JP5640319B2 - Curing agent for thermosetting resin, thermosetting resin composition, cured product, and semiconductor device - Google Patents

Curing agent for thermosetting resin, thermosetting resin composition, cured product, and semiconductor device Download PDF

Info

Publication number
JP5640319B2
JP5640319B2 JP2009058525A JP2009058525A JP5640319B2 JP 5640319 B2 JP5640319 B2 JP 5640319B2 JP 2009058525 A JP2009058525 A JP 2009058525A JP 2009058525 A JP2009058525 A JP 2009058525A JP 5640319 B2 JP5640319 B2 JP 5640319B2
Authority
JP
Japan
Prior art keywords
curing agent
thermosetting resin
carboxylic acid
carbon atoms
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009058525A
Other languages
Japanese (ja)
Other versions
JP2009242793A (en
Inventor
勇人 小谷
勇人 小谷
直之 浦崎
直之 浦崎
真人 水谷
真人 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2009058525A priority Critical patent/JP5640319B2/en
Publication of JP2009242793A publication Critical patent/JP2009242793A/en
Application granted granted Critical
Publication of JP5640319B2 publication Critical patent/JP5640319B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Description

本発明は、熱硬化性樹脂用硬化剤、熱硬化性樹脂組成物、硬化物及び半導体装置に関する。   The present invention relates to a curing agent for a thermosetting resin, a thermosetting resin composition, a cured product, and a semiconductor device.

酸無水物は、エポキシ樹脂の硬化剤として用いられる他、ジアミンと反応させてポリイミド化合物を得るための原料として利用されている。酸無水物は、安価で、透明性、電気絶縁性、耐薬品性、耐湿性、接着性等に優れており、電気絶縁材料、半導体装置材料、光半導体封止材料、接着材料、塗料材料等、様々な用途に用いられている。   In addition to being used as a curing agent for epoxy resins, acid anhydrides are used as raw materials for reacting with diamines to obtain polyimide compounds. Acid anhydrides are inexpensive and have excellent transparency, electrical insulation, chemical resistance, moisture resistance, adhesion, etc., electrical insulation materials, semiconductor device materials, optical semiconductor sealing materials, adhesive materials, paint materials, etc. It is used for various purposes.

酸無水物としては、カルボン酸化合物の分子間縮合体も知られている。例えば、脂肪族ジカルボン酸の分子間脱水縮合反応によって得られるポリカルボン酸無水物は、優れた可撓性と熱衝撃性を示し、単独で又は他の酸無水物との併用で粉体塗料や注形樹脂用硬化剤として用いられている。これまでにも、ポリアゼライン酸、ポリセバシン酸無水物等の脂肪族ジカルボン酸の分子間縮合体は、エポキシ樹脂硬化剤、メラミン樹脂硬化促進剤、アクリル粉体塗料硬化剤等、熱硬化性樹脂の硬化剤として市販されている。また、下記特許文献1には、脂肪族及び芳香族ジカルボン酸を分子間で縮合して得られる平均分子量が20000を超えるような高純度、高分子量の酸無水物樹脂を用いたフィルムも提案されている。   As acid anhydrides, intermolecular condensates of carboxylic acid compounds are also known. For example, a polycarboxylic acid anhydride obtained by an intermolecular dehydration condensation reaction of an aliphatic dicarboxylic acid exhibits excellent flexibility and thermal shock properties, and can be used alone or in combination with other acid anhydrides for powder coatings and Used as a curing agent for casting resins. So far, intermolecular condensates of aliphatic dicarboxylic acids such as polyazeline acid and polysebacic anhydride have been used for thermosetting resins such as epoxy resin curing agents, melamine resin curing accelerators, acrylic powder coating curing agents, etc. Commercially available as a curing agent. Patent Document 1 below also proposes a film using a high-purity, high-molecular-weight acid anhydride resin having an average molecular weight exceeding 20000 obtained by condensing aliphatic and aromatic dicarboxylic acids between molecules. ing.

一方、ポリイミド化合物の原料として用いられる酸無水物は、ジアミン化合物とイミド結合をつくり、主鎖となる骨格を形成するという本質的な特性上、分子内でカルボン酸が縮合された、芳香族又は直鎖状、環状脂肪族のテトラカルボン酸無水物が通常用いられる。   On the other hand, an acid anhydride used as a raw material for a polyimide compound is an aromatic or condensed carboxylic acid in the molecule because of an essential characteristic of forming an imide bond with a diamine compound and forming a skeleton that becomes a main chain. Linear and cycloaliphatic tetracarboxylic anhydrides are usually used.

特開昭63−258924号公報JP 63-258924 A

半導体の封止材料としてエポキシ樹脂成形材料が利用されているが、光半導体を封止する場合、硬化物が十分な透明性を有していることが必要である。そのため、かかる用途の材料に配合される硬化剤は着色のより少ないものが望ましい。その一方で、成形材料には、成形体の耐熱性や離型性の観点から、高いガラス転移温度を有する硬化物を形成できることが要求される。また、成形材料に配合される硬化剤の融点や粘度は、材料の流動性、成形性、作業性、保存安定性、配合設計の自由度などに大きく関わる重要な特性である。   An epoxy resin molding material is used as a semiconductor sealing material. However, when an optical semiconductor is sealed, the cured product needs to have sufficient transparency. Therefore, it is desirable that the curing agent blended in the material for such use is less colored. On the other hand, the molding material is required to be able to form a cured product having a high glass transition temperature from the viewpoint of heat resistance and releasability of the molded body. In addition, the melting point and viscosity of the curing agent blended in the molding material are important characteristics that are largely related to the fluidity, moldability, workability, storage stability, and freedom of blending design of the material.

エポキシ樹脂用硬化剤として実用化されている酸無水物は、ポリアミン、フェノールノボラック、イミダゾール系硬化剤などのエポキシ樹脂用硬化剤のように種類が豊富ではなく、エポキシ樹脂成形材料に配合する硬化剤として単に転用しても、硬化後の成形体のガラス転移温度を十分に高温化することができず、成形体の金型離型時においては、外部離型剤や離型シートを用いてそれを補助する必要があった。   The acid anhydrides that have been put to practical use as curing agents for epoxy resins are not as diverse as the curing agents for epoxy resins such as polyamines, phenol novolacs, and imidazole curing agents. As a result, the glass transition temperature of the molded product after curing cannot be sufficiently increased, and when the molded product is released from the mold, an external mold release agent or a release sheet is used. It was necessary to assist.

テトラカルボン酸無水物については、高融点(150℃以上)のものが多いため、ポリイミド化合物の原料として用いられる以外の用途に適用することが困難である。さらには、適用用途が非常に限られているため、コスト的にも不利である。   Since tetracarboxylic acid anhydrides are often high melting points (150 ° C. or higher), it is difficult to apply to applications other than those used as raw materials for polyimide compounds. Furthermore, since the application is very limited, it is disadvantageous in terms of cost.

上記従来のカルボン酸化合物の分子間縮合体については、透明封止材料に配合される硬化剤として積極的に分子設計されたものではなく、その用途は限られたものでしかなかった。   The conventional intermolecular condensate of the carboxylic acid compound has not been actively designed as a curing agent to be blended in the transparent sealing material, and its use has been limited.

本発明は、硬化物のガラス転移温度を十分高めることができ、しかも硬化物への着色が十分少ない熱硬化性樹脂用硬化剤、並びに、それを用いた熱硬化性樹脂組成物及びその製造方法を提供することを目的とする。また、本発明は、かかる熱硬化性樹脂組成物を硬化させた硬化物及びそれにより封止された半導体装置を提供することを目的とする。   The present invention is capable of sufficiently increasing the glass transition temperature of a cured product, and further sufficiently curing the cured product, a thermosetting resin curing agent, a thermosetting resin composition using the same, and a method for producing the same. The purpose is to provide. Another object of the present invention is to provide a cured product obtained by curing such a thermosetting resin composition and a semiconductor device encapsulated thereby.

上記課題を解決するため、本発明の熱硬化性樹脂用硬化剤は、(A)下記一般式(1)で表される1つのカルボキシル基を有するモノカルボン酸化合物、又は、下記一般式(1)で表される1つのカルボキシル基を有するモノカルボン酸化合物及び下記一般式(2)で表される3以上のカルボキシル基を有する多価カルボン酸化合物、の縮合反応により得られる多価カルボン酸縮合体、並びに、(B)下記一般式(2)で表される3以上のカルボキシル基を有する多価カルボン酸化合物、のうちの1種以上を含むことを特徴とする。   In order to solve the above problems, the curing agent for thermosetting resin of the present invention is (A) a monocarboxylic acid compound having one carboxyl group represented by the following general formula (1), or the following general formula (1). And a polycarboxylic acid condensation product obtained by a condensation reaction of a monocarboxylic acid compound having one carboxyl group represented by formula (2) and a polycarboxylic acid compound having three or more carboxyl groups represented by the following general formula (2): And (B) one or more polyvalent carboxylic acid compounds having three or more carboxyl groups represented by the following general formula (2).

Figure 0005640319


[一般式(1)中、Rは、炭素数4〜15の1価の脂環式炭化水素基、炭素数2〜15の1価の複素環基、直鎖状若しくは分岐状の炭素数2〜15の1価の飽和炭化水素基、又は、直鎖状若しくは分岐状の炭素数2〜15の1価の不飽和炭化水素基を示す。ただし、いずれの基も置換基として下記一般式(1−1)で表される基又は下記式(1−2)で表される基を有していてもよい。
Figure 0005640319


(一般式(1−1)中、R11は、炭素数1〜50の直鎖状若しくは分岐状の飽和炭化水素基、又は、直鎖状若しくは分岐状の炭素数2〜15の1価の不飽和炭化水素基を示す。]
Figure 0005640319


[一般式(2)中、nは3以上の整数を示し、Rは、炭素数3〜15の脂環式炭化水素基若しくは炭素数2〜15の複素環基を含む、n価の有機基を示す。]
Figure 0005640319


[In General Formula (1), R 1 is a monovalent alicyclic hydrocarbon group having 4 to 15 carbon atoms, a monovalent heterocyclic group having 2 to 15 carbon atoms, or a linear or branched carbon number. A monovalent unsaturated hydrocarbon group having 2 to 15 monovalent saturated hydrocarbon groups or a linear or branched monovalent unsaturated hydrocarbon group having 2 to 15 carbon atoms is shown. However, any group may have a group represented by the following general formula (1-1) or a group represented by the following formula (1-2) as a substituent.
Figure 0005640319


(In the general formula (1-1), R 11 represents a linear or branched saturated hydrocarbon group having 1 to 50 carbon atoms, or a linear or branched monovalent monovalent group having 2 to 15 carbon atoms. Represents an unsaturated hydrocarbon group.]
Figure 0005640319


[In General Formula (2), n represents an integer of 3 or more, and R 2 represents an n-valent organic compound containing an alicyclic hydrocarbon group having 3 to 15 carbon atoms or a heterocyclic group having 2 to 15 carbon atoms. Indicates a group. ]

本発明の熱硬化性樹脂用硬化剤は、上記(A)多価カルボン酸縮合体及び上記(B)多価カルボン酸化合物のうちの1種以上を含有することにより、熱硬化性樹脂との相溶性に優れ、硬化物のガラス転移温度Tgを十分高めることができるとともに、硬化物への着色が十分少ないものとなり得る。本発明の熱硬化性樹脂用硬化剤によれば、熱硬化性樹脂組成物への配合により、透明性に優れ、且つ、高Tgの硬化物を得ることが可能となる。   The curing agent for a thermosetting resin of the present invention contains at least one of the (A) polyvalent carboxylic acid condensate and the (B) polyvalent carboxylic acid compound, thereby The compatibility is excellent, the glass transition temperature Tg of the cured product can be sufficiently increased, and coloring to the cured product can be sufficiently small. According to the curing agent for a thermosetting resin of the present invention, it is possible to obtain a cured product having excellent transparency and high Tg by blending with the thermosetting resin composition.

硬化時のTgを高める観点から、本発明の熱硬化性樹脂用硬化剤は、上記一般式(1)で表される1つのカルボキシル基を有するモノカルボン酸化合物及び、下記一般式(2−1)で表されるトリカルボン酸化合物の縮合反応により得られる下記一般式(3)で表される多価カルボン酸縮合体を含むものであることが好ましい。   From the viewpoint of increasing Tg at the time of curing, the curing agent for thermosetting resin of the present invention includes a monocarboxylic acid compound having one carboxyl group represented by the above general formula (1) and the following general formula (2-1). It is preferable that the polycarboxylic acid condensate represented by the following general formula (3) obtained by the condensation reaction of the tricarboxylic acid compound represented by

Figure 0005640319


Figure 0005640319


[一般式(2−1)及び(3)中、Rは、炭素数3〜15の脂環式炭化水素基若しくは炭素数2〜15の複素環基を含む、3価の有機基を示す。]
Figure 0005640319


Figure 0005640319


[In General Formulas (2-1) and (3), R 3 represents a trivalent organic group containing an alicyclic hydrocarbon group having 3 to 15 carbon atoms or a heterocyclic group having 2 to 15 carbon atoms. . ]

また、本発明の熱硬化性樹脂用硬化剤は、水素化トリメリット酸無水物及び下記一般式(2−2)で表されるイソシアヌル酸誘導体の縮合反応により得られる下記一般式(3−1)で表される多価カルボン酸縮合体を含むものであることが好ましい。   Moreover, the hardening | curing agent for thermosetting resins of this invention is the following general formula (3-1) obtained by condensation reaction of hydrogenated trimellitic anhydride and the isocyanuric acid derivative represented by the following general formula (2-2). It is preferable that the polycarboxylic acid condensate represented by this is included.

Figure 0005640319


Figure 0005640319


[一般式(2−2)及び(3−1)中、R21は、炭素数1〜15の1価の脂環式炭化水素基、炭素数2〜15の1価の複素環基、直鎖状若しくは分岐状の炭素数2〜15の1価の飽和炭化水素基、又は、直鎖状若しくは分岐状の炭素数2〜15の1価の不飽和炭化水素基を示す。]
Figure 0005640319


Figure 0005640319


[In General Formulas (2-2) and (3-1), R 21 represents a monovalent alicyclic hydrocarbon group having 1 to 15 carbon atoms, a monovalent heterocyclic group having 2 to 15 carbon atoms, A linear or branched monovalent saturated hydrocarbon group having 2 to 15 carbon atoms or a linear or branched monovalent unsaturated hydrocarbon group having 2 to 15 carbon atoms is shown. ]

また、本発明の熱硬化性樹脂用硬化剤は、水素化トリメリット酸無水物の2分子間の縮合反応により得られる下記式(3−2)で表される多価カルボン酸縮合体を含むことができる。この場合、Tgをより高くすることができる。   Moreover, the hardening | curing agent for thermosetting resins of this invention contains the polyhydric carboxylic acid condensate represented by following formula (3-2) obtained by the condensation reaction between two molecules of hydrogenated trimellitic anhydride. be able to. In this case, Tg can be made higher.

Figure 0005640319
Figure 0005640319

また、本発明の熱硬化性樹脂用硬化剤は、(C)多価カルボン酸化合物が分子内で閉環縮合してなる酸無水物を更に含むことが好ましい。   Moreover, it is preferable that the hardening | curing agent for thermosetting resins of this invention further contains the acid anhydride formed by (C) polyhydric carboxylic acid compound ring-closing condensation in a molecule | numerator.

上記の本発明の熱硬化性樹脂用硬化剤は、エポキシ樹脂用硬化剤とすることができる。   The curing agent for thermosetting resin of the present invention can be a curing agent for epoxy resin.

また、本発明の熱硬化性樹脂用硬化剤は、数平均分子量Mnが300〜20000である上記多価カルボン酸縮合体を含むことが好ましい。この場合、トランスファー成形時の流動性を更に向上させることができる。   Moreover, it is preferable that the hardening | curing agent for thermosetting resins of this invention contains the said polyhydric carboxylic acid condensate whose number average molecular weight Mn is 300-20000. In this case, the fluidity at the time of transfer molding can be further improved.

また、本発明の熱硬化性樹脂用硬化剤は、ICIコーンプレート粘度が100〜150℃の範囲で10〜30000mPa・sの範囲にある上記多価カルボン酸縮合体を含むことが好ましい。この場合、トランスファー成形時のバリの発生をより有効に抑えることができる。   Moreover, it is preferable that the hardening | curing agent for thermosetting resins of this invention contains the said polyhydric carboxylic acid condensate which exists in the range of 10-30000 mPa * s in the range of ICI cone plate viscosity of 100-150 degreeC. In this case, the generation of burrs during transfer molding can be more effectively suppressed.

また、本発明の熱硬化性樹脂用硬化剤は、軟化点が20〜200℃の範囲にある上記多価カルボン酸縮合体を含むことが好ましい。この場合、トランスファー成形時の流動性を更に向上させることができる。   Moreover, it is preferable that the hardening | curing agent for thermosetting resins of this invention contains the said polyhydric carboxylic acid condensate which has a softening point in the range of 20-200 degreeC. In this case, the fluidity at the time of transfer molding can be further improved.

本発明はまた、熱硬化性樹脂と、本発明の熱硬化性樹脂用硬化剤とを含む熱硬化性樹脂組成物を提供する。本発明の熱硬化性樹脂組成物によれば、本発明の熱硬化性樹脂用硬化剤を含有することにより、透明性に優れ、且つ、高Tgの硬化物を得ることが可能となる。また、本発明の熱硬化性樹脂組成物によれば、成形型内で硬化させて得られる硬化物の離型性を向上させることが可能となる。   The present invention also provides a thermosetting resin composition comprising a thermosetting resin and the thermosetting resin curing agent of the present invention. According to the thermosetting resin composition of the present invention, it is possible to obtain a cured product having excellent transparency and high Tg by containing the curing agent for thermosetting resin of the present invention. Moreover, according to the thermosetting resin composition of this invention, it becomes possible to improve the mold release property of the hardened | cured material obtained by making it harden | cure in a shaping | molding die.

本発明の熱硬化性樹脂組成物において、熱硬化性樹脂は少なくとも2つのエポキシ基を有するエポキシ樹脂を含むことができる。   In the thermosetting resin composition of the present invention, the thermosetting resin can include an epoxy resin having at least two epoxy groups.

また、本発明の熱硬化性樹脂組成物は、基板上若しくは成形型内にて温度HC(℃)で熱硬化させたときに得られる硬化物のガラス転移温度をTg(℃)としたときに、Tg−HCが10℃以上であるものが好ましい。このような熱硬化性樹脂組成物によれば、金型などの成形型内から硬化物を離型するときの温度に対して10℃以上高いガラス転移温度を有する硬化物を得ることができ、硬化物のセルフリリースが可能となる。 The thermosetting resin composition of the present invention has a glass transition temperature of Tg 1 (° C.) of a cured product obtained by thermosetting at a temperature HC (° C.) on a substrate or in a mold. In addition, it is preferable that Tg 1 -HC is 10 ° C. or higher. According to such a thermosetting resin composition, it is possible to obtain a cured product having a glass transition temperature higher by 10 ° C. or more than the temperature at which the cured product is released from the mold such as a mold, The self-release of the cured product becomes possible.

本発明はまた、上記(A)多価カルボン酸縮合物及び上記(B)多価カルボン酸化合物のうちの1種以上と、上記(C)酸無水物とを含有する熱硬化性樹脂用硬化剤を製造する方法であって、上記(A)多価カルボン酸縮合物及び上記(B)多価カルボン酸化合物のうちの1種以上と、上記(C)酸無水物とを溶融混合する工程を有する熱硬化性樹脂用硬化剤の製造方法を提供する。   The present invention also provides curing for a thermosetting resin containing one or more of the (A) polyvalent carboxylic acid condensate and the (B) polyvalent carboxylic acid compound and the (C) acid anhydride. A method for producing an agent, comprising: melting and mixing one or more of the (A) polyvalent carboxylic acid condensate and the (B) polyvalent carboxylic acid compound and the (C) acid anhydride. The manufacturing method of the hardening | curing agent for thermosetting resins which has this is provided.

本発明はまた、本発明の熱硬化性樹脂組成物を熱硬化させてなる硬化物を提供する。本発明の硬化物は、高いガラス転移温度と透明性とを兼ね備えることができる。   The present invention also provides a cured product obtained by thermosetting the thermosetting resin composition of the present invention. The cured product of the present invention can have both a high glass transition temperature and transparency.

本発明はまた、本発明の硬化物によって封止された半導体装置を提供する。   The present invention also provides a semiconductor device sealed with the cured product of the present invention.

本発明によれば、硬化物のガラス転移温度を十分高めることができ、しかも硬化物への着色が十分少ない熱硬化性樹脂用硬化剤、それを用いた熱硬化性樹脂組成物及びその製造方法、並びに、かかる熱硬化性樹脂組成物を硬化させた硬化物及びそれにより封止された半導体装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the glass transition temperature of hardened | cured material can fully be raised, and also the hardening | curing agent for thermosetting resins with few coloring to hardened | cured material, a thermosetting resin composition using the same, and its manufacturing method And the hardened | cured material which hardened this thermosetting resin composition, and the semiconductor device sealed by it can be provided.

光半導体装置の一実施形態を示す模式端面図である。1 is a schematic end view showing an embodiment of an optical semiconductor device.

以下、必要に応じて図面を参照しつつ、本発明の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings as necessary.

(熱硬化性樹脂用硬化剤)
まず、本発明で用いる(A)多価カルボン酸縮合体について説明する。なお、本明細書において、「多価カルボン酸縮合体」とは、カルボキシル基を有するカルボン酸化合物が、2分子ないしはそれ以上の分子間で、それぞれが有するカルボキシル基が分子間で脱水縮合することにより酸無水物結合を形成してなる縮合体を指す。
(Curing agent for thermosetting resin)
First, (A) polyvalent carboxylic acid condensate used in the present invention will be described. In this specification, the “polyvalent carboxylic acid condensate” means that a carboxylic acid compound having a carboxyl group is dehydrated and condensed between two or more molecules, and each carboxyl group is intermolecularly dehydrated. Refers to a condensate formed by forming an acid anhydride bond.

これに対して、本明細書において、「多価カルボン酸が分子内で閉環縮合してなる酸無水物」とは、例えば、無水フタル酸、無水マレイン酸、無水トリメリット酸、無水ピロメリット酸、ヘキサヒドロ無水フタル酸等のように、分子内で2つのカルボキシル基が脱水縮合した酸無水物のことを指し、「多価カルボン酸縮合体」とは区別される。   In contrast, in this specification, “an acid anhydride formed by ring-closing condensation of a polyvalent carboxylic acid” means, for example, phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride It refers to an acid anhydride in which two carboxyl groups are dehydrated and condensed in the molecule, such as hexahydrophthalic anhydride, and is distinguished from a “polyvalent carboxylic acid condensate”.

本発明で用いる(A)多価カルボン酸縮合体は、下記一般式(1)で表される1つのカルボキシル基を有するモノカルボン酸化合物、又は、下記一般式(1)で表される1つのカルボキシル基を有するモノカルボン酸化合物及び下記一般式(2)で表される3以上のカルボキシル基を有する多価カルボン酸化合物、の縮合反応により得られる多価カルボン酸縮合体である。   The (A) polyvalent carboxylic acid condensate used in the present invention is a monocarboxylic acid compound having one carboxyl group represented by the following general formula (1) or one represented by the following general formula (1) It is a polyvalent carboxylic acid condensate obtained by a condensation reaction of a monocarboxylic acid compound having a carboxyl group and a polyvalent carboxylic acid compound having three or more carboxyl groups represented by the following general formula (2).

Figure 0005640319


[一般式(1)中、Rは、炭素数4〜15の1価の脂環式炭化水素基、炭素数2〜15の1価の複素環基、直鎖状若しくは分岐状の炭素数2〜15の1価の飽和炭化水素基、又は、直鎖状若しくは分岐状の炭素数2〜15の1価の不飽和炭化水素基を示す。ただし、いずれの基も置換基として下記一般式(1−1)で表される基又は下記式(1−2)で表される基を有していてもよい。
Figure 0005640319


(一般式(1−1)中、R11は、炭素数1〜50の直鎖状若しくは分岐状の飽和炭化水素基、又は、直鎖状若しくは分岐状の炭素数2〜15の1価の不飽和炭化水素基を示す。]
Figure 0005640319


[一般式(2)中、nは3以上の整数を示し、Rは、炭素数3〜15の脂環式炭化水素基若しくは炭素数2〜15の複素環基を含む、n価の有機基を示す。]
Figure 0005640319


[In General Formula (1), R 1 is a monovalent alicyclic hydrocarbon group having 4 to 15 carbon atoms, a monovalent heterocyclic group having 2 to 15 carbon atoms, or a linear or branched carbon number. A monovalent unsaturated hydrocarbon group having 2 to 15 monovalent saturated hydrocarbon groups or a linear or branched monovalent unsaturated hydrocarbon group having 2 to 15 carbon atoms is shown. However, any group may have a group represented by the following general formula (1-1) or a group represented by the following formula (1-2) as a substituent.
Figure 0005640319


(In the general formula (1-1), R 11 represents a linear or branched saturated hydrocarbon group having 1 to 50 carbon atoms, or a linear or branched monovalent monovalent group having 2 to 15 carbon atoms. Represents an unsaturated hydrocarbon group.]
Figure 0005640319


[In General Formula (2), n represents an integer of 3 or more, and R 2 represents an n-valent organic compound containing an alicyclic hydrocarbon group having 3 to 15 carbon atoms or a heterocyclic group having 2 to 15 carbon atoms. Indicates a group. ]

下記一般式(1)で表される1つのカルボキシル基を有するモノカルボン酸化合物としては、例えば、シクロブタン、シクロペンタン、シクロヘキサン、シクロへプタン、シクロオクタン、ノルボルネン、ジシクロペンタジエン、アダマンタン、水素化ナフタレン、水素化ビフェニル等のモノカルボン酸及びこれらの誘導体等が挙げられる。これらのモノカルボン酸化合物は、分子間で縮合する際の反応温度よりも沸点が高いものを用いることが好ましい。また、上記の化合物の中でも、安価であるという観点から、シクロヘキサン及びその誘導体のモノカルボン酸が望ましく、水素化トリメリット酸無水物が特に望ましい。   Examples of the monocarboxylic acid compound having one carboxyl group represented by the following general formula (1) include cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane, norbornene, dicyclopentadiene, adamantane, and hydrogenated naphthalene. And monocarboxylic acids such as hydrogenated biphenyl and derivatives thereof. These monocarboxylic acid compounds are preferably those having a boiling point higher than the reaction temperature for condensation between molecules. Among the above compounds, from the viewpoint of being inexpensive, monocarboxylic acid of cyclohexane and its derivative is desirable, and hydrogenated trimellitic anhydride is particularly desirable.

上記一般式(2)で表される3以上のカルボキシル基を有する多価カルボン酸化合物としては、例えば、式中のRが、イソシアヌル環、シクロヘキサン、シクロへプタン、シクロオクタン、ノルボルネン、ジシクロペンタジエン、アダマンタン、水素化ナフタレン、水素化ビフェニル等の環状の脂肪族基、環状シロキサンであり、nが3である、トリカルボン酸化合物が挙げられる。このような化合物を反応させて得られる多価カルボン酸縮合体は、エポキシ樹脂の硬化剤として使用した場合、透明な硬化物を得ることを容易とする。 As the polyvalent carboxylic acid compound having three or more carboxyl groups represented by the general formula (2), for example, R 2 in the formula is an isocyanuric ring, cyclohexane, cycloheptane, cyclooctane, norbornene, dicyclohexane. Examples thereof include cyclic aliphatic groups such as pentadiene, adamantane, hydrogenated naphthalene, and hydrogenated biphenyl, and trisiloxane compounds in which n is 3. When the polyvalent carboxylic acid condensate obtained by reacting such a compound is used as a curing agent for an epoxy resin, it is easy to obtain a transparent cured product.

本発明で用いる(A)多価カルボン酸縮合体としては、上記一般式(1)で表される1つのカルボキシル基を有するモノカルボン酸化合物及び下記一般式(2−1)で表されるトリカルボン酸化合物の縮合反応により得られる下記一般式(3)で表される多価カルボン酸縮合体が好ましい。   Examples of the (A) polycarboxylic acid condensate used in the present invention include a monocarboxylic acid compound having one carboxyl group represented by the general formula (1) and a tricarboxylic acid represented by the following general formula (2-1). A polyvalent carboxylic acid condensate represented by the following general formula (3) obtained by a condensation reaction of an acid compound is preferred.

Figure 0005640319


Figure 0005640319


[一般式(2−1)及び(3)中、Rは、炭素数3〜15の脂環式炭化水素基若しくは炭素数2〜15の複素環基を含む、3価の有機基を示す。]
Figure 0005640319


Figure 0005640319


[In General Formulas (2-1) and (3), R 3 represents a trivalent organic group containing an alicyclic hydrocarbon group having 3 to 15 carbon atoms or a heterocyclic group having 2 to 15 carbon atoms. . ]

また、特には、水素化トリメリット酸無水物及び下記一般式(2−2)で表されるイソシアヌル酸誘導体の縮合反応により得られる下記一般式(3−1)で表される多価カルボン酸縮合体が好ましい。   In particular, a polyvalent carboxylic acid represented by the following general formula (3-1) obtained by a condensation reaction of hydrogenated trimellitic anhydride and an isocyanuric acid derivative represented by the following general formula (2-2) Condensates are preferred.

Figure 0005640319


Figure 0005640319


[一般式(2−2)及び(3−1)中、R21は、炭素数1〜15の1価の脂環式炭化水素基、炭素数2〜15の1価の複素環基、直鎖状若しくは分岐状の炭素数2〜15の1価の飽和炭化水素基、又は、直鎖状若しくは分岐状の炭素数2〜15の1価の不飽和炭化水素基を示す。]
Figure 0005640319


Figure 0005640319


[In General Formulas (2-2) and (3-1), R 21 represents a monovalent alicyclic hydrocarbon group having 1 to 15 carbon atoms, a monovalent heterocyclic group having 2 to 15 carbon atoms, A linear or branched monovalent saturated hydrocarbon group having 2 to 15 carbon atoms or a linear or branched monovalent unsaturated hydrocarbon group having 2 to 15 carbon atoms is shown. ]

モノカルボン酸化合物及びトリカルボン酸化合物から得られる上記多価カルボン酸縮合体は、例えば、トリカルボン酸化合物1当量に対して、モノカルボン酸化合物を3当量反応させることにより得ることができる。   The polyvalent carboxylic acid condensate obtained from the monocarboxylic acid compound and the tricarboxylic acid compound can be obtained, for example, by reacting 3 equivalents of the monocarboxylic acid compound with 1 equivalent of the tricarboxylic acid compound.

本発明の熱硬化性樹脂用硬化剤は、上述したモノカルボン酸化合物及びトリカルボン酸化合物から得られる上記多価カルボン酸縮合体を製造する際に副生成物として得られる、モノカルボン酸化合物2分子から得られる多価カルボン酸縮合体を含有してもよい。このような多価カルボン酸縮合体としては、例えば、水素化トリメリット酸無水物の2分子間の縮合反応により得られる下記式(3−2)で表される多価カルボン酸縮合体が挙げられる。   The thermosetting resin curing agent of the present invention is a monocarboxylic acid compound molecule obtained as a by-product when the polyvalent carboxylic acid condensate obtained from the above-described monocarboxylic acid compound and tricarboxylic acid compound is produced. You may contain the polyhydric carboxylic acid condensate obtained from this. Examples of such a polyvalent carboxylic acid condensate include a polyvalent carboxylic acid condensate represented by the following formula (3-2) obtained by a condensation reaction between two molecules of hydrogenated trimellitic anhydride. It is done.

Figure 0005640319
Figure 0005640319

また、本発明の熱硬化性樹脂用硬化剤は、上記一般式(1)で表される1つのカルボキシル基を有するモノカルボン酸化合物の縮合反応により得られる多価カルボン酸縮合体として、上記式(3−2)で表される多価カルボン酸縮合体を含むことができる。   The curing agent for thermosetting resin of the present invention is a polycarboxylic acid condensate obtained by a condensation reaction of a monocarboxylic acid compound having one carboxyl group represented by the general formula (1). The polyvalent carboxylic acid condensate represented by (3-2) can be included.

(A)多価カルボン酸縮合体は、数平均分子量Mnが300〜20000であることが好ましい。なお、数平均分子量Mnは、ゲルパーミエーションクロマトグラフィーにより得られるポリスチレン換算値を指す。多価カルボン酸縮合体の数平均分子量Mnが300よりも小さい場合はICIコーンプレート粘度が低くなる傾向があり、20000よりも大きい場合はICIコーンプレート粘度が高くなる傾向があり、いずれの場合もエポキシ樹脂やその他の樹脂との相溶性が低下する傾向がある。   (A) The polycarboxylic acid condensate preferably has a number average molecular weight Mn of 300 to 20000. In addition, the number average molecular weight Mn refers to the polystyrene conversion value obtained by gel permeation chromatography. When the number average molecular weight Mn of the polyvalent carboxylic acid condensate is smaller than 300, the ICI corn plate viscosity tends to be low, and when it is larger than 20000, the ICI corn plate viscosity tends to be high. There is a tendency for compatibility with epoxy resins and other resins to decrease.

また、(A)多価カルボン酸縮合体は、ICIコーンプレート粘度が、100〜150℃の範囲で10〜30000mPa・sの範囲にあることが好ましい。ICIコーンプレート粘度が100〜150℃の範囲で10〜30000mPa・sの範囲にある多価カルボン酸縮合体を配合することで、例えば、トランスファー成形用エポキシ樹脂成形材料における樹脂バリの発生を低減できるなど熱硬化性樹脂組成物の成形性が改善されるという効果を得ることができる。多価カルボン酸縮合体のICIコーンプレート粘度は、Reseach Equipment(London)LTD.製のICIコーンプレート型粘度計により求められる。   The (A) polyvalent carboxylic acid condensate preferably has an ICI cone plate viscosity in the range of 10 to 30000 mPa · s in the range of 100 to 150 ° C. By adding a polyvalent carboxylic acid condensate having an ICI cone plate viscosity in the range of 10 to 30000 mPa · s in the range of 100 to 150 ° C., for example, the occurrence of resin burrs in epoxy resin molding materials for transfer molding can be reduced. The effect that the moldability of a thermosetting resin composition etc. is improved can be acquired. The ICI corn plate viscosity of the polyvalent carboxylic acid condensate is that of Research Equipment (London) LTD. It is determined by an ICI cone plate viscometer manufactured by the manufacturer.

次に、(A)多価カルボン酸縮合体の合成方法について説明する。多価カルボン酸縮合体の合成方法としては、例えば、上記一般式(1)で表されるモノカルボン酸化合物、又は、上記一般式(1)で表されるモノカルボン酸化合物及び上記一般式(2)で表される多価カルボン酸化合物が可溶である無水酢酸を用いて、脱酢酸及び脱水させながら縮合させる方法が挙げられる。   Next, a method for synthesizing (A) the polyvalent carboxylic acid condensate will be described. As a synthesis method of the polyvalent carboxylic acid condensate, for example, the monocarboxylic acid compound represented by the above general formula (1), or the monocarboxylic acid compound represented by the above general formula (1) and the above general formula ( Examples thereof include a method in which acetic anhydride in which the polyvalent carboxylic acid compound represented by 2) is soluble is condensed while deaceticating and dehydrating.

具体的には、例えば、原料となる、モノカルボン酸化合物、又は、トリカルボン酸化合物とモノカルボン酸化合物を、無水酢酸及び有機塩基中で、5〜30分間、窒素雰囲気下で還流した後、温度を180℃まで上昇させ、窒素気流下、開放系で反応によって生成する酢酸及び水を留去することにより縮合反応を進行させる。有機塩基としては、例えば、無水プロピオン酸、塩化アセチル、脂肪族酸塩化物及びトリメチルアミン等が挙げられる。そして、揮発成分が観られなくなったところで、反応容器内を減圧しながら180℃の温度で3時間にわたって、より好ましくは1時間にわたって溶融縮合することにより、多価カルボン酸縮合体を得ることができる。   Specifically, for example, a raw material, a monocarboxylic acid compound, or a tricarboxylic acid compound and a monocarboxylic acid compound are refluxed in acetic anhydride and an organic base for 5 to 30 minutes in a nitrogen atmosphere, and then the temperature is increased. Is increased to 180 ° C., and the condensation reaction proceeds by distilling off acetic acid and water produced by the reaction in an open system under a nitrogen stream. Examples of the organic base include propionic anhydride, acetyl chloride, aliphatic acid chloride, and trimethylamine. And when a volatile component is no longer observed, polycondensed carboxylic acid condensate can be obtained by melt condensation at a temperature of 180 ° C. for 3 hours, more preferably for 1 hour while reducing the pressure in the reaction vessel. .

上記で得られた多価カルボン酸縮合体は、無水酢酸等の非プロトン性溶媒を用いて再結晶することにより精製してもよく、再沈殿法を用いて精製してもよい。   The polyvalent carboxylic acid condensate obtained above may be purified by recrystallization using an aprotic solvent such as acetic anhydride, or may be purified using a reprecipitation method.

また、(A)多価カルボン酸縮合体は、上記のモノカルボン酸化合物及び多価カルボン酸化合物のうちから、上記の脱水縮合反応後に変色することがない組み合わせを選択し、合成することが好ましい。   The (A) polyvalent carboxylic acid condensate is preferably synthesized by selecting a combination that does not change color after the dehydration condensation reaction from the above monocarboxylic acid compound and polyvalent carboxylic acid compound. .

本発明で用いる(B)多価カルボン酸化合物としては、例えば、式中のRが、イソシアヌル環、シクロヘキサン、シクロへプタン、シクロオクタン、ノルボルネン、ジシクロペンタジエン、アダマンタン、水素化ナフタレン、水素化ビフェニル等の環状の脂肪族基、環状シロキサンであり、nが3である、トリカルボン酸化合物が挙げられる。(B)多価カルボン酸化合物としては、特に、水素化トリメリット酸が好ましい。 As (B) polyvalent carboxylic acid compound used in the present invention, for example, R 2 in the formula is an isocyanuric ring, cyclohexane, cycloheptane, cyclooctane, norbornene, dicyclopentadiene, adamantane, hydrogenated naphthalene, hydrogenated Examples thereof include cyclic aliphatic groups such as biphenyl, and tricarboxylic acid compounds which are cyclic siloxanes and n is 3. (B) Hydrogenated trimellitic acid is particularly preferable as the polyvalent carboxylic acid compound.

本発明の熱硬化性樹脂用硬化剤は、(C)多価カルボン酸化合物が分子内で閉環縮合してなる酸無水物を更に含むことができる。本実施形態の酸無水物系熱硬化性樹脂用硬化剤によれば、従来の酸無水物系熱硬化性樹脂用硬化剤に比べて、高温環境下における耐熱着色性に優れる。また、本実施形態の熱硬化性樹脂用硬化剤における(C)成分の含有割合は、(A)成分及び(B)成分の合計100質量部に対して、1〜100質量部が好ましい。   The curing agent for thermosetting resins of the present invention can further contain (C) an acid anhydride formed by ring-closing condensation of a polyvalent carboxylic acid compound in the molecule. According to the curing agent for an acid anhydride-based thermosetting resin of this embodiment, the heat-resistant coloring property in a high-temperature environment is excellent as compared with the conventional curing agent for an acid anhydride-based thermosetting resin. Moreover, as for the content rate of (C) component in the hardening | curing agent for thermosetting resins of this embodiment, 1-100 mass parts is preferable with respect to a total of 100 mass parts of (A) component and (B) component.

(C)多価カルボン酸化合物が分子内で閉環縮合してなる酸無水物としては、例えば、電子部品封止用エポキシ樹脂成形材料や光半導体封止用エポキシ樹脂成形材料で一般に使用されている、エポキシ樹脂と反応するものが挙げられる。上記(C)酸無水物は、比較的着色のないものを用いることが好ましく、このような無水物としては、例えば、多価カルボン酸が分子内で閉環縮合してなる酸無水物、イソシアヌル酸誘導体、フェノール系化合物等が挙げられる。   (C) As an acid anhydride formed by ring-closing condensation of a polyvalent carboxylic acid compound in a molecule, for example, it is generally used in an epoxy resin molding material for sealing electronic parts and an epoxy resin molding material for sealing optical semiconductors. And those that react with epoxy resins. It is preferable to use the acid anhydride (C) that is relatively uncolored. Examples of such anhydrides include acid anhydrides obtained by ring-closing condensation of polycarboxylic acids and isocyanuric acid. Derivatives, phenolic compounds and the like.

多価カルボン酸が分子内で閉環縮合してなる酸無水物としては、例えば、無水フタル酸、無水マレイン酸、無水トリメリット酸、無水ピロメリット酸、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、無水グルタル酸、無水ジメチルグルタル酸、無水ジエチルグルタル酸、無水コハク酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸等が挙げられる。   Examples of acid anhydrides formed by polycyclic carboxylic acid ring-closing condensation include phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, anhydrous Examples thereof include methyl nadic acid, anhydrous nadic acid, glutaric anhydride, dimethyl glutaric anhydride, diethyl glutaric anhydride, succinic anhydride, methyl hexahydrophthalic anhydride, and methyltetrahydrophthalic anhydride.

イソシアヌル酸誘導体としては、例えば、1,3,5−トリス(1−カルボキシメチル)イソシアヌレート、1,3,5−トリス(2−カルボキシエチル)イソシアヌレート、1,3,5−トリス(3−カルボキシプロピル)イソシアヌレート、1,3−ビス(2−カルボキシエチル)イソシアヌレートなどが挙げられる。   Examples of the isocyanuric acid derivatives include 1,3,5-tris (1-carboxymethyl) isocyanurate, 1,3,5-tris (2-carboxyethyl) isocyanurate, 1,3,5-tris (3- Carboxypropyl) isocyanurate, 1,3-bis (2-carboxyethyl) isocyanurate and the like.

上記の酸無水物の中でも、無水フタル酸、無水トリメリット酸、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水グルタル酸、無水ジメチルグルタル酸、無水ジエチルグルタル酸、1,3,5−トリス(3−カルボキシプロピル)イソシアヌレートを用いることが好ましい。   Among the above acid anhydrides, phthalic anhydride, trimellitic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, glutaric anhydride, dimethylglutaric anhydride, anhydrous Diethyl glutaric acid and 1,3,5-tris (3-carboxypropyl) isocyanurate are preferably used.

また、無水トリメリット酸、無水ピロメリット酸等、芳香環を有する酸無水物は、芳香環の不飽和結合のすべてを水素化させたものが好ましい。   The acid anhydride having an aromatic ring, such as trimellitic anhydride and pyromellitic anhydride, is preferably one in which all of the unsaturated bonds of the aromatic ring are hydrogenated.

(C)酸無水物は、1種を単独で用いても2種類以上併用してもよい。   (C) An acid anhydride may be used individually by 1 type, or may be used together 2 or more types.

(C)酸無水物は、その分子量が100〜400程度のものが好ましく、また無色ないし淡黄色のものが好ましい。   The acid anhydride (C) preferably has a molecular weight of about 100 to 400, and is preferably colorless or light yellow.

また、(C)酸無水物は、ポリイミド樹脂の原料として一般的に使用される酸無水物を用いてもよい。   Moreover, the acid anhydride generally used as a raw material of a polyimide resin may be used for (C) acid anhydride.

(C)酸無水物を更に含有する本実施形態の熱硬化性樹脂用硬化剤は、(A)多価カルボン酸縮合体及び/又は(B)多価カルボン酸化合物と、(C)酸無水物とを混合すること(混合工程)により製造することができる。例えば、公知のミキサーを用いて(A)成分及び/又は(B)成分並びに(C)成分を混合した後、必要に応じて3本ロールミルや押出機等により更に混練することにより、本実施形態の熱硬化性樹脂用硬化剤を混合物として得ることができる。透明性を有するエポキシ樹脂などの硬化物を得る観点から、混合物は透光性を有することが好ましい。   (C) The curing agent for thermosetting resin of the present embodiment further containing an acid anhydride comprises (A) a polyvalent carboxylic acid condensate and / or (B) a polyvalent carboxylic acid compound, and (C) an acid anhydride. It can manufacture by mixing a thing (mixing process). For example, after mixing (A) component and / or (B) component and (C) component using a well-known mixer, this embodiment is further knead | mixed with a 3 roll mill, an extruder, etc. as needed. The thermosetting resin curing agent can be obtained as a mixture. From the viewpoint of obtaining a cured product such as an epoxy resin having transparency, the mixture preferably has translucency.

本実施形態においては、(A)多価カルボン酸縮合体及び/又は(B)多価カルボン酸化合物と、(C)酸無水物とが相溶性を有することが好ましい。なお、「相溶性」とは、(A)成分又は(B)成分が、その他の成分(A)、(B)又は(C)と親和性を示し、均一な溶液又は混合物として存在することを意味する。   In this embodiment, it is preferable that (A) polyvalent carboxylic acid condensate and / or (B) polyvalent carboxylic acid compound and (C) acid anhydride have compatibility. “Compatibility” means that component (A) or component (B) has an affinity with other components (A), (B) or (C) and exists as a uniform solution or mixture. means.

より具体的には、例えば(A)成分及び/又は(B)成分と(C)成分とを1/1の重量比で混合し、それら成分を120℃にて完全に溶解し、引き続き攪拌を行って得られる混合液について、30分にわたり静置した後に混合液の一部を取り出して目視した場合、成分間の分離がない透明な液体として確認できる状態を意味する。   More specifically, for example, the component (A) and / or the component (B) and the component (C) are mixed at a weight ratio of 1/1, and these components are completely dissolved at 120 ° C., followed by stirring. About the liquid mixture obtained by performing, when leaving still for 30 minutes and taking out a part of liquid mixture and visually observing, it means the state which can be confirmed as a transparent liquid with no isolation | separation between components.

このような状態を本明細書では「可溶」と称し、成分が分離し不透明な液体となる場合を「不溶」と称す。互いに可溶ではあるが、溶解するまでに長い時間が必要であるような(A)及び/又は(B)並びに(C)成分の組み合わせは、長時間にわたる加熱により多くの熱エネルギーを必要とし、生産性やコストの面で不利となる。   In this specification, such a state is referred to as “soluble”, and the case where the components are separated and become an opaque liquid is referred to as “insoluble”. Combinations of components (A) and / or (B) and (C), which are soluble in each other but require a long time to dissolve, require more heat energy for heating over a long period of time, This is disadvantageous in terms of productivity and cost.

また、上記混合工程においては、析出物の発生に起因する粘度の増加を抑制するという観点から、析出物による白濁がない混合物を得ることが好ましい。なお、「析出物による白濁」とは、電磁波の可視光領域における散乱がないことを示す。より具体的には、光のレイリー散乱、ミー散乱、回折散乱現象を生じるような、散乱中心を有する微粒子が存在しないことを示す。   Moreover, in the said mixing process, it is preferable to obtain the mixture which does not have the cloudiness by a precipitate from a viewpoint of suppressing the increase in the viscosity resulting from generation | occurrence | production of a precipitate. Note that “white turbidity due to precipitates” indicates that there is no scattering of electromagnetic waves in the visible light region. More specifically, it indicates that there is no fine particle having a scattering center that causes Rayleigh scattering, Mie scattering, and diffraction scattering phenomenon of light.

析出物の発生を抑制できる混合工程としては、例えば、(A)成分及び/又は(B)成分を全量で100質量部と、(C)成分1〜100質量部とを耐熱ガラス製の容器に秤量し、この容器を、シリコーンオイルや水などの流体を媒体としたヒーターを用いて、35〜180℃の温度範囲で加熱するなどの方法が挙げられる。加熱方法は、上記の方法に制限するものではなく、熱電対、電磁波照射など公知の方法を用いることができ、さらに溶解を促進するために超音波などを照射してもよい。また、混合工程は、材料が流動することが可能な状態の溶融混合とすることが好ましい。   As a mixing process which can suppress generation | occurrence | production of a deposit, for example, (A) component and / or (B) component are 100 mass parts in total, and (C) component 1-100 mass parts is made into the container made from heat-resistant glass. Examples of the method include weighing and heating the container in a temperature range of 35 to 180 ° C. using a heater using a fluid such as silicone oil or water as a medium. The heating method is not limited to the above method, and a known method such as thermocouple or electromagnetic wave irradiation can be used, and ultrasonic wave or the like may be irradiated to promote dissolution. The mixing step is preferably melt mixing in a state where the material can flow.

本発明の熱硬化性樹脂用硬化剤は、エポキシ樹脂用硬化剤として好適に用いることができるが、硬化物又は高分子化合物のガラス転移温度を高温化させることを目的として、熱硬化性樹脂であるフェノール樹脂、ウレタン樹脂、アクリレート樹脂、シリコーン樹脂などに混合して用いることもできる。   Although the curing agent for thermosetting resins of the present invention can be suitably used as a curing agent for epoxy resins, it is a thermosetting resin for the purpose of increasing the glass transition temperature of the cured product or polymer compound. It can also be used by mixing with a certain phenol resin, urethane resin, acrylate resin, silicone resin or the like.

また、上述した本発明に係る(A)成分及び(B)成分のうちの1種以上、並びに必要に応じて上記(C)成分を含む硬化剤は、ポリイミド、ポリアミド、ポリアミドイミド、ポリウレタンアミドイミド、ポリアミド、ポリエステル等の熱可塑性樹脂の架橋化材として用いることもできる。   Moreover, the hardening | curing agent containing 1 or more types of the (A) component and (B) component which concerns on this invention mentioned above, and the said (C) component as needed is a polyimide, polyamide, a polyamideimide, a polyurethane amideimide. It can also be used as a cross-linking material for thermoplastic resins such as polyamide and polyester.

(熱硬化性樹脂組成物)
本発明の熱硬化性樹脂組成物は、熱硬化性樹脂と、上記本発明の熱硬化性樹脂用硬化剤とを含む。
(Thermosetting resin composition)
The thermosetting resin composition of the present invention contains a thermosetting resin and the curing agent for thermosetting resin of the present invention.

熱硬化性樹脂としては、少なくとも2つのエポキシ基を有するエポキシ樹脂、アクリル樹脂、シリコーン樹脂などが挙げられる。   Examples of the thermosetting resin include an epoxy resin having at least two epoxy groups, an acrylic resin, and a silicone resin.

エポキシ樹脂としては、電子部品封止用エポキシ樹脂成形材料で一般に使用されているものを用いることができる。具体的には、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂をはじめとするフェノール類とアルデヒド類のノボラック樹脂をエポキシ化したもの、ビスフェノールA、ビスフェノールF、ビスフェノールS、アルキル置換ビスフェノール等のジグリシジルエーテル、ジアミノジフェニルメタン、イソシアヌル酸等のポリアミンとエピクロルヒドリンの反応により得られるグリシジルアミン型エポキシ樹脂、オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂及び脂環族エポキシ樹脂等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いることができる。   As an epoxy resin, what is generally used with the epoxy resin molding material for electronic component sealing can be used. Specifically, phenol novolac type epoxy resins, orthocresol novolac type epoxy resins and other phenols and aldehyde novolak resins epoxidized, bisphenol A, bisphenol F, bisphenol S, alkyl-substituted bisphenols, etc. Glycidylamine type epoxy resin obtained by reaction of polyamine such as glycidyl ether, diaminodiphenylmethane, isocyanuric acid and epichlorohydrin, linear aliphatic epoxy resin and alicyclic epoxy obtained by oxidizing olefin bond with peracid such as peracetic acid Examples thereof include resins. These can be used alone or in combination of two or more.

また、エポキシ樹脂は比較的着色のないものが好ましく、このようなエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ジグリシジルイソシアヌレート、トリグリシジルイソシアヌレート、1,2−シクロヘキサンジカルボン酸をはじめとする1,3−シクロヘキサンジカルボン酸、1,4−シクロヘキサンジカルボン酸から誘導されるジカルボン酸ジグリシジルエステル;フタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、メチルテトラヒドロフタル酸、ナジック酸、メチルナジック酸等のジカルボン酸のジグリシジルエステル;芳香環が水素化された脂環式構造を有する核水素化トリメリット酸、核水素化ピロメリット酸等のグリシジルエステル等が挙げられる。   The epoxy resin is preferably relatively uncolored, and examples of such an epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, diglycidyl isocyanurate, and triglycidyl isocyanate. Nurate, 1,3-cyclohexanedicarboxylic acid including 1,2-cyclohexanedicarboxylic acid, dicarboxylic acid diglycidyl ester derived from 1,4-cyclohexanedicarboxylic acid; phthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, Diglycidyl esters of dicarboxylic acids such as methyltetrahydrophthalic acid, nadic acid, and methylnadic acid; glycidyl esters such as nuclear hydrogenated trimellitic acid and nuclear hydrogenated pyromellitic acid having an alicyclic structure in which the aromatic ring is hydrogenated Tel and the like.

また、シラン化合物を有機溶媒、有機塩基及び水の存在下に加熱して、加水分解・縮合させることにより製造される、主鎖がシリコーン骨格であるようなエポキシ基を有するポリオルガノシロキサン等も挙げられる。   In addition, polyorganosiloxane having an epoxy group whose main chain is a silicone skeleton produced by heating and hydrolyzing and condensing a silane compound in the presence of an organic solvent, an organic base and water is also included. It is done.

更に、グリシジルメタクリレート単量体と、これと重合可能な単量体からなる共重合体である、下記一般式(4)に示すような化学構造のエポキシ樹脂を用いることができる。   Furthermore, an epoxy resin having a chemical structure represented by the following general formula (4), which is a copolymer composed of a glycidyl methacrylate monomer and a monomer polymerizable with the glycidyl methacrylate monomer, can be used.

Figure 0005640319


(式中、R41はグリシジル基を示し、R42及びR43はそれぞれ独立に、水素原子、又は炭素数1〜6の飽和若しくは不飽和の一価の炭化水素基を示し、R44は一価の飽和炭化水素基を示し、p及びqは正の整数を示す。)
Figure 0005640319


(Wherein, R 41 represents a glycidyl group, each R 42 and R 43 independently represent a hydrogen atom, or a saturated or unsaturated monovalent hydrocarbon group having 1 to 6 carbon atoms, R 44 in one A saturated saturated hydrocarbon group, and p and q are positive integers.)

熱硬化性樹脂としてエポキシ樹脂を含む本実施形態の熱硬化性樹脂組成物(以下、エポキシ樹脂組成物という)におけるエポキシ樹脂と本発明の熱硬化性樹脂用硬化剤との配合割合は、エポキシ樹脂中のエポキシ基1当量に対して、当該エポキシ基との反応可能な硬化剤中の活性基(酸無水物基又は水酸基)が0.5〜1.2当量となることが好ましい。上記活性基の割合がエポキシ基1当量に対して0.5未満の場合には、エポキシ樹脂組成物の硬化速度が遅くなるとともに、得られる硬化体のガラス転移温度が低くなる場合があり、充分な弾性率が得られない場合がある。一方、上記活性基の割合が1.2当量を超える場合には、硬化後の強度が減少する場合がある。   The blending ratio of the epoxy resin and the curing agent for thermosetting resin of the present invention in the thermosetting resin composition (hereinafter referred to as epoxy resin composition) of the present embodiment containing an epoxy resin as the thermosetting resin is the epoxy resin. It is preferable that an active group (an acid anhydride group or a hydroxyl group) in a curing agent capable of reacting with the epoxy group is 0.5 to 1.2 equivalents relative to 1 equivalent of the epoxy group therein. When the ratio of the active group is less than 0.5 with respect to 1 equivalent of epoxy group, the curing rate of the epoxy resin composition becomes slow and the glass transition temperature of the resulting cured product may be lowered, which is sufficient. May not provide a sufficient elastic modulus. On the other hand, when the ratio of the active group exceeds 1.2 equivalents, the strength after curing may decrease.

エポキシ樹脂組成物には、硬化性を向上させる観点から、硬化触媒を更に添加してもよい。硬化触媒としては、特に制限はなく、例えば、1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7、トリエチレンジアミン、トリ−2,4,6−ジメチルアミノメチルフェノール等の3級アミン類、2−エチル−4メチルイミダゾール、2−メチルイミダゾールなどのイミダゾール類、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフェニルボレート、テトラ−n−ブチルホスホニウム−o,o−ジエチルホスホロジチオエート、テトラ−n−ブチルホスホニウム−テトラフルオロボレート、テトラ−n−ブチルホスホニウム−テトラフェニルボレート等のリン化合物、4級アンモニウム塩、有機金属塩類、及びこれらの誘導体などが挙げられる。これらは単独で使用してもよく又は2種以上を併用してもよい。これらの硬化促進剤の中では、3級アミン類、イミダゾール類、リン化合物を用いることが好ましい。   A curing catalyst may be further added to the epoxy resin composition from the viewpoint of improving curability. The curing catalyst is not particularly limited, and examples thereof include tertiary amines such as 1,8-diaza-bicyclo (5,4,0) undecene-7, triethylenediamine, tri-2,4,6-dimethylaminomethylphenol. Imidazoles such as 2-ethyl-4-methylimidazole, 2-methylimidazole, triphenylphosphine, tetraphenylphosphonium tetraphenylborate, tetra-n-butylphosphonium-o, o-diethylphosphorodithioate, tetra-n -Phosphorus compounds such as butylphosphonium-tetrafluoroborate and tetra-n-butylphosphonium-tetraphenylborate, quaternary ammonium salts, organometallic salts, and derivatives thereof. These may be used alone or in combination of two or more. Among these curing accelerators, it is preferable to use tertiary amines, imidazoles, and phosphorus compounds.

エポキシ樹脂組成物における上記硬化触媒の含有量は、エポキシ樹脂に対して、0.01〜8.0質量%であることが好ましく、0.1〜3.0質量%であることがより好ましい。エポキシ樹脂に対する硬化促進剤の含有割合が0.01質量%未満では、十分な硬化促進効果を得られない場合があり、一方、8.0質量%を超えると、得られる硬化物に変色が見られる場合がある。   The content of the curing catalyst in the epoxy resin composition is preferably 0.01 to 8.0% by mass and more preferably 0.1 to 3.0% by mass with respect to the epoxy resin. When the content of the curing accelerator relative to the epoxy resin is less than 0.01% by mass, a sufficient curing acceleration effect may not be obtained. On the other hand, when the content exceeds 8.0% by mass, the resulting cured product is discolored. May be.

本実施形態のエポキシ樹脂組成物は、透明樹脂材料として用いることが好適であるが、必要に応じて無機充填材、白色顔料、無機蛍光体を含有させて機能化することができる。例えば、本実施形態のエポキシ樹脂組成物は、白色顔料を添加し、光反射用熱硬化性樹脂組成物として用いることができる。   The epoxy resin composition of the present embodiment is preferably used as a transparent resin material, but can be functionalized by containing an inorganic filler, a white pigment, and an inorganic phosphor as necessary. For example, the epoxy resin composition of the present embodiment can be used as a thermosetting resin composition for light reflection by adding a white pigment.

透明樹脂材料として用いる場合は、熱硬化反応によって得られる硬化物が透明性を有することが必要であり、波長350〜800nmの紫外光から可視光域における光透過率が十分高いことが望ましい。本実施形態おいては、波長350〜800nmの所定の光に対する光透過率を70%以上とすることが好ましく、80%以上とすることがより好ましく、90%以上とすることが更に好ましい。また、透明樹脂材料が光半導体用透明封止樹脂の用途である場合、硬化物は、波長460nmの光に対して上記の光透過率を示すことが好ましい。   When used as a transparent resin material, it is necessary that the cured product obtained by the thermosetting reaction has transparency, and it is desirable that the light transmittance in the visible light region from the ultraviolet light having a wavelength of 350 to 800 nm is sufficiently high. In the present embodiment, the light transmittance for predetermined light having a wavelength of 350 to 800 nm is preferably 70% or more, more preferably 80% or more, and further preferably 90% or more. Moreover, when a transparent resin material is a use of the transparent sealing resin for optical semiconductors, it is preferable that hardened | cured material shows said light transmittance with respect to the light of wavelength 460nm.

他方、光反射用熱硬化性樹脂組成物として用いる場合は、熱硬化反応によって得られる硬化物が、可視光から近紫外光の波長領域において光反射率が十分高いこと必要である。この場合、波長450〜800nmの所定の光に対する反射率を70%以上とすることが好ましく、80%以上とすることがより好ましく、90%以上とすることが更に好ましい。   On the other hand, when used as a thermosetting resin composition for light reflection, a cured product obtained by a thermosetting reaction needs to have a sufficiently high light reflectance in a wavelength region from visible light to near ultraviolet light. In this case, the reflectance with respect to predetermined light having a wavelength of 450 to 800 nm is preferably 70% or more, more preferably 80% or more, and still more preferably 90% or more.

本発明の熱硬化性樹脂組成物及びその硬化物は、高い透明性及び耐熱性を必要とする電気絶縁材料、光半導体封止材料、接着材料、塗料材料及び成形材料など様々な用途で用いることが可能である。   The thermosetting resin composition of the present invention and the cured product thereof are used in various applications such as electrical insulating materials, optical semiconductor sealing materials, adhesive materials, paint materials and molding materials that require high transparency and heat resistance. Is possible.

(硬化物)
本発明の硬化物は、本発明の熱硬化性樹脂組成物を熱硬化させてなるものである。以下、本発明の好適な実施形態に係る硬化物及びそれを得る方法を説明する。
(Cured product)
The cured product of the present invention is obtained by thermosetting the thermosetting resin composition of the present invention. Hereinafter, the hardened | cured material which concerns on suitable embodiment of this invention, and the method of obtaining it are demonstrated.

本実施形態に係る硬化物は、上述した本発明に係るエポキシ樹脂組成物を、トランスファー成形、コンプレッション成形、液状射出成形又はポッティング成形することにより製造される。上記の成形方法は、通常、基材となるリードフレーム、セラミック基板及び有機基板等を挿入して、これら基材上に目的の硬化物を形成させるために用いられる。   The cured product according to the present embodiment is produced by subjecting the above-described epoxy resin composition according to the present invention to transfer molding, compression molding, liquid injection molding, or potting molding. The above molding method is usually used for inserting a lead frame, a ceramic substrate, an organic substrate, or the like as a base material to form a desired cured product on the base material.

上記の方法では、例えば、加熱した金型を用いて成形した後、更に後硬化させて目的の硬化物を得ることができる。当該方法においては、成形時に高い温度条件を選択する程、硬化を早めることが可能である。   In the above method, for example, after molding using a heated mold, it is further post-cured to obtain a desired cured product. In this method, the higher the temperature condition during molding, the faster the curing.

ただし、成形温度を高温化すると、それに伴い成形材料の溶融粘度が減少する傾向があり、これが原因となって金型上型と下型間の隙間に溶融した樹脂が張り出してバリとなる。バリが発生しやすい条件は、基材上の意図しない箇所に樹脂汚れが生じ、これを洗浄によって取り除く工程が必要となるため、生産性のロスとなり好ましくない。   However, when the molding temperature is increased, the melt viscosity of the molding material tends to decrease accordingly, and this causes the molten resin to protrude into the gap between the upper mold and the lower mold and become burrs. Conditions where burrs are likely to occur are not preferable because a resin stain occurs at an unintended location on the substrate, and a step of removing this by washing is required, resulting in loss of productivity.

また、硬化物のガラス転移温度が成形温度よりも低い場合、硬化物は成形直後において弾性の低いゴム状態である。ゴム状硬化物を金型から離型する際には、金型に備えられたイジェクターによって余剰の離型力を加える必要がある。このとき、硬化物の弾性が乏しいと、変形や破壊などの不具合が発生するおそれがある。   When the glass transition temperature of the cured product is lower than the molding temperature, the cured product is in a rubber state with low elasticity immediately after molding. When the rubber-like cured product is released from the mold, it is necessary to apply an excessive release force by an ejector provided in the mold. At this time, if the cured product has poor elasticity, there is a risk of problems such as deformation and destruction.

以上のような不具合を抑制する観点から、成形時の高温条件下におけるエポキシ樹脂組成物の溶融粘度を、従来の酸無水物硬化剤を用いた場合よりも高くすることが望ましく、硬化物のガラス転移温度を成形温度よりも十分高くすることが望ましい。   From the viewpoint of suppressing the above problems, it is desirable that the melt viscosity of the epoxy resin composition under a high temperature condition during molding is higher than that in the case of using a conventional acid anhydride curing agent. It is desirable to make the transition temperature sufficiently higher than the molding temperature.

本実施形態においては、バリの低減効果を得る観点から、150℃におけるエポキシ樹脂組成物のICIコーンプレート粘度が10mPa・sよりも大きいことが好ましく、50mPa・sよりも大きいことがより好ましく、100mmPa・sよりも大きいことがさらに好ましい。   In this embodiment, from the viewpoint of obtaining a burr reduction effect, the ICI cone plate viscosity of the epoxy resin composition at 150 ° C. is preferably greater than 10 mPa · s, more preferably greater than 50 mPa · s, and 100 mmPa More preferably, it is larger than s.

また、硬化物の金型離型性を向上させる観点から、基板上若しくは成形型内にて温度HC(℃)で熱硬化させたときに得られる硬化物のガラス転移温度をTg(℃)としたときに、Tg−HCが10℃以上であることが好ましく、30℃以上であることがより好ましく、50℃以上であることがさらに好ましい。 Further, from the viewpoint of improving the mold releasability of the cured product, the glass transition temperature of the cured product obtained when thermally cured at a temperature HC (° C.) on the substrate or in the mold is Tg 1 (° C.). Tg 1 -HC is preferably 10 ° C. or higher, more preferably 30 ° C. or higher, and further preferably 50 ° C. or higher.

本発明の熱硬化性樹脂用硬化剤によれば、熱硬化温度を150℃としたときに、硬化物のガラス転移温度と熱硬化温度との温度差を上記温度以上とすることができる。また、硬化物のガラス転移温度と、硬化物の離型時の温度との温度差を、上記温度以上とすることができる。   According to the curing agent for thermosetting resin of the present invention, when the thermosetting temperature is 150 ° C., the temperature difference between the glass transition temperature and the thermosetting temperature of the cured product can be set to the above temperature or more. Moreover, the temperature difference between the glass transition temperature of the cured product and the temperature at the time of releasing the cured product can be set to the above temperature or more.

(半導体装置)
本発明の半導体装置は、本発明の熱硬化性樹脂組成物の硬化物によって封止されたものである。本発明の好適な実施形態に係る半導体装置について説明する。図1は、光半導体装置であるチップ型の発光ダイオードの模式端面図である。発光ダイオード100は、発光素子としての発光ダイオード素子105と、発光ダイオード素子105を封止するように設けられた光学的に透明な封止材110とを備えている。発光ダイオード素子105は、ケース部材107により形成されたキャビティ部102の底部に配置されている。発光ダイオード素子105は、導電ペーストなどからなる接続層120を介してリードフレーム101aに電気的に接続されており、ワイヤー108を介してリードフレーム101bと電気的に接続されている。
(Semiconductor device)
The semiconductor device of the present invention is sealed with a cured product of the thermosetting resin composition of the present invention. A semiconductor device according to a preferred embodiment of the present invention will be described. FIG. 1 is a schematic end view of a chip-type light emitting diode which is an optical semiconductor device. The light emitting diode 100 includes a light emitting diode element 105 as a light emitting element, and an optically transparent sealing material 110 provided so as to seal the light emitting diode element 105. The light emitting diode element 105 is disposed at the bottom of the cavity portion 102 formed by the case member 107. The light emitting diode element 105 is electrically connected to the lead frame 101a via a connection layer 120 made of a conductive paste or the like, and is electrically connected to the lead frame 101b via a wire 108.

この発光ダイオード100における光学部材である封止材110は、発光ダイオード素子105を外気から保護すると共に、蛍光体を含有(担持)する役割を主に担っている。封止材110は、本発明の熱硬化性樹脂組成物の硬化物を含んでなる。この封止材110を得るには、まずキャビティ部102内に溶液状の樹脂組成物を流し込んで充填する。次いで、必要に応じて蛍光体等の各種添加物を熱硬化性樹脂組成物に加えた後、熱硬化性樹脂組成物に加熱処理を施すことにより熱硬化性樹脂を熱硬化させる。こうして、本発明の熱硬化性樹脂組成物の硬化物である封止材110が得られ、発光ダイオード100が完成する。   The sealing material 110 which is an optical member in the light emitting diode 100 mainly serves to protect the light emitting diode element 105 from the outside air and to contain (carry) a phosphor. The sealing material 110 includes a cured product of the thermosetting resin composition of the present invention. In order to obtain the sealing material 110, first, a solution-like resin composition is poured into the cavity portion 102 and filled. Next, if necessary, various additives such as phosphors are added to the thermosetting resin composition, and then the thermosetting resin composition is subjected to heat treatment, thereby thermosetting the thermosetting resin. In this way, the sealing material 110 which is a cured product of the thermosetting resin composition of the present invention is obtained, and the light emitting diode 100 is completed.

以下、本発明を実施例により詳述するが、本発明はこれらの実施例に制限するものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not restrict | limited to these Examples.

<多価カルボン酸縮合体の作製>
(多価カルボン酸縮合体A1)
反応容器内で、C3CIC酸(1,3,5−トリス(3−カルボキシプロピル)イソシアヌレート、四国化成社製)170g及び水素化無水トリメリット酸(三菱ガス化学社製)261gを、無水酢酸中、窒素雰囲気下、温度130℃で30分間還流した。その後、系内の温度を180℃まで上昇させ、窒素気流下のもと開放系で、反応によって生成した酢酸及び水を留去した。揮発成分が観られなくなったところで、反応容器内を減圧しながら、150℃で3時間加熱して溶融縮合し、多価カルボン酸縮合体を得た。
<Preparation of polyvalent carboxylic acid condensate>
(Polyvalent carboxylic acid condensate A1)
In a reaction vessel, 170 g of C3CIC acid (1,3,5-tris (3-carboxypropyl) isocyanurate, manufactured by Shikoku Kasei Co., Ltd.) and 261 g of hydrogenated trimellitic anhydride (produced by Mitsubishi Gas Chemical Co., Ltd.) in acetic anhydride. The mixture was refluxed at a temperature of 130 ° C. for 30 minutes in a nitrogen atmosphere. Thereafter, the temperature in the system was raised to 180 ° C., and acetic acid and water produced by the reaction were distilled off in an open system under a nitrogen stream. When no volatile components were observed, the reaction vessel was decompressed and heated at 150 ° C. for 3 hours for melt condensation to obtain a polyvalent carboxylic acid condensate.

(多価カルボン酸縮合体A2)
反応容器内で、水素化無水トリメリット酸(三菱ガス化学社製)261gを、無水酢酸中、窒素雰囲気下、温度130℃で30分間還流した。その後、系内の温度を180℃まで上昇させ、窒素気流下のもと開放系で、反応によって生成した酢酸及び水を留去した。揮発成分が観られなくなったところで、反応容器内を減圧しながら、150℃で3時間加熱して溶融縮合し、多価カルボン酸縮合体を得た。
(Polyvalent carboxylic acid condensate A2)
In the reaction vessel, 261 g of hydrogenated trimellitic anhydride (manufactured by Mitsubishi Gas Chemical Company) was refluxed in acetic anhydride at a temperature of 130 ° C. for 30 minutes in a nitrogen atmosphere. Thereafter, the temperature in the system was raised to 180 ° C., and acetic acid and water produced by the reaction were distilled off in an open system under a nitrogen stream. When no volatile components were observed, the reaction vessel was decompressed and heated at 150 ° C. for 3 hours for melt condensation to obtain a polyvalent carboxylic acid condensate.

(多価カルボン酸縮合体B1)
反応容器内で、トリメリット酸無水物(和光純薬社製)168g及びベンゼントリカルボン酸(和光純薬社製)166gを、無水酢酸中、窒素雰囲気下、温度130℃で60分間還流した。その後、系内の温度を180℃まで上昇させ、窒素気流下のもと開放系で、反応によって生成した酢酸及び水を留去した。揮発成分が観られなくなったところで、反応容器内を減圧しながら、150℃で3時間加熱して溶融縮合し、多価カルボン酸縮合体を得た。
(Polyvalent carboxylic acid condensate B1)
In a reaction vessel, 168 g of trimellitic anhydride (manufactured by Wako Pure Chemical Industries, Ltd.) and 166 g of benzenetricarboxylic acid (manufactured by Wako Pure Chemical Industries, Ltd.) were refluxed in acetic anhydride at a temperature of 130 ° C. for 60 minutes. Thereafter, the temperature in the system was raised to 180 ° C., and acetic acid and water produced by the reaction were distilled off in an open system under a nitrogen stream. When no volatile components were observed, the reaction vessel was decompressed and heated at 150 ° C. for 3 hours for melt condensation to obtain a polyvalent carboxylic acid condensate.

<多価カルボン酸縮合体の特性評価>
多価カルボン酸縮合体A1〜A2及びB1について、数平均分子量、ICIコーンプレート粘度、軟化点及び外観を下記の方法により評価した。その評価結果を表1に示す。
<Characteristic evaluation of polyvalent carboxylic acid condensate>
Regarding the polyvalent carboxylic acid condensates A1 to A2 and B1, the number average molecular weight, ICI cone plate viscosity, softening point and appearance were evaluated by the following methods. The evaluation results are shown in Table 1.

Figure 0005640319
Figure 0005640319

[数平均分子量]
縮合体の数平均分子量Mnは、ゲルパーミエーションクロマトグラフィー法(GPC)により標準ポリスチレンによる検量線を用いて測定した。なお、上記Mnは、GPCとしてポンプ(株式会社日立製作所製L−6200型)、カラム(TSKgel―G5000HXL及びTSKgel−G2000HXL、いずれも東ソー株式会社製、商品名)、検出器(株式会社日立製作所製L−3300RI型)を用い、テトラヒドロフランを溶離液として温度30℃、流量1.0ml/minの条件で測定した。
[Number average molecular weight]
The number average molecular weight Mn of the condensate was measured by gel permeation chromatography (GPC) using a standard polystyrene calibration curve. The Mn is GPC as a pump (L-6200 manufactured by Hitachi, Ltd.), column (TSKgel-G5000HXL and TSKgel-G2000HXL, both manufactured by Tosoh Corporation, trade name), detector (manufactured by Hitachi, Ltd.). L-3300RI type) was used, and tetrahydrofuran was used as an eluent, and the temperature was 30 ° C. and the flow rate was 1.0 ml / min.

[ICIコーンプレート粘度]
縮合体の粘度測定は、Reseach Equipment(London)LTD.製のICIコーンプレート型粘度計を用い、150℃の条件にて行った。
[ICI cone plate viscosity]
The viscosity of the condensate was measured by Research Equipment (London) LTD. Using an ICI corn plate viscometer made at 150 ° C.

[軟化点及び外観]
軟化点については、得られた縮合体をホットプレート上で加熱し、性状の変化を目視で確認し評価した。外観については、25℃での性状及び透明性を目視で確認し評価した。
[Softening point and appearance]
About the softening point, the obtained condensate was heated on the hotplate and the change of the property was confirmed visually and evaluated. About the external appearance, the property and transparency in 25 degreeC were confirmed visually and evaluated.

<エポキシ樹脂組成物の作製>
(実施例1)
まず、多価カルボン酸縮合体A1を54質量部と、ヘキサヒドロ無水フタル酸を62質量部とを120℃で攪拌しながら完全に相溶するまで溶融混合して、酸無水物系エポキシ樹脂用硬化剤を得た。
<Preparation of epoxy resin composition>
Example 1
First, 54 parts by mass of the polyvalent carboxylic acid condensate A1 and 62 parts by mass of hexahydrophthalic anhydride are melt-mixed with stirring at 120 ° C. until completely compatible, and cured for an acid anhydride epoxy resin. An agent was obtained.

次に、上記で得られた硬化剤、及びエポキシ樹脂としてトリグリシジルイソシアヌレート100質量部を120℃で攪拌しながら完全に相溶するまで溶融混合した後、加熱を止め、温度が80℃よりも低温まで下がったところで、硬化触媒としてテトラ−n−ブチルホスホニウム−0,0−ジエチルホスホロジチエートを1.0質量部加え、更によく攪拌し、透光性エポキシ樹脂組成物を得た。   Next, after melt-mixing 100 parts by weight of triglycidyl isocyanurate as an epoxy resin and completely mixed with stirring at 120 ° C. until complete compatibility, the heating was stopped and the temperature was higher than 80 ° C. When the temperature decreased to a low temperature, 1.0 part by mass of tetra-n-butylphosphonium-0,0-diethylphosphorodithioate was added as a curing catalyst and further stirred to obtain a light-transmitting epoxy resin composition.

なお、硬化剤同士の120℃における相溶性、及びエポキシ樹脂と硬化剤の120℃における相溶性は、目視で確認し評価した。   The compatibility between the curing agents at 120 ° C. and the compatibility between the epoxy resin and the curing agent at 120 ° C. were visually confirmed and evaluated.

(実施例2)
まず、多価カルボン酸縮合体A2を44質量部と、ヘキサヒドロ無水フタル酸を62質量部とを120℃で攪拌しながら完全に相溶するまで溶融混合して、酸無水物系のエポキシ樹脂用硬化剤を得た。
(Example 2)
First, 44 parts by mass of the polyvalent carboxylic acid condensate A2 and 62 parts by mass of hexahydrophthalic anhydride are melt-mixed with stirring at 120 ° C. until they are completely mixed. A curing agent was obtained.

次に、上記で得られた硬化剤、及びエポキシ樹脂としてトリグリシジルイソシアヌレート100質量部を120℃で攪拌しながら完全に相溶するまで溶融混合した後、加熱を止め、温度が80℃よりも低温まで下がったところで、硬化触媒としてテトラ−n−ブチルホスホニウム−0,0−ジエチルホスホロジチエートを1.0質量部加え、更によく攪拌し、透光性エポキシ樹脂組成物を得た。   Next, after melt-mixing 100 parts by weight of triglycidyl isocyanurate as an epoxy resin and completely mixed with stirring at 120 ° C. until complete compatibility, the heating was stopped and the temperature was higher than 80 ° C. When the temperature decreased to a low temperature, 1.0 part by mass of tetra-n-butylphosphonium-0,0-diethylphosphorodithioate was added as a curing catalyst and further stirred to obtain a light-transmitting epoxy resin composition.

参考例3)
まず、水素化トリメリット酸を35質量部と、ヘキサヒドロ無水フタル酸を62質量部とを120℃で攪拌しながら完全に相溶するまで溶融混合して、酸無水物系のエポキシ樹脂用硬化剤を得た。
( Reference Example 3)
First, 35 parts by mass of hydrogenated trimellitic acid and 62 parts by mass of hexahydrophthalic anhydride are melt-mixed with stirring at 120 ° C. until completely compatible, and an acid anhydride type epoxy resin curing agent. Got.

次に、上記で得られた硬化剤、及びエポキシ樹脂としてトリグリシジルイソシアヌレート100質量部を120℃で攪拌しながら完全に相溶するまで溶融混合した後、加熱を止め、温度が80℃よりも低温まで下がったところで、硬化触媒としてテトラ−n−ブチルホスホニウム−0,0−ジエチルホスホロジチエートを1.0質量部加え、更によく攪拌し、透光性エポキシ樹脂組成物を得た。   Next, after melt-mixing 100 parts by weight of triglycidyl isocyanurate as an epoxy resin and completely mixed with stirring at 120 ° C. until complete compatibility, the heating was stopped and the temperature was higher than 80 ° C. When the temperature decreased to a low temperature, 1.0 part by mass of tetra-n-butylphosphonium-0,0-diethylphosphorodithioate was added as a curing catalyst and further stirred to obtain a light-transmitting epoxy resin composition.

(比較例1)
まず、多価カルボン酸縮合体B1を66質量部と、ヘキサヒドロ無水フタル酸を62質量部とを120℃で攪拌したが、相溶しなかった。更に、これに、エポキシ樹脂としてトリグリシジルイソシアヌレート100質量部を加え、120℃で攪拌したが、相溶しなかった。
(Comparative Example 1)
First, 66 parts by mass of the polyvalent carboxylic acid condensate B1 and 62 parts by mass of hexahydrophthalic anhydride were stirred at 120 ° C., but they were not compatible. Further, 100 parts by mass of triglycidyl isocyanurate as an epoxy resin was added thereto and stirred at 120 ° C., but they were not compatible.

上記で得られるエポキシ樹脂組成物を180℃の条件で硬化させたところ、均一に硬化しなかった。   When the epoxy resin composition obtained above was cured at 180 ° C., it was not uniformly cured.

(比較例2)
ヘキサヒドロ無水フタル酸139質量部、及びエポキシ樹脂としてトリグリシジルイソシアヌレート100質量部を120℃で攪拌しながら完全に相溶するまで溶融混合した後、加熱を止め、温度が80℃よりも低温まで下がったところで、硬化触媒としてテトラ−n−ブチルホスホニウム−0,0−ジエチルホスホロジチエートを1.0質量部加え、更によく攪拌し、透光性エポキシ樹脂組成物を得た。
(Comparative Example 2)
After melt-mixing 139 parts by weight of hexahydrophthalic anhydride and 100 parts by weight of triglycidyl isocyanurate as an epoxy resin at 120 ° C. until they are completely compatible, heating is stopped and the temperature is lowered to a temperature lower than 80 ° C. As a curing catalyst, 1.0 part by mass of tetra-n-butylphosphonium-0,0-diethylphosphorodithioate was added as a curing catalyst and further stirred to obtain a translucent epoxy resin composition.

<エポキシ樹脂組成物の特性評価>
上記で得られたエポキシ樹脂組成物及びその硬化物について、下記の各種特性試験により評価した。評価結果を表2に示す。
<Characteristic evaluation of epoxy resin composition>
The epoxy resin composition obtained above and its cured product were evaluated by the following various characteristic tests. The evaluation results are shown in Table 2.

[透明性及び色]
透明性及び色については、得られた硬化物を目視で確認し評価した。
[Transparency and color]
About transparency and a color, the obtained hardened | cured material confirmed visually and evaluated.

[光透過性試験]
上記で得られた透光性エポキシ樹脂組成物をそれぞれ、100℃で4時間加熱し、その後150℃で2時間ポストキュアすることにより、厚み1.0mmのテストピースを作製し、分光光度計V−750型(日本分光株式会社製)にて波長460nmにおける光透過率を測定した。
[Light transmission test]
Each of the translucent epoxy resin compositions obtained above was heated at 100 ° C. for 4 hours and then post-cured at 150 ° C. for 2 hours to prepare a test piece having a thickness of 1.0 mm. The light transmittance at a wavelength of 460 nm was measured with a −750 type (manufactured by JASCO Corporation).

[ガラス転移温度]
上記で得られた透光性エポキシ樹脂組成物をそれぞれ、温度180℃に熱した金型(19mm×3mm×3mmの寸法のキャビティを有する金型)に充填し、成型圧力6.9MPaの条件で、トランスファー成形した。こうして19mm×3mm×3mmの形状の試験片を作製した。これらの試験片について、理学電機製熱機械分析装置(TAS−100)を用い、昇温速度5℃/minの条件下で測定した線膨張曲線の屈曲点よりガラス転移温度を求めた。
[Glass-transition temperature]
Each of the translucent epoxy resin compositions obtained above was filled in a mold heated to a temperature of 180 ° C. (a mold having a cavity with dimensions of 19 mm × 3 mm × 3 mm), and the molding pressure was 6.9 MPa. Transfer molded. In this way, a test piece having a shape of 19 mm × 3 mm × 3 mm was produced. About these test pieces, the glass transition temperature was calculated | required from the bending point of the linear expansion curve measured on the conditions of a temperature increase rate of 5 degrees C / min using the Rigaku Denki thermomechanical analyzer (TAS-100).

<エポキシ樹脂組成物のトランスファー成形性の評価>
上記で得られたエポキシ樹脂組成物を、温度150℃に熱した金型に充填し、成型圧力6.9MPaの条件でトランスファー成形した。金型は、全面クロムめっきされ、イジェクターを備えた金型を用いた。成形体(硬化物)を金型から離型したときの離型性について、下記の判定基準により評価した。
[離型性]
良好:硬化物を破壊、変形させることなく、容易に型から外すことができる。
不良:硬化物が型から外れにくく、無理に外すと硬化物が破壊又は変形する。
<Evaluation of transfer moldability of epoxy resin composition>
The epoxy resin composition obtained above was filled in a mold heated to a temperature of 150 ° C., and transfer molded under conditions of a molding pressure of 6.9 MPa. The mold used was a mold that was entirely chrome plated and provided with an ejector. The releasability when the molded body (cured product) was released from the mold was evaluated according to the following criteria.
[Releasability]
Good: Can be easily removed from the mold without destroying or deforming the cured product.
Defective: The cured product is difficult to remove from the mold, and if it is forcibly removed, the cured product is broken or deformed.

Figure 0005640319
Figure 0005640319

表1に示されるように、カルボキシル基を3つ有するイソシアヌル酸誘導体と水素化無水トリメリット酸とを脱酢酸しながら加熱反応させることにより、無色透明で固体の縮合体(多価カルボン酸縮合体A1)が得られ、この縮合体はヘキサヒドロフタル酸無水物との相溶性を示すことが確認された。また、水素化無水トリメリット酸の縮合反応により得られる多価カルボン酸縮合体B1についても、無色透明であり、ヘキサヒドロフタル酸無水物との相溶性を示すことが確認された。また、表2に示されるように、多価カルボン酸縮合体A1或いは多価カルボン酸縮合体B1と、ヘキサヒドロフタル酸無水物との混合物は、トリグリシジルイソシアヌレートのような多官能エポキシ樹脂と相溶することが確認された。また、多価カルボン酸縮合体A1又は多価カルボン酸縮合体A2を配合した実施例1又は2のエポキシ樹脂組成物によれば、熱硬化させることにより、硬化条件よりも20℃以上も高温のガラス転移温度を有し、なおかつ透光性に優れた透光性硬化物が得られることが確認された。更に、実施例1及び2のエポキシ樹脂組成物はトランスファー成形時における金型離型性が良好であり、その成形体はイジェクターを用いて容易に離型することができることが分かった。   As shown in Table 1, an isocyanuric acid derivative having three carboxyl groups and a hydrogenated trimellitic anhydride are heated and reacted while deacetic acid to give a colorless transparent solid condensate (polyvalent carboxylic acid condensate). A1) was obtained, and this condensate was confirmed to be compatible with hexahydrophthalic anhydride. Moreover, it was confirmed that the polyvalent carboxylic acid condensate B1 obtained by the condensation reaction of hydrogenated trimellitic anhydride is also colorless and transparent and exhibits compatibility with hexahydrophthalic anhydride. Further, as shown in Table 2, a mixture of the polyvalent carboxylic acid condensate A1 or polyvalent carboxylic acid condensate B1 and hexahydrophthalic anhydride is a polyfunctional epoxy resin such as triglycidyl isocyanurate. It was confirmed that they were compatible. Moreover, according to the epoxy resin composition of Example 1 or 2 which mix | blended polyvalent carboxylic acid condensate A1 or polyvalent carboxylic acid condensate A2, it is 20 degreeC or more high temperature rather than hardening conditions by thermosetting. It was confirmed that a translucent cured product having a glass transition temperature and excellent translucency can be obtained. Furthermore, it was found that the epoxy resin compositions of Examples 1 and 2 have good mold releasability during transfer molding, and the molded product can be easily released using an ejector.

また、水素化トリメリット酸を配合した参考例3のエポキシ樹脂組成物も、熱硬化させることにより、硬化条件よりも20℃以上も高温のガラス転移温度を有し、なおかつ透光性に優れた透光性硬化物が得られることが確認された。また、トランスファー成形時における金型離型性が良好であり、その成形体はイジェクターを用いて容易に離型することができることが分かった。 In addition, the epoxy resin composition of Reference Example 3 blended with hydrogenated trimellitic acid also has a glass transition temperature that is 20 ° C. or more higher than the curing conditions by thermosetting, and is excellent in translucency. It was confirmed that a translucent cured product was obtained. Further, it was found that the mold releasability at the time of transfer molding was good, and the molded body could be easily released using an ejector.

一方、全芳香族の多価カルボン酸縮合体である多価カルボン酸縮合体B1は、透明性が低く、また、ヘキサヒドロフタル酸無水物と溶融混合した場合には白濁した。そして、多価カルボン酸縮合体B1を配合した比較例1のエポキシ樹脂組成物では、均一な硬化物を得ることができなかった。比較例2のエポキシ樹脂組成物は、硬化後に成形金型と密着し、硬化物の弾性が乏しいために型から外すことが非常に困難であった。   On the other hand, the polyvalent carboxylic acid condensate B1, which is a wholly aromatic polyvalent carboxylic acid condensate, has low transparency and becomes cloudy when melt-mixed with hexahydrophthalic anhydride. And in the epoxy resin composition of the comparative example 1 which mix | blended polyhydric carboxylic acid condensate B1, uniform hardened | cured material was not able to be obtained. The epoxy resin composition of Comparative Example 2 was very difficult to remove from the mold because it was in close contact with the mold after curing and the elasticity of the cured product was poor.

100…発光ダイオード、101a、b…リードフレーム、102…キャビティ部、105…発光ダイオード素子、107…ケース部材、108…ワイヤー、110…封止材、120…接続層。
DESCRIPTION OF SYMBOLS 100 ... Light emitting diode, 101a, b ... Lead frame, 102 ... Cavity part, 105 ... Light emitting diode element, 107 ... Case member, 108 ... Wire, 110 ... Sealing material, 120 ... Connection layer.

Claims (14)

下記一般式(1)で表される1つのカルボキシル基を有するモノカルボン酸化合物及び下記一般式(2−1)で表されるトリカルボン酸化合物の縮合反応により得られる下記一般式(3)で表される多価カルボン酸縮合体を含む、熱硬化性樹脂用硬化剤。
Figure 0005640319

[一般式(1)中、Rは、炭素数4〜15の1価の脂環式炭化水素基、炭素数2〜15の1価の複素環基、直鎖状若しくは分岐状の炭素数2〜15の1価の飽和炭化水素基、又は、直鎖状若しくは分岐状の炭素数2〜15の1価の不飽和炭化水素基を示す。ただし、いずれの基も置換基として下記一般式(1−1)で表される基又は下記式(1−2)で表される基を有していてもよい。
Figure 0005640319

(一般式(1−1)中、R11は、炭素数1〜50の直鎖状若しくは分岐状の飽和炭化水素基、又は、直鎖状若しくは分岐状の炭素数2〜15の1価の不飽和炭化水素基を示す。)]
Figure 0005640319

Figure 0005640319

[一般式(2−1)及び(3)中、Rは、炭素数3〜15の脂環式炭化水素基若しくは炭素数2〜15の複素環基を含む、3価の有機基を示す。]
It is represented by the following general formula (3) obtained by a condensation reaction of a monocarboxylic acid compound having one carboxyl group represented by the following general formula (1) and a tricarboxylic acid compound represented by the following general formula (2-1). A curing agent for a thermosetting resin, which contains a polyvalent carboxylic acid condensate.
Figure 0005640319

[In General Formula (1), R 1 is a monovalent alicyclic hydrocarbon group having 4 to 15 carbon atoms, a monovalent heterocyclic group having 2 to 15 carbon atoms, or a linear or branched carbon number. A monovalent unsaturated hydrocarbon group having 2 to 15 monovalent saturated hydrocarbon groups or a linear or branched monovalent unsaturated hydrocarbon group having 2 to 15 carbon atoms is shown. However, any group may have a group represented by the following general formula (1-1) or a group represented by the following formula (1-2) as a substituent.
Figure 0005640319

(In the general formula (1-1), R 11 represents a linear or branched saturated hydrocarbon group having 1 to 50 carbon atoms, or a linear or branched monovalent monovalent group having 2 to 15 carbon atoms. Represents an unsaturated hydrocarbon group.)]
Figure 0005640319

Figure 0005640319

[In General Formulas (2-1) and (3), R 3 represents a trivalent organic group containing an alicyclic hydrocarbon group having 3 to 15 carbon atoms or a heterocyclic group having 2 to 15 carbon atoms. . ]
水素化トリメリット酸無水物及び下記一般式(2−2)で表されるイソシアヌル酸誘導体の縮合反応により得られる下記一般式(3−1)で表される多価カルボン酸縮合体を含む、熱硬化性樹脂用硬化剤。
Figure 0005640319

Figure 0005640319

[一般式(2−2)及び(3−1)中、R21は、炭素数1〜15の1価の脂環式炭化水素基、炭素数2〜15の1価の複素環基、直鎖状若しくは分岐状の炭素数2〜15の1価の飽和炭化水素基、又は、直鎖状若しくは分岐状の炭素数2〜15の1価の不飽和炭化水素基を示す。]
Including a polyvalent carboxylic acid condensate represented by the following general formula (3-1) obtained by a condensation reaction of a hydrogenated trimellitic anhydride and an isocyanuric acid derivative represented by the following general formula (2-2), Curing agent for thermosetting resin.
Figure 0005640319

Figure 0005640319

[In General Formulas (2-2) and (3-1), R 21 represents a monovalent alicyclic hydrocarbon group having 1 to 15 carbon atoms, a monovalent heterocyclic group having 2 to 15 carbon atoms, A linear or branched monovalent saturated hydrocarbon group having 2 to 15 carbon atoms or a linear or branched monovalent unsaturated hydrocarbon group having 2 to 15 carbon atoms is shown. ]
水素化トリメリット酸無水物の2分子間の縮合反応により得られる下記式(3−2)で表される多価カルボン酸縮合体を含む、熱硬化性樹脂用硬化剤。
Figure 0005640319
The hardening | curing agent for thermosetting resins containing the polyhydric carboxylic acid condensate represented by the following formula (3-2) obtained by the condensation reaction between two molecules of hydrogenated trimellitic anhydride.
Figure 0005640319
数平均分子量Mnが300〜20000である前記多価カルボン酸縮合体を含む、請求項1〜3のいずれか一項に記載の熱硬化性樹脂用硬化剤。   The hardening | curing agent for thermosetting resins as described in any one of Claims 1-3 containing the said polyhydric carboxylic acid condensate whose number average molecular weight Mn is 300-20000. ICIコーンプレート粘度が100〜150℃の範囲で10〜30000mPa・sの範囲にある前記多価カルボン酸縮合体を含む、請求項1〜のいずれか一項に記載の熱硬化性樹脂用硬化剤。 The curing for thermosetting resin according to any one of claims 1 to 4 , comprising the polyvalent carboxylic acid condensate having an ICI cone plate viscosity in the range of 10 to 30,000 mPa · s in the range of 100 to 150 ° C. Agent. 軟化点が20〜200℃の範囲にある前記多価カルボン酸縮合体を含む、請求項1〜のいずれか一項に記載の熱硬化性樹脂用硬化剤。 The hardening | curing agent for thermosetting resins as described in any one of Claims 1-5 containing the said polyhydric carboxylic acid condensate which has a softening point in the range of 20-200 degreeC. (C)多価カルボン酸化合物が分子内で閉環縮合してなる酸無水物を更に含む、請求項1〜のいずれか一項に記載の熱硬化性樹脂用硬化剤。 (C) The curing agent for thermosetting resins according to any one of claims 1 to 6 , further comprising an acid anhydride formed by ring-closing condensation of the polyvalent carboxylic acid compound in the molecule. エポキシ樹脂用硬化剤である、請求項1〜のいずれか一項に記載の熱硬化性樹脂用硬化剤。 The curing agent for thermosetting resins according to any one of claims 1 to 7 , which is a curing agent for epoxy resins. 熱硬化性樹脂と、請求項1〜のいずれか一項に記載の熱硬化性樹脂用硬化剤と、を含む熱硬化性樹脂組成物。 The thermosetting resin composition containing a thermosetting resin and the hardening | curing agent for thermosetting resins as described in any one of Claims 1-8 . 前記熱硬化性樹脂が、少なくとも2つのエポキシ基を有するエポキシ樹脂を含む、請求項に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to claim 9 , wherein the thermosetting resin includes an epoxy resin having at least two epoxy groups. 基板上若しくは成形型内にて温度HC(℃)で熱硬化させたときに得られる硬化物のガラス転移温度をTg(℃)としたときに、Tg−HCが10℃以上である、請求項又は10に記載の熱硬化性樹脂組成物。 Tg 1 -HC is 10 ° C. or higher, when Tg 1 (° C.) is the glass transition temperature of the cured product obtained when thermally cured at a temperature HC (° C.) on the substrate or in the mold. The thermosetting resin composition according to claim 9 or 10 . 請求項に記載の熱硬化性樹脂用硬化剤を製造する方法であって、
前記多価カルボン酸縮合体と、前記(C)酸無水物と、を溶融混合する工程を有する、熱硬化性樹脂用硬化剤の製造方法。
A method for producing a curing agent for a thermosetting resin according to claim 7 , comprising:
The manufacturing method of the hardening | curing agent for thermosetting resins which has the process of melt-mixing the said polyhydric carboxylic acid condensate and the said (C) acid anhydride.
請求項9〜11のいずれか一項に記載の熱硬化性樹脂組成物を熱硬化させてなる、硬化物。 Hardened | cured material formed by thermosetting the thermosetting resin composition as described in any one of Claims 9-11 . 請求項13に記載の硬化物によって封止された、半導体装置。 A semiconductor device sealed with the cured product according to claim 13 .
JP2009058525A 2008-03-11 2009-03-11 Curing agent for thermosetting resin, thermosetting resin composition, cured product, and semiconductor device Expired - Fee Related JP5640319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009058525A JP5640319B2 (en) 2008-03-11 2009-03-11 Curing agent for thermosetting resin, thermosetting resin composition, cured product, and semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008061090 2008-03-11
JP2008061090 2008-03-11
JP2009058525A JP5640319B2 (en) 2008-03-11 2009-03-11 Curing agent for thermosetting resin, thermosetting resin composition, cured product, and semiconductor device

Publications (2)

Publication Number Publication Date
JP2009242793A JP2009242793A (en) 2009-10-22
JP5640319B2 true JP5640319B2 (en) 2014-12-17

Family

ID=41305045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009058525A Expired - Fee Related JP5640319B2 (en) 2008-03-11 2009-03-11 Curing agent for thermosetting resin, thermosetting resin composition, cured product, and semiconductor device

Country Status (1)

Country Link
JP (1) JP5640319B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012025670A (en) * 2010-07-20 2012-02-09 Shikoku Chem Corp Isocyanurate compound
CN102952371B (en) * 2011-08-26 2017-05-10 杭州大固新材料有限公司 Modified thermosetting ultrahigh-molecular epoxy resin marine board

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4536437B2 (en) * 2003-06-30 2010-09-01 三菱瓦斯化学株式会社 Thermosetting resin composition and use thereof
JP3876251B2 (en) * 2003-12-12 2007-01-31 スタンレー電気株式会社 Thermosetting resin composition and light emitting diode using the composition as sealant
EP1754734B1 (en) * 2004-06-10 2010-03-10 Mitsubishi Gas Chemical Company, Inc. Curing agent for epoxy resins and epoxy resin compositions
JP4586925B2 (en) * 2008-01-09 2010-11-24 日立化成工業株式会社 Thermosetting resin composition, epoxy resin molding material, substrate for mounting optical semiconductor element, manufacturing method thereof, and optical semiconductor device

Also Published As

Publication number Publication date
JP2009242793A (en) 2009-10-22

Similar Documents

Publication Publication Date Title
TWI483962B (en) Composition for transfer molding, substrate for mounting optical semiconductor device and method for fabricating the same, and optical semiconductor device
JP4586925B2 (en) Thermosetting resin composition, epoxy resin molding material, substrate for mounting optical semiconductor element, manufacturing method thereof, and optical semiconductor device
JP5176144B2 (en) Thermosetting light reflecting resin composition, substrate for mounting optical semiconductor using the same, method for manufacturing the same, and optical semiconductor device
JPWO2015037584A1 (en) Epoxy resin mixture, epoxy resin composition, cured product, and semiconductor device
JP5359349B2 (en) Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element, method for manufacturing the same, and optical semiconductor device
JP6512228B2 (en) Substrate for mounting optical semiconductor element, method of manufacturing the same, and optical semiconductor device
JP5936804B2 (en) Thermosetting resin composition, substrate for mounting optical semiconductor element, manufacturing method thereof, and optical semiconductor device
JP5640319B2 (en) Curing agent for thermosetting resin, thermosetting resin composition, cured product, and semiconductor device
KR101475366B1 (en) Polycarboxylic acid condensate, thermosetting resin composition, substrate for mounting semiconductor element and process for producing same, and semiconductor device
JP2011219634A (en) Thermosetting resin composition for reflecting light, substrate for mounting optical semiconductor element and production method therefor, and optical semiconductor device
JP2011213948A (en) Polycarboxylic acid condensate, thermosetting resin composition, substrate for mounting optical semiconductor element and method for manufacturing the substrate, and optical semiconductor device
JP4666075B2 (en) Polyvalent carboxylic acid condensate, and curing agent for epoxy resin, epoxy resin composition, polyamide resin and polyester resin using the same
JP6570176B2 (en) Polyvalent carboxylic acid and polyvalent carboxylic acid composition, epoxy resin composition, thermosetting resin composition, cured product thereof, and optical semiconductor device containing the same
JP5949976B2 (en) Method for producing powdery thermosetting resin composition, method for producing thermosetting resin composition tablet, and method for producing optical semiconductor device
TW201026735A (en) Epoxy resin composition
JP2015017271A (en) Thermosetting resin composition, substrate for mounting optical semiconductor element and method for manufacturing the same, and optical semiconductor device
JP5834560B2 (en) Epoxy resin curing agent, epoxy resin composition, and optical semiconductor device
WO2015152326A1 (en) Curing agent for thermosetting resins, thermosetting resin composition using same, cured product of said thermosetting resin composition, and optical semiconductor device using said cured product as sealing material or reflective material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141013

R151 Written notification of patent or utility model registration

Ref document number: 5640319

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees