JP2016082180A - Plasma processing apparatus - Google Patents

Plasma processing apparatus Download PDF

Info

Publication number
JP2016082180A
JP2016082180A JP2014214964A JP2014214964A JP2016082180A JP 2016082180 A JP2016082180 A JP 2016082180A JP 2014214964 A JP2014214964 A JP 2014214964A JP 2014214964 A JP2014214964 A JP 2014214964A JP 2016082180 A JP2016082180 A JP 2016082180A
Authority
JP
Japan
Prior art keywords
frequency power
plasma
plasma processing
processing apparatus
induction coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014214964A
Other languages
Japanese (ja)
Other versions
JP2016082180A5 (en
Inventor
ゼ 申
Ze Shen
ゼ 申
哲郎 小野
Tetsuo Ono
哲郎 小野
久夫 安並
Hisao Yasunami
久夫 安並
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2014214964A priority Critical patent/JP2016082180A/en
Publication of JP2016082180A publication Critical patent/JP2016082180A/en
Publication of JP2016082180A5 publication Critical patent/JP2016082180A5/ja
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a plasma processing apparatus performing radical etching capable of reconciling wafer plane uniformity of processing speed and price reduction of the apparatus.SOLUTION: A plasma processing apparatus including a processing chamber where a specimen is processed, a plurality of induction coils arranged on the outside of the processing chamber and generating an induction field, and one high frequency power supply for supplying high frequency power to the induction coils is further provided with a power time sharing unit for distributing the high frequency power, supplied from the high frequency power supply, respectively, to the induction coils at different times.SELECTED DRAWING: Figure 1

Description

本発明は、プラズマ処理装置に係り、特にプラズマを用いたプラズマエッチング装置に関する。 The present invention relates to a plasma processing apparatus, and more particularly to a plasma etching apparatus using plasma.

本発明の対象である誘導コイルによりプラズマを発生させて用いたプラズマエッチング装置で、かつプラズマを周期的にオンオフする技術に関しては、特許文献1に開示され、真空チャンバの外周に複数個の誘導コイルを設けて、それぞれに高周波電源を接続し、かつ高周波電源を周期的にオンオフしてプラズマをパルス状に点灯させる技術が記載されている。 A plasma etching apparatus using plasma generated by an induction coil, which is the subject of the present invention, and a technique for periodically turning on and off the plasma are disclosed in Patent Document 1, and a plurality of induction coils are provided on the outer periphery of a vacuum chamber. Are provided, and a high-frequency power source is connected to each of them, and the high-frequency power source is periodically turned on and off to turn on plasma in a pulse form.

特許文献1に開示された先行技術の目的は、エッチング速度の高精度制御でプラズマをパルス状に点滅することで、被処理材料である半導体基板表面上に反応性生物層の生成と除去を繰り返し行い、原子層単位のエッチングを実現する。   The purpose of the prior art disclosed in Patent Document 1 is to repeatedly generate and remove a reactive biological layer on the surface of a semiconductor substrate, which is a material to be processed, by blinking the plasma in a pulsed manner with high-precision control of the etching rate. To achieve atomic layer etching.

また、特許文献2には、高周波電力が供給されて外側誘導電界を形成する渦巻き状をなす外側アンテナと、外側アンテナの内側に同心状に設けられ、高周波電力が供給されて内側誘導電界を形成する渦巻き状をなす内側アンテナとを有する高周波アンテナを備えた誘導結合プラズマ処理装置により、内側アンテナに相対的に大きな電流値の電流を流して内側アンテナに対応する部分に形成した内側誘導電界により局所的なプラズマを生成して処理を行う第1の処理と、外側アンテナに相対的に大きな電流値の電流を流して前記外側アンテナに対応する部分に形成した外側誘導電界により局所的なプラズマを生成して処理を行う第2の処理と、時間を異ならせて実施し、処理終了時点で基板に対して所望の処理分布が得られるようにすることが記載されている。さらに、特許文献3には、チャンバ内壁の堆積物を低減するためにファラデーシールドを設置する技術が記載されている。   Patent Document 2 discloses a spiral outer antenna that is supplied with high-frequency power to form an outer induced electric field, and is concentrically provided inside the outer antenna, and is supplied with high-frequency power to form an inner induced electric field. An inductively coupled plasma processing apparatus equipped with a high frequency antenna having a spiral inner antenna that causes a relatively large current value to flow through the inner antenna, and a local induction electric field formed in a portion corresponding to the inner antenna. Local plasma is generated by a first process that generates and generates a typical plasma, and an external induction electric field formed in a portion corresponding to the outer antenna by passing a relatively large current through the outer antenna. The second processing is performed at a different time from the second processing, so that a desired processing distribution can be obtained for the substrate at the end of the processing. It has been mounting. Further, Patent Document 3 describes a technique for installing a Faraday shield in order to reduce deposits on the inner wall of the chamber.

特開2014−7432号公報JP 2014-7432 A 特開2013−162034号公報JP 2013-162034 A 特開2000−323298号公報JP 2000-323298 A

半導体素子の製造に使用するプラズマエッチングには上述した先行技術の原子層エッチングのような高精度加工の他に、堆積している膜を等方的に除去するような選択性は必要だが精度を必要としない加工のニーズもある。後者はラジカルエッチングあるいはケミカルエッチングなどと呼ばれるが、本発明では以後、ラジカルエッチングと称する。 In addition to high-precision processing such as the above-described prior art atomic layer etching, plasma etching used to manufacture semiconductor devices requires selectivity to remove the deposited film isotropically, but accuracy is high. There are also processing needs that are not necessary. The latter is called radical etching or chemical etching, but is hereinafter referred to as radical etching in the present invention.

一方、半導体素子の製造ではコスト低減のために、加工装置の価格を低減するニーズも強くある。特にラジカルエッチング装置は高い精度を必要としないために加工装置を安価に製作する必要がある。さらにシリコンウエハの直径は、量産性向上、コスト削減のために大口径化が進んでいる。   On the other hand, in the manufacture of semiconductor elements, there is a strong need to reduce the price of processing equipment in order to reduce costs. In particular, since the radical etching apparatus does not require high accuracy, it is necessary to manufacture the processing apparatus at a low cost. Furthermore, the diameter of silicon wafers is increasing to increase mass productivity and reduce costs.

現在主流は、直径300mmのウエハだが、近い将来450mmへの移行も検討されている。一方、プラズマ処理装置では、ウエハの大口径化に伴い、処理特性のウエハ面内均一性が課題となる。プラズマを用いたプラズマエッチング装置では、エッチング速度と加工形状をウエハ面内で均一に保つことが必要で、ウエハ大口径化に伴い均一化技術は困難さを増している。   Currently, wafers with a diameter of 300 mm are the mainstream, but the transition to 450 mm is being considered in the near future. On the other hand, in the plasma processing apparatus, as the wafer diameter increases, the uniformity of the processing characteristics within the wafer surface becomes an issue. In a plasma etching apparatus using plasma, it is necessary to keep the etching rate and the processing shape uniform within the wafer surface, and the homogenization technique becomes more difficult as the wafer diameter increases.

本発明は、ラジカルエッチングが行われるプラズマ処理装置において、加工速度のウエハ面内均一化と装置の価格低減を両立させることができるプラズマ処理装置を提供する。   The present invention provides a plasma processing apparatus capable of achieving both uniform processing speed in a wafer surface and reducing the price of the apparatus in a plasma processing apparatus in which radical etching is performed.

本発明は、試料がプラズマ処理される処理室と、前記処理室の外側に配置され誘導磁場を生成する複数の誘導コイルと、前記誘導コイルに高周波電力を供給する一つの高周波電源とを備えるプラズマ処理装置において、前記高周波電源から供給された高周波電力を前記誘導コイルのそれぞれに時間的に異ならせながら分配する電力時分割器をさらに備えることを特徴とする。 The present invention provides a plasma including a processing chamber in which a sample is plasma-processed, a plurality of induction coils that are arranged outside the processing chamber and generate an induction magnetic field, and a single high-frequency power source that supplies high-frequency power to the induction coil. The processing apparatus further includes a power time divider that distributes the high-frequency power supplied from the high-frequency power supply to each of the induction coils while being temporally different.

本発明は、ラジカルエッチングが行われるプラズマ処理装置において、加工速度のウエハ面内均一化と装置の価格低減を両立させることができる。 According to the present invention, in a plasma processing apparatus in which radical etching is performed, it is possible to achieve both uniform processing speed within a wafer surface and reduction in the price of the apparatus.

実施例1におけるプラズマ処理装置の全体構成図である。1 is an overall configuration diagram of a plasma processing apparatus in Embodiment 1. FIG. 電力時分割器の構成図である。It is a block diagram of a power time divider. 高周波電源から誘導コイルまでの各部分の電力波形を示す図である。It is a figure which shows the electric power waveform of each part from a high frequency power supply to an induction coil. 本発明のプラズマ処理装置によるエッチングレートのウエハ面内分布を示す図である。It is a figure which shows the wafer surface distribution of the etching rate by the plasma processing apparatus of this invention. 実施例2におけるプラズマ処理装置の全体構成図である。It is a whole block diagram of the plasma processing apparatus in Example 2. 実施例3におけるプラズマ処理装置の全体構成図である。It is a whole block diagram of the plasma processing apparatus in Example 3. 実施例4におけるプラズマ処理装置の全体構成図である。It is a whole block diagram of the plasma processing apparatus in Example 4.

以下、図面を参照しながら、本発明の各実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明に係り、誘導磁場により生成されたプラズマを用いるラジカルエッチング装置の全体構成図を図1に示す。また、図1(a)は側面図であり、図1(b)は上面からみた誘導コイルの配置を示す。処理室である真空容器は、真空チャンバ101と電磁波を通過する石英、あるいはセラミックの天板102から成り、内部に試料であるウエハ104が上面に載置される試料台103が配置されている。 FIG. 1 shows an overall configuration diagram of a radical etching apparatus using plasma generated by an induction magnetic field according to the present invention. FIG. 1 (a) is a side view, and FIG. 1 (b) shows the arrangement of induction coils as seen from the top. A vacuum chamber, which is a processing chamber, includes a vacuum chamber 101 and a quartz or ceramic top plate 102 that transmits electromagnetic waves, and a sample stage 103 on which a wafer 104 as a sample is placed is disposed.

天板102上には外側の誘導コイル105と内側の誘導コイル106が配置され、自動整合器109と電力時分割器108を介して高周波電源107に接続されている。外側の誘導コイル105および内側の誘導コイル106の他端は接地されている。真空容器内には処理目的に応じてCF4、NF3、CHF3、SF6、ハロゲン系ガス(例えばCl2)やO2、H2、N2ガスなどが導入される。 An outer induction coil 105 and an inner induction coil 106 are disposed on the top plate 102 and are connected to a high-frequency power source 107 via an automatic matching unit 109 and a power time divider 108. The other ends of the outer induction coil 105 and the inner induction coil 106 are grounded. In the vacuum vessel, CF 4 , NF 3 , CHF 3 , SF 6 , halogen-based gas (for example, Cl 2 ), O 2 , H 2 , N 2 gas, or the like is introduced according to the processing purpose.

外側の誘導コイル105と内側の誘導コイル106に高周波電力を供給し、誘導結合により上記ガスのプラズマを生成する。誘導結合型のプラズマ処理装置では、一般にプラズマ密度は誘導コイル近傍で最も高くなり、この部分で発生したイオンとラジカルがウエハ104まで拡散する。プラズマ中のF、Cl、Oなどのラジカルによりウエハ104の表面処理を行う。プラズマ中にはイオンも発生してラジカルとイオンの比は圧力などに依存するが、本装置では、垂直方向と水平方向のエッチレートがほぼ同じである等方的加工を目的としているため、ガス圧力は主に10Pa以上の高圧側を用いる。   High frequency power is supplied to the outer induction coil 105 and the inner induction coil 106, and the plasma of the gas is generated by inductive coupling. In the inductively coupled plasma processing apparatus, the plasma density is generally highest in the vicinity of the induction coil, and ions and radicals generated in this portion diffuse to the wafer 104. Surface treatment of the wafer 104 is performed with radicals such as F, Cl, and O in the plasma. Ions are also generated in the plasma, and the ratio of radicals to ions depends on pressure, etc., but this device is intended for isotropic processing where the etch rates in the vertical and horizontal directions are almost the same. The pressure is mainly on the high pressure side of 10 Pa or more.

ウエハ面内の処理速度分布は、主に表面に入射するラジカル密度に依存して、ラジカル密度分布は天板102直下のプラズマ密度の分布に依存する。一方、プラズマ密度分布は誘導コイルの電力に依存する。従って本装置では外側の誘導コイル105と内側の誘導コイル106に流れる高周波電流でプラズマ密度の分布を制御することによりウエハ面内のエッチレート分布を制御する。   The processing speed distribution in the wafer surface mainly depends on the radical density incident on the surface, and the radical density distribution depends on the plasma density distribution just below the top plate 102. On the other hand, the plasma density distribution depends on the power of the induction coil. Accordingly, in this apparatus, the etch rate distribution in the wafer surface is controlled by controlling the plasma density distribution with the high-frequency current flowing through the outer induction coil 105 and the inner induction coil 106.

次に高周波電力の制御方法を説明する。従来の装置では外側の誘導コイル105と内側誘導コイル106のそれぞれに高周波電源を接続して、それぞれの電力を制御することでエッチレート分布を制御する。従って、高周波電源が複数個必要になり、装置は大型かつ高価になる。一方、本発明に係るプラズマ処理装置では、電力時分割器108により1つの高周波電源107の出力を外側の誘導コイル105と内側誘導コイル106に周期的なパルス状に時分割して供給する。また、時分割する時間の割合を変えることで、外側の誘導コイル105と内側の誘導コイル106に供給される電力の比を変える。   Next, a method for controlling the high frequency power will be described. In the conventional apparatus, a high frequency power source is connected to each of the outer induction coil 105 and the inner induction coil 106, and the etch rate distribution is controlled by controlling the respective power. Therefore, a plurality of high frequency power supplies are required, and the apparatus becomes large and expensive. On the other hand, in the plasma processing apparatus according to the present invention, the power time divider 108 supplies the output of one high frequency power source 107 to the outer induction coil 105 and the inner induction coil 106 in a time-divided manner in a periodic pulse form. Further, the ratio of the power supplied to the outer induction coil 105 and the inner induction coil 106 is changed by changing the ratio of the time division.

次に電力時分割器108の構成を図2に示す。電力時分割器108は、電力をオンオフする外ゲート回路202および内ゲート回路203と、ゲート回路202および内ゲート回路203のオンオフを決める信号を送信するタイミング制御器201からなる。図3に高周波電源から誘導コイルまでの各部分の電力波形を示す。波形301は、高周波電源107の出力波形であり、例えば13.56MHzの周波数である。波形302、303はタイミング制御器201の出力波形であり、それぞれ、外ゲート回路202と内ゲート回路203を制御する信号である。   Next, the configuration of the power time divider 108 is shown in FIG. The power time divider 108 includes an outer gate circuit 202 and an inner gate circuit 203 that turn on and off power, and a timing controller 201 that transmits a signal that determines on / off of the gate circuit 202 and the inner gate circuit 203. FIG. 3 shows the power waveform of each part from the high frequency power source to the induction coil. A waveform 301 is an output waveform of the high frequency power supply 107, and has a frequency of 13.56 MHz, for example. Waveforms 302 and 303 are output waveforms of the timing controller 201 and are signals for controlling the outer gate circuit 202 and the inner gate circuit 203, respectively.

波形304、305は時分割された高周波電源出力であり、タイミング制御器201のパルス出力がオンの時にゲートが開いて高周波電力が通過し、オフの時に高周波電力は遮断される。この例では、外ゲート回路202がオンの時は内ゲート回路203がオフ、外ゲート回路202がオフの時は内ゲート回路203がオンするように制御している。内外両方ともオンあるいはオフの期間が存在しても構わないが、両方オン期間がある場合は、制御性が低下し、両方オフ期間があると電力使用効率が落ちるため、両者のオンオフを逆位相にする制御が最も良い。また、波形304、305は、それぞれ外側の誘導コイ105、内側の誘導コイル106に供給される高周波電力である。   Waveforms 304 and 305 are time-divided high-frequency power supply outputs. When the pulse output of the timing controller 201 is on, the gate opens and high-frequency power passes, and when off, the high-frequency power is cut off. In this example, control is performed so that the inner gate circuit 203 is turned off when the outer gate circuit 202 is turned on, and the inner gate circuit 203 is turned on when the outer gate circuit 202 is turned off. Both the inside and outside periods may be on or off, but if both are on, the controllability will be reduced, and if both are off, the power usage efficiency will be reduced. Control is best. Waveforms 304 and 305 are high-frequency power supplied to the outer induction coil 105 and the inner induction coil 106, respectively.

図4に本発明の装置でプラズマエッチングしたpoly−Si膜のエッチレートの直径が300mmであるウエハ面内分布を示す。エッチング条件は、ガス流量が5ml/minであるArガスとガス流量が0.5ml/minであるNF3ガスの混合ガスを用い、圧力を100Pa、高周波電力を1kWとした条件である。外側の誘導コイル105に供給される電力のデューティー比(1周期に対するオン時間の割合)をDout、内側の誘導コイル106のデューティー比をDinとして、両者の割合を変化させた場合の分布の変化を図4に示す。また、周波数は1kHzである。 FIG. 4 shows an in-wafer distribution in which the poly-Si film plasma-etched by the apparatus of the present invention has an etch rate diameter of 300 mm. Etching conditions are conditions in which a mixed gas of Ar gas with a gas flow rate of 5 ml / min and NF 3 gas with a gas flow rate of 0.5 ml / min is used, the pressure is 100 Pa, and the high-frequency power is 1 kW. The change in distribution when the ratio of both is changed, where Dout is the duty ratio of the power supplied to the outer induction coil 105 (ratio of on-time relative to one cycle) and Din is the duty ratio of the inner induction coil 106. As shown in FIG. The frequency is 1 kHz.

分布401は、Dout/Din=85/15、分布402は、Dout/Din=65/45、分布403は、Dout/Din=20/80に設定した場合のpoly−Si膜のエッチレート分布である。外側の誘導コイル105に供給する電力の比率を増加させるとエッチレートは凹形で、内側の誘導コイル106に供給する電力の比率を増加させると凸型に制御できる。   Distribution 401 is the Dout / Din = 85/15, distribution 402 is the Dout / Din = 65/45, and distribution 403 is the etch rate distribution of the poly-Si film when Dout / Din = 20/80. . When the ratio of power supplied to the outer induction coil 105 is increased, the etch rate is concave, and when the ratio of power supplied to the inner induction coil 106 is increased, it can be controlled to be convex.

以上、上述した通り、本発明は、真空チャンバ外周に複数の誘導コイルを設けるとともにそれらのコイルに一つの高周波電源から時分割して周期的に電力を供給することにより各コイルに電力を供給する時間の割合を変えることでき、このことによりプラズマ密度の空間分布を制御して、エッチング速度のウエハ面内均一性を制御することができる。また、本発明によれば、高周波電源の数を一つで均一性を向上できるので、装置の価格が大幅に抑えることができる。   As described above, the present invention supplies power to each coil by providing a plurality of induction coils on the outer periphery of the vacuum chamber and periodically supplying power to these coils by time division from one high-frequency power source. The rate of time can be varied, thereby controlling the spatial distribution of the plasma density and controlling the uniformity of the etching rate within the wafer surface. In addition, according to the present invention, the uniformity can be improved with a single high-frequency power source, so that the price of the apparatus can be greatly reduced.

次に高周波電源107とプラズマとの整合のとり方について説明する。図1に示すプラズマ処理装置では、プラズマからの反射を最小にするように自動的にインピーダンスを整合する自動整合器109が外側の誘導コイル105と内側の誘導コイル106のそれぞれに配置されて整合をとる構成になっている。 Next, how to match the high-frequency power source 107 and the plasma will be described. In the plasma processing apparatus shown in FIG. 1, an automatic matching unit 109 that automatically matches impedance so as to minimize reflection from the plasma is disposed in each of the outer induction coil 105 and the inner induction coil 106 for matching. It is configured to take.

図5は、さらに低コスト化を図るために、自動整合器109の数を1つにして電力時分割器108の前段に配置した構成である。この構成では外側の誘導コイル105と内側の誘導コイル106の2つの誘導コイルを一体とみなして整合をとる。内側の誘導コイル106と外側の誘導コイル105の電力分配比率を変えるとプラズマの負荷が変わるが、この変化に対して総合的に整合をとる。   FIG. 5 shows a configuration in which the number of automatic matching units 109 is set to one before the power time divider 108 in order to further reduce the cost. In this configuration, the two induction coils, that is, the outer induction coil 105 and the inner induction coil 106 are regarded as one body, and matching is achieved. When the power distribution ratio between the inner induction coil 106 and the outer induction coil 105 is changed, the plasma load changes, but overall matching is achieved with respect to this change.

プラズマの負荷は、厳密には外側の誘導コイル105と内側の誘導コイル106へ電力を切り替える周波数に応じて時間変化するが、周波数がある程度大きくなると、整合はその周波数に追従する必要が無くなり、時間的に平均した負荷値に整合すれば問題なくなる。この場合は、プラズマが着火して安定状態になった状態でとった整合状態で固定して、以後、プラズマ処理中はその状態に固定する方法でも安定処理ができる。   Strictly speaking, the plasma load changes with time depending on the frequency at which power is switched to the outer induction coil 105 and the inner induction coil 106. However, when the frequency increases to some extent, the matching does not need to follow the frequency, and the time If the average load value is matched, there is no problem. In this case, it is possible to perform the stable treatment by a method in which the plasma is ignited and fixed in the aligned state and then fixed in that state during the plasma treatment.

実験の結果、電力時分割の周波数を500Hz以上にすれば、平均状態での整合状態を固定して運用できる。周波数の条件は、高周波電源107の周波数の100分の1程度である。周波数が高すぎて一周期に入る高周波電力の波形数が少なくなると不安になる。また、ラジカルエッチングでは高い制御性は求められないので、自動整合器109を配置しない運用も可能である。   As a result of the experiment, if the frequency of power time division is set to 500 Hz or more, the matching state in the average state can be fixed and operated. The frequency condition is about 1/100 of the frequency of the high-frequency power source 107. If the frequency is too high and the number of waveforms of high-frequency power entering one cycle decreases, it becomes anxious. Further, since high controllability is not required in radical etching, operation without the automatic matching unit 109 is also possible.

図6は、実施例1と異なる本発明に係るプラズマ処理装置を示す。本装置も誘導磁場により生成されたプラズマを用いるラジカルエッチング装置であるが、誘導コイルの配置が異なる。真空チャンバ601は、石英、セラミックなどの電磁波を透過する材料からなり、その外側を上下に2本の誘導コイルが巻いてある。実施例1と同様に高周波電源107と自動整合器109と電力時分割器108が上側の誘導コイル602と下側の誘導コイル603に接続されている。 FIG. 6 shows a plasma processing apparatus according to the present invention which is different from the first embodiment. This apparatus is also a radical etching apparatus using plasma generated by an induction magnetic field, but the arrangement of induction coils is different. The vacuum chamber 601 is made of a material that transmits electromagnetic waves, such as quartz and ceramic, and two induction coils are wound up and down on the outside. As in the first embodiment, the high frequency power source 107, the automatic matching unit 109, and the power time divider 108 are connected to the upper induction coil 602 and the lower induction coil 603.

上下の誘導コイルに供給する高周波電力の比率を制御することで、ウエハ面内のエッチレート均一性を制御できる。また、上側の誘導コイル602と下側の誘導コイル603で生成されるプラズマは、ウエハからの距離が異なる。下側の誘導コイル603で生成されたプラズマは、ウエハ外周に近いので、外周のレートが高くなる傾向がある。一方、上側の誘導コイル602は、プラズマの拡散距離が長いので、真空チャンバ601の内壁に衝突して消滅する確率が高くなり、壁から離れた中心付近でプラズマ密度が高くなる傾向がある。   By controlling the ratio of the high frequency power supplied to the upper and lower induction coils, the etch rate uniformity within the wafer surface can be controlled. Further, the plasma generated by the upper induction coil 602 and the lower induction coil 603 has different distances from the wafer. Since the plasma generated by the lower induction coil 603 is close to the outer periphery of the wafer, the peripheral rate tends to increase. On the other hand, since the upper induction coil 602 has a long plasma diffusion distance, it has a higher probability of colliding with the inner wall of the vacuum chamber 601 and disappearing, and the plasma density tends to increase near the center away from the wall.

従って、両者に供給する高周波電力の比率を制御することで、実施例1と同様にウエハ面内のエッチレート均一性を制御できる。また、実施例1ないし3における誘導コイルの数は2つに限らない。3本以上にして電力時分割器を各誘導コイルに接続すればより高精度に分布制御できる。   Therefore, by controlling the ratio of the high frequency power supplied to both, the etch rate uniformity within the wafer surface can be controlled as in the first embodiment. Further, the number of induction coils in the first to third embodiments is not limited to two. If three or more power time dividers are connected to each induction coil, distribution control can be performed with higher accuracy.

図7に上述した各実施例と異なる実施形態を示す。本実施例では、真空チャンバ101の内壁の堆積物を除去するためにプラズマと容量結合する容量結合アンテナであるファラデーシールド701を外側の誘導コイル105と内側の誘導コイル106の外側に設けている。また、ファラデーシールド701には、可変インピーダンス702を介して高周波電源107から高周波電圧が印加される。 FIG. 7 shows an embodiment different from the above-described embodiments. In this embodiment, a Faraday shield 701, which is a capacitively coupled antenna that is capacitively coupled to plasma in order to remove deposits on the inner wall of the vacuum chamber 101, is provided outside the outer induction coil 105 and the inner induction coil 106. In addition, a high frequency voltage is applied to the Faraday shield 701 from the high frequency power source 107 via the variable impedance 702.

この高周波電界による容量結合で真空チャンバ101内面にプラズマが生成される。容量結合で生成されるプラズマは、外側の誘導コイル105と内側の誘導コイル106で生成されるプラズマが弱く、堆積が生じやすい部分を補う目的のため、真空チャンバ101の内面全体に均一に発生させることが望ましい。   Plasma is generated on the inner surface of the vacuum chamber 101 by capacitive coupling by the high-frequency electric field. The plasma generated by capacitive coupling is generated uniformly on the entire inner surface of the vacuum chamber 101 for the purpose of compensating for the portion where the plasma generated by the outer induction coil 105 and the inner induction coil 106 is weak and easily deposits. It is desirable.

このため、ファラデーシールド701には、誘導コイルの時間分割された電流とは別に、常に一定の電圧を印加するように構成されている。可変インピーダンス702は、ファラデーシールド701と外側の誘導コイル105と内側の誘導コイル106に流れる電流を調整するために設けてある。   For this reason, the Faraday shield 701 is configured to always apply a constant voltage separately from the time-divided current of the induction coil. The variable impedance 702 is provided to adjust the current flowing through the Faraday shield 701, the outer induction coil 105, and the inner induction coil 106.

以上の構成により、真空チャンバ101の内壁の堆積を低減でき、長期的に安定した連続のプラズマ処理ができる。   With the above configuration, deposition on the inner wall of the vacuum chamber 101 can be reduced, and stable and continuous plasma treatment can be performed over a long period of time.

101 真空チャンバ
102 天板
103 試料台
104 ウエハ
105 外側の誘導コイル
106 内側の誘導コイル
107 高周波電源
108 電力時分割器
109 自動整合器
201 タイミング制御器
202 外ゲート回路
203 内ゲート回路
601 真空チャンバ
602 上側の誘導コイル
603 下側の誘導コイル
101 Vacuum chamber 102 Top plate 103 Sample stage 104 Wafer 105 Outer induction coil 106 Inner induction coil 107 High frequency power supply 108 Power time divider 109 Automatic matching unit 201 Timing controller 202 Outer gate circuit 203 Inner gate circuit 601 Vacuum chamber 602 Upper side Induction coil 603 Lower induction coil

Claims (4)

試料がプラズマ処理される処理室と、前記処理室の外側に配置され誘導磁場を生成する複数の誘導コイルと、前記誘導コイルに高周波電力を供給する一つの高周波電源とを備えるプラズマ処理装置において、
前記高周波電源から供給された高周波電力を前記誘導コイルのそれぞれに時間的に異ならせながら分配する電力時分割器をさらに備えることを特徴とするプラズマ処理装置。
In a plasma processing apparatus comprising a processing chamber in which a sample is plasma-processed, a plurality of induction coils arranged outside the processing chamber to generate an induction magnetic field, and a single high-frequency power source for supplying high-frequency power to the induction coil,
A plasma processing apparatus, further comprising: a power time divider that distributes the high-frequency power supplied from the high-frequency power supply to each of the induction coils while being different in time.
請求項1に記載のプラズマ処理装置において、
前記高周波電源から供給された高周波電力の反射を低減し前記高周波電源と前記電力時分割器の間に配置された整合器をさらに備えることを特徴とするプラズマ処理装置。
The plasma processing apparatus according to claim 1,
A plasma processing apparatus, further comprising: a matching unit disposed between the high frequency power source and the power time divider to reduce reflection of high frequency power supplied from the high frequency power source.
請求項1または請求項2に記載のプラズマ処理装置において、
前記電力時分割器は、500Hzから前記高周波電源の周波数を100で除した値までの範囲の周波数で前記高周波電源から供給された高周波電力を前記誘導コイルのそれぞれに時間的に異ならせながら分配し、
プラズマ処理中の前記整合器の整合位置は、プラズマ処理中のプラズマが安定した時点の整合位置に固定してプラズマ処理が行われることを特徴とするプラズマ処理装置。
In the plasma processing apparatus according to claim 1 or 2,
The power time divider distributes the high-frequency power supplied from the high-frequency power source at a frequency ranging from 500 Hz to a value obtained by dividing the frequency of the high-frequency power source by 100 while varying the time to each of the induction coils. ,
The plasma processing apparatus is characterized in that the plasma processing is performed by fixing an alignment position of the matching unit during plasma processing at an alignment position at a time when plasma during plasma processing is stabilized.
請求項1ないし請求項3のいずれか一項に記載のプラズマ処理装置において、
前記処理室の外側に配置され前記プラズマと容量結合する容量結合アンテナをさらに備え、
前記容量結合アンテナは、前記高周波電源から高周波電力を供給されることを特徴とするプラズマ処理装置。
In the plasma processing apparatus according to any one of claims 1 to 3,
A capacitively coupled antenna disposed outside the processing chamber and capacitively coupled to the plasma;
The plasma processing apparatus, wherein the capacitively coupled antenna is supplied with high frequency power from the high frequency power source.
JP2014214964A 2014-10-22 2014-10-22 Plasma processing apparatus Pending JP2016082180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014214964A JP2016082180A (en) 2014-10-22 2014-10-22 Plasma processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014214964A JP2016082180A (en) 2014-10-22 2014-10-22 Plasma processing apparatus

Publications (2)

Publication Number Publication Date
JP2016082180A true JP2016082180A (en) 2016-05-16
JP2016082180A5 JP2016082180A5 (en) 2017-08-17

Family

ID=55959264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014214964A Pending JP2016082180A (en) 2014-10-22 2014-10-22 Plasma processing apparatus

Country Status (1)

Country Link
JP (1) JP2016082180A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190100395A (en) * 2017-01-17 2019-08-28 램 리써치 코포레이션 Create a supplemental plasma density near the substrate using low bias voltages in an inductively coupled plasma (ICP) processing chamber
JP2020161541A (en) * 2019-03-25 2020-10-01 株式会社Kokusai Electric Substrate processing device, semiconductor device manufacturing method and program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005111293A (en) * 2003-10-02 2005-04-28 Seiko Epson Corp Surface treatment equipment and surface treatment method
JP2007158373A (en) * 2007-02-13 2007-06-21 Hitachi High-Technologies Corp Apparatus for plasma processing
JP2008541367A (en) * 2005-05-11 2008-11-20 ダブリン シティ ユニバーシティ HF plasma source comprising a plurality of electrodes that are out of phase
JP2012079886A (en) * 2010-09-30 2012-04-19 Toshiba Corp Substrate processing method and substrate processing apparatus
JP2012119593A (en) * 2010-12-03 2012-06-21 Hitachi High-Technologies Corp Plasma processing apparatus
JP2012169629A (en) * 2000-06-30 2012-09-06 Lam Research Corporation Component delivery mechanism, plasma reactor, and semiconductor substrate processing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169629A (en) * 2000-06-30 2012-09-06 Lam Research Corporation Component delivery mechanism, plasma reactor, and semiconductor substrate processing method
JP2005111293A (en) * 2003-10-02 2005-04-28 Seiko Epson Corp Surface treatment equipment and surface treatment method
JP2008541367A (en) * 2005-05-11 2008-11-20 ダブリン シティ ユニバーシティ HF plasma source comprising a plurality of electrodes that are out of phase
JP2007158373A (en) * 2007-02-13 2007-06-21 Hitachi High-Technologies Corp Apparatus for plasma processing
JP2012079886A (en) * 2010-09-30 2012-04-19 Toshiba Corp Substrate processing method and substrate processing apparatus
JP2012119593A (en) * 2010-12-03 2012-06-21 Hitachi High-Technologies Corp Plasma processing apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190100395A (en) * 2017-01-17 2019-08-28 램 리써치 코포레이션 Create a supplemental plasma density near the substrate using low bias voltages in an inductively coupled plasma (ICP) processing chamber
CN110462798A (en) * 2017-01-17 2019-11-15 朗姆研究公司 Nearly substrate is generated with low bias in inductively coupled plasma process chamber and supplements plasma density
JP2020505722A (en) * 2017-01-17 2020-02-20 ラム リサーチ コーポレーションLam Research Corporation Near-substrate supplemental plasma density generation at low bias voltage in an inductively coupled plasma processing chamber
KR102552807B1 (en) * 2017-01-17 2023-07-06 램 리써치 코포레이션 Produce supplemental plasma density near the substrate using a low bias voltage within an Inductively Coupled Plasma (ICP) processing chamber
CN110462798B (en) * 2017-01-17 2024-03-05 朗姆研究公司 Generating near-substrate supplemental plasma density with low bias in inductively coupled plasma processing chamber
JP2020161541A (en) * 2019-03-25 2020-10-01 株式会社Kokusai Electric Substrate processing device, semiconductor device manufacturing method and program
CN111739778A (en) * 2019-03-25 2020-10-02 株式会社国际电气 Substrate processing apparatus, method for manufacturing semiconductor device, recording medium, and program
KR20200115145A (en) * 2019-03-25 2020-10-07 가부시키가이샤 코쿠사이 엘렉트릭 Substrate processing apparatus, method of manufacturing semiconductor device, and program
KR102370594B1 (en) * 2019-03-25 2022-03-04 가부시키가이샤 코쿠사이 엘렉트릭 Substrate processing apparatus, method of manufacturing semiconductor device, and program
CN111739778B (en) * 2019-03-25 2023-08-22 株式会社国际电气 Substrate processing apparatus, method for manufacturing semiconductor device, recording medium, and program

Similar Documents

Publication Publication Date Title
JP7155354B2 (en) Plasma processing apparatus, processor, control method, non-transitory computer-readable recording medium and program
JP7455174B2 (en) RF generator and method
JP6548748B2 (en) Plasma processing method and plasma processing apparatus
US10090160B2 (en) Dry etching apparatus and method
CN102737941B (en) Plasma processing apparatus and plasma processing method
JP6349257B2 (en) Hybrid pulsed plasma processing system
US10262867B2 (en) Fast-gas switching for etching
KR20100109492A (en) Plasma processing apparatus
KR20090005763A (en) Plasma generating apparatus
KR20070041220A (en) Plasma treatment apparatus
US8956500B2 (en) Methods to eliminate “M-shape” etch rate profile in inductively coupled plasma reactor
KR102245903B1 (en) Plasma processing device cleaning method and plasma processing device
JP2016082180A (en) Plasma processing apparatus
KR100455350B1 (en) Device for prducing inductively coupled plasma and method
KR101197023B1 (en) Apparatus and method for plasma processing
US20060027329A1 (en) Multi-frequency plasma enhanced process chamber having a torroidal plasma source
TWI829156B (en) Plasma source array, plasma processing apparatus, plasma processing system and method for processing workpiece in plasma processing apparatus
KR20130072941A (en) Plasma etching apparatus
US20220367149A1 (en) Systems And Methods For Real-Time Pulse Measurement And Pulse Timing Adjustment To Control Plasma Process Performance
CN110752135B (en) Radio frequency bias voltage adjusting method and device and plasma etching equipment
KR20200040690A (en) Plasma processing apparatus and control method
TW201724166A (en) Plasma processing device and plasma processing method including a reaction chamber, a substrate carrier, a plurality of inductively coupled coils, a radio frequency power source, a power distributor, and a controller
KR101533688B1 (en) Capacitively coupled plasma chamber having reversed and non-reversed power supply
KR20130078750A (en) Apparatus for processing a substrate using inductively coupled plasma

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170117

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170614

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170614

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170803

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180717

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181204