JP5643430B2 - 主観的な階層クラスタリングにおける特徴量ごとの重みを求める情報処理装置、方法、およびプログラム - Google Patents

主観的な階層クラスタリングにおける特徴量ごとの重みを求める情報処理装置、方法、およびプログラム Download PDF

Info

Publication number
JP5643430B2
JP5643430B2 JP2013522500A JP2013522500A JP5643430B2 JP 5643430 B2 JP5643430 B2 JP 5643430B2 JP 2013522500 A JP2013522500 A JP 2013522500A JP 2013522500 A JP2013522500 A JP 2013522500A JP 5643430 B2 JP5643430 B2 JP 5643430B2
Authority
JP
Japan
Prior art keywords
weight
feature amount
hierarchical clustering
feature
triplet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013522500A
Other languages
English (en)
Other versions
JPWO2013001893A1 (ja
Inventor
隆輝 立花
隆輝 立花
徹 長野
徹 長野
雅史 西村
雅史 西村
遼一 高島
遼一 高島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Priority to JP2013522500A priority Critical patent/JP5643430B2/ja
Application granted granted Critical
Publication of JP5643430B2 publication Critical patent/JP5643430B2/ja
Publication of JPWO2013001893A1 publication Critical patent/JPWO2013001893A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L17/00Speaker identification or verification techniques
    • G10L17/26Recognition of special voice characteristics, e.g. for use in lie detectors; Recognition of animal voices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/28Databases characterised by their database models, e.g. relational or object models
    • G06F16/284Relational databases
    • G06F16/285Clustering or classification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/40Information retrieval; Database structures therefor; File system structures therefor of multimedia data, e.g. slideshows comprising image and additional audio data
    • G06F16/41Indexing; Data structures therefor; Storage structures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Multimedia (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computing Systems (AREA)
  • Artificial Intelligence (AREA)
  • Mathematical Physics (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Description

