JP5637345B2 - Carbon dioxide treatment method - Google Patents

Carbon dioxide treatment method Download PDF

Info

Publication number
JP5637345B2
JP5637345B2 JP2009064843A JP2009064843A JP5637345B2 JP 5637345 B2 JP5637345 B2 JP 5637345B2 JP 2009064843 A JP2009064843 A JP 2009064843A JP 2009064843 A JP2009064843 A JP 2009064843A JP 5637345 B2 JP5637345 B2 JP 5637345B2
Authority
JP
Japan
Prior art keywords
calcium
carbon dioxide
solution
calcium carbonate
carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009064843A
Other languages
Japanese (ja)
Other versions
JP2010214303A (en
JP2010214303A5 (en
Inventor
佳季 脇本
佳季 脇本
敏之 小山
敏之 小山
肇 皆木
肇 皆木
輝行 萩原
輝行 萩原
蜂須賀 譲二
譲二 蜂須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2009064843A priority Critical patent/JP5637345B2/en
Priority to PCT/JP2010/054025 priority patent/WO2010106953A1/en
Publication of JP2010214303A publication Critical patent/JP2010214303A/en
Publication of JP2010214303A5 publication Critical patent/JP2010214303A5/ja
Application granted granted Critical
Publication of JP5637345B2 publication Critical patent/JP5637345B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • C01F11/181Preparation of calcium carbonate by carbonation of aqueous solutions and characterised by control of the carbonation conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/604Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Treating Waste Gases (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Gas Separation By Absorption (AREA)

Description

本発明は、カルシウム溶液に炭酸ガスを接触させて、炭酸カルシウムを生成させる炭酸ガスの処理方法に関する。   The present invention relates to a method for treating carbon dioxide, which produces calcium carbonate by bringing carbon dioxide into contact with a calcium solution.

従来、炭酸ガスを処理する方法として、炭酸ガスを含む気体を、水と、アルカリ土類金属含有物質と、弱塩基と強酸との塩とから得られる水溶液に、接触させてアルカリ土類金属の炭酸塩を生成させる方法が知られている(例えば、特許文献1参照)。この方法では、安価で簡便に炭酸ガスを処理するために、アルカリ土類金属含有物質として、天然鉱物、廃材、製造工程で排出される副産物、セメント水和固形物で固化させたコンクリート、コンクリートを含む建築廃材または粉砕物、鉄鋼スラグ、ソーダ石灰ガラス、カリ石灰ガラス、石炭灰、焼却灰、煤塵等を用いることが検討されている。また、この方法により生成する炭酸塩は、例えば炭酸カルシウムの場合では、製鉄用の副原料、セメント用原料、耐火物原料、製紙填料、地盤改良材、肥料、環境浄化プロセル用原料、充填材、工業用原料等に利用される。   Conventionally, as a method for treating carbon dioxide, a gas containing carbon dioxide is brought into contact with an aqueous solution obtained from water, an alkaline earth metal-containing substance, and a salt of a weak base and a strong acid to thereby form an alkaline earth metal. A method for producing carbonate is known (for example, see Patent Document 1). In this method, in order to treat carbon dioxide gas inexpensively and easily, natural minerals, waste materials, by-products discharged in the manufacturing process, concrete solidified with cement hydrated solids, and concrete are used as alkaline earth metal-containing substances. The use of building waste materials or pulverized materials, steel slag, soda lime glass, potash lime glass, coal ash, incinerated ash, dust, etc. is being studied. Further, the carbonate produced by this method is, for example, in the case of calcium carbonate, an auxiliary raw material for iron making, a raw material for cement, a refractory raw material, a paper filler, a ground improvement material, a fertilizer, a raw material for an environmental purification process cell, a filler, Used for industrial raw materials.

特開2005−97072号公報JP-A-2005-97072

従来の炭酸ガスの処理方法では、これまで、前記特許文献1に記載された方法のようにアルカリ土類金属等の原料を供給・確保することや生成する炭酸塩を再利用することについては検討されてきた。しかし、炭酸ガスの処理方法において、生成する炭酸塩自体に注目されることはなかった。   In the conventional carbon dioxide treatment method, it has been studied to supply and secure raw materials such as alkaline earth metals and reuse the generated carbonate as in the method described in Patent Document 1 so far. It has been. However, in the method for treating carbon dioxide, attention has not been paid to the carbonate itself produced.

本発明は上記問題に鑑み案出されたものであり、炭酸塩として炭酸カルシウムが生成する炭酸ガスの処理方法において、生成する炭酸カルシウムの粒成長を制御できる炭酸ガスの処理方法を提供することを目的とする。   The present invention has been devised in view of the above problems, and provides a carbon dioxide gas treatment method capable of controlling grain growth of the produced calcium carbonate in a carbon dioxide gas treatment method in which calcium carbonate is produced as a carbonate. Objective.

上記目的を達成するための本発明に係る炭酸ガスの処理方法の第1特徴手段は、pH7以上のカルシウム溶液に炭酸ガスを接触させて、炭酸カルシウムを生成させる炭酸ガスの処理方法において、前記カルシウム溶液を、前記炭酸カルシウムの粒成長の促進・抑制がpHに依存するカルシウム濃度0.001≦[Ca2+](mol/500mL)≦0.04に維持すると共に、前記カルシウム溶液のpHを7〜9の範囲に設定し、pHが10〜12.8の範囲で生成させる炭酸カルシウムよりも粒径の大きい炭酸カルシウムを生成させる点にある。 In order to achieve the above object, the first characteristic means of the carbon dioxide gas treatment method according to the present invention is the carbon dioxide gas treatment method for producing calcium carbonate by bringing carbon dioxide gas into contact with a calcium solution having a pH of 7 or higher. The solution is maintained at a calcium concentration of 0.001 ≦ [Ca 2+ ] (mol / 500 mL) ≦ 0.04, in which the promotion / suppression of the calcium carbonate grain growth depends on the pH, and the pH of the calcium solution is 7 It is in the point which produces | generates a calcium carbonate with a larger particle size than the calcium carbonate set to the range of -9 and pH produced | generated in the range of 10-12.8 .

本手段によれば、カルシウム溶液のカルシウム濃度(以下、[Ca2+]と記載する場合がある)とpHとを調整するだけで、生成する炭酸カルシウムの粒径を容易に制御することができる。また、炭酸ガスを処理すると共に、利用用途に応じた粒径の炭酸カルシウムを提供することができるため、炭酸カルシウムの付加価値が高まり、全体として処理コストを下げることができる。 According to this means, the particle size of the calcium carbonate to be generated can be easily controlled simply by adjusting the calcium concentration of the calcium solution (hereinafter sometimes referred to as [Ca 2+ ]) and the pH. . Moreover, since carbon dioxide having a particle size corresponding to the intended use can be provided while treating carbon dioxide, the added value of calcium carbonate is increased, and the processing cost can be reduced as a whole.

カルシウム溶液のpHを7〜9の範囲に維持することにより、生成する炭酸カルシウムの粒成長を促進させて、炭酸カルシウムの粒径を容易に制御することができる。By maintaining the pH of the calcium solution in the range of 7 to 9, the particle growth of the calcium carbonate to be generated can be promoted and the particle size of the calcium carbonate can be easily controlled.
また、カルシウム溶液のpHを10〜12.8の範囲に維持することにより、生成する炭酸カルシウムの粒成長を抑制し、炭酸カルシウムの生成を促進させて、炭酸カルシウムの粒径を容易に制御することができる。Further, by maintaining the pH of the calcium solution in the range of 10 to 12.8, the grain growth of the generated calcium carbonate is suppressed, the generation of calcium carbonate is promoted, and the particle diameter of the calcium carbonate is easily controlled. be able to.

本発明に係る炭酸ガスの処理方法の第2特徴手段は、前記カルシウム溶液に水酸化カルシウムを添加して、前記カルシウム溶液のpHを前記所定の範囲に維持する点にある。   The second characteristic means of the method for treating carbon dioxide gas according to the present invention is that calcium hydroxide is added to the calcium solution to maintain the pH of the calcium solution in the predetermined range.

炭酸カルシウムの生成により、カルシウム溶液のpHは低下する。また、水酸化カルシウムは安価で取り扱い易い。このため、カルシウム溶液のpHが低下した場合に、本手段のように水酸化カルシウムを添加すれば、簡便にpHを上昇させて所定の範囲に維持することができる。   Due to the formation of calcium carbonate, the pH of the calcium solution decreases. In addition, calcium hydroxide is inexpensive and easy to handle. For this reason, when the pH of the calcium solution is lowered, if calcium hydroxide is added as in this means, the pH can be easily raised and maintained within a predetermined range.

実施例で使用した炭酸ガス処理装置の概略図である。It is the schematic of the carbon dioxide gas processing apparatus used in the Example. カルシウム溶液のカルシウム濃度と炭酸カルシウムの粒径との関係を示すグラフである。It is a graph which shows the relationship between the calcium concentration of a calcium solution, and the particle size of a calcium carbonate. カルシウム溶液のpHとカルシウム濃度との関係を示すグラフである。It is a graph which shows the relationship between pH of a calcium solution, and a calcium concentration.

本発明に係る炭酸ガスの処理方法は、pH7以上のカルシウム溶液に炭酸ガスを接触させて、炭酸カルシウムを生成させる炭酸ガスの処理方法において、前記カルシウム溶液を、前記炭酸カルシウムの粒成長の促進・抑制がpHに依存するカルシウム濃度に維持すると共に、前記カルシウム溶液のpHを所定の範囲に維持して、前記炭酸カルシウムの粒成長を制御する。すなわち、本発明者らは、炭酸ガスを接触させるカルシウム溶液に着目し、カルシウム溶液のカルシウム濃度とpHとによって、生成する炭酸カルシウムの粒径が変化することを見出した。この方法によれば、カルシウム溶液のカルシウム濃度とpHとをそれぞれ所定の範囲に維持しながら炭酸ガスを接触させることにより、生成する炭酸カルシウムの粒径を制御することができる。また、炭酸ガスを処理すると共に、利用用途に応じた粒径の炭酸カルシウムを提供することができるため、炭酸カルシウムの付加価値が高まり、全体として処理コストを下げることができる。   The carbon dioxide treatment method according to the present invention is a carbon dioxide treatment method in which carbon dioxide is brought into contact with a calcium solution having a pH of 7 or more to produce calcium carbonate. The calcium solution is used to promote the growth of calcium carbonate grains. Inhibition is maintained at a calcium concentration that depends on the pH, and the pH of the calcium solution is maintained within a predetermined range to control grain growth of the calcium carbonate. That is, the present inventors paid attention to a calcium solution in contact with carbon dioxide gas, and found that the particle size of the generated calcium carbonate changes depending on the calcium concentration and pH of the calcium solution. According to this method, the particle diameter of the calcium carbonate to be generated can be controlled by contacting the carbon dioxide gas while maintaining the calcium concentration and pH of the calcium solution in a predetermined range. Moreover, since carbon dioxide having a particle size corresponding to the intended use can be provided while treating carbon dioxide, the added value of calcium carbonate is increased, and the processing cost can be reduced as a whole.

本発明における炭酸ガスは、純粋な炭酸ガスに限らず、炭酸ガスを含む気体であれば適用できる。例えば、液化天然ガス(LNG)・液化石油ガス(LP)等の気体燃料、ガソリン・軽油等の液体燃料、石炭等の固体燃料等を燃焼させて発生する燃焼排ガス等を炭酸ガスとして用いることができる。   The carbon dioxide gas in the present invention is not limited to pure carbon dioxide gas, and any gas containing carbon dioxide gas can be applied. For example, gaseous fuel such as liquefied natural gas (LNG) and liquefied petroleum gas (LP), liquid fuel such as gasoline and light oil, and combustion exhaust gas generated by burning solid fuel such as coal are used as carbon dioxide gas. it can.

本発明に用いるカルシウム溶液は、特に限定されないが、例えば、キュポラスラグや高炉スラグ等のスラグを20〜500μm程度に粉砕し、酸または水に溶解させることで調製可能である。スラグは20〜100μmに粉砕して使用することが特に好ましい。スラグをこの程度まで粉砕するとカルシウム分が粉砕物の表面に現れるため、酸を用いなくても水によって好ましく溶解可能となる。もちろん、従来公知の水酸化カルシウム等のカルシウム化合物を添加することによってもカルシウム溶液は調製可能である。   Although the calcium solution used for this invention is not specifically limited, For example, it can prepare by grind | pulverizing slags, such as cupola slag and blast furnace slag, to about 20-500 micrometers, and making it melt | dissolve in an acid or water. The slag is particularly preferably used after being pulverized to 20 to 100 μm. When the slag is pulverized to this extent, calcium content appears on the surface of the pulverized product, so that it can be preferably dissolved in water without using an acid. Of course, a calcium solution can also be prepared by adding a conventionally known calcium compound such as calcium hydroxide.

カルシウム溶液は、生成する炭酸カルシウムの粒成長にpH依存性が生じるカルシウム濃度に設定する。例えば、カルシウム溶液のカルシウム濃度は、1.0×10-8.3≦[Ca2+](mol/L)となるように設定することが好ましい。[Ca2+][CO3 2-]=Ksp=5.4×10-9であることから、カルシウム濃度を上記の濃度に設定すれば、CO3 2-の濃度に関わらず、炭酸カルシウムを析出させて生成させることができる。そして、この濃度において、カルシウム溶液のpHを調整すれば、炭酸カルシウムの粒径が制御し易くなる。尚、カルシウム濃度はスラグ等の溶解量によって調整することができる。 The calcium solution is set to a calcium concentration at which pH dependence occurs in the grain growth of the generated calcium carbonate. For example, the calcium concentration of the calcium solution is preferably set to satisfy 1.0 × 10 −8.3 ≦ [Ca 2+ ] (mol / L). Since [Ca 2+ ] [CO 3 2− ] = Ksp = 5.4 × 10 −9 , if the calcium concentration is set to the above-mentioned concentration, calcium carbonate can be used regardless of the CO 3 2− concentration. It can be formed by precipitation. If the pH of the calcium solution is adjusted at this concentration, the particle size of the calcium carbonate can be easily controlled. The calcium concentration can be adjusted by the amount of slag or the like dissolved.

カルシウム溶液のpHは、炭酸カルシウムの生成により低下するため、7以上の所定の範囲に維持する。例えば、生成する炭酸カルシウムの粒成長を抑え、粒子の生成を促進させる場合には、pHを10〜12.8の範囲に維持することが好ましい。炭酸カルシウムの粒成長を促進させる場合には、pHを7〜9の範囲に維持することが好ましい。また、カルシウム溶液のpHを10〜12.8の範囲から7〜9の範囲に変動させながら炭酸ガスを接触させれば、pHが10〜12.8の範囲では炭酸カルシウムの粒子の生成が促進され、pHが7〜9の範囲になると生成した炭酸カルシウムの粒成長が促進される。このため、pHを変動させる範囲を調整して炭酸カルシウムの粒成長を制御することで、求める粒径の炭酸カルシウムを生成させることができる。カルシウム溶液のpHは、スラグを溶解させることでpH7以上のアルカリ性となるため、スラグの溶解量を変えることで任意に調整可能である。もちろん、酸、アルカリ等の従来公知のpH調整剤を添加することによってpHを調製することもできる。炭酸カルシウムの生成に伴い、カルシウム溶液のpHが低下した場合には、スラグやカルシウム含有塩基性物質またはカルシウム含有物と塩基とを成分とする溶液(水酸化カルシウム等が例示される)等を添加することにより、pHを所定に範囲に維持することができる。pH調整剤を添加することによってもpHを所定の範囲に維持することはできるが、スラグやカルシウム含有塩基性物質またはカルシウム含有物と塩基とを成分とする溶液を添加すれば、同時にカルシウムを補充することもできる。尚、カルシウム溶液には、その他の各種添加剤や不純物等が混合されていても何ら構わない。   Since the pH of the calcium solution decreases due to the formation of calcium carbonate, it is maintained in a predetermined range of 7 or more. For example, when the grain growth of the generated calcium carbonate is suppressed and the generation of particles is promoted, the pH is preferably maintained in the range of 10 to 12.8. When promoting the growth of calcium carbonate grains, the pH is preferably maintained in the range of 7-9. Moreover, if the carbon dioxide gas is brought into contact while changing the pH of the calcium solution from the range of 10 to 12.8 to the range of 7 to 9, the generation of calcium carbonate particles is promoted in the range of the pH of 10 to 12.8. When the pH is in the range of 7-9, grain growth of the generated calcium carbonate is promoted. For this reason, it is possible to generate calcium carbonate having a desired particle diameter by adjusting the range in which pH is varied to control the grain growth of calcium carbonate. Since the pH of the calcium solution becomes alkaline with a pH of 7 or more by dissolving the slag, it can be arbitrarily adjusted by changing the dissolved amount of the slag. Of course, the pH can also be adjusted by adding a conventionally known pH adjusting agent such as acid or alkali. If the pH of the calcium solution decreases with the formation of calcium carbonate, add slag, a calcium-containing basic substance, or a solution containing a calcium-containing substance and a base (such as calcium hydroxide). By doing so, the pH can be maintained within a predetermined range. Although the pH can be maintained within a predetermined range by adding a pH adjuster, calcium can be replenished at the same time by adding a slag, a calcium-containing basic substance, or a solution containing a calcium-containing substance and a base as components. You can also The calcium solution may be mixed with other various additives and impurities.

炭酸ガスのカルシウム溶液への接触は、従来公知の方法により行うことができ、特に制限はない。例えば、カルシウム溶液に炭酸ガスをバブリングする(吹き込む)方法、カルシウム溶液と炭酸ガスとを同一容器に封入して振とうする方法等が挙げられる。また、炭酸ガスとして燃焼排ガス等を用いる場合には、カルシウム溶液と接触させる前に吸着フィルタ等を通過させて、塵埃、炭酸ガス以外のガス等を除去することもできる。尚。カルシウム溶液は、任意の温度で使用できるが、温度は高いほど炭酸ガスが溶け込み難くなるため、常温(5〜35℃)で使用することが好ましく、5〜25℃で使用することがより好ましい。   The contact of the carbon dioxide gas with the calcium solution can be performed by a conventionally known method and is not particularly limited. For example, a method of bubbling (blowing) carbon dioxide into a calcium solution, a method of shaking a calcium solution and carbon dioxide enclosed in the same container, and the like can be mentioned. Moreover, when using combustion exhaust gas etc. as a carbon dioxide gas, before making it contact with a calcium solution, it can also pass an adsorption filter etc., and can remove gas other than dust and a carbon dioxide gas. still. The calcium solution can be used at any temperature, but the higher the temperature, the more difficult the carbon dioxide gas dissolves. Therefore, the calcium solution is preferably used at room temperature (5-35 ° C.), more preferably 5-25 ° C.

本発明の炭酸ガスの処理方法により生成した炭酸カルシウムは、ろ過等の従来公知の方法によって回収することができる。回収した炭酸カルシウムは、例えば、製紙、顔料、塗料、プラスチック、ゴム、織編物等の産業において充填材として利用することができる。   The calcium carbonate produced by the carbon dioxide treatment method of the present invention can be recovered by a conventionally known method such as filtration. The recovered calcium carbonate can be used as a filler in industries such as papermaking, pigments, paints, plastics, rubber, woven and knitted fabrics.

以下に、本発明を用いた実施例を示し、本発明をより詳細に説明する。但し、本発明はこれらの実施例に限定されるものではない。   Hereinafter, examples using the present invention will be shown to describe the present invention in more detail. However, the present invention is not limited to these examples.

炭酸ガスの処理は、図1に示す装置で行った。すなわち、反応容器1にカルシウム溶液を入れ、攪拌機2を用いて400rpmで攪拌しながら、炭酸ガスとして模擬燃焼排ガスをカルシウム溶液液中に導入してバブリングし、析出した炭酸カルシウムを調べた。炭酸ガスとカルシウム溶液との反応状況は、計測計7でカルシウム溶液の酸化還元電位及びpHを測定することにより調べた。導入後のカルシウム溶液に吸収されなかった炭酸ガスの濃度は、ガスクロマトグラフ8によって測定した。尚、9は逆流防止装置、3はカルシウム溶液の温度を調整する水浴槽である。   Carbon dioxide treatment was performed with the apparatus shown in FIG. That is, while putting a calcium solution into the reaction vessel 1 and stirring at 400 rpm using the stirrer 2, simulated combustion exhaust gas was introduced into the calcium solution as bubbling carbon dioxide, and the precipitated calcium carbonate was examined. The reaction state between the carbon dioxide gas and the calcium solution was examined by measuring the redox potential and pH of the calcium solution with the measuring instrument 7. The concentration of carbon dioxide gas that was not absorbed by the calcium solution after introduction was measured by a gas chromatograph 8. In addition, 9 is a backflow prevention apparatus, 3 is a water bath which adjusts the temperature of a calcium solution.

カルシウム溶液は、蒸留水500mlに水酸化カルシウム(Ca(OH)2)を添加し、カルシウム(Ca)濃度、pHを調整し、室温で用いた。 The calcium solution was used at room temperature by adding calcium hydroxide (Ca (OH) 2 ) to 500 ml of distilled water to adjust the calcium (Ca) concentration and pH.

模擬燃焼排ガスは、炭酸ガス(CO2)と窒素(N2)ガスとの混合ガスを用いた。模擬燃焼排ガスは、炭酸ガスと窒素ガスとを、それぞれ流量調整器4,5で流量を調整し、混合装置6において所定の混合比で混合して供給する。
本実施例では、模擬燃焼排ガスを10vol%CO2−90vol%N2に調整し、1リットル/分でカルシウム溶液に導入した。
As the simulated combustion exhaust gas, a mixed gas of carbon dioxide (CO 2 ) and nitrogen (N 2 ) gas was used. The simulated combustion exhaust gas is supplied with carbon dioxide gas and nitrogen gas mixed at a predetermined mixing ratio in the mixing device 6 with the flow rate adjusted by the flow rate adjusters 4 and 5, respectively.
In this example, the simulated combustion exhaust gas was adjusted to 10 vol% CO 2 -90 vol% N 2 and introduced into the calcium solution at 1 liter / min.

カルシウム溶液のpHを7〜9の範囲に維持した場合(以下、pH8と示す場合がある)とpHを10〜12.8(12.8は水酸化カルシウムの飽和溶解度に相当するpH)の範囲に維持した場合(以下、pH11と示す場合がある)とにおいて、カルシウム濃度(水酸化カルシウムの投入量)を変えて模擬燃焼排ガスを導入し、生成する炭酸カルシウムの粒径を調べた。その結果、図2に示すように、カルシウム濃度が0.001≦[Ca2+](mol/500mL)≦0.04においては、炭酸カルシウムの粒径は、それぞれのpHでカルシウム濃度に関わらず略一定であったが、pH8の方がpH11に比べて大きくなっていた。また、カルシウム濃度が0.04<[Ca2+](mol/500mL)≦0.2においては、いずれのpHもカルシウム濃度の増加に伴い、炭酸カルシウムの粒径が大きくなっており、カルシウム濃度が0.1mol/500mLの付近以降では、炭酸カルシウムの粒径はpH11の方がpH8よりも大きくなっていた。
したがって、カルシウム濃度が0.001≦[Ca2+](mol/500mL)≦0.04の時に炭酸カルシウムの粒成長の促進・抑制がpHに依存しており、pH8では粒成長が促進され、pH11では粒成長が抑制されて粒子の生成が優先されることが分かった。また、0.04<[Ca2+](mol/500mL)≦0.2の時には、炭酸カルシウムの粒成長の促進・抑制にpH依存性はなく、いずれのpHの場合も粒成長が促進されることが分かった。
When the pH of the calcium solution is maintained in the range of 7 to 9 (hereinafter sometimes referred to as pH 8) and the pH is in the range of 10 to 12.8 (12.8 is a pH corresponding to the saturated solubility of calcium hydroxide). In this case (hereinafter sometimes referred to as pH 11), the simulated combustion exhaust gas was introduced while changing the calcium concentration (input amount of calcium hydroxide), and the particle diameter of the generated calcium carbonate was examined. As a result, as shown in FIG. 2, when the calcium concentration is 0.001 ≦ [Ca 2+ ] (mol / 500 mL) ≦ 0.04, the particle size of calcium carbonate is independent of the calcium concentration at each pH. Although it was substantially constant, pH 8 was larger than pH 11. In addition, when the calcium concentration is 0.04 <[Ca 2+ ] (mol / 500 mL) ≦ 0.2, the pH of the calcium carbonate increases as the calcium concentration increases at any pH. After the vicinity of 0.1 mol / 500 mL, the particle size of calcium carbonate was larger at pH 11 than at pH 8.
Therefore, when the calcium concentration is 0.001 ≦ [Ca 2+ ] (mol / 500 mL) ≦ 0.04, the promotion / suppression of grain growth of calcium carbonate depends on pH, and at pH 8, grain growth is promoted. It was found that at pH 11, grain growth is suppressed and generation of particles is given priority. Further, when 0.04 <[Ca 2+ ] (mol / 500 mL) ≦ 0.2, there is no pH dependence in the promotion / suppression of calcium carbonate grain growth, and grain growth is promoted at any pH. I found out.

以上により、本実施例においては、カルシウム溶液のカルシウム濃度及びpHと、生成する炭酸カルシウムの粒径との関係は、図3に示す通りである。すなわち、炭酸カルシウムの粒成長の促進・抑制がpHに依存するカルシウム濃度は0.04mol/500mL以下であり、pH10を境に、pHが10〜12.8の場合のように大きくなると粒成長が抑制されると共に粒子の生成が優先され、pHが7〜9の場合のように小さくなると粒成長が促進される。尚、カルシウム濃度が0.04mol/500mLを越えた場合には、pHに関わらず粒成長が促進される。
このため、本実施例の条件においては、カルシウム濃度は、0.5×10-8.3≦[Ca2+](mol/500mL)≦0.04の範囲に維持することが好ましく、0.001≦[Ca2+](mol/500mL)≦0.04の範囲に維持することがより好ましい。
As described above, in this embodiment, the relationship between the calcium concentration and pH of the calcium solution and the particle size of the generated calcium carbonate is as shown in FIG. That is, the calcium concentration that depends on the pH for the promotion and suppression of the grain growth of calcium carbonate is 0.04 mol / 500 mL or less, and when the pH is increased from 10 to 12.8, In addition to being suppressed, the generation of particles is prioritized, and when the pH is reduced as in the case of 7 to 9, grain growth is promoted. In addition, when the calcium concentration exceeds 0.04 mol / 500 mL, grain growth is promoted regardless of pH.
Therefore, under the conditions of this example, the calcium concentration is preferably maintained in the range of 0.5 × 10 −8.3 ≦ [Ca 2+ ] (mol / 500 mL) ≦ 0.04, and 0.001 ≦ It is more preferable to maintain in the range of [Ca 2+ ] (mol / 500 mL) ≦ 0.04.

本発明の炭酸ガスの処理方法は、燃焼排ガス中の炭酸ガス等の処理に適用することができる。   The method for treating carbon dioxide of the present invention can be applied to the treatment of carbon dioxide in combustion exhaust gas.

Claims (2)

pH7以上のカルシウム溶液に炭酸ガスを接触させて、炭酸カルシウムを生成させる炭酸ガスの処理方法において、
前記カルシウム溶液を、前記炭酸カルシウムの粒成長の促進・抑制がpHに依存するカルシウム濃度0.001≦[Ca2+](mol/500mL)≦0.04に維持すると共に
前記カルシウム溶液のpHを7〜9の範囲に設定し、pHが10〜12.8の範囲で生成させる炭酸カルシウムよりも粒径の大きい炭酸カルシウムを生成させる炭酸ガスの処理方法。
In the carbon dioxide treatment method for producing calcium carbonate by bringing carbon dioxide into contact with a calcium solution having a pH of 7 or more,
The calcium solution is maintained at a calcium concentration of 0.001 ≦ [Ca 2+ ] (mol / 500 mL) ≦ 0.04, in which the promotion and suppression of the grain growth of the calcium carbonate depends on the pH,
A method for treating carbon dioxide, wherein the calcium solution is set to a pH of 7 to 9, and calcium carbonate having a particle diameter larger than that of calcium carbonate generated at a pH of 10 to 12.8 is generated .
前記カルシウム溶液に水酸化カルシウムを添加して、前記カルシウム溶液のpHを所定の範囲に維持する請求項1に記載の炭酸ガスの処理方法。   The method for treating carbon dioxide gas according to claim 1, wherein calcium hydroxide is added to the calcium solution to maintain the pH of the calcium solution in a predetermined range.
JP2009064843A 2009-03-17 2009-03-17 Carbon dioxide treatment method Expired - Fee Related JP5637345B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009064843A JP5637345B2 (en) 2009-03-17 2009-03-17 Carbon dioxide treatment method
PCT/JP2010/054025 WO2010106953A1 (en) 2009-03-17 2010-03-10 Method for processing carbon dioxide gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009064843A JP5637345B2 (en) 2009-03-17 2009-03-17 Carbon dioxide treatment method

Publications (3)

Publication Number Publication Date
JP2010214303A JP2010214303A (en) 2010-09-30
JP2010214303A5 JP2010214303A5 (en) 2012-01-12
JP5637345B2 true JP5637345B2 (en) 2014-12-10

Family

ID=42739613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009064843A Expired - Fee Related JP5637345B2 (en) 2009-03-17 2009-03-17 Carbon dioxide treatment method

Country Status (2)

Country Link
JP (1) JP5637345B2 (en)
WO (1) WO2010106953A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101254978B1 (en) 2011-05-18 2013-04-17 재단법인 포항산업과학연구원 Method for predicting density of reaction product using model equation during carbon dioxide capture process and collector-reactor using therof
KR101329673B1 (en) * 2011-10-27 2013-11-15 한국지질자원연구원 Enhancement of carbonation efficiency from the blast furnace slag
JP6266989B2 (en) * 2014-01-31 2018-01-24 フタバ産業株式会社 Carbon dioxide application equipment
JP6359881B2 (en) * 2014-06-10 2018-07-18 フタバ産業株式会社 Carbon dioxide application equipment
JP5931253B1 (en) * 2014-06-30 2016-06-08 本部三慶株式会社 A method for removing liquid calcium oxide from low-smelling odor by removing calcium from high-quality powder
WO2018057780A1 (en) * 2016-09-21 2018-03-29 Donald Williams Carbon capture system, apparatus, and method
JP6442014B1 (en) * 2017-09-13 2018-12-19 株式会社流機エンジニアリング Processing apparatus and processing method for liquid to be processed

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0818828B2 (en) * 1989-12-26 1996-02-28 奥多摩工業株式会社 Method for producing agglomerated calcium carbonate
JP4961074B2 (en) * 2001-02-01 2012-06-27 奥多摩工業株式会社 Continuous production method of calcium carbonate

Also Published As

Publication number Publication date
JP2010214303A (en) 2010-09-30
WO2010106953A1 (en) 2010-09-23

Similar Documents

Publication Publication Date Title
JP5637345B2 (en) Carbon dioxide treatment method
Jeon et al. CO2 storage and CaCO3 production using seawater and an alkali industrial by-product
Ho et al. Utilization of low-calcium fly ash via direct aqueous carbonation with a low-energy input: Determination of carbonation reaction and evaluation of the potential for CO2 sequestration and utilization
JP5612104B2 (en) Formation of calcium carbonate
Jo et al. Preparation of high-purity nano-CaCO3 from steel slag
Song et al. Effect of polyacrylic acid on direct aqueous mineral carbonation of flue gas desulfurization gypsum
JP6013480B2 (en) Method for extracting alkali metal and / or alkaline earth metal
Altiner et al. Production of precipitated calcium carbonate particles from gypsum waste using venturi tubes as a carbonation zone
Kim et al. Effects of Ca-ligand stability constant and chelating agent concentration on the CO2 storage using paper sludge ash and chelating agent
RU2596930C2 (en) Reducing method for continuous extraction of calcium and producing precipitated calcium carbonate
Eloneva Reduction of CO2 emissions by mineral carbonation: steelmaking slags as raw material with a pure calcium carbonate end product
Wang et al. Sustainable process for enhanced CO2 mineralization of calcium silicates using a recyclable chelating agent under alkaline conditions
CN111727173B (en) Method for preparing high-purity vaterite type and calcite type calcium carbonate by utilizing sea water indirect carbonation
JP6020565B2 (en) Method for extracting alkali metal and / or alkaline earth metal
US7326400B2 (en) Treatment of high sulfate containing quicklime
Bodor et al. Impacts of nickel nanoparticles on mineral carbonation
Kim et al. Optimum conditions for extracting Ca from CKD to store CO 2 through indirect mineral carbonation
Abe et al. Dissolution rates of alkaline rocks by carbonic acid: Influence of solid/liquid ratio, temperature, and CO2 pressure
Luo et al. Calcium carbonate crystallization process from the mineralization of calcium chloride waste
Ding et al. Unlocking high carbonation efficiency: Direct CO2 mineralization with fly ash and seawater
Luo et al. Use of Ca-containing industrial waste brine for CO2 sequestration and recovery of NaCl and Na2SO4
Dong et al. Recovery of ultra-high purity reactive magnesia from reject brine and its comparison with commercial magnesia
Lin et al. Calcium carbonate synthesis from Kambara reactor desulphurization slag via indirect carbonation for CO2 capture and utilization
Luo et al. Indirect carbonation by a two-step leaching process using ammonium chloride and acetic acid
Chen et al. Diisobutylamine mediated CO2 mineralization and CaCO3 production from municipal solid waste incineration fly ash as raw ingredient and regeneration reagent

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141008

R151 Written notification of patent or utility model registration

Ref document number: 5637345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees