JP5640873B2 - Surface plasmon excitation fluorescence measurement apparatus and surface plasmon excitation fluorescence measurement method - Google Patents

Surface plasmon excitation fluorescence measurement apparatus and surface plasmon excitation fluorescence measurement method Download PDF

Info

Publication number
JP5640873B2
JP5640873B2 JP2011085083A JP2011085083A JP5640873B2 JP 5640873 B2 JP5640873 B2 JP 5640873B2 JP 2011085083 A JP2011085083 A JP 2011085083A JP 2011085083 A JP2011085083 A JP 2011085083A JP 5640873 B2 JP5640873 B2 JP 5640873B2
Authority
JP
Japan
Prior art keywords
light
surface plasmon
plasmon excitation
excitation fluorescence
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011085083A
Other languages
Japanese (ja)
Other versions
JP2012220294A (en
Inventor
正利 米山
正利 米山
茂昭 栃本
茂昭 栃本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2011085083A priority Critical patent/JP5640873B2/en
Publication of JP2012220294A publication Critical patent/JP2012220294A/en
Application granted granted Critical
Publication of JP5640873B2 publication Critical patent/JP5640873B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

本発明は、表面プラズモン励起蛍光分光法による計測を行う表面プラズモン励起蛍光計測装置及び表面プラズモン励起蛍光計測方法に関する。   The present invention relates to a surface plasmon excitation fluorescence measurement apparatus and a surface plasmon excitation fluorescence measurement method for performing measurement by surface plasmon excitation fluorescence spectroscopy.

誘電体媒体の中を進む励起光が導電体膜と誘電体媒体との界面に全反射された場合は、界面からエバネッセント波がもれだし、導電体膜の中のプラズモンとエバネッセント波とが干渉する。界面への励起光の入射角が共鳴角に設定されプラズモンとエバネッセント波とが共鳴する場合にエバネッセント波の電場は著しく増強される。表面プラズモン励起蛍光分光法(SPFS)による計測においては、この増強された電場が用いられる。   When the excitation light traveling in the dielectric medium is totally reflected at the interface between the conductor film and the dielectric medium, the evanescent wave leaks from the interface, and the plasmon and the evanescent wave in the conductor film interfere with each other. To do. When the incident angle of the excitation light to the interface is set to the resonance angle and the plasmon and the evanescent wave resonate, the electric field of the evanescent wave is remarkably enhanced. This enhanced electric field is used in measurements by surface plasmon excitation fluorescence spectroscopy (SPFS).

SPFSによる計測においては、導電体膜の表面に被計測物が捕捉され、捕捉された被計測物が蛍光標識される。増強された電場は蛍光標識された被計測物に作用し、蛍光標識された被計測物からは表面プラズモン励起蛍光が放射される。さらに、表面プラズモン励起蛍光の光量が測定され、被計測物の有無、被計測物の捕捉量等が特定される。   In the measurement by SPFS, a measurement object is captured on the surface of the conductor film, and the captured measurement object is fluorescently labeled. The enhanced electric field acts on the fluorescently labeled object to be measured, and surface plasmon excitation fluorescence is emitted from the fluorescently labeled object to be measured. Further, the amount of surface plasmon excitation fluorescence is measured, and the presence / absence of the object to be measured, the capture amount of the object to be measured, etc. are specified.

エバネッセント波の電場増強度は、導電体膜の膜厚に依存する。このため、導電体膜の膜厚にばらつきがある場合は、エバネッセント波の電場増強度にばらつきが生じ、表面プラズモン励起蛍光の光量にばらつきが生じ、計測の精度が低下する。   The electric field enhancement of the evanescent wave depends on the thickness of the conductor film. For this reason, when there is variation in the film thickness of the conductor film, variation in the electric field enhancement intensity of the evanescent wave occurs, variation occurs in the amount of surface plasmon excitation fluorescence, and the measurement accuracy decreases.

特許文献1においては、表面プラズモン励起蛍光の光量が測定されるときに、散乱光の光量が測定される。また、散乱光の光量から電場増強度が求められ、電場増強度により表面プラズモン励起蛍光の光量が補正される。   In Patent Document 1, when the amount of surface plasmon excitation fluorescence is measured, the amount of scattered light is measured. Further, the electric field enhancement is obtained from the amount of scattered light, and the amount of surface plasmon excitation fluorescence is corrected by the electric field enhancement.

特開2009−216532号公報JP 2009-216532 A

しかし、散乱光の光量は導電体膜の表面の状態により変化する。例えば、散乱光の光量は導電体膜の表面の粗さ、うねり等により変化する。このため、特許文献1の補正が行われても計測の精度は不十分である。   However, the amount of scattered light varies depending on the state of the surface of the conductor film. For example, the amount of scattered light varies depending on the surface roughness and swell of the conductor film. For this reason, even if correction of patent documents 1 is performed, the accuracy of measurement is insufficient.

本発明は、この問題を解決するためになされる。本発明の目的は、導電体膜の膜厚の影響が減少し計測の精度が向上する表面プラズモン励起蛍光計測装置及び表面プラズモン励起蛍光計測方法を提供することである。   The present invention is made to solve this problem. An object of the present invention is to provide a surface plasmon excitation fluorescence measurement apparatus and a surface plasmon excitation fluorescence measurement method in which the influence of the film thickness of a conductor film is reduced and measurement accuracy is improved.

本発明の第1から第6までの局面は、表面プラズモン計測装置に向けられる。   The first to sixth aspects of the present invention are directed to a surface plasmon measuring device.

本発明の第1の局面においては、導電体膜、誘電体媒体、照射機構、測定機構及び補正部が設けられる。   In the first aspect of the present invention, a conductor film, a dielectric medium, an irradiation mechanism, a measurement mechanism, and a correction unit are provided.

導電体膜の第1の主面には試料が供給される。導電体膜の第2の主面と誘電体媒体の密着面とは密着する。   A sample is supplied to the first main surface of the conductor film. The second main surface of the conductor film and the contact surface of the dielectric medium are in close contact with each other.

照射機構は、誘電体媒体に光を照射し、第1の光路と第2の光路との間で光の光路を切り替える。第1の光路においては、誘電体媒体の内部において臨界角以上の入射角で密着面に光が入射する。第2の光路においては、誘電体媒体の内部において臨界角より小さい入射角で密着面に光が入射する。   The irradiation mechanism irradiates the dielectric medium with light, and switches the optical path of the light between the first optical path and the second optical path. In the first optical path, light enters the contact surface at an incident angle greater than the critical angle inside the dielectric medium. In the second optical path, light enters the contact surface at an incident angle smaller than the critical angle inside the dielectric medium.

測定機構は、表面プラズモン励起蛍光及び透過光の光量を測定する。表面プラズモン励起蛍光は、第1の光路を経由する光が誘電体媒体に照射されている間に試料に含まれる被計測物から放射される。透過光は、第2の光路を経由する光が誘電体媒体に照射されている間に導電体膜を透過する。   The measurement mechanism measures the amount of surface plasmon excitation fluorescence and transmitted light. The surface plasmon excitation fluorescence is emitted from the object to be measured included in the sample while the dielectric medium is irradiated with the light passing through the first optical path. The transmitted light is transmitted through the conductor film while the light passing through the second optical path is irradiated on the dielectric medium.

補正部は、表面プラズモン励起蛍光の光量の測定値を透過光の光量の測定値により補正する。   The correction unit corrects the measurement value of the amount of surface plasmon excitation fluorescence with the measurement value of the amount of transmitted light.

本発明の第2の局面は本発明の第1の局面にさらなる事項を付加する。本発明の第2の局面においては、光源、光学系及び駆動機構が照射機構に設けられる。光学系は、光源に放射された光の光路を誘電体媒体へ導く。駆動機構は、光学系を駆動し、光の光路を第1の光路と第2の光路との間で切り替える。   The second aspect of the present invention adds further matters to the first aspect of the present invention. In the second aspect of the present invention, the light source, the optical system, and the drive mechanism are provided in the irradiation mechanism. The optical system guides the optical path of the light emitted to the light source to the dielectric medium. The drive mechanism drives the optical system and switches the optical path of light between the first optical path and the second optical path.

本発明の第3の局面は、本発明の第1又は第2の局面にさらなる事項を付加する。本発明の第3の局面においては、第2の光路が第2の主面と垂直をなす。   The third aspect of the present invention adds further matters to the first or second aspect of the present invention. In the third aspect of the present invention, the second optical path is perpendicular to the second main surface.

本発明の第4の局面は、本発明の第1から第3までのいずれかの局面にさらなる事項を付加する。本発明の第4の局面においては、光量センサが測定機構に設けられる。光量センサは、表面プラズモン励起蛍光の光路上であって透過光の光路上にある。   The fourth aspect of the present invention adds a further matter to any one of the first to third aspects of the present invention. In the fourth aspect of the present invention, a light quantity sensor is provided in the measurement mechanism. The light amount sensor is on the optical path of surface plasmon excitation fluorescence and on the optical path of transmitted light.

本発明の第5の局面は、本発明の第1から第4までのいずれの局面にさらなる事項を付加する。本発明の第5の局面においては、透過率導出部、電場増強度特定部及び規格化部が補正部に設けられる。透過率導出部は、測定機構から透過光の光量の測定値を取得し、透過光の光量の測定値から導電体膜の透過率の指標を導出する。電場増強度特定部は、導電体膜の透過率の指標から電場増強度を特定する。規格化部は、測定機構から表面プラズモン励起蛍光の光量の測定値を取得し、電場増強度により表面プラズモン励起蛍光の光量の測定値を規格化する。   The fifth aspect of the present invention adds further matters to any of the first to fourth aspects of the present invention. In the fifth aspect of the present invention, a transmittance derivation unit, an electric field enhancement specifying unit, and a normalization unit are provided in the correction unit. The transmittance deriving unit obtains a measured value of the amount of transmitted light from the measurement mechanism, and derives an index of the transmittance of the conductor film from the measured value of the amount of transmitted light. The electric field enhancement specifying unit specifies the electric field enhancement from an index of the transmittance of the conductor film. The normalization unit obtains a measurement value of the amount of surface plasmon excitation fluorescence from the measurement mechanism, and normalizes the measurement value of the amount of surface plasmon excitation fluorescence based on the electric field enhancement.

本発明の第6の局面は、本発明の第5の局面にさらなる事項を付加する。本発明の第6の局面においては、膜厚導出部及び電場増強度導出部が電場増強度特定部に設けられる。膜厚導出部は、導電体膜の透過率の指標から導電体膜の膜厚を導出する。電場増強度導出部は、導電体膜の膜厚から電場増強度を導出する。   The sixth aspect of the present invention adds further matters to the fifth aspect of the present invention. In the sixth aspect of the present invention, the film thickness deriving unit and the electric field enhancement deriving unit are provided in the electric field enhancement specifying unit. The film thickness deriving unit derives the film thickness of the conductor film from the index of the transmittance of the conductor film. The electric field enhancement strength deriving unit derives the electric field enhancement strength from the thickness of the conductor film.

本発明の第7の局面は、表面プラズモン励起蛍光計測方法に向けられる。   The seventh aspect of the present invention is directed to a surface plasmon excitation fluorescence measurement method.

本発明の第7の局面においては、導電体膜及び誘電体媒体が準備される。導電体膜の第2の主面と誘電体媒体の密着面とは密着する。導電体膜及び誘電体媒体が準備された後に、誘電体媒体の内部において臨界角より小さい入射角で密着面に光を入射させながら導電体膜を透過する透過光の光量が測定される。光の光路が導電体膜の第1の主面上に形成された流路を通過しない場合には、透過光の光量が測定された前若しくは後又は透過光の光量が測定されるのと同時に第1の主面に試料が供給される。光の光路が導電体膜の第1の主面上に形成された流路を通過する場合には、透過光の光量が測定された後に第1の主面に試料が供給される。試料が供給された後に、誘電体媒体の内部において臨界角以上の入射角で密着面に光を入射させながら試料に含まれる被計測物から放射される表面プラズモン励起蛍光の光量が測定される。表面プラズモン励起蛍光の光量の測定値は、透過光の光量の測定値により補正される。

In the seventh aspect of the present invention, a conductor film and a dielectric medium are prepared. The second main surface of the conductor film and the contact surface of the dielectric medium are in close contact with each other. After the conductor film and the dielectric medium are prepared, the amount of transmitted light passing through the conductor film is measured while light is incident on the contact surface at an incident angle smaller than the critical angle inside the dielectric medium. When the optical path of light does not pass through the flow path formed on the first main surface of the conductor film, before or after the amount of transmitted light is measured or at the same time as the amount of transmitted light is measured. A sample is supplied to the first main surface. When the optical path of light passes through the flow path formed on the first main surface of the conductor film, the sample is supplied to the first main surface after the amount of transmitted light is measured. After the sample is supplied, the amount of surface plasmon excitation fluorescence emitted from the measurement object contained in the sample is measured while light is incident on the contact surface at an incident angle greater than the critical angle inside the dielectric medium. The measured value of the amount of surface plasmon excitation fluorescence is corrected by the measured value of the amount of transmitted light.

本発明の第1及び第7の局面によれば、導電体膜の膜厚の影響が減少し、計測の精度が向上する。   According to the first and seventh aspects of the present invention, the influence of the film thickness of the conductor film is reduced, and the measurement accuracy is improved.

本発明の第2の局面によれば、第1の光路を経由する光及び第2の光路を経由する光が同一の光源から放射され、光源の数が減少し、表面プラズモン励起蛍光計測装置が簡略化される。   According to the second aspect of the present invention, the light passing through the first optical path and the light passing through the second optical path are emitted from the same light source, the number of light sources is reduced, and the surface plasmon excitation fluorescence measuring apparatus is Simplified.

本発明の第3の局面によれば、透過光の光量が測定される場合に導電体膜と誘電体媒体との界面における光の反射の影響が減少し、計測の精度が向上する。   According to the third aspect of the present invention, when the amount of transmitted light is measured, the influence of light reflection at the interface between the conductor film and the dielectric medium is reduced, and the measurement accuracy is improved.

本発明の第4の局面によれば、表面プラズモン励起蛍光の光量及び透過光の光量が同一の光量センサにより測定され、光量センサの数が減少し、表面プラズモン励起蛍光計測装置が簡略化される。   According to the fourth aspect of the present invention, the amount of surface plasmon excitation fluorescence and the amount of transmitted light are measured by the same light amount sensor, the number of light amount sensors is reduced, and the surface plasmon excitation fluorescence measurement device is simplified. .

本発明の第5の局面によれば、電場増強度の変化の影響が解消され、計測の精度が向上する。   According to the fifth aspect of the present invention, the influence of the change in the electric field enhancement is eliminated, and the measurement accuracy is improved.

これらの及びこれら以外の本発明の目的、特徴、局面及び利点は、添付図面とともに考慮されたときに下記の本発明の詳細な説明によってより明白となる。   These and other objects, features, aspects and advantages of the invention will become more apparent from the following detailed description of the invention when considered in conjunction with the accompanying drawings.

表面プラズモン励起蛍光計測装置の模式図である。It is a schematic diagram of a surface plasmon excitation fluorescence measuring device. センサチップの分解図である。It is an exploded view of a sensor chip. 試料液が流路へ注入された状態の模式図である。It is a schematic diagram of the state by which the sample liquid was inject | poured into the flow path. 蛍光標識液が流路へ注入された状態の模式図である。It is a schematic diagram of the state by which the fluorescent labeling liquid was inject | poured into the flow path. 励起光の光路の模式図である。It is a schematic diagram of the optical path of excitation light. 膜厚測定光の光路の模式図である。It is a schematic diagram of the optical path of film thickness measurement light. コントローラのブロック図である。It is a block diagram of a controller. 透過率と膜厚との関係を示すグラフである。It is a graph which shows the relationship between the transmittance | permeability and a film thickness. 膜厚と電場増強度との関係を示すグラフである。It is a graph which shows the relationship between a film thickness and an electric field enhancement intensity. 表面プラズモン励起蛍光計測装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of a surface plasmon excitation fluorescence measuring device. SPR曲線及び入射角と電場増強度との関係を示すグラフである。It is a graph which shows the relationship between an SPR curve and an incident angle, and electric field enhancement.

(表面プラズモン励起蛍光計測装置の概略)
図1の模式図は、表面プラズモン励起蛍光計測装置の望ましい実施形態を示す。
(Outline of surface plasmon excitation fluorescence measuring device)
The schematic diagram of FIG. 1 shows a preferred embodiment of a surface plasmon excitation fluorescence measurement apparatus.

図1に示すように、表面プラズモン励起蛍光計測装置1000は、センサチップ1002、照射機構1004、測定機構1006、供給機構1008及びコントローラ1010を備える。センサチップ1002は、金膜1012、プリズム1014、抗体固層膜1016及び流路形成体1018を備える。照射機構1004は、光源1020、光学系1022及び駆動機構1024を備える。測定機構1006は、電荷結合素子(CCD)センサ1026、ローパスフィルタ1028、減光(ND)フィルタ1030、フィルタ入れ替え機構1032及びフォトダイオード1034を備える。光学系1022は、直線偏光板1036、光路切り替えミラー1038及び膜厚測定光導入ミラー1040を備える。   As shown in FIG. 1, the surface plasmon excitation fluorescence measurement apparatus 1000 includes a sensor chip 1002, an irradiation mechanism 1004, a measurement mechanism 1006, a supply mechanism 1008, and a controller 1010. The sensor chip 1002 includes a gold film 1012, a prism 1014, an antibody solid layer film 1016, and a flow path forming body 1018. The irradiation mechanism 1004 includes a light source 1020, an optical system 1022, and a driving mechanism 1024. The measurement mechanism 1006 includes a charge coupled device (CCD) sensor 1026, a low pass filter 1028, a neutral density (ND) filter 1030, a filter replacement mechanism 1032, and a photodiode 1034. The optical system 1022 includes a linearly polarizing plate 1036, an optical path switching mirror 1038, and a film thickness measurement light introducing mirror 1040.

表面プラズモン励起蛍光計測装置1000は、表面プラズモン励起蛍光分光法(SPFS)による計測を行う。抗体固層膜1016には被計測物が捕捉される。捕捉された被計測物は蛍光標識される。   The surface plasmon excitation fluorescence measuring apparatus 1000 performs measurement by surface plasmon excitation fluorescence spectroscopy (SPFS). An object to be measured is captured by the antibody solid layer film 1016. The captured object to be measured is fluorescently labeled.

また、励起光1042がプリズム1014に導かれ、蛍光標識された被計測物から放射される表面プラズモン励起蛍光1044の光量が測定される。   Further, the excitation light 1042 is guided to the prism 1014, and the amount of the surface plasmon excitation fluorescence 1044 emitted from the fluorescently labeled measurement object is measured.

さらに、膜厚測定光1050がプリズム1014に導かれ、金膜1012を透過する透過光1046の光量が測定される。表面プラズモン励起蛍光1044の光量の測定値は透過光1046の光量の測定値により補正される。   Further, the film thickness measurement light 1050 is guided to the prism 1014, and the amount of transmitted light 1046 transmitted through the gold film 1012 is measured. The measurement value of the light amount of the surface plasmon excitation fluorescence 1044 is corrected by the measurement value of the light amount of the transmitted light 1046.

透過光1046の光量は金膜1012の膜厚に依存する。このため、この補正により、表面プラズモン励起蛍光1044の光量の測定値に与える金膜1012の膜厚の影響が減少し、計測の精度が向上する。透過光1046の光量は、散乱光の光量と比較した場合、金膜1012の表面の粗さ、うねり等の影響を受けにくい。   The amount of transmitted light 1046 depends on the thickness of the gold film 1012. For this reason, this correction reduces the influence of the film thickness of the gold film 1012 on the measurement value of the light amount of the surface plasmon excitation fluorescence 1044, and improves the measurement accuracy. The amount of transmitted light 1046 is less affected by the surface roughness and swell of the gold film 1012 when compared to the amount of scattered light.

表面プラズモン励起蛍光1044の光量が測定される場合は、プリズム1014に励起光1042が照射される。励起光1042は、プリズム1014の内部において密着面1048に全反射される。密着面1048への励起光1042の入射角θ1は共鳴角θrに設定される。励起光1042がプリズム1014に照射されている間は、密着面1048から金膜1012へエバネッセント波がもれだし、エバネッセント波と金膜1012の中のプラズモンとが共鳴し、エバネッセント波の電場が増強される。この増強された電場が蛍光標識された被計測物に作用し、蛍光標識された被計測物から表面プラズモン励起蛍光1044が放射される。表面プラズモン励起蛍光1044の光量はCCDセンサ1026により測定される。   When the light amount of the surface plasmon excitation fluorescence 1044 is measured, the excitation light 1042 is irradiated to the prism 1014. The excitation light 1042 is totally reflected by the contact surface 1048 inside the prism 1014. The incident angle θ1 of the excitation light 1042 to the contact surface 1048 is set to the resonance angle θr. While the excitation light 1042 is applied to the prism 1014, an evanescent wave leaks from the contact surface 1048 to the gold film 1012, and the evanescent wave and the plasmon in the gold film 1012 resonate to enhance the electric field of the evanescent wave. Is done. This enhanced electric field acts on the fluorescently labeled object to be measured, and surface plasmon excitation fluorescence 1044 is emitted from the fluorescently labeled object to be measured. The amount of light of the surface plasmon excitation fluorescence 1044 is measured by the CCD sensor 1026.