本発明は、階層クラスタリング技術に関し、より詳細には、物理的な特徴量の組み合わせとして表現されるコンテンツを、主観的類似度を反映するように階層クラスタリングすることを可能とする特徴量ごとの重みを求める情報処理装置、方法、およびプログラムに関する。
音声、画像、文章、ホームページなどのマルチメディア・コンテンツを、該コンテンツに対して人間が感じる感性的内容の主観的類似度を反映できるようにクラスタリングしたいという要望がある。ここで、感性的内容とは、人が明確に表出する、怒り、喜びといった感情だけでなく、人は感じることができるが言葉では必ずしも分類できないような、微妙な心的態度も含むものをも意味する。感性的内容が主観的に類似していると判断するか、または異なっていると判断するかは、受け手の人間がどれほどの繊細さで感じ分けるかに依存する。従って上記要望を満たすためには、クラスタ数を先に決めない階層クラスタリングを利用することが望ましい。また、一般にマルチメディア・コンテンツは物理的特徴量の組み合わせで表現されるが、全ての物理的特徴量が等しい重要性をもつ訳ではない。そのため、主観的類似度をクラスタリング結果に反映させるように各物理的特徴量の重みを学習する必要がある。
ユーザの主観的類似性度を反映させるクラスタリングの従来技術として、非特許文献1が存在する。非特許文献1が開示する制約付きクラスタリングでは、必ず同一クラスタに入るべきペア(ML:must−link)と、必ず別クラスタに入るべきペア(CL:cannot−link)とが教師データとして用いられる。そして図1(a)に示すように、学習時には、教師データ(ML/CLペア)100が教師ありクラスタリング部110へ入力され、教師ありクラスタリングのアルゴリズムがML/CLペアの制約を満たすように調整される。運用時には、テストデータ105が教師ありクラスタリング部110へ入力され、調整後のアルゴリズムを用いてクラスタリング結果115が取得される。
また、ユーザの主観的類似性度を反映させる他のクラスタリングの従来技術として、非特許文献2が存在する。非特許文献2が開示する半教師ありクラスタリングでは、教師データの各組(X、A、B)についてXがAとBのいずれにより近いかがユーザにより指示される(以下、このような教師データをXAB形式データという)。そして、図1(b)に示すように、学習時には、ユーザの指示を含む教師データ(XAB形式データ)120が教師あり重み学習部125へ入力され、教師データ120が示す関係が満たされるように各物理的特徴量の重み130が決定される。運用時には、テストデータ135が教師なしクラスタリング部140へ入力され、各物理的特徴量の重み130を用いて教師なしクラスタリングが行われ、クラスタリング結果145が取得される。
以下、本発明の先行技術調査において見つかったその他の従来技術を説明する。
特許文献1は、類似していると人間が感じる文書を高精度で同一クラスタに集約することができ、利用者の意図を反映したクラスタリング結果を得ることを課題とし、利用者が指定した複数のクラスタ内の文書に共通して出現する共通単語を取得し、共通単語のうち、利用者が指定しなかったクラスタでの出現頻度に比べて、該利用者が指定したクラスタ内での出現頻度が相対的に高い共通単語を選択し、該共通単語をキーワードとして、キーワード記憶手段に記録し、同一もしくは他の文書集合に対してクラスタリングを実施する際に、キーワード記憶手段に記録されているキーワードの影響力を強調してクラスタリングを行うクラスタリング手法を開示する。
特許文献2は、画像情報から特徴量を抽出する特徴量抽出手段と、前記特徴量抽出手段により抽出された特徴量の組み合わせになる特徴を計算する特徴計算手段と、前記特徴計算手段で計算された特徴量と前記特徴量抽出手段で抽出された特徴量とにより判別器の学習を行う学習手段と、前記学習手段で学習した判別器へ教師データを適用して判別結果と外部から与えられる理想的な判別結果とを照合する照合手段と、前記照合手段における照合結果に基づき、前記特徴計算手段における特徴量の組み合わせ方法を変更する最適化手段とを有している、学習データに基づいて学習した判別器によって画像情報を判別する画像処理装置を開示する。
特許文献3は、予め用意された識別空間を参照して、サンプルパターンを最短距離法によってパターン識別する手段と、前記パターン識別により得られる識別距離数列に基づいて識別確信度を求める手段と、前記識別確信度に基づいて、前記参照した識別空間が前記サンプルパターンの識別に関して良い識別空間であるか否かを判断する手段と、を有することを特徴とするパターン識別装置を開示する。また、特許文献3は、前記サンプルパターンのとり得るカテゴリに関して識別空間を用意する手段と、既に用意された識別空間を参照して既知のサンプルパターンをパターン識別したことにより得られた識別確信度に基づいて前記判断手段が下した判断結果を受けて、この判断結果が良くない識別空間である旨を示す場合に、前記作成手段を制御して、前記予め用意された識別空間とは異なる特徴量を用いた新たな識別空間を、前記既知のサンプルパターンのカテゴリに関して用意させる制御手段と、前記予め用意された識別空間と前記新たに用意された識別空間とを階層状に関係づけて蓄積する手段とを更に開示する。
特許文献4は、文書データをクラスタリング対象に応じたクラスタ数に分類できる文書クラスタリングシステムを提供することを課題とし、特徴ベクトル作成手段103が作成した各文書の特徴ベクトルの組を特異値分解し、特異値分解の結果106から文書間の類似度を計算するための文書類似ベクトル108を作成し、クラスタ作成手段110によって、対象文書に対して文書類似ベクトルを用いて、文書とクラスタ重心との距離を算出し、さらに同一の対象文書に対して一回目の分類に利用した文書類似ベクトルの次元数を増加させて二回目の分類を行い、双方の結果を比較し変化の少ないクラスタを安定クラスタとし、データ選択手段109によって、安定クラスタの文書を対象から除いてクラスタ作成手段の次の分類の対象文書を選定し、この試行を繰り返す、文書クラスタリングシステムを開示する。
非特許文献3は、従来の制約に基づいた手法(constraint−based method)と、距離に基づいた手法(distance−function learning method)とを統合した半教師ありクラスタリングの手法を開示する。
特開2007−334388号公報 特開2006−127446号公報 特開平7−121709号公報 特開2002−183171号公報
Eric P. Xing, Andrew Y. Nq,Michael I. Jordan, Stuart Russell, "Distance metriclearning, with application to clustering with side information", In Advances inNeural Information Processing Systems 15, Vol. 15(2002), pp. 505-512. Matthew Schultz, Torsten Joachims,"Learning a distance metric from relative comparisons", In Advances in NeuralInformation Processing Systems 16, MIT Press, Cambridge, MA, (2004) Mikhail Bilenko, Sugato Basu, Raymond J.Mooney, "Integrating Constraints and Metric Learning in Semi-SupervisedClustering", Proceedings of th 21st International Conference onMachine Learning,Banff, Canada, July, pp. 81-88
上述したように、非特許文献1が開示する制約付きクラスタリングでは、ML形式とCL形式の2種類の制約データを教師データとして用意する必要がある。ところが、あるデータ・ペアを同じクラスタに分類するべきか否かは、分類するクラスタ数に依存する。例えば、4クラスタに分類する場合はML形式とすべきデータ・ペアであっても、より詳細に8クラスタに分類する場合はCL形式とするのが適当であるかもしれない。従って、分類するクラスタ数を先に決定しなければML/CL形式の教師データを作成することはできず、クラスタ数を先に決めない階層クラスタリングに非特許文献1の技術を適用することはできない。
一方、非特許文献2が開示する半教師ありクラスタリングでは、XがAとBのいずれにより近いかを示す教師データを用意すればよいので、分類するクラスタ数が先に決まらなくても教師データを作成できる。しかしながら、非特許文献2が開示する教師データでは、その約1/3がクラスタリング結果を評価するのに無効になるという問題がある。例えば、X、A、Bの3つのコンテンツを階層クラスタリングした結果、図3(a)に示すようにXと結合されるよりも先にAとBとが結合されたとする。すると、クラスタリング結果からはXがAとBのいずれにより近いかを判断することができないため、教師データを用いてクラスタリング結果を評価することができない。教師データの数を増やして特徴量の重みを学習したとしても、無効データを増やした方がスコアは高くなることから、無効データを増やす方向に重みの学習が行われてしまう。結局、学習アルゴリズムの設計を工夫しなければならず、複雑な処理が要求される。
特許文献1の技術では、クラスタリングを複数回行う際に、ユーザにより前回のクラスタリング結果で良かった部分、悪かった部分についてフィードバックが与えられる。しかしながら、このフィードバックはML形式とCL形式の2種類の教師データであるといえるため、非特許文献1について説明したのと同様の理由により、クラスタ数を先に決めない階層クラスタリングに特許文献1の技術を適用することはできない。
特許文献2では、クラスタリング手法としてk―means法やk―nearest neighbor法が挙げられている。即ち、特許文献2の技術は非階層クラスタリング手法に適用されるものであり、クラスタ数を先に決めない階層クラスタリングに特許文献2の技術を適用することはできない。
特許文献3の技術では、パターン認識をしてうまく認識できなかったカテゴリについて繰り返しパターン認識処理を続けることにより結果として階層構造が得られている。しかしながら、かかる階層構造はデータ間の類似度を表すものではない。また、特許文献3において開示されるクラスタリングは、先にクラスタ数を決めて行うクラスタリングである。以上より特許文献3の技術を利用しても、マルチメディア・コンテンツを、該コンテンツに対して人間が感じる感性的内容の主観的類似度を反映できるようにクラスタリングしたいとう要望を達成することはできない。
特許文献4の技術は、2種類の特徴量ベクトルを利用してそれぞれクラスタリングを行い、類似した結果となったクラスタを安定したクラスタとして採用するため、学習データを必要としない。従って、特許文献4の技術では、人間が感じる感性的内容の主観的類似度を反映するクラスタリングを行えるように、特徴量の重みを学習することができない。
非特許文献3の技術では、学習データとしてML形式とCL形式の2種類の制約データと、XAB形式の相対的類似度データが教師データとして用いられる。そのため、非特許文献3の技術には、非特許文献1の技術に関して説明した問題と、非特許文献2の技術に関して説明した問題の両方の問題が含まれる。
本発明は、上記従来技術における問題点に鑑みてなされたものであり、本発明は、物理的な特徴量の組み合わせとして表現されるコンテンツに対して主観的類似度を反映する階層クラスタリングを行うことができるように、各物理的特徴量の重みを学習し、またクラスタ数に応じた特徴量の重みを採用可能とし、ひいてはコンテンツを人間が感じる感性的内容の主観的類似度を反映できるように階層クラスタリングすることを実現することができる情報処理装置、方法、およびプログラムを提供することを目的とする。
本発明は、上記従来技術の課題を解決するために、以下の特徴を有する物理的な特徴量の組み合わせとして表現されるコンテンツの主観的階層クラスタリングにおける特徴量ごとの重みを求める情報処理装置を提供する。本発明の情報処理装置は、3つずつ組にした複数のコンテンツ(以下、3つ組コンテンツという)を、該3つ組コンテンツの間で最も類似度が高いとユーザにより指示されたペアを示すラベル情報とともに学習データとして複数取得する。情報処理装置は、学習データの各コンテンツの特徴量ベクトルと特徴量ごとの重みを用いて階層クラスタリングを実行し、学習データの階層構造を求める。情報処理装置は、求めた階層構造において3つ組コンテンツの間で最初に同一のクラスタであるとして結合されたペアと、上記3つ組みコンテンツに対応するラベル情報が示すペアとが一致する度合いが増すように、特徴量ごとの重みを更新する。
好ましくは、情報処理装置は、階層クラスタリングの結果とラベル情報とが一致しない3つ組コンテンツの数の3つ組コンテンツの総数に対する割合であるエラー率を算出する。
情報処理装置は、更新された特徴量ごとの重みを用いて学習データに対し階層クラスタリングを繰り返し行い、エラー率が所定の値に収束することに応答して更新された特徴量ごとの重みを出力する。
より好ましくは、情報処理装置は、階層クラスタリングの結果とラベル情報とが一致しない3つ組コンテンツのそれぞれについて、不一致の原因と推測される特徴量を決定し、不一致の原因と決定した特徴量の重みを不一致の原因と決定しなかった特徴量の重みより小さくすることにより、特徴量ごとの重みを更新する。ここで、情報処理装置は、一致しない3つ組みコンテンツに対応するラベル情報が示すペアの特徴量の値の差が、該一致しない3つ組みコンテンツ他のペアの対応する特徴量の値の差と比較して大きい場合に、その特徴量を不一致の原因と推測してよい。
また好ましくは、情報処理装置は、3つ組コンテンツの各組みに重みを付す。情報処理装置は、各特徴量に対し、該特徴量のみを用いて重み付き3つ組コンテンツに対して階層クラスタリングを行い、また、特徴量ごとの階層クラスタリングのエラー率を、各3つ組コンテンツの重みを考慮して求める。情報処理装置は、最小のエラー率を有する特徴量の重みを最小のエラー率を用いて更新すると共に、各3つ組コンテンツの重みを更新した特徴量の重みを用いて更新する。情報処理装置は、階層クラスタリングの結果が改善しなくなるか、又は特徴量の総数回だけ更新処理を行ったことに応答して更新した特徴量ごとの重みを出力する。より好ましくは、情報処理装置は、階層クラスタリングの結果とラベル情報とが一致しない3つ組コンテンツの重みが、階層クラスタリングの結果とラベル情報とが一致する3つ組コンテンツの重みよりも大きくなるように、各3つ組コンテンツの重みを更新した特徴量の重みを用いて更新する。
また好ましくは、情報処理装置は、3つ組コンテンツの各組みに重みを付す。情報処理装置は、各特徴量に対し、該特徴量のみを用いて重み付き3つ組コンテンツに対し階層クラスタリングを行い、また、特徴量ごとの階層クラスタリングのエラー率を、各3つ組コンテンツの重みを考慮して求める。情報処理装置は、最小のエラー率を有する特徴量の仮の重みを最小のエラー率を用いて求めると共に、3つ組コンテンツごとの重みのそれぞれを、仮の重みを用いて更新する。情報処理装置は上記一連の処理を、階層クラスタリングの結果が改善しなくなるか、又は特徴量の総数よりも多い回数だけ更新処理を実行したことに応答して、特徴量ごとに該特徴量に対し求めた仮の重みの総和を該特徴量の重みとして出力する。より好ましくは、情報処理装置は、階層クラスタリングの結果とラベル情報とが一致しない3つ組コンテンツの重みが、階層クラスタリングの結果とラベル情報とが一致する3つ組コンテンツの重みよりも大きくなるように、各3つ組コンテンツの重みを上記仮の重みを用いて更新する。
また好ましくは、情報処理装置は、特徴量ごとの重みを切り替える1以上のレベルlと、各レベルlでの上限クラスタ数Nlとを更に取得する。情報処理装置は、重みを切り替えようとするレベルlより1つ下のレベルl-1について求められた特徴量ごとの重みを用いて、上限クラスタ数がNl-1になるまでボトムアップ方式で階層クラスタリングを行う。情報処理装置は、Nl-1クラスタを新たな学習データとして上述した重みを求めるための一連の処理を行い、求まった特徴量ごとの重みを、レベルlに対する特徴量ごとの重みとして出力する。
また好ましくは、情報処理装置は、テストデータおよび表示するべき階層の指示を取得し、テストデータの取得に応答して、学習した特徴量ごとの重みを用いてテストデータに対し階層クラスタリングを実行する。情報処理装置は、階層クラスタリングの結果得られた階層構造から、指示された階層のクラスタ数に分類されたテストデータを取り出して、これを表示部に表示する。
以上、主観的階層クラスタリングにおける特徴量ごとの重みを求める情報処理装置として本発明を説明した。しかし本発明は、そのような情報処理装置によって実施される主観的階層クラスタリングにおける特徴量ごとの重みを求める方法、及びそのような情報処理装置によってインストールされて実行される主観的階層クラスタリングにおける特徴量ごとの重みを求めるプログラムとして把握することもできる。
本発明によれば、3つ組コンテンツの間で最も類似度が高いとユーザにより指示されたペアを示すラベル情報を用いて階層クラスタリングの結果である階層構造が評価され、評価結果に基づいて特徴量ごとの重みが更新されるので、主観的類似度をクラスタリング結果に反映させるように各物理的特徴量の重みを効率的にかつ精度よく学習することができる。また、学習した特徴量ごとの重みを用いることで、人間が感じる感性的内容の主観的類似度を反映できるようにクラスタリングすることが可能となる。更には、クラスタ数に応じて特徴量の重みを変更することが可能となり、分類を大まかに行うときと細かく行うときでは注目する特徴量が異なるという人間の分類における特徴を模擬できる。
図1(a)は、従来技術である制約付きクラスタリングの概略を説明する図である。図1(b)は従来技術である距離に基づいた半教師ありクラスタリングの概略を説明する図である。 本発明の実施形態による重み学習装置200の機能ブロック図である。 図3(a)は、従来技術である距離に基づいた半教師ありクラスタリングの結果を例示する図である。図3(b)は、本発明の実施形態によるクラスタリングの結果を例示する図である。 本発明の実施形態による学習時の重み算出処理の全体の流れを示すフローチャートである。 本発明の実施形態によるクラスタリング結果の評価処理の流れを示すフローチャートある。 本発明の実施形態による運用時のクラスタリングの処理の全体の流れを示すフローチャートである。 本発明の第1の実施形態による学習時の重み算出処理の流れを示すフローチャートである。 本発明の第2の実施形態による学習時の重み算出処理の流れを示すフローチャートである。 本発明の第3の実施形態による学習時の重み算出処理の流れを示すフローチャートである。 本発明の実施形態における、レベルの番号付けと、各レベルにおけるクラスタ数の上限とを説明する図である。 本発明の実施形態によるレベルごとに特徴量の重みを変更する処理の流れを示すフローチャートである。 本発明の実施形態によるクラスタリング結果の表示方法を例示する図である。 複数の実験例の結果および従来法の比較例の結果を示すエラー率表である。 本願発明の実施形態による学習装置200を実現するのに好適な情報処理装置のハードウェア構成の一例を示す。
以下、本願発明を実施するための形態を図面に基づいて詳細に説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではなく、また実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。なお、実施の形態の説明の全体を通じて同じ要素には同じ番号を付している。
1.新形式の教師データ
本発明の実施形態によるクラスタリングの対象となるマルチメディア・コンテンツの表現方法について説明する。音声、画像、文章、ホームページなどのマルチメディア・コンテンツは一般に物理的特徴量の組み合わせ、即ち、複数の特徴量Xi,kを並べたベクトルである特徴量ベクトルViとして表現される。ここで、iはコンテンツのインデックスを示し、kはベクトルの次元を示す。また、次元数をDとすると、Vi =[Xi,1, Xi,2, Xi,3,..., Xi,D]Tである。なお、Tは転置行列であることを示す。例えば音声の場合、基本周波数[Hz]や、継続時間長[msec]などを特徴量Xi,kとして利用できる。但し、特徴量Xi,kの分散は次元kごと異なることから、特徴量Xi,kは、次式(1)に示すように平均と分散がそれぞれ0となるように正規化するのが望ましい。
Figure 0005643430

しかし、あるコンテンツを表現するのに全ての特徴量が等しい重要性をもつ訳ではない。即ち、コンテンツに対して人間が感じる感性的内容が主観的に類似しているか否かを判断する際における主観的類似度に対する特徴量Xi,kの貢献度は、特徴量Xi,kごと異なる。そのため主観的類似度を反映できるようにコンテンツをクラスタリングするには、正規化した特徴量Xi,kをそのまま用いるのではなく、次式(2)に示すように、貢献度を示す重み係数wkを乗じて用いるのが好ましい。そこで、本発明では、主観的類似度に対する貢献度を示すように各特徴量Xi,kの重みwkを学習する。
Figure 0005643430

しかしながら上述したように、従来技術が開示する学習のための教師データの形式は、本発明の目的に合致しない。主観的類似度の表現には、クラスタ数を決めない階層クラスタリングが適している。しかし、ML形式とCL形式の2種類の制約データを教師データとして用意するためには、分類するクラスタ数を先に決定しなければならない。一方、XAB形式データを教師データとして使用する場合は、クラスタ数を先に決める必要はない。しかしXAB形式データから得られる情報は、例えばコンテンツXはコンテンツAにより類似しているとすると、Sim(X,A)>Sim(X,B)という情報のみである(Sim(m,n)はコンテンツmとコンテンツnの類似度を返す関数とする)。そのため図3(a)に示すようにクラスタリングの結果得られた階層構造において、コンテンツX、A、B間で最初にコンテンツAとコンテンツBが結合されると、XAB形式データを用いて上記階層構造を評価することはできない。結局XAB形式の教師データはその1/3がクラスタリング結果の評価に無効となる。
そこで本発明では、主観的類似度をクラスタリング結果に反映させるように各特徴量の重みを学習することを可能とする、教師データの新たな形式を導入した。そのような特徴量の重み学習のための新たな形式とは、3つ組コンテンツのコンテンツ間で最も類似度が高いとユーザにより指示されたペアを示すラベル情報付きの3つ組コンテンツデータである。この新たな形式の教師データは、クラスタ数を先に決めることなく作成可能である。また、ラベル情報付きの3つ組コンテンツデータから得られる情報は、例えばコンテンツAとコンテンツBが最も類似しているとすると、Sim(A,B)>Sim(B,C)かつ Sim(A,B)>Sim(C,A)という情報である。従って、図3(b)に示すようにクラスタリングの結果得られた階層構造において、コンテンツA、B、C間で最初にコンテンツAとコンテンツBが結合されたとしても、ラベル情報付きの3つ組コンテンツデータを用いて上記階層構造を評価できる。より具体的には、クラスタリング結果の階層構造において、コンテンツA、B、C間で最初に結合されたペアを算出し、これが、ラベル情報が示すペアと一致すれば正答、一致しなければ誤答として評価できる。なお、3つ組コンテンツから最も類似度が高いペアを選択する作業は、3つ組コンテンツから最もかけ離れた1つのコンテンツを選択する作業と等価であり、作業の負担はXAB形式の教師データとほぼ同じといえる。
2.発明全体の概要
図2を参照して、上記ラベル情報付きの3つ組コンテンツデータを用いた本発明の実施形態による重み学習法を説明する。図2は、本発明の実施形態による重み学習装置200の機能ブロック図である。重み学習装置200は、取得部205と、ラベル情報格納部210と、階層クラスタリング部215と、評価部220と、重み更新部225と、重みデータ格納部230とを備える。
取得部205は、学習時には、3つ組コンテンツを、該3つ組コンテンツの間で最も類似度が高いとユーザにより指示されたペアを示すラベル情報とともに学習データとして複数取得する。学習に必要な3つ組コンテンツの数や組み合わせに条件はなく、3つ組コンテンツの選択はランダムでよい。但し、一般的な教師データと同様に、学習データの数は多いほど望ましい。また、学習データとするコンテンツは、運用時のテストデータであるコンテンツの性質に近いものであることが要求される。一方運用時には、取得部205は、テストデータであるコンテンツを取得する。取得部205はまた、クラスタリング結果として表示するべき階層の指示をユーザから取得してもよい。なお、上記取得はユーザから入力装置を介して直接取得してもよく、或いは、事前に記憶装置に用意されている場合には該記憶装置から読み出して取得してもよい。もちろん、ネットワークを介して他のコンピュータから取得してもよい。
ラベル情報格納部210は、取得部205が取得した3つ組コンテンツごとのラベル情報を、いずれの3つ組コンテンツに対応するラベル情報であるかが分かるような形式で格納する。ラベル情報格納部210に格納されるラベル情報は、後述する評価部220による評価に利用される。
階層クラスタリング部215は、学習時には、学習データの各コンテンツの特徴量ベクトルと特徴量ごとの重みを用いて階層クラスタリングを実行し、学習データの階層構造を求める。階層クラスタリングは、クラスタをボトムアップ的に逐次結合する凝集型クラスタリングであっても、クラスタをトップダウン的に逐次分割する分割型クラスタリングであってもよい。本実施例では、凝集型クラスタリングを採用する。凝集型クラスタリングの手順は以下の通りである。
1.各コンテンツを1要素からなるクラスタとする。
2.全てのクラスタ対について距離を計算する。
3.距離が最小のクラスタ対を結合する。
4.クラスタ数が2以上であれば2.へ戻る。一方、クラス多数が1であればクラスタ生成のプロセスを求めるべき階層構造として出力する。
なお、クラスタ対の距離の求め方の違いにより、最短距離法、最長距離法、群平均法、ウォード法の4つの手法がある。後述する実験ではウォード法を利用していることからウォード法における距離の計算方法を以下に説明する。
ウォード法における距離は次式(3)により定義される。
Figure 0005643430



ウォード法における距離ESS(Error of Sum of Squares)は、クラスタリングの悪さを定義するものであり、上式のように、クラスタCjに含まれる全てのコンテンツに対して、クラスタCjの中心μj,kからの二乗誤差の重み付き和として表される。ウォード法では、このクラスタリングの悪さを示すESSが最小になるようなクラスタの結合が選択されマージされる。ウォード法の更なる詳細は、例えば、Joe H Ward, ”Hierarchical grouping to optimize anobjective function”, Journal of the American Statistical Association, vol. 58.no.301, pp.236-244, March 1963を参照されたい。
なお、特徴量ごとの重みは、後述する重み更新部225により更新され、階層クラスタリング部215は、更新された特徴量ごとの重みを用いて学習データに対し階層クラスタリングを繰り返し行う。階層クラスタリングの結果である階層構造は、後述する評価部220と重み更新部225へ渡される。
階層クラスタリング部215は、運用時には、取得部205によるテストデータの取得に応答して、特徴量ごと重み更新部225が最後に更新した重みを用いてテストデータに対し階層クラスタリングを実行する。採用する階層クラスタリングの方法は、学習時の方法と同じである。階層クラスタリング部215は、階層クラスタリングの結果を重み学習装置200の図示しない記憶部に格納してよい。その後階層クラスタリングの結果は、重み学習装置200の図示しない表示部によって表示される。取得部205により表示するべき階層の指示が取得される場合には、指示された階層のクラスタ数に分類されたテストデータが記憶部に記憶された階層構造に基づき求められ、表示部に表示される。
評価部220は、階層クラスタリングの結果とラベル情報とが一致しない3つ組コンテンツの数の3つ組コンテンツの総数に対する割合であるエラー率を算出する。階層クラスタリングの結果とラベル情報の比較は、次のように行う。まずクラスタリング結果の階層構造において、3つ組コンテンツ間で最初に結合されたペアを算出する。例えば、3つ組コンテンツが(A、B、C)であり、取得された階層構造が図3(b)に示すものであるとすると、評価部220が求めるペアは(A、B)である。続いて、上記3つ組コンテンツに対応するラベル情報をラベル情報格納部210から読み出す。読み出したラベル情報が示すペアと算出したペアが一致する場合は正答カウンタCsを1増分する。ラベル情報が示すペアと算出したペアが一致しない場合は誤答カウンタCfを1増分する。全ての3つ組コンテンツについて比較処理が終わったら、次式(4)よりエラー率εを求める。
Figure 0005643430



なお、評価部220によるクラスタリング結果の評価は、階層クラスタリング部215による階層クラスタリングごと行われる。
重み更新部225は、クラスタリング結果である階層構造において3つ組コンテンツ間で最初に同一のクラスタであるとして結合されたペアと、対応するラベル情報が示すペアとが一致する度合いが増すように、特徴量ごとの重みを更新する。更新の具体的方法は図7から図9を参照して後述する。上述したように、階層クラスタリング部215は、重み更新部225によって更新された特徴量ごとの重みを用いて学習データに対し階層クラスタリングを繰り返し行う。重み更新部225もまた、階層クラスタリング部215による階層クラスタリングの結果である階層構造に基づいて、繰り返し全てのまたは一部の特徴量の重みを更新する。そして、重み更新部225は、階層クラスタリングの結果が改善されなくなったこと、例えば、評価部220により算出されたエラー率εが所定の値に収束することに応答して、特徴量ごと最後に更新した重みを出力する。
重みデータ格納部230は特徴量ごとの重みを格納する。重みデータ格納部230に格納される特徴量ごとの重みは、その学習中重み更新部225により更新される。 そして、重みデータ格納部230において特徴量ごと最後に更新された重みが、確定した特徴量の重みとして運用時に階層クラスタリング部215から読み出される。
次に図4〜図6を参照しながら、本発明の実施形態による特徴量ごとの重み学習方法の処理の流れを説明する。図4は、本発明の実施形態による特徴量ごとの重み学習処理の全体の流れを示すフローチャートである。図5は、本発明の実施形態によるクラスタリング結果の評価処理の流れを示すフローチャートある。図6は、本発明の実施形態による運用時のクラスタリングの処理の全体の流れを示すフローチャートである。
図4に示す学習処理はステップ400から開始し、取得部205は、3つ組コンテンツを、該3つ組コンテンツの間で最も類似度が高いとユーザにより指示されたペアを示すラベル情報とともに学習データとして複数取得する。続いて、ループ1として、ステップ402からステップ408までの一連の処理が繰り返される。なお、イタレーション番号tは1から始まるものとする。階層クラスタリング部215は、現在の特徴量ごとの重みを用いて学習データに対し階層クラスタリングを行う(ステップ402)。続いて評価部220は、クラスタリングの結果である階層構造を、3つ組コンテンツのラベル情報を用いて評価し、エラー率εを求める(ステップ404)。評価処理の詳細は図5を参照して後述する。
続いて、重み更新部225は、ラベル情報を参照し、クラスタリングの結果である階層構造において3つ組コンテンツの間で最初に同一のクラスタであるとして結合されたペアと、対応するラベル情報が示すペアとが一致する度合いが増すように、特徴量ごとの重みを更新する(ステップ406)。そして重み更新部225は、評価部220により求められたエラー率εを前のイタレーションtにおいて求められたエラー率εと比較することにより、クラスタリング結果が改善しているか、即ち、収束しているか否かを判定する(ステップ408)。
クラスタリング結果が収束していないと判定された場合(ステップ408:NO)、かつ、イタレーション番号tがT未満である場合、処理はステップ402に戻り、ループ1の特徴量ごとの重みの学習が続けられる。ここでTは、イタレーション数の最大値であり、通常は特徴量の総数でよい。但し、詳しくは後述するが、同じ特徴量が2度選択されることを考慮して、特徴量の総数の2倍等、特徴量の総数以上の値としてもよい。一方、クラスタリング結果が収束したと判定された場合(ステップ408:YES)、またはイタレーション番号tがTである場合、ループ1を抜け、処理はステップ410へ進む。そして重み更新部225は、特徴量ごと最後に求めた重みを学習済みの特徴量の重みとして出力する。そして処理は終了する。なお、特徴量ごとの重みの出力先は、重みデータ格納部230であってよい。
図5に示す評価処理はステップ500から開始し、評価部220は、クラスタリング結果である階層構造を階層クラスタリング部215から取得する。続いて評価部220は、ループ1として、全ての学習データについて、ステップ502からステップ506/508までの一連の処理を繰り返す。評価部220は、評価対象の学習データである3つ組コンテンツの中で、取得した階層構造において最も類似すると判断されるペアを求める(ステップ502)。
続いて評価部220は、ステップ502において求めたペアが、ラベル情報格納部210に格納される対応するラベル情報が示すペアと一致するか否かを判定する(ステップ504)。一致する場合(ステップ504:YES)、評価部は正答であるとして正答カウンタCsを1増分する(ステップ506)。一方、一致しない場合(ステップ504:NO)、評価部は誤答であるとして誤答カウンタCfを1増分する(ステップ508)。なお、いずれのカウンタも、評価処理開始時に0で初期化されているものとする。
ループ1の繰り返しを終了すると、続いて評価部220は、上述した式(4)を用いてエラー率εを算出し、出力する(ステップ510、512)。そして処理は終了する。
図6に示す運用時のクラスタリング処理はステップ600から開始し、取得部205は、運用時のテストデータを取得する。続いて階層クラスタリング部215は、重みデータ格納部230から学習済みの特徴量ごとの重みを取得する(ステップ602)。続いて、階層クラスタリング部215は、読み出した特徴量ごとの重みを用いてテストデータに対し学習時と同じ階層クラスタリングを行う(ステップ604)。最後に階層クラスタリング部215は、クラスタリングの結果である階層構造を出力する。そして処理は終了する。なお、階層構造の出力先は、図2に図示しない重み学習装置200のプリンタやディスプレイ等の出力装置でよく、あるいは記憶部であってもよい。
階層クラスタリング部215、評価部220、および重み更新部225による一連の処理は、図4に矩形420で示すようにフィードバックループとなっており、本発明においては、階層構造全体の良し悪しを評価基準として特徴量ごとの重みが学習される。なお、ラベル情報とクラスタリング結果の階層構造とが一致する度合いを増すような特徴量ごとの重みの更新方法については、複数の実装方法が考えられる。これら複数の実装方法をそれぞれ第1実施形態、第2実施形態、および第3実施形態として以下説明する。なお全ての実施形態において、3つ組コンテンツの総組数はNとする。また特徴量の総数(次元数)をFとしそのインデックスの集合SFを次式(5)より定義する。
Figure 0005643430



なお、インデックスfの特徴量を、以下では便宜的に特徴量fと記載する。
3.学習方法
3−1.第1実施形態
第1実施形態による特徴量ごとの重みの更新では、ラベル情報とクラスタリング結果の階層構造との不一致の原因となった特徴量を決定し、該決定に基づき特徴量の重みを更新する。具体的な手順は以下の通りである。なお、以下に示す2.〜6.の各処理はクラスタリング結果が改善しなくなるまで繰り返される。また、各繰り返しの回をラウンドtとする。
1.全ての特徴量の重みwfを1/ Fで初期化する。
2.現在のラウンドtでの特徴量の重みwfを用いて3つ組コンテンツの学習データに対し階層クラスタリングを実行する。ここで階層クラスタリングは、数式(3)を用いたウォード法であってよい。
3.各3つ組コンテンツについて、クラスタリング結果を評価する。具体的には、各3つ組コンテンツについて、クラスタリングの結果とラベル情報とが一致したか否かを判定し、上述した数式(4)を用いてエラー率εを算出する。
4.3.の評価においてクラスタリングの結果とラベル情報とが一致しないと判定された3つ組コンテンツ(以下、便宜的に不一致3つ組コンテンツという)のそれぞれについて、不一致の原因と推測される特徴量を決定する。一例として、不一致の原因と推測される特徴量は、不一致3つ組みコンテンツの対応するラベル情報が示すペアの特徴量の値の差が、同じ不一致3つ組みコンテンツの他のペアの対応する特徴量の値の差に比較して大きい特徴量である。なお、不一致の原因と推測される特徴量は複数あり得る。
5.不一致の原因として決定した特徴量の重みが残りの他の特徴量の重みより小さくなるように特徴量ごとの重みを更新する。一例として、不一致の原因として決定した特徴量の重みのみを定数倍小さくしてもよい。逆に、不一致の原因として決定しなかった特徴量の重みのみを定数倍大きくしてもよい。あるいは、不一致の原因として決定した特徴量の重みを減らし、他の特徴量の重みは増やすように更新してもよい。
6.全特徴量の重みの和が1になるように正規化する。
なお、1.と4.〜6.の各処理は重み更新部225により、2.の処理は階層クラスタリング部215により、3.の処理は評価部220により、それぞれ実行される。
次に図7を参照して、第1実施形態による学習時の重み算出処理の流れを説明する。図7に示す重み算出処理はステップ700から開始し、取得部205は3つ組コンテンツの学習データを取得する。続いて重み更新部225は、全ての特徴量の重みwfを1/Fに初期化する(ステップ702)。続いて、ループ1として、ステップ704からステップ716までの一連の処理が繰り返される。なお、イタレーション番号tは1から始まるとする。階層クラスタリング部215は、現在の特徴量ごとの重みwfを用いて、学習データに対し階層クラスタリングを行う(ステップ704)。
続いて、ループ2として、全ての学習データに対し、ステップ706からステップ712までの一連の処理が繰り返される。評価部220は、クラスタリング結果を評価する(ステップ706)。評価処理の詳細は、図5を参照して既に説明していることからここでは省略する。続いて、ループ3として、全ての特徴量fに対し、ステップ708からステップ712までの一連の処理が繰り返される。重み更新部225は、評価の結果、不一致3つ組コンテンツとされた各3つ組コンテンツについて、不一致の原因と推測される特徴量を決定し、現在の特徴量fがその不一致の原因と推測される誤った特徴量であるか否かを判定する(ステップ708)。現在の特徴量fが誤った特徴量でない場合(ステップ708:NO)、重み更新部225は、特徴量fの重みwfを増やす(ステップ710)。一方、現在の特徴量fが誤った特徴量である場合(ステップ708:YES)、重み更新部225は、特徴量fの重みwfを減らす(ステップ712)。
続いて、ループ3およびループ2の繰り返しが終了すると、処理はステップ714へ進み、重み更新部225は、特徴量ごとの重みwfを正規化する。続いて、重み更新部225は、クラスタリング結果が収束したか否かを判定する。上述したようにかかる判定は、評価部220により算出されたエラー率εが所定の値に収束すること確認することにより行ってよい。クラスタリング結果が収束していない場合(ステップ714:NO)、かつイタレーション番号tがT未満の場合、処理はステップ704へ戻り、ループ1の一連の処理が繰り返される。ここでTは、イタレーション数の最大値であり、一例として、特徴量の総数Fでよい。一方、クラスタリング結果が収束した場合(ステップ714:YES)、またはイタレーション番号tがTである場合、ループ1を抜けて、処理はステップ718へ進み、重み更新部225は、特徴量ごとの重みwfを出力する。そして処理は終了する。
3−2.第2実施形態
第2実施形態による特徴量ごとの重みの更新では、3つ組コンテンツの各組みに重みを付し、該重みを、弱識別器としての特徴量に関してAdaBoostのデータ重み計算式を利用して更新する。具体的な手順は以下の通りである。なお、以下に示す2.〜5.の一連の処理は、特徴量の数Fだけ繰り返される。また、各繰り返しの回をラウンドtとする。
1.3つ組コンテンツの各組みの重みDiを1/Nに初期化する。ここでDiはi番目の3つ組コンテンツの重みを示す。
2.各特徴量fに対し、該特徴量fのみを用いて重み付き3つ組コンテンツに対し階層クラスタリングを実行する。ここで、階層クラスタリングは、数式(3)を用いたウォード法でよい。但し、特徴量fの重みwfのみが値1をとり、他の重みの値は全て0となる。またi番目の3つ組コンテンツの各コンテンツの特徴量の値にはその重みDiを乗じる。
3.各3つ組コンテンツとその重みとを用いて、特徴量fごとのクラスタリング結果を評価する。具体的には、次式(6)により定義されるように各3つ組コンテンツの重みDiを考慮して、特徴量fごとの重み付きエラー率εfを算出する。
Figure 0005643430



なお、i番目の3つ組コンテンツが正答であるとは、特徴量fのみを用いて行ったクラスタリングの結果である階層構造において、i番目の3つ組コンテンツ間で最初に結合されたペアと、i番目の3つ組コンテンツのラベル情報が示すペアとが一致することをいう。逆に、i番目の3つ組コンテンツが誤答であるとは、i番目の3つ組コンテンツ間で最初に結合されたペアと、i番目の3つ組コンテンツのラベル情報が示すペアとが一致しないことをいう。
4.3.の評価において、重み付きエラー率εfが最も低かった特徴量fを、このラウンドtでの弱識別器ftとして採用する。そして、特徴量ftについてその重みwftを次式(7)に示すように最小の重み付きエラー率εftを用いて算出する。
Figure 0005643430



5.各3つ組コンテンツの重みDiを、そのクラスタリング結果の正誤に基づいてAdaBoostのデータ重み計算式によって更新する。具体的には次式(8)及び(9)に示すように、クラスタリングの結果とラベル情報とが一致しない3つ組コンテンツの重みが、クラスタリングの結果とラベル情報とが一致する3つ組コンテンツの重みよりも大きくなるように、各3つ組コンテンツの重みDiを弱識別器ftとして決定された特徴量ftの重みwftを用いて更新する。
Figure 0005643430



Figure 0005643430



なお、1.と4.と5.の各処理は重み更新部225により、2.の処理は階層クラスタリング部215により、3.の処理は評価部220により、それぞれ実行される。また、AdaBoostのアルゴリズムの詳細については、例えば、Yoav Freund, Robert E. Schapire, ”Adecision-theoretic generalization of on-line learning and an application toboosting,”, Journal of the Computer and System Sciences, pp.119-139, 1997.を参照されたい。
次に図8を参照して、第2実施形態による学習時の重み算出処理の流れを説明する。図8に示す重み算出処理はステップ800から開始し、取得部205は3つ組コンテンツの学習データを取得する。続いて重み更新部225は、全ての3つ組コンテンツの重みDiを1/Nに初期化する(ステップ802)。続いて、ループ1として、ステップ804からステップ814までの一連の処理が特徴量の数Fだけ繰り返される。なお、ループ1のイタレーション番号tは1から始まるとする。また、ループ1内において、ループ2として、ステップ804およびステップ806の処理が特徴量の数Fだけ繰り返される。なお、現在の特徴量のインデックスfは1から開始するものとする。
階層クラスタリング部215は、現在の特徴量fのみを用いて、重み付き学習データに対し階層クラスタリングを行う(ステップ804)。続いて、評価部220は、ステップ804のクラスタリング結果を評価し、特徴量fについての重み付きエラー率εfを上式(6)により算出する(ステップ806)。
ループ2の繰り返しが終了すると処理はステップ808へ進み、重み更新部225は、重み付きエラー率εfが最小の特徴量fを、現在のラウンドtの弱識別器ftとして決定する。続いて重み更新部225は、ステップ808において弱識別器として決定された特徴量ftの重みwftを、上式(7)より求める(ステップ810)。続いて、重み更新部225は、各3つ組コンテンツの重みDiを上式(8)および(9)より更新する(ステップ812)。続いて重み更新部225は、クラスタリング結果が収束したか否かを、ステップ808で求めた最小の重み付きエラー率εfが所定の値に収束するか否かを判定することにより判定する(ステップ814)。より具体的には、最小の重み付きエラー率εfが所定の値に収まらなくなった場合に、クラスタリング結果が収束したと判定する。これは後に弱識別器ftとして選択される特徴量fほど精度は悪くなっていくと考えられるため、所定の値に収まらなくなった時点でループ1を抜けるためである。これに代えて、それまでのイタレーション(1、…、t)で得られたすべての特徴量ftとそれらの重みwftを用いて階層クラスタリングを行い、その階層クラスタリングの精度を評価し、この精度が改善しなくなったことに応答してループ1を抜けるようにしてもよい。該判定方法は、実際に出力しようとする特徴量の重みの組み合わせを収束判定に使用するので好ましい。
クラスタリング結果が収束しない場合(ステップ814:NO)、またはループ1が特徴量の数Fだけ繰り返されていない場合、処理はステップ804へ戻り、ループ1の重みの学習処理が継続される。一方、クラスタリング結果が収束した場合(ステップ814:YES)、またはループ1が特徴量の数Fだけ繰り返された場合、ループ1を抜け、処理はステップ816へ進み、重み更新部225は、各ラウンドtにおいてステップ810で求めた特徴量ftの重みwftを学習済みの特徴量ごとの重みwfとして出力する。そして処理は終了する。
3−3.第3実施形態
第3実施形態による特徴量ごとの重みの更新は、第2実施形態による特徴量ごとの重みの更新を改善したものである。第2実施形態による特徴量ごとの重みの更新では、特徴量の数Fだけ繰り返される学習の各ラウンドtにおいて算出されるのは、弱識別器として決定された特徴量ftの重みwftのみである。しかしながら、ラウンドtごと毎回異なる特徴量fが弱識別器として決定されるとは限らない。即ち、同じ特徴量fが複数回弱識別器として決定される場合もあり、その場合は、前のラウンドtで算出された値は上書きされその情報は失われてしまう。そこで、第3実施形態では、繰り返しの回数を特徴量の数Fに制限せず、また、最終的に求める特徴量ごとの重みを、各ラウンドtで算出された特徴量の重みの総和とした。具体的な手順は以下の通りである。なお、以下に示す2.〜5.の一連の処理はクラスタリング結果が改善しなくなるまで繰り返される。また、各繰り返しの回をラウンドtとする。
1.3つ組コンテンツの各組みの重みDiを1/Nに初期化する。ここでDiはi番目の3つ組コンテンツの重みを示す。
2.各特徴量fに対し、該特徴量fのみを用いて重み付き3つ組コンテンツに対し階層クラスタリングを実行する。ここで、階層クラスタリングは、数式(3)を用いたウォード法で利用してよい。但し、特徴量fの重みwfのみが値1をとり、他の重みの値は全て0となる。またi番目の3つ組コンテンツの各コンテンツの特徴量の値にはその3つ組の重みDiを乗じる。
3.各3つ組コンテンツとその重みとを用いて、特徴量fごとのクラスタリング結果を評価する。具体的には、上式(6)により定義されるように各3つ組コンテンツの重みDiを考慮して、特徴量fごとの重み付きエラー率εfを算出する。なお、i番目の3つ組コンテンツが正答であるとは、特徴量fのみを用いて行ったクラスタリングの結果である階層構造において、i番目の3つ組コンテンツ間で最初に結合されたペアと、i番目の3つ組コンテンツのラベル情報が示すペアとが一致することをいう。逆に、i番目の3つ組コンテンツが誤答であるとは、i番目の3つ組コンテンツ間で最初に結合されたペアと、i番目の3つ組コンテンツのラベル情報が示すペアとが一致しないことをいう。
4.3.の評価において、重み付きエラー率εfが最も低かった特徴量fを、このラウンドtでの弱識別器ftとして採用する。そして、特徴量ftについてその仮の重みαtを次式(10)に示すように最小の重み付きエラー率εftを用いて算出する。
Figure 0005643430



5.各3つ組コンテンツの重みDiを、そのクラスタリング結果の正誤に基づいてAdaBoostのデータ重み計算式によって更新する。具体的には次式(11)及び(12)に示すように、クラスタリングの結果とラベル情報とが一致しない3つ組コンテンツの重みが、クラスタリングの結果とラベル情報とが一致する3つ組コンテンツの重みよりも大きくなるように、各3つ組コンテンツの重みDiを弱識別器ftとして決定された特徴量ftの仮の重みαtを用いて更新する。
Figure 0005643430



Figure 0005643430



6.クラスタリング結果が改善しなくなり2.〜5.の一連の処理が終了すると、各特徴量fの重みwfを次式(13)により確定する。
Figure 0005643430



なお、1.と4.と5.と6.の各処理は重み更新部225により、2.の処理は階層クラスタリング部215により、3.の処理は評価部220により、それぞれ実行される。
次に図9を参照して、第3実施形態による学習時の重み算出処理の流れを説明する。なお、図9において四角920および四角930で囲んだ部分が、第2実施形態による学習と異なる部分である。図9に示す重み算出処理はステップ900から開始し、取得部205は3つ組コンテンツの学習データを取得する。続いて重み更新部225は、全ての3つ組コンテンツの重みDiを1/Nに初期化する(ステップ902)。続いて、ループ1として、ステップ904からステップ914までの一連の処理が繰り返される。なお、ループ1のイタレーション番号tは1から始まるとする。また、ループ1内において、ループ2として、ステップ904およびステップ906の処理が特徴量の数Fだけ繰り返される。なお、現在の特徴量のインデックスfは1から開始するものとする。
階層クラスタリング部215は、現在の特徴量fを用いて、重み付き学習データに対し階層クラスタリングを行う(ステップ904)。続いて、評価部220は、ステップ904のクラスタリング結果を評価し、特徴量fについての重み付きエラー率εfを上式(6)により算出する(ステップ906)。
ループ2の繰り返しが終了すると処理はステップ908へ進み、重み更新部225は、重み付きエラー率εfが最小の特徴量fを、現在のラウンドtの弱識別器ftとして決定する。続いて重み更新部225は、ステップ908において弱識別器として決定された特徴量ftの仮の重みαtを、上式(10)より求める(ステップ910)。続いて、重み更新部225は、各3つ組コンテンツの重みDiを仮の重みαtを用いて上式(11)および(12)より更新する(ステップ912)。続いて重み更新部225は、クラスタリング結果が収束したか否かを、ステップ908で求めた最小の重み付きエラー率εfが所定の値に収束するか否かを判定することにより判定する(ステップ914)。より具体的には、最小の重み付きエラー率εfが所定の値に収まらなくなった場合に、クラスタリング結果が収束したと判定する。これは、第2実施形態に関して上述したように、後に弱識別器ftとして選択される特徴量fほど精度は悪くなっていくと考えられるため、所定の値に収まらなくなった時点でループ1を抜けるためである。これに代えて、それまでのイタレーション(1、…、t)で得られたすべての特徴量ftの各々ついて、該特徴量の仮の重みαtの総和を特徴量ftの重みとして用いて階層クラスタリングを行い、その階層クラスタリングの精度を評価し、この精度が改善しなくなったことに応答してループ1を抜けるようにしてもよい。該判定方法は、実際に出力しようとする特徴量の重みの組み合わせを収束判定に使用するので好ましい。
クラスタリング結果が収束しない場合(ステップ914:NO)、またはイタレーション番号がT未満である場合、処理はステップ904へ戻り、ループ1の重みの学習処理が繰り返される。ここでTは、イタレーション数の最大値であり、特徴量の総数Fの2倍の2F等、特徴量の総数Fよりも大きい値をとる。一方、クラスタリング結果が収束した場合(ステップ914:YES)、またはイタレーション番号がTの場合、ループ1を抜け、処理はステップ916へ進み、重み更新部225は、各特徴量fの重みwtを上式(13)により確定し、出力する。そして処理は終了する。
4.クラスタ数に応じた特徴量の重み算出
次に、クラスタ数に応じて特徴量の重みを変更する処理について説明する。クラスタ数が多い階層と、クラスタが少ない階層では、人間が注目する特徴量は異なっている。即ち、人は大雑把な分類を行う場合(クラスタ数が少ない階層に相当)、少数の特徴量にのみ注目して分類を行う。例えば基本周波数の高低のみで声の明るさを判断し分類する場合などがそれである。一方、人は細かく分類を行う場合(クラスタ数が多い階層に相当)、様々な特徴量により総合的に判断して分類を行う。例えば基本周波数と、パワーと、継続時間長の全てに微妙に表現されている話者の自信によって分類する場合がそれである。
上記類似度の性質を反映させるべく、本発明では、抽象度のレベルに応じた特徴量の重みを算出する。先に使用する記号について説明する。全レベル数をNL、またl番目のレベル上端でのクラスタ数をNlとする。但しN0=N(Nは全学習データであり、3つ組でなく個別のサンプル数を示す)、Nl<Nl-1である。レベルlは下端でのクラスタ数がNl-1、上端でのクラスタ数がNlの範囲として定義される。図10に、3レベルに分けた階層構造における上記記号の具体例を示す。以下、具体的な手順を説明する。
1.N0個の学習データと、レベルごとの上端でのクラスタ数Nl(1≦l≦NL)を取得する。レベルに対応するイタレーション番号lは1からはじまり、3.の処理後に1増やす。
2.Nl-1クラスタを学習データとして、上述した第1実施形態〜第3実施形態のいずれかの方法で特徴量ごとの重みを学習する。この重みが階層l(クラスタ数Nl-1からNlまで)に対する特徴量の重みとなる。
3.直前に求めた特徴量ごとの重みを用いて、クラスタ数がNlになるまでボトムアップ方式で2.で使用したのと同じ階層クラスタリングを行う。
4.重みを切り替えるレベルNlの数だけ、2.〜3.を繰り返す。
なお、1.の処理は取得部205により、2.の処理の一部は重み更新部225により、2.の処理の一部と3.の処理は階層クラスタリング部215により、2.の処理の一部は評価部220により、それぞれ実行される。
次に図11を参照して、階層ごとに特徴量の重みを変更する処理の流れを説明する。図11に示す重み算出処理はステップ1100から開始し、取得部205はN0個のコンテンツの学習データと、レベルごとの上端でのクラスタ数Nl(1≦l≦NL)とを取得する。なお、NLは全レベル数を示す。
続いてループ1として、ステップ1102からステップ1108の一連の処理が繰り返される。なお、ループ1のイタレーション番号lは1から始まるとする。重み更新部225、階層クラスタリング部215、および評価部220は、Nl-1クラスタを学習データとして(ステップ1102)、上述した第1実施形態〜第3実施形態のいずれかの方法で特徴量ごとの重みを学習し(ステップ1104)、求めた特徴量ごとの重みwl,fを、レベルlに対する特徴量ごとの重みとする(ステップ1106)。
続いて、階層クラスタリング部215は、直前に求めた特徴量ごとの重みwl,fを用いて、クラスタ数がNlになるまでボトムアップ方式でステップ1104で使用したのと同じ階層クラスタリングを行う(ステップ1108)。イタレーション番号l=NLについて上記一連の処理が終わると、ループ1を抜け、処理は終了する。
5.応用例
本発明の学習方法により学習した特徴量ごとの重みを用いることで、人間が感じる感性的内容の主観的類似度を反映できるようにクラスタリングすることが可能となる。このようなクラスタリングは、一例として、コールセンター・モニタリングにおいてその効果を発揮する。この場合、エージェント(オペレーター)やコーラー(顧客)の感情の変化の検出することが可能となる。その他、本発明は、詐欺などの犯罪の検出や精神医療分野などへの応用も考えられるが、これらに限定されないことは言うまでもない。
図12は、電話音声のクラスタリング結果の本発明の実施形態による表示方法を例示する。図12に示すクラスタリング結果1210は、電話音声(1本の長いWAVファイル)1200を息継ぎや無音位置で文や句の複数のセグメント1205に分割し、該複数のセグメント1205をテストデータとして本発明の学習方法により学習された特徴量ごとの重みを用いて階層クラスタリングした結果得られたものである。
クラスタリング結果1210はそのままその階層構造をディスプレイやプリンタ等の出力装置に出力してよい。更にユーザから表示するべき階層の指示を取得し、指示された階層のクラスタ数に分類されたテストデータを表示してもよい。例えば、階層構造1210においてユーザによりクラスタ数が2の階層が指示された場合、クラスタリング結果1215を表示する。同様に、ユーザによりクラスタ数が4の階層が指示された場合は、クラスタリング結果1220を、クラスタ数が11の階層が指示された場合は、クラスタリング結果1225を表示する。複数の階層が選択された場合、それぞれに対応する分類結果を比較可能なように同時に表示してもよい。
図12に示すクラスタリング結果1215、1210、1225において、同じ模様のセグメントは、類似した感情で発声されている。また、模様が変わる境界を感情が変化する時間的位置として着目すれば、感情変化のトリガーを探すことも可能となる。上記表示方法を採用することにより、ユーザは、インタラクティブに感情分析の粒度を変えながら、話者の感情の遷移を観察することができる。
6.実験結果
図13を参照して本発明の実験結果を説明する。なお、実験の条件は次の通りである。1.テストデータ
- 女性1話者による「そうですね」の発声、34サンプル
- (評価者3名) × (ABC形式250組) = 750組
2.教師データ
- 同一話者による「そうですね」の発声、テストデータとは別の33サンプル
- (評価者3名) × (ABC形式100組) = 300組
3.特徴量
- 16次元
「そう」「です」「ね」に分け、それぞれの区間で継続時間長を算出
「そう」「ね」の平均基本周波数、パワー、HNR( Harmonics-to-Noise Ratio)、およびそれらのデルタの平均を利用。「です」は基本周波数が不安定なため不使用。
4.比較手法
A.教師なし、かつ、特徴量ごとの重みなしの階層クラスタリング
B.PCA(PrincipalComponent Analysis)を利用した階層クラスタリング
教師データを使用しない
教師データでPCAにより射影行列を作成してテストデータを射影
C.Forward selection method
教師データを使用
0次の特徴量ベクトルからスタートして、クラスタリング結果を改善する特徴量のみを、精度が向上しなくなるまで順次追加
D.本発明の第3の実施形態
教師データを使用
上記手法のうち、CとDの手法はいずれも、階層クラスタリングの結果である階層構造の評価に基づいて求められた特徴量ごとの重みを用いて階層クラスタリングを行っており、どちらも本発明による階層クラスタリングに該当する。また、CとDの手法の手法については、全てのクラスタ数に対して共通の特徴量ごとの重みを利用する方法と、クラスタ数に応じて特徴量の重みを変更する方法の2通りの実験を行った。なお、特徴量ごとの重みの切り替えは試行錯誤によって決定され、手法Cではクラスタ数が5の階層で1回であり、手法Dではクラスタ数が7と3の階層で2回である。
図13の表に示す数値は、エラー率(%)であり値の小さい方が成績がよいことを示す。手法CのForward selection methodは、従来技術のPCAを利用した階層クラスタリングよりエラー率が高いが、特徴量ごとの重みを切り替えることによって、9%のエラー率削減を達成している。また、Dの第3の実施形態による手法では、従来技術のPCAを利用した階層クラスタリングより9.6%のエラー率削減を達成し、特徴量ごとの重みを切り替えることにより15.2%という更に高いエラー率削減を達成している。
以上の実験結果から、特徴量ごとの重みを階層のクラスタ数に応じて切り替えることによって、高いエラー率削減が期待できることが分かった。また、第3の実施形態による手法ではそのような切り替えを行わなくても十分に高いエラー率削減を達成できることがわかった。なお、階層のクラスタ数に応じた特徴量ごとの重みの切り替えは、階層クラスタリングの結果である階層構造の評価に基づいて特徴量ごとの重みを更新する構成の採用により達成されるものであり、更に、階層クラスタリングの結果である階層構造の評価は、3つ組コンテンツの間で最も類似度が高いペアを指示する形式の教師データによって実現されるものであることに留意されたい。
図14は、本発明の実施形態による学習装置200としてのコンピュータ50のハードウェア構成の一例を示した図である。コンピュータ50は、バス2に接続されたメインCPU(中央処理装置)1とメインメモリ4を含んでいる。ハードディスク装置13、30、及びCD−ROM装置26、29、フレキシブル・ディスク装置20、MO装置28、DVD装置31のようなリムーバブル・ストレージ(記録メディアを交換可能な外部記憶システム)がフレキシブル・ディスクコントローラ19、IDEコントローラ25、SCSIコントローラ27などを経由してバス2へ接続されている。
フレキシブル・ディスク、MO、CD−ROM、DVD−ROMのような記憶メディアが、リムーバブル・ストレージに挿入される。これらの記憶メディアやハードディスク装置13、30、ROM14には、オペレーティング・システムと協働してCPU1に命令を与え、本発明を実施するためのコンピュータ・プログラムのコードを記録することができる。即ち、上記説明した数々の記憶装置には、コンピュータ50にインストールされ、コンピュータ50を本発明の本発明の実施形態による学習装置200として機能させる特徴量ごとの重みを求めるためのプログラムや、ラベル情報、特徴量ごとの重みといったデータを記録することができる。
上記特徴量ごとの重みを求めるためのプログラムは、取得モジュールと、階層クラスタリングモジュールと、評価モジュールと、重み更新モジュールとを含む。これらモジュールは、CPU1に働きかけて、コンピュータ50を、取得部205と、階層クラスタリング部215と、評価部220と、重み更新部225としてそれぞれ機能させる。コンピュータ・プログラムは圧縮し、また複数に分割して複数の媒体に記録することもできる。
コンピュータ50は、キーボード/マウス・コントローラ5を経由して、キーボード6やマウス7のような入力デバイスからの入力を受ける。コンピュータ50は、オーディオコントローラ21を経由して、マイク24からの入力を受け、またスピーカー23から音声を出力する。コンピュータ50は、視覚データをユーザに提示するための表示装置11に、グラフィックスコントローラ10を経由して接続される。コンピュータ50は、ネットワーク・アダプタ18(イーサネット(登録商標)・カードやトークンリング・カード)等を介してネットワークに接続し、他のコンピュータ等と通信を行うことが可能である。
以上の説明により、コンピュータ50は、通常のパーソナルコンピュータ、ワークステーション、メインフレームなどの情報処理装置、又は、これらの組み合わせによって実現されることが容易に理解されるであろう。なお、上記説明した構成要素は例示であり、そのすべての構成要素が本発明の必須構成要素となるわけではない。
以上、実施形態を用いて本発明の説明をしたが、本発明の技術範囲は上記実施形態に記載の範囲には限定されない。上記の実施形態に、種々の変更又は改良を加えることが可能であることが当業者に明らかである。従って、そのような変更又は改良を加えた形態も当然に本発明の技術的範囲に含まれる。
なお、特許請求の範囲、明細書、及び図面中において示した装置、システム、プログラム、及び方法における動作、手順、ステップ、及び段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り任意の順序で実現しうることに留意すべきである。また、前の処理の出力を後の処理で用いる場合でも、前の処理と後の処理の間に他の処理が入ることは可能である場合があること、又は間に他の処理が入るように記載されていても前の処理を後の処理の直前に行うよう変更することも可能である場合があることも留意されたい。特許請求の範囲、明細書、及び図面中の動作フローに関して、便宜上「まず、」、「次に、」、「続いて、」等を用いて説明したとしても、この順で実施することが必須であることを必ずしも意味するとは限らない。

Claims (17)

  1. 特徴量の組み合わせとして表現されるコンテンツの主観的な階層クラスタリングにおける特徴量ごとの重みを求める情報処理装置であって、
    3つずつ組にした複数のコンテンツ(以下、3つ組コンテンツという)を、該3つ組コンテンツの間で最も類似度が高いとユーザにより指示されたペアを示すラベル情報とともに学習データとして複数取得する取得部と、
    前記学習データの各コンテンツの特徴量ベクトルと前記特徴量ごとの重みを用いて階層クラスタリングを実行し、前記学習データの階層構造を求める階層クラスタリング部と、 前記階層構造において前記3つ組コンテンツの間で最初に同一のクラスタであるとして結合されたペアと、対応する前記ラベル情報が示すペアとが一致する度合いが増すように、前記特徴量ごとの重みを更新する重み更新部と
    を含む、情報処理装置。
  2. 前記階層クラスタリングの結果と前記ラベル情報とが一致しない前記3つ組コンテンツの数の3つ組コンテンツの総数に対する割合であるエラー率を算出する評価部を更に含み、
    前記階層クラスタリング部は、更新された特徴量ごとの重みを用いて前記学習データに対し階層クラスタリングを繰り返し行い、
    前記重み更新部は、前記エラー率が所定の値に収束することに応答して更新された前記特徴量ごとの重みを出力する、請求項1に記載の情報処理装置。
  3. 前記階層クラスタリング部は、前記各コンテンツの特徴量ベクトルの各要素に該要素に対応する前記特徴量の重みを乗じたものを用いて前記階層クラスタリングを実行し、
    前記重み更新部は、前記階層クラスタリングの結果と前記ラベル情報とが一致しない3つ組コンテンツのそれぞれについて不一致の原因と推測される特徴量を決定し、不一致の原因と決定した特徴量の重みを不一致の原因と決定しなかった特徴量の重みより小さくすることにより、前記特徴量ごとの重みを更新する、請求項2に記載の情報処理装置。
  4. 前記不一致の原因と推測される特徴量は、前記一致しない3つ組みコンテンツの対応する前記ラベル情報が示すペアの特徴量の値の差が、前記一致しない3つ組コンテンツの他のペアの対応する特徴量の値の差に比較して大きい特徴量である、請求項3に記載の情報処理装置。
  5. 前記3つ組コンテンツの各組みには重みを付しており、
    前記階層クラスタリング部は、各特徴量に対し、該特徴量のみを用いて重み付き3つ組コンテンツに対して階層クラスタリングを行い、
    前記評価部は、特徴量ごとの前記階層クラスタリングのエラー率を、各3つ組コンテンツの重みを考慮して求め、
    前記重み更新部は、最小のエラー率を有する特徴量の重みを前記最小のエラー率を用いて更新すると共に、前記各3つ組コンテンツの重みを更新した前記特徴量の重みを用いて更新し、前記階層クラスタリングの結果が改善されなくなるか、又は特徴量の総数だけ更新処理を行ったことに応答して更新した特徴量ごとの重みを出力する、請求項2に記載の情報処理装置。
  6. 前記重み更新部は、前記階層クラスタリングの結果と前記ラベル情報とが一致しない3つ組コンテンツの重みが、前記階層クラスタリングの結果と前記ラベル情報とが一致する3つ組コンテンツの重みよりも大きくなるように、前記各3つ組コンテンツの重みを前記更新した前記特徴量の重みを用いて更新する、請求項5に記載の情報処理装置。
  7. 前記3つ組コンテンツの各組みには重みを付しており、
    前記階層クラスタリング部は、各特徴量に対し、該特徴量のみを用いて重み付き3つ組コンテンツに対し階層クラスタリングを行い、
    前記情報処理装置は、特徴量ごとの前記階層クラスタリングのエラー率を、各3つ組コンテンツの重みを考慮して求める評価部を更に含み、
    前記重み更新部は、最小のエラー率を有する特徴量の仮の重みを前記最小のエラー率を用いて求めると共に、前記3つ組コンテンツごとの重みのそれぞれを、前記仮の重みを用いて更新し、
    前記階層クラスタリング部と前記重み更新部は、前記階層クラスタリングの結果が改善されなくなるまでその処理を繰り返し、前記重み更新部は、前記階層クラスタリングの結果が改善されなくなるか、又は特徴量の総数より多い数だけ更新処理を行ったことに応答して、特徴量ごとに該特徴量に対し求めた仮の重みの総和を前記特徴量の重みとして出力する、請求項1に記載の情報処理装置。
  8. 前記重み更新部は、前記階層クラスタリングの結果と前記ラベル情報とが一致しない3つ組コンテンツの重みが、前記階層クラスタリングの結果と前記ラベル情報とが一致する3つ組コンテンツの重みよりも大きくなるように、前記各3つ組コンテンツの重みを前記仮の重みを用いて更新する、請求項7に記載の情報処理装置。
  9. 前記取得部は、前記特徴量ごとの重みを切り替える1以上のレベルlと、各レベルlでの上限クラスタ数Nlとを更に取得し、
    前記階層クラスタリング部は、重みを切り替えるレベルlより1つ下のレベルl-1について求められた特徴量ごとの重みを用いて、クラスタ数がNl-1になるまでボトムアップ方式で階層クラスタリングを行い、
    前記階層クラスタリング及び前記重み更新部は、Nl-1クラスタを新たな学習データとしてそれぞれの処理を行い、求まった特徴量ごとの重みを、前記レベルlに対する特徴量ごとの重みとして出力する、請求項1に記載の情報処理装置。
  10. 前記階層クラスタリング部は、ウォード法に従う階層クラスタリングを行う、請求項1に記載の情報処理装置。
  11. 前記取得部は、テストデータおよび表示するべき階層の指示を取得し、
    前記階層クラスタリング部は、前記テストデータの取得に応答して、前記重み更新部により求められた特徴量ごとの重みを用いて前記テストデータに対し階層クラスタリングを実行し、
    指示された階層のクラスタ数に分類された前記テストデータを表示する表示部を更に有する、請求項1に記載の情報処理装置。
  12. 物理的な特徴量の組み合わせとして表現されるコンテンツの主観的な階層クラスタリングにおいける特徴量ごとの重みを求めるために、プロセッサと記憶部を有するコンピュータにおいて実行される方法であって、
    前記プロセッサが、3つずつ組にした複数のコンテンツ(以下、3つ組コンテンツという)を、該3つ組コンテンツの間で最も類似度が高いとユーザにより指示されたペアを示すラベル情報とともに学習データとして複数取得し、前記ラベル情報を前記記憶部へ格納するステップと、
    前記プロセッサが、前記学習データの各コンテンツの特徴量ベクトルと前記特徴量ごとの重みを用いて階層クラスタリングを実行し、前記学習データの階層構造を求めるステップと、
    前記プロセッサが前記記憶部に格納された前記ラベル情報を参照し、前記階層構造において前記3つ組コンテンツの間で最初に同一のクラスタであるとして結合されたペアと、対応する前記ラベル情報が示すペアとが一致する度合いが増すように、前記特徴量ごとの重みを更新するステップと
    を含む、方法。
  13. 前記プロセッサが、前記階層クラスタリングの結果と前記ラベル情報とが一致しない前記3つ組コンテンツの数の3つ組コンテンツの総数に対する割合であるエラー率を算出するステップを更に含み、
    前記階層クラスタリングは、更新された特徴量ごとの重みを用いて前記学習データに対して繰り返し行われ、
    前記プロセッサは、前記エラー率が所定の値に収束することに応答して更新された前記特徴量ごとの重みを出力する、請求項12に記載の方法。
  14. 前記3つ組コンテンツの各組みには重みを付しており、
    前記階層構造を求めるステップは、各特徴量に対し、該特徴量のみを用いて重み付き3つ組コンテンツに対して階層クラスタリングを実行するステップを含み、
    前記エラー率を算出するステップは、各3つ組コンテンツの重みを考慮して、特徴量ごとの前記階層クラスタリングのエラー率を算出するステップを含み、
    前記特徴量ごとの重みを更新するステップは、最小のエラー率を有する特徴量の重みを前記最小のエラー率を用いて更新すると共に、前記各3つ組コンテンツの重みを更新した前記特徴量の重みを用いて更新し、前記階層クラスタリングの結果が改善されなくなるか、又は特徴量の総数だけ更新処理を行ったことに応答して更新した特徴量ごとの重みを出力するステップを含む、請求項13に記載の方法。
  15. 前記3つ組コンテンツの各組みには重みを付しており、
    前記階層構造を求めるステップは、各特徴量に対し、該特徴量のみを用いて重み付き3つ組コンテンツに対し階層クラスタリングを行うステップを含み、
    前記プロセッサが、特徴量ごとの前記階層クラスタリングのエラー率を、各3つ組コンテンツの重みを考慮して求めるステップを更に含み、
    前記特徴量ごとの重みを更新するステップは、最小のエラー率を有する特徴量の仮の重みを前記最小のエラー率を用いて求めると共に、前記3つ組コンテンツごとの重みのそれぞれを、前記仮の重みを用いて更新するステップを含み、
    前記プロセッサは、前記階層クラスタリングを行うステップおよび前記特徴量ごとの重みを更新するステップを繰り返し、前記階層クラスタリングの結果が改善されなくなるか、又は特徴量の総数より多い数だけ更新処理を行ったことに応答して、特徴量ごとに該特徴量に対し求めた仮の重みの総和を前記特徴量の重みとして出力する、請求項12に記載の方法。
  16. 前記プロセッサが、前記特徴量ごとの重みを切り替える1以上のレベルlと各レベルlでの上限クラスタ数Nlとを取得するステップを更に含み、
    前記階層構造を求めるステップは、重みを切り替えようとするレベルlより1つ下の階
    層l-1について求められた特徴量ごとの重みを用いて、上限クラスタ数がNl-1個になるまでボトムアップ方式で階層クラスタリングを行うステップを含み、
    前記階層クラスタリングを行うステップおよび前記特徴量ごとの重みを更新するステップは、Nl-1のクラスタを新たな学習データとしてそれぞれの処理を行うステップを含み、前記特徴量ごとの重みを更新するステップは、求まった特徴量ごとの重みを、前記レベルlに対する特徴量ごとの重みとして出力するステップを含む、請求項12に記載の
    方法。
  17. 請求項12乃至16のいずれか一項に記載の方法をコンピュータに実行させる、物理的
    な特徴量の組み合わせとして表現されるコンテンツの主観的な階層クラスタリングにおける特徴量ごとの重みを求めるためのプログラム。
JP2013522500A 2011-06-28 2012-04-13 主観的な階層クラスタリングにおける特徴量ごとの重みを求める情報処理装置、方法、およびプログラム Active JP5643430B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013522500A JP5643430B2 (ja) 2011-06-28 2012-04-13 主観的な階層クラスタリングにおける特徴量ごとの重みを求める情報処理装置、方法、およびプログラム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011143012 2011-06-28
JP2011143012 2011-06-28
JP2013522500A JP5643430B2 (ja) 2011-06-28 2012-04-13 主観的な階層クラスタリングにおける特徴量ごとの重みを求める情報処理装置、方法、およびプログラム
PCT/JP2012/060117 WO2013001893A1 (ja) 2011-06-28 2012-04-13 主観的な階層クラスタリングにおける特徴量ごとの重みを求める情報処理装置、方法、およびプログラム

Publications (2)

Publication Number Publication Date
JP5643430B2 true JP5643430B2 (ja) 2014-12-17
JPWO2013001893A1 JPWO2013001893A1 (ja) 2015-02-23

Family

ID=47391666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013522500A Active JP5643430B2 (ja) 2011-06-28 2012-04-13 主観的な階層クラスタリングにおける特徴量ごとの重みを求める情報処理装置、方法、およびプログラム

Country Status (5)

Country Link
US (1) US8918396B2 (ja)
EP (1) EP2728518A4 (ja)
JP (1) JP5643430B2 (ja)
CN (1) CN103548041B (ja)
WO (1) WO2013001893A1 (ja)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9213978B2 (en) * 2010-09-30 2015-12-15 At&T Intellectual Property I, L.P. System and method for speech trend analytics with objective function and feature constraints
US9240184B1 (en) * 2012-11-15 2016-01-19 Google Inc. Frame-level combination of deep neural network and gaussian mixture models
EP3061207B1 (en) * 2013-10-23 2018-08-08 Telefonaktiebolaget LM Ericsson (publ) Load balancing in a distributed network management architecture
EP2884434A1 (en) * 2013-12-10 2015-06-17 Televic Education NV Method and device for automatic feedback generation
US10127229B2 (en) * 2014-04-23 2018-11-13 Elsevier B.V. Methods and computer-program products for organizing electronic documents
WO2016015687A1 (zh) * 2014-07-31 2016-02-04 腾讯科技(深圳)有限公司 声纹验证方法及装置
US10289733B2 (en) * 2014-12-22 2019-05-14 Rovi Guides, Inc. Systems and methods for filtering techniques using metadata and usage data analysis
JP6301966B2 (ja) * 2015-03-13 2018-03-28 株式会社Ubic データ分析システム、データ分析方法、データ分析のためのプログラム、及び、このプログラムの記録媒体
US10891106B2 (en) * 2015-10-13 2021-01-12 Google Llc Automatic batch voice commands
US10438130B2 (en) * 2015-12-01 2019-10-08 Palo Alto Research Center Incorporated Computer-implemented system and method for relational time series learning
US11182804B2 (en) * 2016-11-17 2021-11-23 Adobe Inc. Segment valuation in a digital medium environment
US11481661B2 (en) * 2017-02-17 2022-10-25 Visa International Service Association Segmentation platform using feature and label pairs
JP6573744B2 (ja) 2017-03-06 2019-09-11 三菱電機株式会社 物体追跡装置及び物体追跡方法
CN108205684B (zh) * 2017-04-25 2022-02-11 北京市商汤科技开发有限公司 图像消歧方法、装置、存储介质和电子设备
US11386354B2 (en) * 2017-06-16 2022-07-12 Ns Solutions Corporation Information processing apparatus, information processing method, and program
EP3460807A1 (en) 2017-09-20 2019-03-27 Koninklijke Philips N.V. Subject clustering method and apparatus
CN108021692B (zh) * 2017-12-18 2022-03-11 北京天融信网络安全技术有限公司 一种监控网页的方法、服务器及计算机可读存储介质
US10692605B2 (en) 2018-01-08 2020-06-23 International Business Machines Corporation Library screening for cancer probability
JP7006403B2 (ja) * 2018-03-14 2022-01-24 富士通株式会社 クラスタリングプログラム、クラスタリング方法およびクラスタリング装置
CN108763189B (zh) * 2018-04-12 2022-03-25 武汉斗鱼网络科技有限公司 一种直播间内容标签权重计算方法、装置及电子设备
CN108830201B (zh) * 2018-06-01 2020-06-23 平安科技(深圳)有限公司 样例三元组的获取方法、装置、计算机设备以及存储介质
CN108922542B (zh) * 2018-06-01 2023-04-28 平安科技(深圳)有限公司 样例三元组的获取方法、装置、计算机设备以及存储介质
US11551077B2 (en) * 2018-06-13 2023-01-10 International Business Machines Corporation Statistics-aware weight quantization
JP6829226B2 (ja) * 2018-07-11 2021-02-10 株式会社東芝 ラベル付与装置、ラベル付与方法およびプログラム
JP7020345B2 (ja) * 2018-08-27 2022-02-16 日本電信電話株式会社 評価装置、方法、及びプログラム
KR102113663B1 (ko) * 2018-10-18 2020-05-22 한국과학기술원 디지털 스토리텔링을 위한 계층적 분류 기반의 증분 클래스 학습 방법 및 컴퓨팅 장치
CN110085209B (zh) * 2019-04-11 2021-07-23 广州多益网络股份有限公司 一种音色筛选方法及装置
JP7293988B2 (ja) 2019-08-27 2023-06-20 富士通株式会社 学習プログラム、判定処理プログラム、学習装置、判定処理装置、学習方法および判定処理方法
JP6805313B2 (ja) * 2019-10-04 2020-12-23 日本電信電話株式会社 特定装置、特定方法及び特定プログラム
CN110826616B (zh) * 2019-10-31 2023-06-30 Oppo广东移动通信有限公司 信息处理方法及装置、电子设备、存储介质
CN111582379A (zh) * 2020-05-09 2020-08-25 深圳市秉睦科技有限公司 一种基于聚类算法的岩土层智能分层方法和系统
CN114610905B (zh) * 2022-03-23 2024-04-26 腾讯科技(深圳)有限公司 一种数据处理方法及相关装置
CN115223113B (zh) * 2022-08-11 2023-04-14 中关村科学城城市大脑股份有限公司 训练样本集清洗方法、装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007219928A (ja) * 2006-02-17 2007-08-30 Nippon Telegr & Teleph Corp <Ntt> クラスタリング方法および装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07121709A (ja) 1993-10-22 1995-05-12 N T T Data Tsushin Kk パターン識別装置
JP2002183171A (ja) 2000-12-12 2002-06-28 Matsushita Electric Ind Co Ltd 文書データ・クラスタリングシステム
JP4527322B2 (ja) * 2001-07-25 2010-08-18 日本電気株式会社 画像検索装置、画像検索方法、及び画像検索用プログラム
US7085771B2 (en) * 2002-05-17 2006-08-01 Verity, Inc System and method for automatically discovering a hierarchy of concepts from a corpus of documents
JP2006127446A (ja) 2004-09-29 2006-05-18 Ricoh Co Ltd 画像処理装置、画像処理方法、プログラムおよび記録媒体
JP2008529168A (ja) * 2005-01-28 2008-07-31 ユナイテッド パーセル サービス オブ アメリカ インコーポレイテッド 地域内の各サービス地点の住所データの登録および維持
US8280719B2 (en) * 2005-05-05 2012-10-02 Ramp, Inc. Methods and systems relating to information extraction
JP4577173B2 (ja) * 2005-09-29 2010-11-10 ソニー株式会社 情報処理装置および方法、並びにプログラム
US7412427B2 (en) * 2006-01-27 2008-08-12 Microsoft Corporation Object instance recognition using feature symbol triplets
JP4795856B2 (ja) 2006-06-12 2011-10-19 日本電信電話株式会社 クラスタリング方法及び装置及びプログラム及びコンピュータ読み取り可能な記録媒体
US20090012842A1 (en) * 2007-04-25 2009-01-08 Counsyl, Inc., A Delaware Corporation Methods and Systems of Automatic Ontology Population
US8380642B2 (en) * 2008-12-03 2013-02-19 Schlumberger Technology Corporation Methods and systems for self-improving reasoning tools
US8429168B1 (en) * 2009-12-15 2013-04-23 Google Inc. Learning semantic image similarity

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007219928A (ja) * 2006-02-17 2007-08-30 Nippon Telegr & Teleph Corp <Ntt> クラスタリング方法および装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6012025135; 神嶌 敏弘: '教師ありクラスタリングと絶対/相対クラスタリング' 2006年情報論的学習理論ワークショップ , 20061031, pp.83-88 *
JPN6012025138; Nimit KUMAR et al.: 'Semisupervised Clustering with Metric Learning using Relative Comparisons' IEEE Transactions on Knowledge and Data Engineering Vol.20, No.4, 200804, pp.496-503, IEEE *
JPN6014024258; Matthew SCHULTZ et al.: 'Learning a Distance Metric from Relative Comparisons' Advances in Neural Information Processing Systems 16 , 2004, pp.41-48, MIT Press *

Also Published As

Publication number Publication date
WO2013001893A1 (ja) 2013-01-03
EP2728518A4 (en) 2016-07-06
US8918396B2 (en) 2014-12-23
US20130006991A1 (en) 2013-01-03
EP2728518A1 (en) 2014-05-07
CN103548041A (zh) 2014-01-29
CN103548041B (zh) 2016-06-29
JPWO2013001893A1 (ja) 2015-02-23

Similar Documents

Publication Publication Date Title
JP5643430B2 (ja) 主観的な階層クラスタリングにおける特徴量ごとの重みを求める情報処理装置、方法、およびプログラム
CN110556129B (zh) 双模态情感识别模型训练方法及双模态情感识别方法
Lee et al. Emotion recognition using a hierarchical binary decision tree approach
Mower et al. Interpreting ambiguous emotional expressions
Wang et al. Kernel cross-modal factor analysis for information fusion with application to bimodal emotion recognition
CN105122279B (zh) 在识别系统中保守地适配深度神经网络
Jia et al. A novel semi-supervised deep learning framework for affective state recognition on eeg signals
Sarikaya et al. Deep belief nets for natural language call-routing
CN111210846B (zh) 基于集成流形降维的帕金森语音识别系统
Arumugam Emotion classification using facial expression
US8972407B2 (en) Information processing method for determining weight of each feature in subjective hierarchical clustering
Srivastava et al. Don't ask me what I'm like, just watch and listen
Egas López et al. Assessing Parkinson’s disease from speech using fisher vectors
CN113837265A (zh) 基于联合域分离表示分层图融合网络的多模态情感分析方法
Sahu et al. Modeling feature representations for affective speech using generative adversarial networks
Jia et al. Multi-classifier fusion based facial expression recognition approach
CN113268592A (zh) 基于多层次交互注意力机制的短文本对象情感分类方法
Kelly et al. Recognition of spatiotemporal gestures in sign language using gesture threshold hmms
Nguyen Multimodal emotion recognition using deep learning techniques
Shukla et al. Deep ganitrus algorithm for speech emotion recognition
Bose et al. A novel bag-of-optimised-clusters front-end for speech based continuous emotion prediction
Masui et al. Recurrent visual relationship recognition with triplet unit
Kumar et al. Multimodal Approach: Emotion Recognition from Audio and Video Modality
Qiu et al. Multimodal information fusion for automated recognition of complex agitation behaviors of dementia patients
Zaidenberg et al. Learning context models for the recognition of scenarios

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141030

R150 Certificate of patent or registration of utility model

Ref document number: 5643430

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150