JP5639866B2 - Plasma processing equipment - Google Patents

Plasma processing equipment Download PDF

Info

Publication number
JP5639866B2
JP5639866B2 JP2010269875A JP2010269875A JP5639866B2 JP 5639866 B2 JP5639866 B2 JP 5639866B2 JP 2010269875 A JP2010269875 A JP 2010269875A JP 2010269875 A JP2010269875 A JP 2010269875A JP 5639866 B2 JP5639866 B2 JP 5639866B2
Authority
JP
Japan
Prior art keywords
plasma
sample
processing chamber
induction coil
vacuum processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010269875A
Other languages
Japanese (ja)
Other versions
JP2012119593A (en
Inventor
優作 属
優作 属
西尾 良司
良司 西尾
忠義 川口
忠義 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2010269875A priority Critical patent/JP5639866B2/en
Priority to US13/020,929 priority patent/US20120138229A1/en
Publication of JP2012119593A publication Critical patent/JP2012119593A/en
Application granted granted Critical
Publication of JP5639866B2 publication Critical patent/JP5639866B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • H01J37/32642Focus rings

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Description

本発明は、プラズマ処理装置に係り、特に誘導結合型プラズマ処理装置に関するものである。   The present invention relates to a plasma processing apparatus, and more particularly to an inductively coupled plasma processing apparatus.

半導体デバイス製造分野においては、エッチングや表面処理に誘導結合型(Inductively Coupled Plasma)のプラズマ装置が利用されている。この装置は、真空容器の外側に数ターンの誘導コイルを配置し、高周波電流を流すことで、プラズマにパワーを供給し、プラズマを生成する。この時、誘導コイルとプラズマとの間では浮遊容量が発生するため、この影響で真空容器の局所的損傷が起こる。これを防ぐために、この間に導体のファラデーシールドを設置した装置が特許文献1に開示されている。   In the field of semiconductor device manufacturing, inductively coupled plasma devices are used for etching and surface treatment. In this apparatus, an induction coil having several turns is arranged outside a vacuum vessel, and a high-frequency current is supplied to supply power to plasma to generate plasma. At this time, stray capacitance is generated between the induction coil and the plasma, and this influence causes local damage of the vacuum vessel. In order to prevent this, Patent Document 1 discloses an apparatus in which a Faraday shield of a conductor is installed between them.

いかなる誘導結合型のプラズマ源であっても、誘導コイルの電流分布が不均一になることは避けられないため、誘導コイルの周方向に沿ってプラズマが不均一になることが知られている。この現象は、ウエハ上に拡散したプラズマの中心軸が誘導コイルの中心軸とずれるという偏芯の原因となっている。また、上記のプラズマ偏芯の別の要因として、磁場の影響が考えられ、磁場の影響を解決するものとして、プラズマ処理室全体を磁性体で囲み、磁場遮蔽を行う装置が特許文献2に開示されている。   In any inductively coupled plasma source, it is inevitable that the current distribution of the induction coil becomes nonuniform, and it is known that the plasma becomes nonuniform along the circumferential direction of the induction coil. This phenomenon causes the eccentricity that the central axis of the plasma diffused on the wafer is shifted from the central axis of the induction coil. Further, as another factor of the above-mentioned plasma eccentricity, the influence of the magnetic field is considered, and as an apparatus for solving the influence of the magnetic field, an apparatus for shielding the magnetic field by surrounding the entire plasma processing chamber with a magnetic material is disclosed in Patent Document 2. Has been.

特開2007−158373号公報JP 2007-158373 A 特開2004−22988号公報Japanese Patent Laid-Open No. 2004-22988

また、発明者らも、磁場の影響によるウエハ上に拡散したプラズマ分布の偏芯が発生することを実験的に確認した。実験内容は、プラズマ処理室1の外周に約0.4mTの磁石を設置してプラズマ処理を実施するというものである。この結果、磁石が持つ0.4mTの微小な磁場によって、ウエハ上に拡散したプラズマ分布が大きく変動することが判明した。このことから、プラズマは、地磁気程度の微小な磁場であっても影響を受ける可能性があることがわかる。さらに、上記装置に搭載されている真空圧力計やモーターの磁場によって、同様の現象が起きる可能性もある。上述の磁場の影響によるウエハ上に拡散したプラズマの偏芯は、磁場の影響により発生したプラズマが、斜めにウエハ上に拡散したことによるものである。ウエハ上に拡散したプラズマが偏芯した状態でエッチングを行うと、エッチング処理の均一性や垂直性等が悪化する。現在、エッチング処理の高精度化や高速化の要求が高まっている中、安定したエッチング処理を行うには、磁場の影響は無視できない。また、磁場の影響を解決するために、特許文献2に開示された技術を用いると以下三つの問題が発生する。一つは、性能上の問題である。プラズマ処理室には、被処理物の搬送口や処理ガスの排気口などの開口が必要であり、実質的に磁場を遮蔽することは不可能である。また、磁性体で囲うことによって、誘導コイルから発生する誘導磁場が磁性体内部で誘導損失を起こし、プラズマ生成能力が低下する。二つめは、実装上の問題である。磁性体で覆うための大幅な設計変更が必要であり、組立時も重量物を扱う機会が増えるため、作業の危険度も増す。三つ目は、コスト上の問題である。特許文献2に開示された技術では、プラズマ処理室を覆うだけの磁性体が必要となり、莫大なコストがかかる。これら三つの問題は、量産装置にとって非常に深刻な問題となってしまう。また、上述のプラズマが斜めに拡散したことによるプラズマの偏芯は、上述の磁場の影響以外にもプラズマ処理室1内の排気偏芯でも発生し得る。このため、本発明では、上記3つの課題と排気偏芯による影響を解決するために、磁場を遮蔽するのではなく、磁場または排気偏芯によりウエハ上に拡散したプラズマの偏芯を補正することができるプラズマを発生させる手段を有するプラズマ処理装置を提供することを目的としている。   The inventors have also experimentally confirmed that eccentricity of the plasma distribution diffused on the wafer due to the influence of the magnetic field occurs. The content of the experiment is that plasma processing is performed by installing a magnet of about 0.4 mT on the outer periphery of the plasma processing chamber 1. As a result, it was found that the plasma distribution diffused on the wafer greatly fluctuated by the minute magnetic field of 0.4 mT that the magnet has. From this, it can be seen that the plasma may be affected even by a magnetic field as small as the geomagnetism. In addition, the same phenomenon may occur due to the vacuum pressure gauge and the magnetic field of the motor mounted on the apparatus. The eccentricity of the plasma diffused on the wafer due to the influence of the magnetic field described above is due to the fact that the plasma generated by the influence of the magnetic field diffuses obliquely on the wafer. If etching is performed in a state where the plasma diffused on the wafer is eccentric, the uniformity and perpendicularity of the etching process deteriorate. Currently, there is an increasing demand for high precision and high speed etching process. In order to perform a stable etching process, the influence of a magnetic field cannot be ignored. Further, when the technique disclosed in Patent Document 2 is used to solve the influence of the magnetic field, the following three problems occur. One is a performance problem. In the plasma processing chamber, openings such as a processing object transfer port and a processing gas exhaust port are required, and it is impossible to substantially shield the magnetic field. In addition, by enclosing with a magnetic material, the induction magnetic field generated from the induction coil causes an induction loss inside the magnetic material, and the plasma generation capability decreases. The second is an implementation problem. A significant design change is required to cover the magnetic material, and the chances of handling heavy objects increase during assembly, which increases the risk of work. The third is a cost issue. The technique disclosed in Patent Document 2 requires a magnetic body that only covers the plasma processing chamber, which entails enormous costs. These three problems become very serious problems for mass production equipment. Further, the eccentricity of the plasma due to the oblique diffusion of the above-described plasma can be caused by the eccentricity of the exhaust gas in the plasma processing chamber 1 in addition to the influence of the above-described magnetic field. Therefore, in the present invention, in order to solve the above three problems and the influence of exhaust eccentricity, the magnetic field is not shielded but the eccentricity of the plasma diffused on the wafer by the magnetic field or exhaust eccentricity is corrected. It is an object of the present invention to provide a plasma processing apparatus having a means for generating plasma capable of generating a plasma.

本発明は、試料プラズマ処理される真空処理室と、前記真空処理室の上方を気密に封止する誘電体封止窓と、前記真空処理室内にガスを供給するガス供給手段と、前記真空処理室内に配置され、前記試料を載置する試料台と、前記真空処理室外に配置された誘導コイルと、前記誘導コイルに高周波電力を供給する高周波電源と、前記プラズマと容量結合するファラデーシールドとを備えるプラズマ処理装置において、前記誘導コイルと前記誘電体封止窓との間に配置された偏芯補正手段をさらに備え、前記偏芯補正手段は、導体板を有し、前記導体板は、前記ファラデーシールドと導通されていることを特徴とする
The present invention includes a vacuum processing chamber in which the sample is Ru plasma treated, a dielectric sealing window for sealing the upper part of the vacuum processing chamber airtight, gas supply means for supplying gas to the pre-Symbol vacuum processing chamber, said A sample stage placed in a vacuum processing chamber on which the sample is placed, an induction coil placed outside the vacuum processing chamber, a high-frequency power source for supplying high-frequency power to the induction coil, and a Faraday that is capacitively coupled to the plasma in the plasma processing apparatus Ru and a shield, further comprising the placed eccentricity compensation means between the induction coil and prior Ki誘 collector sealing window, the eccentricity correcting means comprises a conductive plate, the conductor plate is characterized that you have been conducted with the Faraday shield.

本発明の構成により、ウエハ上に拡散したプラズマの偏芯を補正することができ、所望のエッチング性能を得ることが可能となる。   With the configuration of the present invention, it is possible to correct the eccentricity of the plasma diffused on the wafer, and to obtain a desired etching performance.

本発明のプラズマ処理装置の断面図である。It is sectional drawing of the plasma processing apparatus of this invention. 導体リングの設置箇所を示す図である。It is a figure which shows the installation location of a conductor ring. 無磁場状態でのプラズマの拡散を示す図である。It is a figure which shows the spreading | diffusion of the plasma in a no magnetic field state. プラズマ処理室外からの磁場がある場合のプラズマの拡散を示す図である。It is a figure which shows the spreading | diffusion of the plasma when there exists a magnetic field from the plasma processing chamber outside. 導体リングを適用した時のプラズマの偏芯の補正を示す図である。It is a figure which shows correction | amendment of the eccentricity of the plasma when a conductor ring is applied. 導体リングの作用の概念を示す図である。It is a figure which shows the concept of an effect | action of a conductor ring. 導体リングの形状を示した図である。It is the figure which showed the shape of the conductor ring. 本発明による効果の検証結果を示す図である。It is a figure which shows the verification result of the effect by this invention.

以下、本発明の一実施例について添付図面を参照しながら説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.

図1は、本発明のプラズマ処理装置の断面図を示す。プラズマ処理室1は、内部にプラズマ生成部を形成する絶縁材料(例えば、アルミナ(Al23)セラミック等の非導電性材料)からなる平行平板の誘電体封止窓であるウィンドウ1aと、ウエハである試料2を載置する試料台3を内部に配置するチャンバ1bとから成る。ウィンドウ1aの外側には、誘導コイル4が配置される。誘導コイル4は、それぞれが2ターンの内周コイル4aと外周コイル4bの2系統に分かれており、図中に示す矢印に沿って電流が流れる。また、ウィンドウ1aと誘導コイル4の間には、プラズマ5と静電容量的に結合する平板状のファラデーシールド6が設けられており、誘導コイル4とファラデーシールド6は、整合器であるマッチングボックス7を介して第一の高周波電源8に直列に接続される。また、マッチングボックス7の内部には可変コンデンサとコイルが搭載されている。このため、内周コイル4aと外周コイル4bの2系統に分岐して独立に電流を流すことが可能であり、この電流とファラデーシールド6に印加する電圧を制御することができる。また、マッチングボックス内には、第一の高周波電源8から発生する、例えば、13.56MHz,27.12MHz等の高周波電力の反射を抑えるためのコンデンサも搭載されている。 FIG. 1 shows a cross-sectional view of the plasma processing apparatus of the present invention. The plasma processing chamber 1 includes a window 1a which is a parallel plate dielectric sealing window made of an insulating material (for example, a non-conductive material such as alumina (Al 2 O 3 ) ceramic) that forms a plasma generating portion therein. It comprises a chamber 1b in which a sample table 3 on which a sample 2 as a wafer is placed is arranged. An induction coil 4 is disposed outside the window 1a. The induction coil 4 is divided into two systems of an inner peripheral coil 4a and an outer peripheral coil 4b each having two turns, and a current flows along an arrow shown in the figure. Further, a flat Faraday shield 6 that is capacitively coupled to the plasma 5 is provided between the window 1a and the induction coil 4. The induction coil 4 and the Faraday shield 6 are matching boxes that are matching units. 7 is connected in series to the first high frequency power supply 8. A variable capacitor and a coil are mounted inside the matching box 7. For this reason, it is possible to branch into two systems, the inner peripheral coil 4a and the outer peripheral coil 4b, and to allow the current to flow independently, and to control the current and the voltage applied to the Faraday shield 6. In addition, a capacitor for suppressing reflection of high-frequency power generated from the first high-frequency power source 8 such as 13.56 MHz and 27.12 MHz is also mounted in the matching box.

ガス供給装置9から処理ガスがプラズマ処理室1内に供給される一方で、排気装置10によってプラズマ処理室1内の圧力を所定の圧力に減圧排気される。ガス供給装置9よりプラズマ処理室1に処理ガスを供給し、該処理ガスを誘導コイル4により発生する誘導磁場とファラデーシールド6により発生する電場の作用によってプラズマを生成する。試料台3には、第二の高周波電源11が接続される。プラズマ5中に存在するイオンを試料2上に引き込むために、第二の高周波電源11からバイアス電力を試料台3に印加する。ファラデーシールド6は、たて縞状のスリットを有する金属導体からなり、ウィンドウ1aに重なる形で配置される。これによって、誘導コイル4とプラズマ5間の浮遊容量によって生じるウィンドウ1aの局所損傷を防止する機能や、マッチングボックス7にて積極的に制御された大きさの均一な容量結合をプラズマに与えることで、プラズマ処理室1内壁を最適状態に保つ機能を有する。   While the processing gas is supplied from the gas supply device 9 into the plasma processing chamber 1, the exhaust device 10 evacuates the pressure in the plasma processing chamber 1 to a predetermined pressure. A processing gas is supplied from the gas supply device 9 to the plasma processing chamber 1, and plasma is generated by the action of an induction magnetic field generated by the induction coil 4 and an electric field generated by the Faraday shield 6. A second high frequency power supply 11 is connected to the sample stage 3. In order to draw ions present in the plasma 5 onto the sample 2, bias power is applied to the sample stage 3 from the second high-frequency power source 11. The Faraday shield 6 is made of a metal conductor having a vertically striped slit and is disposed so as to overlap the window 1a. As a result, the plasma is provided with a function of preventing local damage of the window 1a caused by the stray capacitance between the induction coil 4 and the plasma 5 and a uniform capacitive coupling with a size that is actively controlled by the matching box 7. The plasma processing chamber 1 has a function of keeping the inner wall in an optimum state.

本発明の導体リング12は、図2に示すように誘導コイル4とファラデーシールド6の間に設置され、更にファラデーシールド6と導通するように設置されている。本実施例では、導体リング12は誘導コイル4とファラデーシールド6の間に設置されているが、誘導コイル4とウィンドウ1aの間に設置されても、誘導コイル4とファラデーシールド6の間に設置された場合と同様の機能を果たすことができる。   The conductor ring 12 according to the present invention is installed between the induction coil 4 and the Faraday shield 6 as shown in FIG. In this embodiment, the conductor ring 12 is installed between the induction coil 4 and the Faraday shield 6. However, even if it is installed between the induction coil 4 and the window 1a, it is installed between the induction coil 4 and the Faraday shield 6. It can perform the same function.

以上、上述した本発明のプラズマ処理装置により、誘導コイル4より発生する誘導磁場以外の磁場の影響による試料2上に拡散したプラズマの偏芯を補正するようなプラズマを生成することができる。これは以下に示すような本発明の作用によるものである。図3に示すように誘導コイル4より発生する誘導磁場以外の磁場による影響がない場合は、発生したプラズマ5aは真っすぐに試料2上に拡散するため、プラズマの偏芯は見られない。次に図4に示すように誘導コイル4より発生する誘導磁場以外の磁場による影響がある場合は、発生したプラズマ5aは斜めに拡散するため、試料2上に拡散したプラズマは偏芯する。このため、図5に示すように本発明のプラズマ処理装置により、試料2上に拡散したプラズマの偏芯を補正するプラズマ5bを発生させることができるため、試料2上に拡散したプラズマの偏芯を改善できる。尚、上記の試料2上に拡散したプラズマの偏芯を補正したプラズマとは、斜めに拡散した時に試料2上のプラズマが偏芯しないように、予め上記偏芯を補正できるようなプラズマのことである。次に上述の試料2上に拡散したプラズマの偏芯を補正するプラズマを発生させる手段について説明する。図6に示すようにリング状の導体である導体リング12が誘導コイル4とファラデーシールド6の間にあるため、導体リング12の円周上に沿って、誘導コイルから発生した誘導磁場を打ち消す方向に誘導電流13aが流れる。また、導体リング12はファラデーシールド6と導通しているため、さらに誘導電流13bも流れる。このため、プラズマ密度を低下させたい位置または試料2上に拡散したプラズマの偏芯箇所に誘導電流13aと誘導電流13bが流れるように、導体リング12をファラデーシールド6上で誘導コイル4の中心軸から偏芯させた位置に設置すると、誘導コイル4とプラズマ間の相互インダクタンスを変化させることによって、試料2上に拡散したプラズマの偏芯を補正するプラズマを発生させることができる。さらに、本発明は上述した作用により、試料2上に拡散したプラズマの偏芯を改善しているため、排気偏芯の影響による試料2上に拡散したプラズマの偏芯に対しても上述の磁場による試料2上に拡散したプラズマの偏芯の場合と同様の効果が得られる。また、本実施例では、導体リング12をファラデーシールド6と導通させているが、誘導電流が流れるための閉ループが形成できるものと導通していれば良いので、例えば、チャンバ1b,マッチングボックス7のカバー等と導通させても良い。次に導体リング12の形状の例を、図7に示す。本発明の導体リング12は、図7(a)のようなリング状の形状で例えばアルミニウム,ステンレスのような導体から製作されている。また、リング状の形状は、図7(a)の形状に限定されるものではなく、例えば、図7(b)に示すような櫛歯形状の導体リングでも良い。又は本発明の導体リングは例えばファラデーシールド6と導通させているため、必ずしもリング形状でなくても良い。そのため、図7(c)に示すような分割された導体リングでも良い。また、複数あるいは複種類の導体リングを同時に使用してもよい。また、導体リング12は、プラズマ分布のあらゆる偏芯位置に対応できるように独立で設置するものとする。これにより、導体リングのみの設置が容易となり、プラズマ処理装置間の機差に応じた調整が可能となる。   As described above, the plasma processing apparatus of the present invention described above can generate plasma that corrects the eccentricity of the plasma diffused on the sample 2 due to the influence of a magnetic field other than the induction magnetic field generated from the induction coil 4. This is due to the action of the present invention as described below. As shown in FIG. 3, when there is no influence by a magnetic field other than the induction magnetic field generated from the induction coil 4, the generated plasma 5a is diffused straight on the sample 2, so that no eccentricity of the plasma is observed. Next, as shown in FIG. 4, when there is an influence by a magnetic field other than the induction magnetic field generated from the induction coil 4, the generated plasma 5 a diffuses obliquely, so that the plasma diffused on the sample 2 is eccentric. Therefore, as shown in FIG. 5, the plasma processing apparatus according to the present invention can generate the plasma 5b for correcting the eccentricity of the plasma diffused on the sample 2, so that the eccentricity of the plasma diffused on the sample 2 can be generated. Can be improved. In addition, the plasma in which the eccentricity of the plasma diffused on the sample 2 is corrected is a plasma that can correct the eccentricity in advance so that the plasma on the sample 2 does not become eccentric when diffused obliquely. It is. Next, means for generating plasma for correcting the eccentricity of the plasma diffused on the sample 2 will be described. As shown in FIG. 6, since the conductor ring 12, which is a ring-shaped conductor, is between the induction coil 4 and the Faraday shield 6, the direction to cancel the induction magnetic field generated from the induction coil along the circumference of the conductor ring 12. Inductive current 13a flows through. Further, since the conductor ring 12 is electrically connected to the Faraday shield 6, an induced current 13b also flows. For this reason, the conductor ring 12 is placed on the Faraday shield 6 on the central axis of the induction coil 4 so that the induced current 13a and the induced current 13b flow through the position where the plasma density is to be reduced or the eccentric part of the plasma diffused on the sample 2. If it is installed at a position that is eccentric from the plasma, plasma that corrects the eccentricity of the plasma diffused on the sample 2 can be generated by changing the mutual inductance between the induction coil 4 and the plasma. Furthermore, since the present invention improves the eccentricity of the plasma diffused on the sample 2 by the above-described action, the magnetic field described above is also applied to the eccentricity of the plasma diffused on the sample 2 due to the influence of exhaust eccentricity. The same effect as in the case of eccentricity of the plasma diffused on the sample 2 due to the above can be obtained. In this embodiment, the conductor ring 12 is electrically connected to the Faraday shield 6. However, the conductor ring 12 only needs to be electrically connected to one that can form a closed loop for the induction current to flow. It may be conducted with a cover or the like. Next, an example of the shape of the conductor ring 12 is shown in FIG. The conductor ring 12 of the present invention is manufactured from a conductor such as aluminum or stainless steel in a ring shape as shown in FIG. Further, the ring shape is not limited to the shape of FIG. 7A, and may be a comb-shaped conductor ring as shown in FIG. 7B, for example. Or since the conductor ring of this invention is electrically connected with the Faraday shield 6, it does not necessarily need to be a ring shape. Therefore, a divided conductor ring as shown in FIG. Also, a plurality or multiple types of conductor rings may be used simultaneously. Moreover, the conductor ring 12 shall be installed independently so that it can respond to all the eccentric positions of plasma distribution. Thereby, installation of only a conductor ring becomes easy and the adjustment according to the machine difference between plasma processing apparatuses is attained.

次に、本発明による効果をエッチングレートにより検証した結果について説明する。図8は検証結果を示す図であり、以下のエッチングレート測定は、特にプラズマの偏芯が顕著に出るφ200mm用誘導結合プラズマエッチング装置を用いて、アルミナ(Al23)の薄膜試料を塩素系ガス(Cl2ガスとBCl3ガスの混合ガス)でエッチングしたときのエッチングレートの試料面内分布である。また、エッチングレートの試料面内分布を示したグラフは、試料上の指定されたポイントを膜厚測定機を用いて処理前後で測定し、エッチングレートの試料面内分布を等高線で示したものである。この等高線は、色が薄い部分ほどエッチングレートが速く、逆に濃い部分はエッチングレートが遅いことを示す。また、本発明による効果は、エッチングレートの試料面内各点の平均値,エッチングレートの試料面内均一性,偏芯率をそれぞれ算出して、検証した。尚、偏芯率は試料2上に拡散したプラズマの偏芯の度合いを表す指標であり、偏芯率が小さい値であるほど、偏芯していないことを示す。 Next, the result of verifying the effect of the present invention by the etching rate will be described. FIG. 8 shows the verification results. In the following etching rate measurement, a thin film sample of alumina (Al 2 O 3 ) was chlorinated using an inductively coupled plasma etching apparatus for φ200 mm in which the plasma eccentricity was particularly remarkable. It is a sample in-plane distribution of an etching rate when etching is performed with a system gas (a mixed gas of Cl 2 gas and BCl 3 gas). The graph showing the distribution of the etching rate in the sample plane is a measurement of the specified points on the sample before and after treatment using a film thickness measuring instrument, and the distribution of the etching rate in the sample plane is shown by contour lines. is there. The contour lines indicate that the lighter the color portion, the faster the etching rate, and the darker portion, the slower the etching rate. Further, the effect of the present invention was verified by calculating the average value of each point in the sample surface of the etching rate, the uniformity of the etching rate in the sample surface, and the eccentricity rate. The eccentricity is an index representing the degree of eccentricity of the plasma diffused on the sample 2, and the smaller the eccentricity, the less the eccentricity.

まず、従来のプラズマ処理装置では、図8(a)に示すように、エッチングレートの試料面内分布は図の右下のレート速度が速い。これは、磁場の影響により、プラズマが右下に偏芯したためである。次に従来のプラズマ処理装置の外周に磁石を設置したときのエッチングレートの試料面内分布を図8(b)に示す。図8(b)に示す箇所にそれぞれN極とS極の磁石(0.4mT)を設置して、エッチングレート測定を実施した結果、エッチングレートの速い箇所は右上に移動した。磁石を設置することで誘導磁場の分布が変化したためである。また、上述により、あらゆる箇所に磁場が発生している場合でも、エッチングレートの試料面内分布の結果から試料2上に拡散したプラズマの偏芯位置を推定できる。上記の偏芯位置の推定結果を基に導体リング12を設置することで、試料2上に拡散したプラズマの偏芯を改善できる。次に、本発明を適用した場合のエッチングレートの試料面内分布の結果は図8(c)に示すように、偏芯率が8.6%から2.7%に改善されたことに伴い、エッチングレートの試料面内均一性が8.3%から5.8%へと改善することができた。   First, in the conventional plasma processing apparatus, as shown in FIG. 8A, the in-plane distribution of the etching rate has a high rate rate at the lower right of the figure. This is because the plasma is eccentric to the lower right due to the influence of the magnetic field. Next, FIG. 8B shows the in-plane distribution of the etching rate when a magnet is installed on the outer periphery of a conventional plasma processing apparatus. As a result of installing an N-pole magnet and an S-pole magnet (0.4 mT) at the location shown in FIG. 8B and measuring the etching rate, the location with the fast etching rate moved to the upper right. This is because the distribution of the induction magnetic field is changed by installing the magnet. Further, as described above, the eccentric position of the plasma diffused on the sample 2 can be estimated from the result of the in-plane distribution of the etching rate even when a magnetic field is generated at any location. By installing the conductor ring 12 based on the estimation result of the eccentric position, the eccentricity of the plasma diffused on the sample 2 can be improved. Next, the result of the in-plane distribution of the etching rate when the present invention is applied is shown in FIG. 8C, as the eccentricity is improved from 8.6% to 2.7%. The uniformity of the etching rate in the sample surface was improved from 8.3% to 5.8%.

また、本実施例では、試料2上に拡散したプラズマの偏芯箇所の推定にエッチングレートの試料面内分布の測定例で説明したが、プローブによるプラズマ分布測定,イオン電流フラックス測定等でも試料2上に拡散したプラズマの偏芯箇所の推定は可能である。   Further, in this embodiment, the example of measuring the in-plane distribution of the etching rate has been described for estimating the eccentric position of the plasma diffused on the sample 2, but the sample 2 can also be measured by the plasma distribution measurement, ion current flux measurement, etc. by the probe. It is possible to estimate the eccentricity of the plasma diffused upward.

以上、上述した通り、本発明のプラズマ処理装置は、試料上に拡散したプラズマの偏芯を補正するプラズマを発生させる偏芯補正手段を有することにより、磁場の影響またはプラズマ処理室内の排気偏芯による試料上に拡散したプラズマの偏芯を改善できる。   As described above, the plasma processing apparatus of the present invention has an eccentricity correction means for generating plasma that corrects the eccentricity of the plasma diffused on the sample, so that the influence of the magnetic field or the exhaust eccentricity in the plasma processing chamber can be achieved. This can improve the eccentricity of the plasma diffused on the sample.

1 プラズマ処理室
1a ウィンドウ
1b チャンバ
2 試料
3 試料台
4 誘導コイル
4a 内周コイル
4b 外周コイル
5 プラズマ
6 ファラデーシールド
7 マッチングボックス
8 第一の高周波電源
9 ガス供給装置
10 排気装置
11 第二の高周波電源
12 導体リング
13 誘導電流
DESCRIPTION OF SYMBOLS 1 Plasma processing chamber 1a Window 1b Chamber 2 Sample 3 Sample stand 4 Inductive coil 4a Inner coil 4b Outer coil 5 Plasma 6 Faraday shield 7 Matching box 8 First high frequency power source 9 Gas supply device 10 Exhaust device 11 Second high frequency power source 12 Conductor ring 13 Inductive current

Claims (2)

試料プラズマ処理される真空処理室と、前記真空処理室の上方を気密に封止する誘電体封止窓と、前記真空処理室内にガスを供給するガス供給手段と、前記真空処理室内に配置され、前記試料を載置する試料台と、前記真空処理室外に配置された誘導コイルと、前記誘導コイルに高周波電力を供給する高周波電源と、前記プラズマと容量結合するファラデーシールドとを備えるプラズマ処理装置において、
前記誘導コイルと前記誘電体封止窓との間に配置された偏芯補正手段をさらに備え
前記偏芯補正手段は、導体板を有し、
前記導体板は、前記ファラデーシールドと導通されていることを特徴とするプラズマ処理装置。
A vacuum processing chamber in which the sample is Ru plasma treated, a dielectric sealing window for sealing the upper part of the vacuum processing chamber airtight, gas supply means for supplying gas to the pre-Symbol vacuum processing chamber, the vacuum processing chamber is arranged, comprising a sample stage for placing the sample, an induction coil disposed in the vacuum processing outside, a high-frequency power source for supplying high frequency power to the induction coil and a Faraday shield for the plasma and capacitively coupled In the plasma processing apparatus
Further comprising the placed eccentricity compensation means between the induction coil and prior Ki誘 collector sealing window,
The eccentricity correction means has a conductor plate,
The conductor plate is a plasma processing apparatus characterized that you have been conducted with the Faraday shield.
試料がプラズマ処理される真空処理室と、前記真空処理室の上方を気密に封止する誘電体封止窓と、前記真空処理室内にガスを供給するガス供給手段と、前記真空処理室内に配置され、前記試料を載置する試料台と、前記真空処理室外に配置された誘導コイルと、前記誘導コイルに高周波電力を供給する高周波電源と、前記プラズマと容量結合するファラデーシールドとを備えるプラズマ処理装置において、
前記誘導コイルと前記誘電体封止窓との間に配置された偏芯補正手段をさらに備え、
前記偏芯補正手段は、リング状の導体を有し、
前記導体は、前記ファラデーシールドと導通されていることを特徴とするプラズマ処理装置。
A vacuum processing chamber in which a sample is plasma-processed, a dielectric sealing window that hermetically seals the upper portion of the vacuum processing chamber, a gas supply means for supplying a gas into the vacuum processing chamber, and a vacuum processing chamber A plasma processing apparatus comprising: a sample stage on which the sample is placed; an induction coil disposed outside the vacuum processing chamber; a high-frequency power source that supplies high-frequency power to the induction coil; and a Faraday shield that is capacitively coupled to the plasma. In the device
Further comprising an eccentricity correction means disposed between the induction coil and the dielectric sealing window,
The eccentricity correction means has a ring-shaped conductor ,
The plasma processing apparatus , wherein the conductor is electrically connected to the Faraday shield.
JP2010269875A 2010-12-03 2010-12-03 Plasma processing equipment Active JP5639866B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010269875A JP5639866B2 (en) 2010-12-03 2010-12-03 Plasma processing equipment
US13/020,929 US20120138229A1 (en) 2010-12-03 2011-02-04 Plasma processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010269875A JP5639866B2 (en) 2010-12-03 2010-12-03 Plasma processing equipment

Publications (2)

Publication Number Publication Date
JP2012119593A JP2012119593A (en) 2012-06-21
JP5639866B2 true JP5639866B2 (en) 2014-12-10

Family

ID=46161119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010269875A Active JP5639866B2 (en) 2010-12-03 2010-12-03 Plasma processing equipment

Country Status (2)

Country Link
US (1) US20120138229A1 (en)
JP (1) JP5639866B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9966236B2 (en) * 2011-06-15 2018-05-08 Lam Research Corporation Powered grid for plasma chamber
JP2016082180A (en) * 2014-10-22 2016-05-16 株式会社日立ハイテクノロジーズ Plasma processing apparatus
CN105695936B (en) * 2014-11-26 2018-11-06 北京北方华创微电子装备有限公司 Pre-cleaning cavity and plasma processing device
CN108271309B (en) * 2016-12-30 2020-05-01 中微半导体设备(上海)股份有限公司 Inductively coupled plasma processing device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5234529A (en) * 1991-10-10 1993-08-10 Johnson Wayne L Plasma generating apparatus employing capacitive shielding and process for using such apparatus
JP2002151481A (en) * 2000-08-30 2002-05-24 Samco International Inc Plasma processing apparatus and plasma processing method
US6842147B2 (en) * 2002-07-22 2005-01-11 Lam Research Corporation Method and apparatus for producing uniform processing rates
JP2004134495A (en) * 2002-10-09 2004-04-30 Fasl Japan Ltd Plasma processing apparatus
US20040163595A1 (en) * 2003-02-26 2004-08-26 Manabu Edamura Plasma processing apparatus
JP5072066B2 (en) * 2006-10-16 2012-11-14 株式会社アルバック Plasma forming method

Also Published As

Publication number Publication date
US20120138229A1 (en) 2012-06-07
JP2012119593A (en) 2012-06-21

Similar Documents

Publication Publication Date Title
TWI657477B (en) Methods and apparatus for adjusting or controlling process rate uniformity across a substrate within a plasma chamber
US8911588B2 (en) Methods and apparatus for selectively modifying RF current paths in a plasma processing system
US9844126B2 (en) Plasma treatment apparatus
WO2008065744A1 (en) Plasma processing apparatus
JP2011103346A (en) Plasma processing apparatus
US20150136325A1 (en) Plasma processing using multiple radio frequency power feeds for improved uniformity
KR102111504B1 (en) Substrate processing apparatus and method
JP6620078B2 (en) Plasma processing equipment
KR102218686B1 (en) Plasma processing apparatus
JP5865472B2 (en) Plasma processing equipment
JP4046207B2 (en) Plasma processing equipment
JP5639866B2 (en) Plasma processing equipment
JP5913829B2 (en) Plasma processing equipment
US20140053984A1 (en) Symmetric return liner for modulating azimuthal non-uniformity in a plasma processing system
JP2017033788A (en) Plasma processing apparatus
JP5856791B2 (en) Plasma processing equipment
CN108271309B (en) Inductively coupled plasma processing device
US20130240147A1 (en) Methods and apparatus for selectively modulating azimuthal non-uniformity in a plasma processing system
TW201438056A (en) Magnetic shielding for plasma process chambers
KR101257005B1 (en) Plasma processing apparatus
KR102207755B1 (en) Plasma treatment device
JP6239666B2 (en) Plasma processing equipment
KR102316591B1 (en) Antenna for inductively coupled plasma generation apparatus and method of control thereof and inductively coupled plasma generation apparatus comprising the same
JP6595335B2 (en) Plasma processing equipment
JP6768946B2 (en) Processing device for the object to be processed

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120521

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141027

R150 Certificate of patent or registration of utility model

Ref document number: 5639866

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350