透過光1046の光量が測定される場合は、プリズム1014に膜厚測定光1050が照射される。密着面1048への膜厚測定光1050の入射角θ2は臨界角θcより小さい角に設定される。膜厚測定光1050がプリズム1014に照射されている間には、膜厚測定光1050が金膜1012を透過し、透過光1046の光量がCCDセンサ1026により測定される。   When the light amount of the transmitted light 1046 is measured, the film thickness measurement light 1050 is irradiated on the prism 1014. The incident angle θ2 of the film thickness measurement light 1050 on the contact surface 1048 is set to an angle smaller than the critical angle θc. While the film thickness measurement light 1050 is applied to the prism 1014, the film thickness measurement light 1050 passes through the gold film 1012, and the amount of transmitted light 1046 is measured by the CCD sensor 1026.

{センサチップ}
図2の模式図は、センサチップの分解図である。
{Sensor chip}
The schematic diagram of FIG. 2 is an exploded view of the sensor chip.

図1及び図2に示すように、センサチップ1002においては、金膜1012の第1の主面1052に抗体固層膜1016が定着し、金膜1012の第1の主面1052に流路形成体1018が接合され、金膜1012の第2の主面1053とプリズム1014の密着面1048とが密着する。流路形成体1018には流路1054が形成される。抗体固層膜1016は流路1054の内部にある。   As shown in FIGS. 1 and 2, in the sensor chip 1002, the antibody solid layer film 1016 is fixed on the first main surface 1052 of the gold film 1012, and a flow path is formed on the first main surface 1052 of the gold film 1012. The body 1018 is bonded, and the second main surface 1053 of the gold film 1012 and the contact surface 1048 of the prism 1014 are in close contact with each other. A flow path 1054 is formed in the flow path forming body 1018. The antibody solid layer film 1016 is inside the flow path 1054.

センサチップ1002は、望ましくは、各片の長さが数mmから数cmまでの範囲内にある構造物であるが、「チップ」の範疇に含まれないより小型の構造物又はより大型の構造物に置き換えられてもよい。   The sensor chip 1002 is desirably a structure in which the length of each piece is in the range of several millimeters to several centimeters, but a smaller structure or a larger structure not included in the category of “chip”. It may be replaced with a thing.

{金膜}
金膜1012は、薄膜である。金膜1012の膜厚は、望ましくは、30〜70nmである。ただし、金膜1012の膜厚がこの範囲外であってもよい。
{Gold film}
The gold film 1012 is a thin film. The film thickness of the gold film 1012 is desirably 30 to 70 nm. However, the film thickness of the gold film 1012 may be outside this range.

金膜1012は、スパッタリング、蒸着、メッキ等により形成される。ただし、金膜1012が他の方法により形成されてもよい。   The gold film 1012 is formed by sputtering, vapor deposition, plating, or the like. However, the gold film 1012 may be formed by other methods.

金膜1012が表面プラズモン共鳴を発生させる他の種類の導電体からなる膜に置き換えられてもよい。例えば、金膜1012が銀、銅、アルミニウム等の金属又はこれらの金属を含む合金からなる膜に置き換えられてもよい。   The gold film 1012 may be replaced with a film made of another type of conductor that generates surface plasmon resonance. For example, the gold film 1012 may be replaced with a film made of a metal such as silver, copper, or aluminum or an alloy containing these metals.

{プリズム}
プリズム1014は、台形柱体である。望ましくは、プリズム1014は、等脚台形柱体である。プリズム1014の一方の傾斜側面は励起光1042の入射面1066になる。プリズム1014の幅狭の平行側面は膜厚測定光1050の入射面1068になる。プリズム1014の幅広の平行側面は励起光1042の反射面1070及び膜厚測定光1050の出射面1072になる。プリズム1014の他方の傾斜面は励起光1042の出射面1074になる。密着面1048はプリズム1014の幅広の平行側面の全部又は一部を占める。プリズム1014の形状は、臨界角θc以上の入射角θ1で励起光1042を密着面1048へ入射させることができ、臨界角θcより小さい入射角θ2で膜厚測定光1050を密着面1048へ入射させることができるように決められる。
{prism}
The prism 1014 is a trapezoidal column. Desirably, the prism 1014 is an isosceles trapezoidal column. One inclined side surface of the prism 1014 becomes an incident surface 1066 of the excitation light 1042. The narrow parallel side surface of the prism 1014 becomes the incident surface 1068 of the film thickness measurement light 1050. The wide parallel side surface of the prism 1014 becomes a reflection surface 1070 for the excitation light 1042 and an emission surface 1072 for the film thickness measurement light 1050. The other inclined surface of the prism 1014 becomes the exit surface 1074 of the excitation light 1042. The contact surface 1048 occupies all or part of the wide parallel side surface of the prism 1014. The prism 1014 has a shape in which the excitation light 1042 can be incident on the contact surface 1048 at an incident angle θ1 that is equal to or greater than the critical angle θc, and the film thickness measurement light 1050 is incident on the contact surface 1048 at an incident angle θ2 that is smaller than the critical angle θc. It is decided to be able to.

臨界角θc以上の入射角θ1で励起光1042を密着面1048へ入射させることができ、臨界角θcより小さい入射角θ2で膜厚測定光1050を密着面1048へ入射させることができる限り、プリズム1014が台形柱体以外でもよく、プリズム1014が「プリズム」の範疇に含まれない形状物に置き換えられてもよい。   As long as the excitation light 1042 can be incident on the contact surface 1048 at an incident angle θ1 equal to or greater than the critical angle θc, and the film thickness measurement light 1050 can be incident on the contact surface 1048 at an incident angle θ2 smaller than the critical angle θc, the prism can be used. 1014 may be other than the trapezoidal column, and the prism 1014 may be replaced with a shape not included in the category of “prism”.

プリズム1014は、励起光1042及び透過光1046に対して透明な材質からなる誘電体媒体である。プリズム1014は、ガラス、樹脂等からなる。望ましくは、プリズム1014は、屈折率が1.4〜1.6であって複屈折が小さい樹脂からなる。   The prism 1014 is a dielectric medium made of a material that is transparent with respect to the excitation light 1042 and the transmitted light 1046. The prism 1014 is made of glass, resin, or the like. Desirably, the prism 1014 is made of a resin having a refractive index of 1.4 to 1.6 and a small birefringence.

プリズム1014が樹脂からなる場合は、望ましくは、プリズム1014は射出成形により作製される。   When the prism 1014 is made of resin, the prism 1014 is preferably manufactured by injection molding.

{流路形成体}
流路形成体1018には、流路1054が形成される。流路1054の途中には反応室1076がある。反応室1076は、接合面1078に露出する。流路形成体1018が金膜1012に接合される場合には、反応室1076の平面位置と抗体固層膜1016の平面位置とが一致させられる。抗体固層膜1016は、反応室1076に露出する。流路1054は、流路形成体1018の非接合面1080に露出し、非接合面1080には注入口1082が形成される。流路形成体1018と金膜1012とは、接着、レーザー溶着、超音波溶着、クランプ圧着等により接合される。ただし、流路形成体1018と金膜1012とが他の方法により接合されてもよい。
{Channel formation body}
A flow path 1054 is formed in the flow path forming body 1018. A reaction chamber 1076 is provided in the middle of the channel 1054. The reaction chamber 1076 is exposed at the joint surface 1078. When the flow path forming body 1018 is bonded to the gold film 1012, the planar position of the reaction chamber 1076 and the planar position of the antibody solid layer film 1016 are matched. The antibody solid film 1016 is exposed to the reaction chamber 1076. The flow path 1054 is exposed to the non-bonding surface 1080 of the flow path forming body 1018, and the inlet 1082 is formed in the non-bonding surface 1080. The flow path forming body 1018 and the gold film 1012 are bonded together by adhesion, laser welding, ultrasonic welding, clamp pressure bonding, or the like. However, the flow path forming body 1018 and the gold film 1012 may be joined by other methods.

流路形成体1018は、表面プラズモン励起蛍光1044及び膜厚測定光1050に対して透明な材質からなる。流路形成体1018は、例えば、樹脂等からなる。   The flow path forming body 1018 is made of a material transparent to the surface plasmon excitation fluorescence 1044 and the film thickness measurement light 1050. The flow path forming body 1018 is made of, for example, resin.

流路形成体1018は、試料液又は蛍光標識液の飛散を防止し、抗体固層膜1016に接触する試料液又は蛍光標識液の量を一定にすることに寄与する。しかし、流路形成体1018が省略され、抗体固層膜1016の上に試料液又は蛍光標識液が直接的に滴下されてもよい。   The flow path forming body 1018 prevents scattering of the sample solution or the fluorescent labeling solution, and contributes to making the amount of the sample solution or the fluorescent labeling solution in contact with the antibody solid layer film 1016 constant. However, the flow path forming body 1018 may be omitted, and the sample solution or the fluorescent labeling solution may be dropped directly on the antibody solid layer film 1016.

{供給機構}
供給機構1008は、試料液及び蛍光標識液を流路1054へ注入する。試料液又は蛍光標識液が流路1054へ注入された場合は、それぞれ、試料液又は蛍光標識液で反応室1076が満たされ、第1の主面1052上の抗体固層膜1016に試料液又は蛍光標識液が供給され、試料液又は蛍光標識液が抗体固層膜1016に接触する。
{Supply mechanism}
The supply mechanism 1008 injects the sample solution and the fluorescent labeling solution into the channel 1054. When the sample solution or the fluorescent labeling solution is injected into the channel 1054, the reaction chamber 1076 is filled with the sample solution or the fluorescent labeling solution, respectively, and the antibody solid layer film 1016 on the first main surface 1052 is filled with the sample solution or A fluorescent labeling solution is supplied, and the sample solution or the fluorescent labeling solution contacts the antibody solid layer film 1016.

{流路への試料液及び蛍光標識液の注入}
図3の模式図は、試料液が流路へ注入された状態を示す。図4の模式図は、蛍光標識液が流路へ注入された状態を示す。
{Injection of sample liquid and fluorescent labeling liquid into flow channel}
The schematic diagram of FIG. 3 shows a state in which the sample liquid is injected into the flow path. The schematic diagram of FIG. 4 shows a state in which the fluorescent labeling solution is injected into the flow path.

図3に示すように、試料液1056が流路1054へ注入された場合は、試料液1056に含まれる抗原1058と抗体固層膜1016に含まれる抗体1064とが生化学反応又は免疫反応により結合し、抗原1058が抗体固層膜1016に捕捉される。また、抗原1058が抗体固層膜1016に捕捉された状態において蛍光標識液1060が流路1054へ注入された場合は、図4に示すように、抗体固層膜1016に捕捉された抗原1058と蛍光標識液1060に含まれる蛍光標識抗体1062とが生化学反応又は免疫反応により結合し、抗体固層膜1016に捕捉された抗原1058が蛍光標識抗体1062に蛍光標識される。免疫反応は、抗原抗体反応とも呼ばれる。   As shown in FIG. 3, when the sample solution 1056 is injected into the flow channel 1054, the antigen 1058 contained in the sample solution 1056 and the antibody 1064 contained in the antibody solid layer film 1016 are combined by biochemical reaction or immune reaction. Then, the antigen 1058 is captured by the antibody solid film 1016. When the fluorescent labeling solution 1060 is injected into the flow channel 1054 in a state where the antigen 1058 is captured by the antibody solid layer film 1016, the antigen 1058 captured by the antibody solid layer film 1016 and the antigen 1058 are captured as shown in FIG. The fluorescently labeled antibody 1062 contained in the fluorescently labeled solution 1060 is bound by biochemical reaction or immune reaction, and the antigen 1058 captured by the antibody solid layer film 1016 is fluorescently labeled on the fluorescently labeled antibody 1062. The immune reaction is also called an antigen-antibody reaction.

{試料液及び蛍光標識液}
試料液1056は、典型的には、血液等の人間からの採取物であるが、人間以外の生物からの採取物であってもよく、非生物からの採取物であってもよい。希釈、血球分離、試薬の混合等の他の前処理が採取物に対して行われてもよい。
{Sample solution and fluorescent labeling solution}
The sample liquid 1056 is typically a human sample such as blood, but may be a sample from a non-human organism or a non-animal sample. Other pretreatments such as dilution, blood cell separation, reagent mixing, etc. may be performed on the harvest.

蛍光標識液1060は、被計測物の抗原1058と結合する蛍光標識抗体1062を含む。蛍光標識抗体1062は、蛍光を放射する蛍光標識となる化学構造部分を含む。   The fluorescent labeling liquid 1060 includes a fluorescently labeled antibody 1062 that binds to the antigen 1058 of the object to be measured. The fluorescently labeled antibody 1062 includes a chemical structure portion that becomes a fluorescent label that emits fluorescence.

試料液1056及び蛍光標識液1060に代えて、それぞれ、気体又は流動性を有する固体からなる試料及び蛍光標識抗体含有物が流路1054へ注入されてもよい。   Instead of the sample solution 1056 and the fluorescent labeling solution 1060, a sample made of a gas or a fluid solid and a fluorescently labeled antibody-containing material may be injected into the flow channel 1054, respectively.

{抗体固層膜}
抗体固層膜1016は、非流動体からなる。したがって、試料液1056又は蛍光標識液1060が抗体固層膜1016に接触しても、抗体固層膜1016は移動しない。
{Antibody solid film}
The antibody solid layer film 1016 is made of a non-fluid. Therefore, even if the sample liquid 1056 or the fluorescent labeling liquid 1060 comes into contact with the antibody solid layer film 1016, the antibody solid layer film 1016 does not move.

抗体1064は、均一に分布する。被計測物に応じて被計測物を捕捉する捕捉体は変更され、被計測物の補足体は抗体固層膜1016に限られない。   The antibody 1064 is uniformly distributed. The capturing body for capturing the object to be measured is changed according to the object to be measured, and the supplement of the object to be measured is not limited to the antibody solid film 1016.

抗体固層膜1016は、例えば、ラバー製のアプリケーターによりパターニングされる。抗体固層膜1016の直径は、典型的には2mmであり、抗体固層膜1016の層厚は、典型的には100nm以下である。   The antibody solid film 1016 is patterned by, for example, a rubber applicator. The diameter of the antibody solid layer film 1016 is typically 2 mm, and the layer thickness of the antibody solid layer film 1016 is typically 100 nm or less.

{光源}
図1に示すように、光源1020は、光を放射する。望ましくは、光源1020はレーザーダイオードであり、光源1020から放射される光は、平行光線であり、直線偏光であり、単色光である。
{light source}
As shown in FIG. 1, the light source 1020 emits light. Preferably, the light source 1020 is a laser diode, and the light emitted from the light source 1020 is a parallel light beam, linearly polarized light, and monochromatic light.

光源1020がレーザーダイオード以外であってもよい。例えば、光源1020が発光ダイオード、水銀灯、レーザーダイオード以外のレーザー等であってもよい。光源1020から放射される光が平行光線でない場合は、レンズ、鏡、スリット等により光が平行光線へ変換される。光源1020から放射される光が直線偏光でない場合は、偏光子等により光が直線偏光に変換される。光源1020から放射される光が単色光でない場合は、回折格子等により光が単色光に変換される。   The light source 1020 may be other than a laser diode. For example, the light source 1020 may be a light emitting diode, a mercury lamp, a laser other than a laser diode, or the like. When the light emitted from the light source 1020 is not a parallel light beam, the light is converted into a parallel light beam by a lens, a mirror, a slit, or the like. When the light emitted from the light source 1020 is not linearly polarized light, the light is converted into linearly polarized light by a polarizer or the like. When the light emitted from the light source 1020 is not monochromatic light, the light is converted into monochromatic light by a diffraction grating or the like.

{直線偏光板}
直線偏光板1036は、励起光1042の光路上にあり、励起光1042を直線偏光に変換する。励起光1042の偏光方向は、密着面1048に対して励起光1042がp偏光になるように選択される。これにより、エバネッセント波のもれだしが増加し、表面プラズモン励起蛍光1044が増加し、計測の感度が向上する。
{Linear polarizing plate}
The linearly polarizing plate 1036 is on the optical path of the excitation light 1042 and converts the excitation light 1042 into linearly polarized light. The polarization direction of the excitation light 1042 is selected so that the excitation light 1042 is p-polarized with respect to the contact surface 1048. Thereby, the leakage of the evanescent wave increases, the surface plasmon excitation fluorescence 1044 increases, and the sensitivity of measurement is improved.

{光学系}
図5の模式図は、励起光の光路を示す。図6の模式図は、膜厚測定光の光路を示す。
{Optical system}
The schematic diagram of FIG. 5 shows the optical path of excitation light. The schematic diagram of FIG. 6 shows the optical path of the film thickness measurement light.

図5に示すように、光源1020から放射された光が励起光1042として利用される場合は、光源1020から放射された光が光路切り替えミラー1038により反射される。光路切り替えミラー1038により反射された光はプリズム1014に照射される。プリズム1014に照射された光は、励起光1042の入射面1066へ入射し、密着面1048に反射され、励起光1042の出射面1074から出射する。密着面1048への励起光1042の入射角θ1は、全反射条件θc≦θ1を満たす。したがって、励起光1042が密着面1048へ入射した場合は、励起光1042が密着面1048に全反射され、図4に示すように、金膜1012にエバネッセント波1082がもれだし、エバネッセント波1082が増強される。   As shown in FIG. 5, when the light emitted from the light source 1020 is used as the excitation light 1042, the light emitted from the light source 1020 is reflected by the optical path switching mirror 1038. The light reflected by the optical path switching mirror 1038 is applied to the prism 1014. The light emitted to the prism 1014 enters the incident surface 1066 of the excitation light 1042, is reflected by the contact surface 1048, and exits from the exit surface 1074 of the excitation light 1042. The incident angle θ1 of the excitation light 1042 to the contact surface 1048 satisfies the total reflection condition θc ≦ θ1. Therefore, when the excitation light 1042 is incident on the contact surface 1048, the excitation light 1042 is totally reflected on the contact surface 1048, and the evanescent wave 1082 leaks to the gold film 1012 as shown in FIG. Be enhanced.

図6に示すように、光源1020から放射された光が膜厚測定光1050として利用される場合は、光源1020から放射された光が光路切り替えミラー1038により反射される。光路切り替えミラー1038により反射された光は膜厚測定光導入ミラー1040にさらに反射される。膜厚測定光導入ミラー1040により反射された光は、プリズム1014に照射される。プリズム1014に照射された光は、膜厚測定光1050の入射面1068へ入射し、密着面1048から出射し、金膜1012の第2の主面1053へ入射し、金膜1012を透過し、金膜1012の第1の主面1052から出射する。密着面1048への膜厚測定光1050の入射角θ2は、全反射条件θc≦θ2を満たさず(θ2<θc)、望ましくは0°である。密着面1048への膜厚測定光1050の入射角θ2が0°である場合は、膜厚測定光1050の光路が第2の主面1053と垂直をなし、膜厚測定光1050が金膜1012に垂直に入射し、金膜1012とプリズム1014との界面における膜厚測定光1050の反射の影響が抑制され、計測の精度が向上する。   As shown in FIG. 6, when the light emitted from the light source 1020 is used as the film thickness measurement light 1050, the light emitted from the light source 1020 is reflected by the optical path switching mirror 1038. The light reflected by the optical path switching mirror 1038 is further reflected by the film thickness measurement light introduction mirror 1040. The light reflected by the film thickness measurement light introduction mirror 1040 is irradiated onto the prism 1014. The light irradiated to the prism 1014 enters the incident surface 1068 of the film thickness measurement light 1050, exits from the adhesion surface 1048, enters the second main surface 1053 of the gold film 1012, passes through the gold film 1012, and The light is emitted from the first main surface 1052 of the gold film 1012. The incident angle θ2 of the film thickness measurement light 1050 on the contact surface 1048 does not satisfy the total reflection condition θc ≦ θ2 (θ2 <θc), and is preferably 0 °. When the incident angle θ2 of the film thickness measurement light 1050 on the adhesion surface 1048 is 0 °, the optical path of the film thickness measurement light 1050 is perpendicular to the second main surface 1053, and the film thickness measurement light 1050 is the gold film 1012. , The influence of reflection of the film thickness measurement light 1050 at the interface between the gold film 1012 and the prism 1014 is suppressed, and the measurement accuracy is improved.

光源1020から放射された光の光路を励起光1042の光路と膜厚測定光1050の光路との間で切り替えるため、図1に示すように、光路切り替えミラー1038の位置及び姿勢が駆動機構1024により調整される。駆動機構1024は、密着面1048への励起光1044の入射角θ1を調整するためにも用いられる。駆動機構1024は、モータ、圧電アクチュエータ等の駆動力源を備える。駆動機構1024は、光路切り替えミラー1036を回転させ、光路切り替えミラー1036の姿勢を調整する。駆動機構1024は、光路切り替えミラー1036をリニアステージの上で移動させ、光路切り替えミラー1036の位置を調整する。   In order to switch the optical path of the light emitted from the light source 1020 between the optical path of the excitation light 1042 and the optical path of the film thickness measurement light 1050, the position and posture of the optical path switching mirror 1038 are changed by the drive mechanism 1024 as shown in FIG. Adjusted. The drive mechanism 1024 is also used to adjust the incident angle θ1 of the excitation light 1044 to the contact surface 1048. The driving mechanism 1024 includes a driving force source such as a motor or a piezoelectric actuator. The drive mechanism 1024 rotates the optical path switching mirror 1036 and adjusts the posture of the optical path switching mirror 1036. The drive mechanism 1024 moves the optical path switching mirror 1036 on the linear stage and adjusts the position of the optical path switching mirror 1036.

他の種類の光学系により光源1020から放射された光の光路が励起光1042の光路と膜厚測定光1050の光路との間で切り替えられてもよい。例えば、光路切り替えミラー1038及び膜厚測定光導入ミラー1040の両方又は片方がプリズム等の他の種類の屈曲光学素子に置き換えられてもよい。光路切り替えミラー1038及び膜厚測定光導入ミラー1040以外の光学素子が設けられてもよい。光路切り替えミラー1038の位置及び姿勢を調整する駆動機構に代えて、又は、光路切り替えミラー1038の位置及び姿勢を調整する駆動機構に加えて、光路切り替えミラー1038以外の光学素子の位置及び姿勢を調整する駆動機構、光源1020の位置及び姿勢を調整する機構が設けられてもよい。   The optical path of light emitted from the light source 1020 by another type of optical system may be switched between the optical path of the excitation light 1042 and the optical path of the film thickness measurement light 1050. For example, both or one of the optical path switching mirror 1038 and the film thickness measurement light introducing mirror 1040 may be replaced with another type of bending optical element such as a prism. Optical elements other than the optical path switching mirror 1038 and the film thickness measurement light introducing mirror 1040 may be provided. The position and orientation of optical elements other than the optical path switching mirror 1038 are adjusted instead of the driving mechanism that adjusts the position and orientation of the optical path switching mirror 1038 or in addition to the driving mechanism that adjusts the position and orientation of the optical path switching mirror 1038. And a mechanism for adjusting the position and posture of the light source 1020 may be provided.

望ましくは、同一の光源1020から放射された光の光路が励起光1042の光路と膜厚測定光1050の光路とに光学系1022により切り替えられる。これにより、励起光1042及び膜厚測定光1050が同一の光源1020から放射され、光源1020の数が減少し、表面プラズモン励起蛍光計測装置1000が簡略化される。ただし、光源の数が増加するが、励起光1042を放射する光源と膜厚放射光1050を放射する光源とが別個であってもよい。励起光1042の波長及び膜厚測定光1050の波長は、望ましくは同じであるが、異なってもよい。   Desirably, the optical path of the light emitted from the same light source 1020 is switched between the optical path of the excitation light 1042 and the optical path of the film thickness measurement light 1050 by the optical system 1022. Thereby, the excitation light 1042 and the film thickness measurement light 1050 are emitted from the same light source 1020, the number of the light sources 1020 is reduced, and the surface plasmon excitation fluorescence measuring apparatus 1000 is simplified. However, although the number of light sources increases, the light source that emits the excitation light 1042 and the light source that emits the film thickness radiation light 1050 may be separate. The wavelength of the excitation light 1042 and the wavelength of the film thickness measurement light 1050 are desirably the same, but may be different.

{CCDセンサ}
CCDセンサ1026は、表面プラズモン励起蛍光1044の光路上であって透過光1046の光路上にあり、表面プラズモン励起蛍光1044の光量及び透過光1046の光量の両方を測定する。これにより、表面プラズモン励起蛍光1044の光量及び透過光1046の光量が同一のCCDセンサ1026により測定され、CCDセンサの数が減少し、表面プラズモン励起蛍光計測装置1000が簡略化される。このためには、表面プラズモン励起蛍光1044の光路及び透過光1046の光路の少なくとも一部が一致する必要がある。ただし、CCDセンサの数が増加するが、表面プラズモン励起蛍光1044の光路及び透過光1046の光路が完全に分離されてもよく、表面プラズモン励起蛍光1044の光量を測定するCCDセンサと透過光1046の光量を測定するCCDセンサとが別個であってもよい。CCDセンサ1026が光電子増倍管(PMT)等の他の形式の光量センサに置き換えられてもよい。
{CCD sensor}
The CCD sensor 1026 is on the optical path of the surface plasmon excitation fluorescence 1044 and on the optical path of the transmitted light 1046, and measures both the light quantity of the surface plasmon excitation fluorescence 1044 and the light quantity of the transmitted light 1046. Thereby, the light quantity of the surface plasmon excitation fluorescence 1044 and the light quantity of the transmitted light 1046 are measured by the same CCD sensor 1026, the number of CCD sensors is reduced, and the surface plasmon excitation fluorescence measurement apparatus 1000 is simplified. For this purpose, it is necessary that at least a part of the optical path of the surface plasmon excitation fluorescence 1044 and the optical path of the transmitted light 1046 coincide. However, although the number of CCD sensors increases, the optical path of the surface plasmon excitation fluorescence 1044 and the optical path of the transmission light 1046 may be completely separated, and the CCD sensor for measuring the light quantity of the surface plasmon excitation fluorescence 1044 and the transmitted light 1046 The CCD sensor that measures the amount of light may be separate. The CCD sensor 1026 may be replaced with another type of light quantity sensor such as a photomultiplier tube (PMT).

反射光1084の光量が極小になる入射角θ1ではなく散乱光の光量が極大になる入射角θ1から共鳴角θrが決定される場合は、望ましくは、CCDセンサ1026は、散乱光の光路上にあり、散乱光の光量も測定する。ただし、CCDセンサ1026とは別個のCCDセンサが散乱光の光量を測定してもよい。   When the resonance angle θr is determined from the incident angle θ1 at which the amount of scattered light is maximized instead of the incident angle θ1 at which the amount of reflected light 1084 is minimized, the CCD sensor 1026 is desirably on the optical path of the scattered light. Yes, the amount of scattered light is also measured. However, a CCD sensor separate from the CCD sensor 1026 may measure the amount of scattered light.

{ローパスフィルタ、減光フィルタ及びフィルタ入れ替え機構}
フィルタ入れ替え機構1032は、光路に挿入されるフィルタをローパスフィルタ1028と減光フィルタ1030との間で切り替える。図5に示すように、表面プラズモン励起蛍光1044の光量が測定される場合は、ローパスフィルタ1028が表面プラズモン励起蛍光1044の光路に挿入される。図6に示すように、透過光1046の光量が測定される場合は、減光フィルタ1030が透過光1046の光路に挿入される。
{Low-pass filter, neutral density filter and filter replacement mechanism}
The filter replacement mechanism 1032 switches the filter inserted in the optical path between the low pass filter 1028 and the neutral density filter 1030. As shown in FIG. 5, when the light quantity of the surface plasmon excitation fluorescence 1044 is measured, a low-pass filter 1028 is inserted in the optical path of the surface plasmon excitation fluorescence 1044. As shown in FIG. 6, when the amount of transmitted light 1046 is measured, a neutral density filter 1030 is inserted in the optical path of the transmitted light 1046.

ローパスフィルタ1028は、カットオフ波長より長い波長の光を透過し、カットオフ波長より短い波長の光を減衰させる。カットオフ波長は、励起光1042の波長から表面プラズモン励起蛍光1044の波長までの範囲内で選択される。例えば、励起光1042の波長が約640nmであって表面プラズモン励起蛍光1044の波長が670nmである場合は、650nmがカットオフ波長として選択される。ローパスフィルタ1028が表面プラズモン励起蛍光1044の光路に挿入された場合は、励起光1042はローパスフィルタ1028により減衰し、励起光1042のごく一部がCCDセンサ1026に到達するが、表面プラズモン励起蛍光1044はローパスフィルタ1028を透過し、表面プラズモン励起蛍光1044の大部分がCCDセンサ1026に到達する。これにより、相対的に光量が小さい表面プラズモン励起蛍光1044の光量が測定される場合に相対的に光量が大きい散乱光の影響が抑制され、計測の精度が向上する。   The low-pass filter 1028 transmits light having a wavelength longer than the cutoff wavelength and attenuates light having a wavelength shorter than the cutoff wavelength. The cutoff wavelength is selected within a range from the wavelength of the excitation light 1042 to the wavelength of the surface plasmon excitation fluorescence 1044. For example, when the wavelength of the excitation light 1042 is about 640 nm and the wavelength of the surface plasmon excitation fluorescence 1044 is 670 nm, 650 nm is selected as the cutoff wavelength. When the low-pass filter 1028 is inserted in the optical path of the surface plasmon excitation fluorescence 1044, the excitation light 1042 is attenuated by the low-pass filter 1028, and only a part of the excitation light 1042 reaches the CCD sensor 1026. Passes through the low pass filter 1028 and most of the surface plasmon excitation fluorescence 1044 reaches the CCD sensor 1026. Thereby, when the light quantity of the surface plasmon excitation fluorescence 1044 with a comparatively small light quantity is measured, the influence of the scattered light with a relatively large light quantity is suppressed, and the measurement accuracy is improved.

減光フィルタ1030は、光を減衰させる。減光フィルタ1030が透過光1046の光路に挿入された場合は、透過光1046は減光フィルタ1030により減衰し、透過光1046の一部がCCDセンサ1026に到達する。これにより、相対的に光量が大きい透過光1046の光量と相対的に光量が小さい表面プラズモン励起蛍光1044の光量とが同一のCCDセンサ1026により容易に測定される。   The neutral density filter 1030 attenuates light. When the neutral density filter 1030 is inserted in the optical path of the transmitted light 1046, the transmitted light 1046 is attenuated by the neutral density filter 1030, and part of the transmitted light 1046 reaches the CCD sensor 1026. Thereby, the light amount of the transmitted light 1046 having a relatively large light amount and the light amount of the surface plasmon excitation fluorescence 1044 having a relatively small light amount are easily measured by the same CCD sensor 1026.

表面プラズモン励起蛍光1044の光路及び透過光1046の光路が分離される場合は、フィルタ入れ替え機構1032が省略される場合もある。表面プラズモン励起蛍光1044の光量を測定する光量センサと透過光1046の光量を測定する光量センサとが別個であり、透過光1046の光量を測定する光量センサの感度が低い場合は、減光フィルタ1030が省略されてもよい。   When the optical path of the surface plasmon excitation fluorescence 1044 and the optical path of the transmitted light 1046 are separated, the filter replacement mechanism 1032 may be omitted. When the light amount sensor that measures the light amount of the surface plasmon excitation fluorescence 1044 and the light amount sensor that measures the light amount of the transmitted light 1046 are separate and the sensitivity of the light amount sensor that measures the light amount of the transmitted light 1046 is low, the neutral density filter 1030. May be omitted.

{フォトダイオード}
図1に示すように、フォトダイオード1034は、励起光1042の出射面1074から出射した励起光1042、すなわち、反射光1084の光路上にあり、反射光1084の光量を測定する。フォトダイオード1034がフォトトランジスタ、フォトレジスタ等の他の形式の光量センサにより測定されてもよい。散乱光の光量が極大になる入射角θ1から共鳴角θrが決定される場合は、フォトダイオード1034が省略されてもよい。
{Photodiode}
As shown in FIG. 1, the photodiode 1034 is on the optical path of the excitation light 1042 emitted from the emission surface 1074 of the excitation light 1042, that is, the reflected light 1084, and measures the light quantity of the reflected light 1084. The photodiode 1034 may be measured by another type of light amount sensor such as a phototransistor or a photoresistor. When the resonance angle θr is determined from the incident angle θ1 at which the amount of scattered light is maximized, the photodiode 1034 may be omitted.

{コントローラ}
図7のブロック図は、コントローラを示す。
{controller}
The block diagram of FIG. 7 shows the controller.

図7に示すように、コントローラ1010は、運転制御部1100及び補正部1102を備える。補正部1102は、透過率導出部1104、電場増強度特定部1106、規格化部1108及び記憶部1110を備える。電場増強度特定部1106は、膜厚導出部1112及び電場増強度導出部1114を備える。   As shown in FIG. 7, the controller 1010 includes an operation control unit 1100 and a correction unit 1102. The correcting unit 1102 includes a transmittance deriving unit 1104, an electric field enhancement specifying unit 1106, a normalizing unit 1108, and a storage unit 1110. The electric field enhancement specifying unit 1106 includes a film thickness deriving unit 1112 and an electric field enhancement deriving unit 1114.

運転制御部1100は、表面プラズモン励起蛍光計測装置1000のハードウエアの構成物を制御し、表面プラズモン励起蛍光計測装置1000の運転を担う。補正部1102は、演算を行い、透過光1046の光量の測定値による表面プラズモン励起蛍光1044の光量の測定値の補正を担う。   The operation control unit 1100 controls hardware components of the surface plasmon excitation fluorescence measurement apparatus 1000 and is responsible for the operation of the surface plasmon excitation fluorescence measurement apparatus 1000. The correction unit 1102 performs calculation and is responsible for correcting the measurement value of the light amount of the surface plasmon excitation fluorescence 1044 by the measurement value of the light amount of the transmitted light 1046.

透過率導出部1104は、CCDセンサ1026から透過光1046の光量の測定値を取得し、透過光1046の光量の測定値から金膜1012の透過率の指標を導出する。透過率の指標は、透過率そのものであってもよいし、透過率と一対一に対応する値であってもよい。例えば、金膜1012の第2の主面1053へ入射する膜厚測定光1050の光量が一定であって金膜1012の第1の主面1052からCCDセンサ1026までの区間における膜厚測定光1050の減衰が一定であるとみなせる場合は、透過光1046の光量の測定値そのものが透過率の指標となりうる。透過率の指標は、減光フィルタ1030の減衰率及び膜厚測定光1050の光量で透過光1046の光量の測定値を除することにより導出される。   The transmittance deriving unit 1104 obtains a measurement value of the amount of transmitted light 1046 from the CCD sensor 1026 and derives an index of the transmittance of the gold film 1012 from the measured value of the amount of transmitted light 1046. The transmittance index may be the transmittance itself or a value corresponding to the transmittance on a one-to-one basis. For example, the film thickness measurement light 1050 in the section from the first main surface 1052 of the gold film 1012 to the CCD sensor 1026 has a constant light quantity that is incident on the second main surface 1053 of the gold film 1012. Can be regarded as constant, the measured value of the amount of transmitted light 1046 itself can be an index of transmittance. The index of transmittance is derived by dividing the measured value of the amount of transmitted light 1046 by the attenuation factor of the neutral density filter 1030 and the amount of light of the film thickness measurement light 1050.

電場増強度特定部1106は、金膜1012の透過率の指標から電場増強度を特定する。   The electric field enhancement specifying unit 1106 specifies the electric field enhancement from the transmittance index of the gold film 1012.

膜厚導出部1112は、金膜1012の透過率の指標から金膜1012の膜厚を導出する。金膜1012の膜厚が導出される場合には、記憶部1110に記憶された金膜1012の透過率の指標と金膜1012の膜厚との関係1116が参照され、透過率導出部1104により特定された金膜1012の透過率の指標に対応する金膜1012の膜厚が特定される。   The film thickness deriving unit 1112 derives the film thickness of the gold film 1012 from the transmittance index of the gold film 1012. When the film thickness of the gold film 1012 is derived, a relationship 1116 between the index of the transmittance of the gold film 1012 stored in the storage unit 1110 and the film thickness of the gold film 1012 is referred to. The film thickness of the gold film 1012 corresponding to the specified index of the transmittance of the gold film 1012 is specified.

図8のグラフは、膜厚測定光1050の波長が635nmであり、金膜1012の光学定数がn=0.22273及びk=3.4533であるとした場合に理論的に得られる金膜1012の透過率と金膜1012の膜厚と関係を示す。   The graph of FIG. 8 shows the transmittance of the gold film 1012 theoretically obtained when the wavelength of the film thickness measurement light 1050 is 635 nm and the optical constants of the gold film 1012 are n = 0.22273 and k = 3.4533. The relationship with the film thickness of the gold film 1012 is shown.

電場増強度導出部1114は、金膜1012の膜厚から電場増強度を導出する。電場増強度が導出される場合は、記憶部1110に記憶された金膜1012の膜厚と電場増強度との関係1118が参照され、膜厚導出部1112により導出された金膜1012の膜厚に対応する電場増強度が特定される。   The electric field enhancement strength deriving unit 1114 derives the electric field enhancement strength from the film thickness of the gold film 1012. When the electric field enhancement is derived, the relationship 1118 between the film thickness of the gold film 1012 and the electric field enhancement stored in the storage unit 1110 is referred to, and the film thickness of the gold film 1012 derived by the film thickness deriving unit 1112 is referred to. The electric field enhancement corresponding to is specified.

電場増強度は、入射角θ1にも依存し、電場増強度が最大になる入射角θ1は金膜1012の膜厚によって変化する。このため、望ましくは、金膜1012の膜厚ごとに電場増強度が最大になる入射角θ1が特定され、電場増強度が最大となる入射角θ1で密着面1048に励起光1042が入射した場合の金膜1012の膜厚と電場増強度との関係が用いられる。   The electric field enhancement depends on the incident angle θ 1, and the incident angle θ 1 at which the electric field enhancement becomes maximum varies depending on the film thickness of the gold film 1012. Therefore, desirably, the incident angle θ1 that maximizes the electric field enhancement is specified for each film thickness of the gold film 1012, and the excitation light 1042 is incident on the contact surface 1048 at the incident angle θ1 that maximizes the electric field enhancement. The relationship between the thickness of the gold film 1012 and the electric field enhancement is used.

図9のグラフは、金膜1012の膜厚と電場増強度との関係の一例を示す。図9は、プリズム1014の2種類の樹脂材料である「E48R」及び「BK7」について理論的に得られる金膜1012の膜厚と電場増強度との関係を示す。   The graph of FIG. 9 shows an example of the relationship between the film thickness of the gold film 1012 and the electric field enhancement intensity. FIG. 9 shows the relationship between the thickness of the gold film 1012 theoretically obtained for two types of resin materials of the prism 1014, “E48R” and “BK7”, and the electric field enhancement intensity.

関係1116及び1118は、典型的には、数値テーブルである。ただし、関係1116及び1118が演算式として与えられてもよい関係1116及び係1118は、理論的に求められるが、実測されてもよい。   Relationships 1116 and 1118 are typically numeric tables. However, the relationships 1116 and 1118 for which the relationships 1116 and 1118 may be given as arithmetic expressions are theoretically obtained, but may be actually measured.

関係1116及び1118が結合され、金膜1012の透過率の指標と電場増強度との関係が記憶部1110に記憶されてもよい。この場合は、電場増強度特定部1106において、金膜1012の膜厚を経由せずに金膜1012の透過率の指標から電場増強度が直接的に導出される。   The relationships 1116 and 1118 may be combined, and the relationship between the transmittance index of the gold film 1012 and the electric field enhancement strength may be stored in the storage unit 1110. In this case, the electric field enhancement specifying unit 1106 directly derives the electric field enhancement from the transmittance index of the gold film 1012 without passing through the film thickness of the gold film 1012.

規格化部1108は、CCDセンサ1026から表面プラズモン励起蛍光1044の光量の測定値を取得し、電場増強度特定部1106により特定された電場増強度により表面プラズモン励起蛍光1044の光量の測定値を規格化する。規格化は、表面プラズモン励起蛍光1044の光量の測定値を電場増強度で除することにより行われる。   The normalization unit 1108 acquires the measurement value of the light amount of the surface plasmon excitation fluorescence 1044 from the CCD sensor 1026 and standardizes the measurement value of the light amount of the surface plasmon excitation fluorescence 1044 by the electric field enhancement specified by the electric field enhancement specification unit 1106. Turn into. Normalization is performed by dividing the measured value of the amount of light of the surface plasmon excitation fluorescence 1044 by the electric field enhancement intensity.

コントローラ1010は、ソフトウエアを実行する組み込みコンピュータである。1個の組み込みコンピュータが図7に示すブロックの機能を担ってもよいし、2個以上の組み込みコンピュータが分担して図7に示すブロックの機能を担ってもよい。ソフトウエアを伴わないハードウエアが図7に示すブロックの全部又は一部の機能を担ってもよい。ハードウエアは、例えば、オペアンプ、コンパレータ等の電子回路である。図7に示すブロックによる処理の全部又は一部が、人間の手作業により実行されてもよく、表面プラズモン励起蛍光計測装置1000の外部において実行されてもよい。   The controller 1010 is an embedded computer that executes software. One embedded computer may have the function of the block shown in FIG. 7, or two or more embedded computers may share the function of the block shown in FIG. Hardware without software may be responsible for all or part of the blocks shown in FIG. The hardware is, for example, an electronic circuit such as an operational amplifier or a comparator. All or part of the processing by the blocks shown in FIG. 7 may be executed manually by humans or may be executed outside the surface plasmon excitation fluorescence measuring apparatus 1000.

(表面プラズモン励起蛍光計測装置の動作)
図10のフローチャートは、表面プラズモン励起蛍光計測装置の動作を示す。
(Operation of surface plasmon excitation fluorescence measuring device)
The flowchart of FIG. 10 shows the operation of the surface plasmon excitation fluorescence measurement apparatus.

図10に示すように、センサチップ1002が準備され、表面プラズモン励起蛍光計測装置1000にセンサチップ1002が取り付けられる(ステップS101)。   As shown in FIG. 10, a sensor chip 1002 is prepared, and the sensor chip 1002 is attached to the surface plasmon excitation fluorescence measuring apparatus 1000 (step S101).

センサチップ1002が取り付けられた後に、透過光1046の光量が測定される(ステップS102)。透過光1046の光量が測定される場合は、駆動機構1024及びCCDセンサ1026が運転制御部1100により制御される。光路切り替えミラー1038の位置及び姿勢が駆動機構1024により調整され、光源1020から放射された光の光路が膜厚測定光1050の光路に設定される。同時に、透過光1046の光量がCCDセンサ1026により測定される。透過光1046の光量の測定値は、コントローラ1010へ転送される。   After the sensor chip 1002 is attached, the amount of transmitted light 1046 is measured (step S102). When the amount of transmitted light 1046 is measured, the driving mechanism 1024 and the CCD sensor 1026 are controlled by the operation control unit 1100. The position and orientation of the optical path switching mirror 1038 are adjusted by the drive mechanism 1024, and the optical path of the light emitted from the light source 1020 is set as the optical path of the film thickness measurement light 1050. At the same time, the amount of transmitted light 1046 is measured by the CCD sensor 1026. The measured value of the amount of transmitted light 1046 is transferred to the controller 1010.

透過光1046の光量が測定された後に、入射角θが測定角θmに設定される(ステップS103)。入射角θが測定角θmに設定される場合は、駆動機構1024及びフォトダイオード1034が運転制御部1100により制御される。光路切り替えミラー1038の位置及び姿勢が駆動機構1024により調整され、光源1020から放射された光の光路が励起光1042の光路に設定される。また、入射角θ1が予想される共鳴角θrの近傍において走査される。入射角θ1の走査と並行して、反射光1084の光量がフォトダイオード1034により測定される。反射光1084の光量の測定値は、コントローラ1010へ転送される。入射角θ1と反射光1084の光量との関係を示す表面プラズモン共鳴(SPR)曲線から反射光1084の光量が極小になる入射角θ1である共鳴角θrが特定され、共鳴角θrから測定角θmが決定される。共鳴角θrと電場増強度が極大になる入射角θ1とはわずかに異なるので、望ましくは、微小角が共鳴角θrに可算又は減算され測定角θmが決定される。図11のグラフは、SPR曲線及び入射角と電場増強度との関係を示す。   After the amount of transmitted light 1046 is measured, the incident angle θ is set to the measurement angle θm (step S103). When the incident angle θ is set to the measurement angle θm, the driving mechanism 1024 and the photodiode 1034 are controlled by the operation control unit 1100. The position and orientation of the optical path switching mirror 1038 are adjusted by the drive mechanism 1024, and the optical path of the light emitted from the light source 1020 is set as the optical path of the excitation light 1042. Further, the incident angle θ1 is scanned in the vicinity of the expected resonance angle θr. In parallel with the scanning of the incident angle θ1, the amount of the reflected light 1084 is measured by the photodiode 1034. The measured value of the amount of reflected light 1084 is transferred to the controller 1010. From the surface plasmon resonance (SPR) curve showing the relationship between the incident angle θ1 and the amount of reflected light 1084, the resonance angle θr, which is the incident angle θ1 at which the amount of reflected light 1084 is minimized, is specified, and the measurement angle θm is determined from the resonance angle θr. Is determined. Since the resonance angle θr and the incident angle θ1 at which the electric field enhancement becomes maximum are slightly different, it is desirable that the measurement angle θm is determined by adding or subtracting the minute angle to the resonance angle θr. The graph of FIG. 11 shows the relationship between the SPR curve and the incident angle and the electric field enhancement intensity.

入射角θ1が測定角θmに設定された後に、試料液1056及び蛍光標識液1060が流路1054へ順次に注入される(ステップS104)。試料液1056及び蛍光標識液1060が流路1054に順次に注入される場合は、供給機構1008が運転制御部1100により制御される。これにより、試料液1056及び蛍光標識液1060が抗体固層膜1016に順次に供給され、蛍光標識された抗原1058が抗体固層膜1016に捕捉された状態になる。膜厚測定光1050の光路が流路1054を通過する場合は、望ましくは、透過光1046の光量が測定された後に試料液1056及び蛍光標識液1060が流路1054に注入される。しかし、膜厚測定光1050の光路が流路1054を通過しない場合は、透過光1046の光量が測定された前及び後のいずれに試料液1056及び蛍光標識液1060が流路1054に注入されてもよく、透過光1046の光量が測定されるのと同時に試料液1056及び蛍光標識液1060が流路1054に注入されてもよい。   After the incident angle θ1 is set to the measurement angle θm, the sample liquid 1056 and the fluorescent labeling liquid 1060 are sequentially injected into the flow path 1054 (step S104). When the sample solution 1056 and the fluorescent labeling solution 1060 are sequentially injected into the flow path 1054, the supply mechanism 1008 is controlled by the operation control unit 1100. As a result, the sample solution 1056 and the fluorescent labeling solution 1060 are sequentially supplied to the antibody solid layer film 1016, and the fluorescently labeled antigen 1058 is captured by the antibody solid layer film 1016. When the optical path of the film thickness measurement light 1050 passes through the flow path 1054, the sample liquid 1056 and the fluorescent labeling liquid 1060 are preferably injected into the flow path 1054 after the light amount of the transmitted light 1046 is measured. However, when the optical path of the film thickness measurement light 1050 does not pass through the flow path 1054, the sample liquid 1056 and the fluorescent labeling liquid 1060 are injected into the flow path 1054 either before or after the light amount of the transmitted light 1046 is measured. Alternatively, the sample liquid 1056 and the fluorescent labeling liquid 1060 may be injected into the channel 1054 at the same time as the amount of the transmitted light 1046 is measured.

試料液1056及び蛍光標識液1060が流路1054に注入された後に、表面プラズモン励起蛍光1044の光量が測定される(ステップS105)。表面プラズモン励起蛍光1044の光量が測定される場合は、CCDセンサ1026が運転制御部1100により制御される。表面プラズモン励起蛍光1044の光量はCCDセンサ1026により測定される。表面プラズモン励起蛍光1044の光量の測定値は、コントローラ1010へ転送される。   After the sample solution 1056 and the fluorescent labeling solution 1060 are injected into the channel 1054, the light quantity of the surface plasmon excitation fluorescence 1044 is measured (step S105). When the light amount of the surface plasmon excitation fluorescence 1044 is measured, the CCD sensor 1026 is controlled by the operation control unit 1100. The amount of light of the surface plasmon excitation fluorescence 1044 is measured by the CCD sensor 1026. The measurement value of the light amount of the surface plasmon excitation fluorescence 1044 is transferred to the controller 1010.

表面プラズモン励起蛍光1044の光量を測定する光量センサと透過光1046の光量を測定する光量センサとが別個であり、励起光1042を放射する光源1020と膜厚測定光1050を放射する光源1020とが別個であり、膜厚測定光1050が流路1054を通過しない場合は、表面プラズモン励起蛍光1044の光量の測定と同時に透過光1046の光量が測定されてもよい。   A light amount sensor that measures the light amount of the surface plasmon excitation fluorescence 1044 and a light amount sensor that measures the light amount of the transmitted light 1046 are separate, and a light source 1020 that emits the excitation light 1042 and a light source 1020 that emits the film thickness measurement light 1050 are provided. In the case where the film thickness measurement light 1050 does not pass through the flow path 1054, the light quantity of the transmitted light 1046 may be measured simultaneously with the measurement of the light quantity of the surface plasmon excitation fluorescence 1044.

表面プラズモン励起蛍光1044の光量が測定された後に、補正部1102において表面プラズモン励起蛍光1044の光量の測定値が透過光1046の光量の測定値により補正される(ステップS106)。   After the light quantity of the surface plasmon excitation fluorescence 1044 is measured, the correction value of the light quantity of the surface plasmon excitation fluorescence 1044 is corrected by the measurement value of the light quantity of the transmitted light 1046 in the correction unit 1102 (step S106).

この発明は詳細に説明されたが、上記の説明は、すべての局面において例示であり、この発明は上記の説明に限定されない。例示されない無数の変形例が、この発明の範囲から外れることなく想定されうる。   Although the present invention has been described in detail, the above description is illustrative in all aspects, and the present invention is not limited to the above description. Innumerable modifications not illustrated can be envisaged without departing from the scope of the present invention.

1000 表面プラズモン励起蛍光計測装置
1004 照射機構
1006 測定機構
1012 金膜
1020 光源
1022 光学系
1024 駆動機構
1042 励起光
1044 表面プラズモン励起蛍光
1046 透過光
1050 膜厚測定光
DESCRIPTION OF SYMBOLS 1000 Surface plasmon excitation fluorescence measuring apparatus 1004 Irradiation mechanism 1006 Measurement mechanism 1012 Gold film 1020 Light source 1022 Optical system 1024 Drive mechanism 1042 Excitation light 1044 Surface plasmon excitation fluorescence 1046 Transmission light 1050 Film thickness measurement light

Claims (7)

表面プラズモン励起蛍光計測装置であって、
第1の主面及び第2の主面を有し、前記第1の主面上に試料が供給される導電体膜と、
前記第2の主面と密着する密着面を有する誘電体媒体と、
前記誘電体媒体に光を照射し、前記誘電体媒体の内部において臨界角以上の入射角で前記密着面に前記光が入射する第1の光路と前記誘電体媒体の内部において前記臨界角より小さい入射角で前記密着面に前記光が入射する第2の光路との間で前記光の光路を切り替える照射機構と、
前記第1の光路を経由する前記光が前記誘電体媒体に照射されている間に前記試料に含まれる被計測物から放射される表面プラズモン励起蛍光及び前記第2の光路を経由する前記光が前記誘電体媒体に照射されている間に前記導電体膜を透過する透過光の光量を測定する測定機構と、
前記測定機構により測定された表面プラズモン励起蛍光の光量の測定値を前記測定機構により測定された透過光の光量の測定値により補正する補正部と、
を備える表面プラズモン励起蛍光計測装置。
A surface plasmon excitation fluorescence measuring device,
A conductor film having a first main surface and a second main surface, the sample being supplied on the first main surface;
A dielectric medium having a close contact surface in close contact with the second main surface;
The dielectric medium is irradiated with light, and is smaller than the critical angle inside the dielectric medium and a first optical path where the light enters the contact surface at an incident angle greater than a critical angle inside the dielectric medium. An irradiation mechanism that switches an optical path of the light with a second optical path where the light is incident on the contact surface at an incident angle;
While the light passing through the first optical path is irradiated on the dielectric medium, surface plasmon excitation fluorescence emitted from the measurement object included in the sample and the light passing through the second optical path are A measurement mechanism that measures the amount of transmitted light that passes through the conductor film while being irradiated on the dielectric medium;
A correction unit that corrects the measurement value of the light amount of the surface plasmon excitation fluorescence measured by the measurement mechanism by the measurement value of the light amount of the transmitted light measured by the measurement mechanism;
A surface plasmon excitation fluorescence measuring apparatus comprising:
請求項1の表面プラズモン励起蛍光計測装置において、
前記照射機構は、
前記光を放射する光源と、
前記光源から放射された前記光を前記誘電体媒体へ導く光学系と、
前記光学系を駆動し、前記光の光路を前記第1の光路と前記第2の光路との間で切り替える駆動機構と、
を備える表面プラズモン励起蛍光計測装置。
In the surface plasmon excitation fluorescence measuring device according to claim 1,
The irradiation mechanism is:
A light source that emits the light;
An optical system for guiding the light emitted from the light source to the dielectric medium;
A drive mechanism for driving the optical system and switching the optical path of the light between the first optical path and the second optical path;
A surface plasmon excitation fluorescence measuring apparatus comprising:
請求項1又は請求項2の表面プラズモン励起蛍光計測装置において、
前記第2の光路は前記第2の主面と垂直をなす
表面プラズモン励起蛍光計測装置。
In the surface plasmon excitation fluorescence measuring device according to claim 1 or 2,
The surface plasmon excitation fluorescence measuring apparatus in which the second optical path is perpendicular to the second main surface.
請求項1から請求項3までのいずれかの表面プラズモン励起蛍光計測装置において、
前記測定機構は、
前記表面プラズモン励起蛍光の光路上であって前記透過光の光路上にある光量センサ
を備える表面プラズモン励起蛍光測定装置。
In the surface plasmon excitation fluorescence measuring device according to any one of claims 1 to 3,
The measurement mechanism is
A surface plasmon excitation fluorescence measuring apparatus comprising a light amount sensor on the optical path of the surface plasmon excitation fluorescence and on the optical path of the transmitted light.
請求項1から請求項4までのいずれかの表面プラズモン励起蛍光計測装置において、
前記補正部は、
前記測定機構から前記透過光の光量の測定値を取得し、前記透過光の光量の測定値から前記導電体膜の透過率の指標を導出する透過率導出部と、
前記導電体膜の透過率の指標から電場増強度を特定する電場増強度特定部と、
前記測定機構から前記表面プラズモン励起蛍光の光量の測定値を取得し、前記電場増強度により前記表面プラズモン励起蛍光の光量の測定値を規格化する規格化部と、
を備える表面プラズモン励起蛍光計測装置。
In the surface plasmon excitation fluorescence measuring device according to any one of claims 1 to 4,
The correction unit is
A transmittance derivation unit that obtains a measurement value of the amount of transmitted light from the measurement mechanism, and derives an index of the transmittance of the conductor film from the measurement value of the amount of transmitted light;
An electric field enhancement specifying part for specifying an electric field enhancement from the transmittance index of the conductor film;
Obtaining a measurement value of the light amount of the surface plasmon excitation fluorescence from the measurement mechanism, a normalization unit that normalizes the measurement value of the light amount of the surface plasmon excitation fluorescence by the electric field enhancement intensity,
A surface plasmon excitation fluorescence measuring apparatus comprising:
請求項5の表面プラズモン励起蛍光計測装置において、
前記電場増強度特定部は、
前記導電体膜の透過率の指標から前記導電体膜の膜厚を導出する膜厚導出部と、
前記導電体膜の膜厚から前記電場増強度を導出する電場増強度導出部と、
を備える表面プラズモン励起蛍光計測装置。
In the surface plasmon excitation fluorescence measuring device according to claim 5,
The electric field enhancement specifying part is:
A film thickness deriving section for deriving the film thickness of the conductor film from the index of transmittance of the conductor film;
An electric field enhancement derivation unit for deriving the electric field enhancement from the film thickness of the conductor film;
A surface plasmon excitation fluorescence measuring apparatus comprising:
表面プラズモン励起蛍光計測方法であって、
(a) 第1の主面及び第2の主面を有する導電体膜並びに前記第2の主面と密着する密着面を有する誘電体媒体を準備する工程と、
(b) 前記工程(a)の後に前記誘電体媒体の内部において臨界角より小さい入射角で前記密着面に光を入射させながら前記導電体膜を透過する透過光の光量を測定する工程と、
(c) 前記第1の主面上に形成された流路を前記工程(b)における光の光路が通過しない場合には前記工程(b)の前若しくは後又は前記工程(b)と同時に前記第1の主面に試料を供給し、前記第1の主面上に形成された流路を前記工程(b)における光の光路が通過する場合には前記工程(b)の後に前記第1の主面に試料を供給する工程と、
(d) 前記工程(c)の後に前記誘電体媒体の内部において前記臨界角以上の入射角で前記密着面に光を入射させながら前記試料に含まれる被計測物から放射される表面プラズモン励起蛍光の光量を測定する工程と、
(e) 前記工程(d)において測定された前記表面プラズモン励起蛍光の光量の測定値を前記工程(b)において測定された前記透過光の光量の測定値により補正する工程と、
を備える表面プラズモン励起蛍光計測方法。
A surface plasmon excitation fluorescence measurement method,
(a) preparing a dielectric medium having a conductive film having a first main surface and a second main surface and an adhesion surface in close contact with the second main surface;
(b) after the step (a), measuring the amount of transmitted light transmitted through the conductor film while making light incident on the contact surface at an incident angle smaller than a critical angle inside the dielectric medium;
(c) When the optical path of the light in the step (b) does not pass through the flow path formed on the first main surface , before or after the step (b) or simultaneously with the step (b) When the sample is supplied to the first main surface and the light path of the light in the step (b) passes through the flow path formed on the first main surface, the first main surface is followed by the first main surface after the step (b). Supplying a sample to the main surface of
(d) After the step (c), surface plasmon excitation fluorescence emitted from the object to be measured contained in the sample while making light incident on the contact surface at an incident angle greater than the critical angle inside the dielectric medium Measuring the amount of light,
(e) correcting the measured value of the light amount of the surface plasmon excitation fluorescence measured in the step (d) by the measured value of the transmitted light amount measured in the step (b);
A surface plasmon excitation fluorescence measurement method comprising:
JP2011085083A 2011-04-07 2011-04-07 Surface plasmon excitation fluorescence measurement apparatus and surface plasmon excitation fluorescence measurement method Expired - Fee Related JP5640873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011085083A JP5640873B2 (en) 2011-04-07 2011-04-07 Surface plasmon excitation fluorescence measurement apparatus and surface plasmon excitation fluorescence measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011085083A JP5640873B2 (en) 2011-04-07 2011-04-07 Surface plasmon excitation fluorescence measurement apparatus and surface plasmon excitation fluorescence measurement method

Publications (2)

Publication Number Publication Date
JP2012220294A JP2012220294A (en) 2012-11-12
JP5640873B2 true JP5640873B2 (en) 2014-12-17

Family

ID=47271972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011085083A Expired - Fee Related JP5640873B2 (en) 2011-04-07 2011-04-07 Surface plasmon excitation fluorescence measurement apparatus and surface plasmon excitation fluorescence measurement method

Country Status (1)

Country Link
JP (1) JP5640873B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016039149A1 (en) * 2014-09-10 2016-03-17 コニカミノルタ株式会社 Detection method and detection apparatus
JP6717201B2 (en) * 2014-12-15 2020-07-01 コニカミノルタ株式会社 Detection method and detection device
CN114139455B (en) * 2021-12-03 2024-08-06 陕西师范大学 Optical fiber surface plasmon sensor transmission spectrum prediction method and system based on neural network

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5094484B2 (en) * 2008-03-11 2012-12-12 富士フイルム株式会社 Fluorescence detection method and fluorescence detection apparatus
JP4993308B2 (en) * 2008-03-31 2012-08-08 富士フイルム株式会社 Fluorescence detection method and fluorescence detection apparatus
JP5636921B2 (en) * 2010-12-01 2014-12-10 コニカミノルタ株式会社 Analysis support apparatus and surface plasmon resonance fluorescence analysis apparatus provided with the analysis support apparatus

Also Published As

Publication number Publication date
JP2012220294A (en) 2012-11-12

Similar Documents

Publication Publication Date Title
US9535004B2 (en) Surface plasmon resonance fluorescence analysis method and surface plasmon resonance fluorescence analysis device
US10451555B2 (en) Surface plasmon resonance fluorescence analysis device and surface plasmon resonance fluorescence analysis method
US20200256796A1 (en) Method of manufacturing sensing chip and sensing chip
JP6587024B2 (en) Detection method and detection apparatus
JP5807645B2 (en) Surface plasmon excitation fluorescence measurement apparatus and surface plasmon excitation fluorescence measurement method
US10429306B2 (en) Surface plasmon resonance fluorescence analysis device and surface plasmon resonance fluorescence analysis method
JP6856074B2 (en) Measuring method, measuring device and measuring system
JP5640873B2 (en) Surface plasmon excitation fluorescence measurement apparatus and surface plasmon excitation fluorescence measurement method
JP5971252B2 (en) Measuring device and sensor chip
US9726606B2 (en) Detection device
JP6848975B2 (en) Measuring method
JPWO2018051863A1 (en) Measuring method
JP2013137272A (en) Surface plasmon-field enhanced fluorescence measuring apparatus and method for setting measuring condition thereof
JP2013057580A (en) Measuring device and method for performing measuring
JP5733151B2 (en) Method for measuring and measuring device
JP6717201B2 (en) Detection method and detection device
US20230152234A1 (en) Detection device
WO2016152707A1 (en) Measuring method, measuring device and measuring chip
JP7469309B2 (en) Measurement method and device
WO2016147774A1 (en) Measuring method and measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141013

R150 Certificate of patent or registration of utility model

Ref document number: 5640873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees