionizes in a low pH region to generate Sn 2+ ions or Sn 4+ ions, that is, acid-soluble divalent and tetravalent Sn compounds, and metal Sn. At least one selected from the above may be used. A divalent Sn compound is preferable. The divalent Sn compound decreases the Fe 3+ concentration directly by the reaction of 2Fe 3+ + Sn 2+ → 2Fe 2+ + Sn 4+ without going through the reaction of Sn 4+ + 2e → Sn 2+ . This is because the reaction 1 can be suppressed. Specific examples of the divalent Sn compound include tin (II) sulfate, tin (II) oxide, and tin (II) pyrophosphate. Halides such as tin (II) chloride are acid-soluble, but are not preferred because they are sources of corrosive chloride ions or other halogen ions. Among them, tin (II) oxide is difficult to dissolve in the neutral region and dissolves in the low pH region, so it dissolves only in the chloride-concentrated portion and exerts its effect and is used in the present invention. Particularly preferred Sn ion source material.

Sn含有層には、Snイオン供給源物質に加えて、Cu2+イオン、Ni2+イオン、Cr3+イオンなど、耐候性向上効果を示す金属カチオンの供給源となる追加の金属イオン供給源物質を共存させることも可能であり、好適である。この金属イオン供給源物質についても、酸可溶性の金属化合物(または金属)を使用する。そのような金属化合物の具体例としては、Cu(NO3)2、CuSO4、Ni(NO3)2、NiSO4、Cr(NO3)3、Cr2(SO4)3等が挙げられる。 In addition to the Sn ion source material, the Sn-containing layer has an additional metal ion source that serves as a source of metal cations that exhibit a weather resistance improving effect, such as Cu 2+ ions, Ni 2+ ions, Cr 3+ ions Substances can coexist and are suitable. An acid-soluble metal compound (or metal) is also used for the metal ion source material. Specific examples of such a metal compound include Cu (NO 3 ) 2 , CuSO 4 , Ni (NO 3 ) 2 , NiSO 4 , Cr (NO 3 ) 3 , Cr 2 (SO 4 ) 3 and the like.

耐候性改善のためのこれらの追加の金属イオン供給源物質は、1種または2種以上を使用でき、その添加量は、金属換算での総添加量が、Sn含有層の1〜20質量%の範囲内となる量とすることが好ましい。この場合、追加の金属イオン供給源物質とSnイオン供給源物質との合計量が多くなりすぎると、バインダー樹脂の量が不足し、Sn含有層の強度不足を招くので、この合計量は全固形分に基づく金属換算量で65質量%以下とすることが好ましい。   These additional metal ion source materials for improving the weather resistance can be used singly or in combination of two or more, and the added amount is 1 to 20% by mass of the Sn-containing layer in terms of the total added amount in terms of metal. It is preferable to set the amount within the range. In this case, if the total amount of the additional metal ion source material and the Sn ion source material is too large, the amount of the binder resin is insufficient and the strength of the Sn-containing layer is insufficient. It is preferable to make it 65 mass% or less in metal conversion amount based on the minute.

Sn含有層の形成に用いる表面処理剤は、Snイオン供給源物質、任意に添加しうる上記の追加の金属イオン供給源物質、およびバインダー樹脂の他に、さらに顔料や各種添加剤を含有しうる。表面処理剤の溶媒は、水と有機溶剤のいずれも可能であり、1種または2種以上の溶媒を使用しうる。樹脂は、溶媒に溶解していてもよく、あるいはエマルジョン状態であってもよい。   The surface treatment agent used for forming the Sn-containing layer may further contain pigments and various additives in addition to the Sn ion source material, the above-described optional additional metal ion source material, and the binder resin. . The solvent for the surface treatment agent can be either water or an organic solvent, and one or more solvents can be used. The resin may be dissolved in a solvent or may be in an emulsion state.

バインダー樹脂は特に制限されず、塗料に使用される各種の有機樹脂を使用できる。具体例としては、エポキシ樹脂、ウレタン樹脂、ビニル樹脂、ポリエステル樹脂、アクリル樹脂、アルキド樹脂、フタル酸樹脂、ブチラール樹脂、メラミン樹脂、フェノール樹脂等を挙げることができる。これらは、溶液またはエマルションのいずれの状態であってもよい。必要に応じてバインダー樹脂に硬化剤を配合する。特にブチラール樹脂単独、またはブチラール樹脂とブチラール樹脂と相溶性の他の樹脂(例えば、メラミン樹脂やフェノール樹脂等)との混合物が、形成された被膜の透湿性の点で好ましい。また、エチルシリケート樹脂のような金属酸化物型の被膜を形成できる無機樹脂もバインダー樹脂として使用できる。   The binder resin is not particularly limited, and various organic resins used for paints can be used. Specific examples include epoxy resin, urethane resin, vinyl resin, polyester resin, acrylic resin, alkyd resin, phthalic acid resin, butyral resin, melamine resin, phenol resin, and the like. These may be in the state of either a solution or an emulsion. If necessary, a curing agent is added to the binder resin. In particular, a butyral resin alone or a mixture of a butyral resin and another resin compatible with the butyral resin (for example, melamine resin or phenol resin) is preferable from the viewpoint of moisture permeability of the formed film. An inorganic resin that can form a metal oxide type film such as ethyl silicate resin can also be used as the binder resin.

バインダー樹脂の固形分としての量は、Sn含有層の強度を確保する面から、表面処理剤の全固形分に基づいて、少なくとも25質量%であることが好ましく、より好ましくは少なくとも30質量%である。   The amount of the binder resin as a solid content is preferably at least 25% by mass, more preferably at least 30% by mass, based on the total solid content of the surface treatment agent, from the viewpoint of securing the strength of the Sn-containing layer. is there.

表面処理剤には、上記成分以外に、ベンガラ、二酸化チタン、カーボンブラック、フタロシアニンブルー、α-FeOOH、酸化鉄等の着色顔料; ならびにタルク、シリカ、マイカ、硫酸バリウム、炭酸カルシウム等の体質顔料をそれぞれ1種または2種以上添加することができる。   In addition to the above components, the surface treatment agent includes colored pigments such as bengara, titanium dioxide, carbon black, phthalocyanine blue, α-FeOOH, and iron oxide; and extender pigments such as talc, silica, mica, barium sulfate, and calcium carbonate. One or more of each can be added.

また、公知の防錆顔料として酸化クロム、クロム酸亜鉛、クロム酸鉛、塩基性硫酸鉛等の防錆顔料、さらには、硫酸クロムなどのクロム化合物、硫酸ニッケル等のニッケル化合物を含有させることを排除するものではない。ただし、環境の負荷を考えれば、これらの化合物の添加量(2種以上の場合は合計量)は、表面処理剤の全固形分に基づいて20質量%以下とすることが望ましい。   Further, as a known anti-rust pigment, an anti-corrosion pigment such as chromium oxide, zinc chromate, lead chromate, basic lead sulfate and the like, further chromium compounds such as chromium sulfate, and nickel compounds such as nickel sulfate are included. It is not excluded. However, considering the environmental load, the amount of these compounds added (the total amount in the case of two or more) is desirably 20% by mass or less based on the total solid content of the surface treatment agent.

その他、チキソ剤、分散剤、酸化防止剤等、慣用されている添加剤を加えてもよい。また、リン酸を含有させることも可能であり、初期の流れ錆流出防止には有効である。
表面処理剤は、使用時に塗装作業に適した粘度になるよう適当な溶媒で希釈して濃度を調整してもよい。鋼材表面への塗装は常法に従って行うことができる。例えば、既存の構造物の場合には、エアスプレー、エアレススプレー、刷毛塗り等の方法が適当である。工場で塗装する場合には、ロールコート、浸漬等の他の塗装方法も採用できる。
In addition, conventional additives such as thixotropic agents, dispersants, antioxidants, etc. may be added. Moreover, it is also possible to contain phosphoric acid, which is effective for preventing the initial flow rust outflow.
The concentration of the surface treatment agent may be adjusted by diluting with a suitable solvent so that the viscosity of the surface treatment agent is suitable for the coating operation. The coating on the steel surface can be performed according to a conventional method. For example, in the case of an existing structure, an air spray method, an airless spray method, a brush coating method, or the like is appropriate. When painting at the factory, other coating methods such as roll coating and dipping can be employed.

溶媒は、塗装後に自然乾燥により蒸散させることが好ましいので、そのような溶媒を選択することが好ましい。塗装は、乾燥後に5〜50μmの厚みのSn含有層が形成されるように行う。Sn含有層の厚みが5〜50μmの範囲であると、高飛来塩化物環境でも適切にSnイオンが鋼材表面に供給され、鋼材の耐候性が改善される。Sn含有層の厚みは好ましくは20〜50μmの範囲内である。   Since the solvent is preferably evaporated by natural drying after coating, it is preferable to select such a solvent. The coating is performed so that a Sn-containing layer having a thickness of 5 to 50 μm is formed after drying. When the thickness of the Sn-containing layer is in the range of 5 to 50 μm, Sn ions are appropriately supplied to the steel material surface even in a high-flying chloride environment, and the weather resistance of the steel material is improved. The thickness of the Sn-containing layer is preferably in the range of 20 to 50 μm.

こうして形成された、Sn2+イオンおよび/またはSn4+イオンを供給するSnイオン供給源物質を含有するSn含有層の上に、上層として、有機樹脂層を100μm以上の乾燥膜厚となるように形成する。有機樹脂層の厚みは100μm以上であれば、有機樹脂層が鋼材表面を完全に覆うことになり、防食性の向上により、長期的な耐候性を保証しうる長期耐久性を確保することが可能となる。上層の有機樹脂層の厚みの上限は特に無いが、経済性の観点からは、乾燥膜厚で1000μm以下とすることが好ましい。 On top of the Sn-containing layer containing the Sn ion source material that supplies Sn 2+ ions and / or Sn 4+ ions thus formed, the organic resin layer has a dry film thickness of 100 μm or more as an upper layer. To form. If the thickness of the organic resin layer is 100 μm or more, the organic resin layer completely covers the steel material surface, and it is possible to ensure long-term durability that can guarantee long-term weather resistance by improving corrosion resistance. It becomes. The upper limit of the thickness of the upper organic resin layer is not particularly limited, but from the viewpoint of economy, the dry film thickness is preferably 1000 μm or less.

鋼材の表面または鋼材上に形成された錆層の上に、Snイオン供給源物質を金属Sn換算で1〜54質量%含有する乾燥膜厚5〜50μmのSn含有層が形成されていることにより、その上に形成される有機樹脂層の剥離が極めて小さくなり、この点も長期耐久性の確保に寄与する。   By forming a Sn-containing layer having a dry film thickness of 5 to 50 μm containing 1 to 54 mass% of Sn ion source material in terms of metal Sn on the surface of the steel material or the rust layer formed on the steel material Further, peeling of the organic resin layer formed thereon becomes extremely small, which also contributes to ensuring long-term durability.

上層の有機樹脂層は特に制限されないが、例えばエポキシ樹脂、ウレタン樹脂、ビニル樹脂、ポリエステル樹脂、アクリル樹脂、アルキド樹脂、フタル酸樹脂、ブチラール樹脂、メラミン樹脂、フェノール樹脂等の塗料が有機樹脂層の形成に使用できる。また、ベンガラ、二酸化チタン、カーボンブラック、フタロシアニンブルー、α−FeOOH、酸化鉄等の着色顔料;ならびにタルク、シリカ、マイカ、硫酸バリウム、炭酸カルシウム等の体質顔料をそれぞれ1種または2種以上添加することができる。   The upper organic resin layer is not particularly limited. For example, an epoxy resin, a urethane resin, a vinyl resin, a polyester resin, an acrylic resin, an alkyd resin, a phthalic resin, a butyral resin, a melamine resin, a phenol resin, or the like is used as the organic resin layer. Can be used for forming. Also, coloring pigments such as bengara, titanium dioxide, carbon black, phthalocyanine blue, α-FeOOH, and iron oxide; and one or more extender pigments such as talc, silica, mica, barium sulfate, and calcium carbonate are added. be able to.

さらに、公知の防錆顔料として、酸化クロム、クロム酸亜鉛、クロム酸鉛、塩基性硫酸鉛等の防錆顔料を有機樹脂層中に含有させることを排除するものではない。ただし、環境の負荷を考えれば、その添加量は、有機樹脂層の20質量%以下とすることが好ましい。その他、チキソ剤、分散剤、酸化防止剤等、塗料に慣用される添加剤を有機樹脂層中に含有させてもよい。有機樹脂層が上記のような1種または2種以上の顔料その他の固体粒子を含有する場合、皮膜強度を確保するために固体粒子の合計量は30質量%以下とすることが好ましい。   Furthermore, it does not exclude the inclusion of rust preventive pigments such as chromium oxide, zinc chromate, lead chromate and basic lead sulfate as known rust preventive pigments in the organic resin layer. However, considering the environmental load, the addition amount is preferably 20% by mass or less of the organic resin layer. In addition, additives commonly used in paints such as thixotropic agents, dispersants, antioxidants and the like may be included in the organic resin layer. When the organic resin layer contains one or more kinds of pigments and other solid particles as described above, the total amount of the solid particles is preferably 30% by mass or less in order to ensure the film strength.

有機樹脂層は、有機樹脂液(溶液でもエマルションでもよい)に所望により添加成分を加えた後、塗布前に塗装作業に適した粘度になるように必要に応じて有機溶剤で希釈して濃度を調整し、塗装に使用することができる。塗装は常法に従って行うことができ、既存の構造物の場合にはエアスプレー、エアレススプレー、刷毛塗り等の方法が適当である。工場で塗装する場合には、ロールコート、浸漬等の他の方法も採用できる。その後、溶媒を蒸発させて、有機樹脂層を形成する。使用する溶媒については、Sn含有層の形成に用いる表面積剤の場合と同様である。   The organic resin layer may be diluted with an organic solvent as necessary so that the viscosity becomes suitable for the coating work before coating, after adding optional components to the organic resin liquid (which may be a solution or an emulsion) as desired. Can be adjusted and used for painting. Painting can be performed according to a conventional method, and in the case of an existing structure, methods such as air spray, airless spray, and brush coating are suitable. When painting at a factory, other methods such as roll coating and dipping can be employed. Thereafter, the solvent is evaporated to form an organic resin layer. About the solvent to be used, it is the same as that of the case of the surface area agent used for formation of Sn content layer.

本発明にしたがって下層のSn含有層と上層の有機樹脂層が形成された構造用鋼材は、特に鋼種を限定されるものではない。普通鋼であってもよいが、耐候性鋼やNi、Al、Sn等を含有する低合金鋼であると、長期の耐久性の観点からは有利である。鋼材の形態も特に制限されず、板、棒、形鋼、管、鋳造品等を含む任意の形態でよい。ここで、構造用鋼材とは、土木用、建築用といった用途に適用可能な鋼材のことを言う。また、原油タンク環境下での使用にも十分耐えうるため、オイルタンク用にも適用可能である。前述したように、構造用鋼材は既存の鋼構造物であってもよい。   The structural steel material in which the lower Sn-containing layer and the upper organic resin layer are formed according to the present invention is not particularly limited in the steel type. Although ordinary steel may be used, it is advantageous from the viewpoint of long-term durability if it is a weather resistant steel or a low alloy steel containing Ni, Al, Sn or the like. The form of the steel material is not particularly limited, and may be any form including a plate, a rod, a shaped steel, a pipe, a cast product, and the like. Here, the structural steel material means a steel material that can be used for civil engineering and architectural purposes. Further, since it can sufficiently withstand use in a crude oil tank environment, it can also be applied to an oil tank. As described above, the structural steel material may be an existing steel structure.

既存の橋梁や建造物のように既存の構造用鋼材に適用する場合、その鋼材の表面に発生した錆層の上に塗装することによって、本発明に従ったSn含有層と上層の有機樹脂層を形成してもよく、或いは、錆層をショットブラストなどの適当な方法で除去してから塗装を行ってもよい。工場で塗装を行う場合にも、その鋼材に既に錆が発生している場合には同様である。   When applied to an existing structural steel material such as an existing bridge or building, the Sn-containing layer and the upper organic resin layer according to the present invention are coated by coating on the rust layer generated on the surface of the steel material. Alternatively, the rust layer may be removed by an appropriate method such as shot blasting before coating. The same applies to the case where rust has already occurred in the steel material when painting at the factory.

なお、Snを用いて表面処理した鋼材として、従来技術において以下の鋼材があるが、これらはいずれも構造用鋼材に関するものではなく、表面処理の目的も耐候性の付与ではないので、本発明とは技術思想が異なる。   In addition, as steel materials surface-treated with Sn, there are the following steel materials in the prior art, but these are not related to structural steel materials, and the purpose of the surface treatment is not imparting weather resistance, so the present invention and Have different technical ideas.

(1)船舶の船体や魚網への防汚塗料として有機スズ化合物、すなわち、TBT(トリブチルスズ)やTPT(トリフェニルスズ)といったスズ化合物を含有する塗料が使用されてきた。しかし、これは、貝等の付着による防汚を目的に添加されたものであるので、本発明とは技術思想が異なる。   (1) As antifouling paints for ship hulls and fish nets, paints containing organotin compounds, that is, tin compounds such as TBT (tributyltin) and TPT (triphenyltin) have been used. However, since this is added for the purpose of antifouling due to adhesion of shellfish or the like, the technical idea is different from the present invention.

(2)缶詰などの内面に行うSnメッキによる表面処理があるが、鋼材が構造用鋼材ではなく、表面処理の目的も異なる。
(3)発電機、変圧器、モーターなどに用いられる電磁鋼板の表面処理として、Snが添加された表面処理剤の皮膜を鋼材に形成することが知られているが、鋼材が構造用ではない上、表面処理の目的が、焼鈍中に雰囲気からの鋼材の窒化を防止して磁気特性劣化を防ぐことにあり、本発明とは技術思想が異なる。
(2) Although there is surface treatment by Sn plating performed on the inner surface of canned foods, the steel material is not a structural steel material, and the purpose of the surface treatment is different.
(3) As a surface treatment of electrical steel sheets used for generators, transformers, motors, etc., it is known to form a coating of Sn-treated surface treatment agent on steel, but the steel is not structural. Further, the purpose of the surface treatment is to prevent nitriding of the steel material from the atmosphere during annealing to prevent deterioration of magnetic characteristics, and the technical idea is different from the present invention.

表1に示す化学組成を有する4種類の試験鋼材(いずれも100×60×3mm厚の板材)をショットブラストにより除錆して、塗装に供した。表1の鋼材[1]はいわゆる耐候性鋼(JIS 3114, SMA)、[2]は普通鋼、[3]は高Ni耐候性鋼、[4]はSn添加耐食鋼である。   Four types of test steel materials (all 100 × 60 × 3 mm thick plate materials) having the chemical composition shown in Table 1 were removed by shot blasting and used for coating. The steel materials [1] in Table 1 are so-called weather resistant steels (JIS 3114, SMA), [2] is ordinary steel, [3] is high Ni weather resistant steel, and [4] is Sn-added corrosion resistant steel.

Figure 0004552746
Figure 0004552746

塗装に用いた鋼材は、次のいずれかの前処理を施した。
X:ショットブラスト後、海岸より10メートルの位置にある兵庫県尼崎市の工業地帯に30日間暴露し、錆層を形成した鋼材;
Y:ショットブラストにより除錆した錆層のない鋼材。
The steel material used for coating was subjected to any of the following pretreatments.
X: Steel material that was exposed to an industrial zone in Amagasaki City, Hyogo Prefecture, 10 meters from the coast after shot blasting, for 30 days and formed a rust layer;
Y: Steel material without rust layer removed by shot blasting.

表2に示す種類および配合比で、樹脂、Snイオン供給源物質(Sn添加種)、場合により共存させる他の金属イオン供給源物質(共存カチオン種)、顔料[硫酸バリウム/タルク(質量比で4/1)混合物および酸化鉄(ベンガラ)]、ならびにその他添加剤(チキソ剤、沈降防止剤)に、粘度(B型粘度計測定)が200〜1000cpsになるように適量の溶媒を加えてよく攪拌することにより、下層のSn含有層の形成に用いる表面処理剤を作製した。表中の各成分の含有量(mass%)は、溶剤を除外した表面処理剤の全固形分に基づく質量%である。   In the types and blending ratios shown in Table 2, resin, Sn ion source material (Sn added species), other metal ion source material coexisting in some cases (coexisting cation species), pigment [barium sulfate / talc (by mass ratio) 4/1) Mixture and iron oxide (Bengara)], and other additives (thixotropic agent, anti-settling agent) may be added with an appropriate amount of solvent so that the viscosity (B-type viscometer measurement) is 200 to 1000 cps. By stirring, the surface treating agent used for formation of the lower Sn content layer was produced. Content (mass%) of each component in a table | surface is the mass% based on the total solid of the surface treating agent except the solvent.

共存カチオンの供給源物質は、Cu2+イオンは硫酸銅(II)、Ni2+イオンは硝酸ニッケル(II)、Cr3+イオンは硝酸クロム(III)であった。溶媒としては、芳香族炭化水素溶剤であるトルエン、キシレンとアルコール系溶剤であるイソプロピルアルコールとを2/1の体積比で混合した混合溶媒を使用した。 As the coexisting cation source materials, Cu 2+ ions were copper sulfate (II), Ni 2+ ions were nickel nitrate (II), and Cr 3+ ions were chromium (III) nitrate. As the solvent, a mixed solvent in which toluene and xylene as aromatic hydrocarbon solvents and isopropyl alcohol as an alcohol solvent were mixed at a volume ratio of 2/1 was used.

上層の樹脂層は本質的に樹脂のみからなり、金属化合物、顔料、その他添加剤を含有していなかった。
作製したSn含有層形成用の表面処理剤を、所定の試験鋼材の全面に、所定の乾燥厚みになるようにエアスプレーにより塗装し、放置により溶媒を蒸散させて被膜を乾燥させて、試験鋼材の表面にSn含有層を形成した。その上に、表2に示す市販の塗料を用いて、上層の有機樹脂層をやはりエアスプレー塗装により形成した。
The upper resin layer consisted essentially of a resin and contained no metal compound, pigment, or other additives.
The prepared surface treatment agent for forming the Sn-containing layer is applied to the entire surface of a predetermined test steel material by air spray so as to have a predetermined dry thickness, and the coating is dried by allowing the solvent to evaporate to leave the test steel material. An Sn-containing layer was formed on the surface. On top of that, an upper organic resin layer was formed by air spray coating using commercially available paints shown in Table 2.

こうして作製された供試材に鋼材素地に達するクロスカットを入れた後、SAE (Society of Automotive Engineers) J2334腐食加速試験により評価した。SAE J2334試験は、湿潤:50℃、100%RH、6時間、塩分付着:0.5%NaCl、0.1%CaCl2、0.075%NaHCO3水溶液浸漬、0.25時間、乾燥:60℃、50%RH、17.75時間を1サイクル(24時間)とした腐食加速試験であり、腐食形態が大気暴露試験に類似しているとされている(長野博夫、山下正人、内田仁著:環境材料学、共立出版(2004)、p.74)。 A cross-cut reaching the steel substrate was put into the test material thus prepared, and then evaluated by SAE (Society of Automotive Engineers) J2334 accelerated corrosion test. SAE J2334 test: wet: 50 ° C., 100% RH, 6 hours, salt adhesion: 0.5% NaCl, 0.1% CaCl 2 , 0.075% NaHCO 3 aqueous solution, 0.25 hour, dry: 60 It is a corrosion acceleration test with one cycle (24 hours) at ℃, 50% RH, 17.75 hours, and is said to be similar to the atmospheric exposure test (Hiroo Nagano, Masato Yamashita, Hitoshi Uchida) : Environmental Materials Science, Kyoritsu Shuppan (2004), p.74).

本試験は、飛来塩分量が1mddを超える厳しい腐食環境を模擬した腐食加速試験である。上層に厚い樹脂皮膜がある場合には、屋外暴露では評価が難しい。そのため、クロスカットを入れて腐食加速試験により評価したが、本試験条件は塗膜傷部の剥離という観点からは非常に厳しい試験であると考えられる。この腐食加速試験を40サイクル実施した後、クロスカット部からの塗膜の剥離距離を測定した。結果を表2に併記する。   This test is a corrosion acceleration test that simulates a severe corrosive environment in which the amount of incoming salt exceeds 1 mdd. When there is a thick resin film on the upper layer, it is difficult to evaluate by outdoor exposure. For this reason, a cross cut was put in and evaluated by an accelerated corrosion test, but this test condition is considered to be a very severe test from the viewpoint of peeling of the scratches on the coating film. After 40 cycles of this accelerated corrosion test, the peel distance of the coating film from the crosscut portion was measured. The results are also shown in Table 2.

Figure 0004552746
Figure 0004552746

本発明に従った試験番号1〜10では、キズ部(クロスカット部)からの剥離が著しく抑制された。一方、試験番号11にみられるように、下層のSn含有層がない場合には、上層塗膜(有機樹脂層)の剥離が著しく進行した。また、試験番号12,13に示すように、下層の樹脂層中のSnイオン供給源物質が0であるか、その含有量が少なすぎると、上層塗膜の剥離抑制効果が見られなかった。試験番号14に示すように、下層のSn含有層の膜厚が薄い場合には、Snによる耐候性改善効果が十分に得られなかった。試験番号15のように、Sn含有層のSnイオン供給源物質の含有量が金属換算で60質量%を越えると、塗装直後からこのSn含有層の密着力がほとんどなく、試験前より塗膜に浮きが観られたため、試験を実施しなかった。   In Test Nos. 1 to 10 according to the present invention, peeling from the scratch portion (cross cut portion) was remarkably suppressed. On the other hand, as seen in Test No. 11, when there was no lower Sn-containing layer, peeling of the upper coating film (organic resin layer) proceeded remarkably. In addition, as shown in Test Nos. 12 and 13, when the Sn ion source material in the lower resin layer was 0 or its content was too small, the effect of suppressing the peeling of the upper coating film was not observed. As shown in Test No. 14, when the lower Sn-containing layer was thin, the effect of improving the weather resistance by Sn was not sufficiently obtained. When the content of the Sn ion source material in the Sn-containing layer exceeds 60% by mass in terms of metal as in test number 15, there is almost no adhesion of this Sn-containing layer immediately after coating, and the coating film has been applied since before the test. The test was not carried out due to floating.

Claims (2)

構造用鋼材の表面または鋼材上に形成された錆層の上に、バインダー樹脂中に金属Sn換算量で1〜54質量%の量の酸可溶性のSnイオン供給源物質であるSn化合物を含有する膜厚5〜50μmのSn含有層と、その上層の膜厚100μm以上の有機樹脂層とを有することを特徴とする、耐候性構造用鋼材。 On the surface of the structural steel material or on the rust layer formed on the steel material, the binder resin contains an Sn compound that is an acid-soluble Sn ion source material in an amount of 1 to 54% by mass in terms of metal Sn. A weatherable structural steel material comprising a Sn-containing layer having a thickness of 5 to 50 μm and an organic resin layer having a thickness of 100 μm or more as an upper layer. 前記Sn含有層がCu2+イオン、Ni2+イオンまたはCr3+イオンの供給源となる少なくとも1種の追加の酸可溶性の金属イオン供給源物質である金属化合物をさらに含有し、これらの金属化合物と前記Sn化合物との金属換算での合計量が65質量%以下である、請求項1に記載の耐候性構造用鋼材。 The Sn-containing layer further contains a metal compound that is at least one additional acid-soluble metal ion source material that serves as a source of Cu 2+ ions, Ni 2+ ions, or Cr 3+ ions. The weatherable structural steel material according to claim 1, wherein the total amount of the compound and the Sn compound in terms of metal is 65% by mass or less.
JP2005138516A 2005-05-11 2005-05-11 Weather-resistant structural steel with excellent long-term durability in high-flying chloride environments Active JP4552746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005138516A JP4552746B2 (en) 2005-05-11 2005-05-11 Weather-resistant structural steel with excellent long-term durability in high-flying chloride environments

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005138516A JP4552746B2 (en) 2005-05-11 2005-05-11 Weather-resistant structural steel with excellent long-term durability in high-flying chloride environments

Publications (2)

Publication Number Publication Date
JP2006315238A JP2006315238A (en) 2006-11-24
JP4552746B2 true JP4552746B2 (en) 2010-09-29

Family

ID=37536331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005138516A Active JP4552746B2 (en) 2005-05-11 2005-05-11 Weather-resistant structural steel with excellent long-term durability in high-flying chloride environments

Country Status (1)

Country Link
JP (1) JP4552746B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4577238B2 (en) * 2006-03-01 2010-11-10 住友金属工業株式会社 Resin-coated steel with excellent long-term durability in concentrated chloride environments and its manufacturing method
JP5993799B2 (en) * 2013-05-20 2016-09-14 新日鐵住金株式会社 High corrosion resistance coating composition using Sn ions
JP6242318B2 (en) * 2014-09-24 2017-12-06 新日鐵住金株式会社 Weak solvent type high corrosion resistance coating composition using Sn ions
JP6515282B2 (en) * 2015-07-01 2019-05-22 日本製鉄株式会社 Corrosion resistant steel for acidic environment and method for preventing corrosion
JP6601259B2 (en) * 2016-02-22 2019-11-06 日本製鉄株式会社 Weatherproof coated steel material and anticorrosion method for weatherable steel material
CN112011798B (en) * 2020-08-31 2021-09-14 燕山大学 Treatment method for accelerating stabilization of rust layer on surface of weathering resistant steel by using electric field

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001049196A (en) * 1999-05-28 2001-02-20 Nkk Corp Agent for rust-stabilizing treatment of steel, rust- stabilizing treatment and steel subjected to rust- stabilizing treatment
JP2002127301A (en) * 2000-10-23 2002-05-08 Sumitomo Metal Ind Ltd Weather resistant surface-treated steel and its treating method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017704B2 (en) * 1980-03-12 1985-05-04 東洋鋼鈑株式会社 Composite resin coated metal body
JPS5845904B2 (en) * 1980-06-27 1983-10-13 大日本塗料株式会社 Treatment method for galvanized coating surface
JP2850097B2 (en) * 1994-06-27 1999-01-27 住友金属工業株式会社 Steel material excellent in weather resistance and surface treatment method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001049196A (en) * 1999-05-28 2001-02-20 Nkk Corp Agent for rust-stabilizing treatment of steel, rust- stabilizing treatment and steel subjected to rust- stabilizing treatment
JP2002127301A (en) * 2000-10-23 2002-05-08 Sumitomo Metal Ind Ltd Weather resistant surface-treated steel and its treating method

Also Published As

Publication number Publication date
JP2006315238A (en) 2006-11-24

Similar Documents

Publication Publication Date Title
JP4687231B2 (en) Structural steel and surface treatment agent with excellent beach weather resistance
KR101464287B1 (en) Water-soluble coating for anti-corrosion treatment of oceanic climate-resisting engineering parts and preparing method thereof
JP5600992B2 (en) Surface-treated corrosion-resistant steel with excellent weather resistance
JP5849868B2 (en) Steel material with excellent corrosion resistance
JP4552746B2 (en) Weather-resistant structural steel with excellent long-term durability in high-flying chloride environments
JP5641000B2 (en) Surface-treated steel with excellent corrosion resistance
JP3345023B2 (en) Surface treatment agent for steel and surface treated steel
JP4895533B2 (en) Paint composition
JP4577238B2 (en) Resin-coated steel with excellent long-term durability in concentrated chloride environments and its manufacturing method
JP4455712B2 (en) Coated steel with atmospheric corrosion resistance
JP5966408B2 (en) Manufacturing method of surface-treated steel with excellent corrosion resistance
JP4343570B2 (en) Steel base material and base material adjustment method
JP3385934B2 (en) Corrosion protection method for steel structures and inner surfaces of steel tanks, steel towers and steel structures
JP4547487B2 (en) Anticorrosion coating for metal used in the dark, method for metal anticorrosion in the dark and composite coating
JP3744205B2 (en) Surface-treated steel with excellent weather resistance
JP3932779B2 (en) Surface-treated steel and coating film forming method
JP3997809B2 (en) Anticorrosion surface treatment method and steel
JP3186608B2 (en) Construction materials with excellent rust resistance
JP2004360063A (en) Steel material superior in beach weather resistance, and structure using it
JP2017101146A (en) ONE LIQUID TYPE HIGH CORROSION RESISTANT COATING COMPOSITION USING Sn ION
JP3416874B2 (en) Surface treatment method for highly designed steel
JP4400299B2 (en) Surface treatment weathering steel and surface treatment method of weathering steel
JP2001234351A (en) Coated steel excellent in corrosion resistance
JPH11217676A (en) Surface treating agent for steel and surface treated steel
JP2004176152A (en) Surface treated steel having excellent weather resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4552746

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350