JP5634636B1 - Ultrasonic flow meter - Google Patents

Ultrasonic flow meter Download PDF

Info

Publication number
JP5634636B1
JP5634636B1 JP2014129414A JP2014129414A JP5634636B1 JP 5634636 B1 JP5634636 B1 JP 5634636B1 JP 2014129414 A JP2014129414 A JP 2014129414A JP 2014129414 A JP2014129414 A JP 2014129414A JP 5634636 B1 JP5634636 B1 JP 5634636B1
Authority
JP
Japan
Prior art keywords
fluororesin
ultrasonic
measurement
measurement pipe
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014129414A
Other languages
Japanese (ja)
Other versions
JP2016008880A (en
Inventor
時夫 杉
時夫 杉
正樹 高本
正樹 高本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiso Co Ltd
Original Assignee
Tokyo Keiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiso Co Ltd filed Critical Tokyo Keiso Co Ltd
Priority to JP2014129414A priority Critical patent/JP5634636B1/en
Application granted granted Critical
Publication of JP5634636B1 publication Critical patent/JP5634636B1/en
Publication of JP2016008880A publication Critical patent/JP2016008880A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

【課題】フッ素系樹脂製測定管路の熱膨張を抑制して形状安定化を図るとともにフッ素系樹脂製測定管路の機械的な剛性を高め、フッ素系樹脂製測定管路に温度センサーなどを付設することなく高精度の流量測定を長期に亘って維持する超音波流量計を提供すること。【解決手段】被測定流体Fを流すフッ素系樹脂製測定管路110の上流側と下流側とに超音波送受信器140,150をそれぞれ配置するとともに、フッ素系樹脂製測定管路110の外周面と密着状態で炭素繊維強化樹脂製外套管160に対して嵌合し、超音波送受信器140,150の一方からフッ素系樹脂製測定管路110内の被測定流体F中に超音波ビームを発信して超音波送受信器140,150の他方により受信し、超音波ビームが上流側から下流側に伝搬する時間と下流側から上流側に伝搬する時間との時間差からフッ素系樹脂製測定管路110内を流れる被測定流体Fの速度を求めてフッ素系樹脂製測定管路110内を流れる被測定流体Fの流量を求める時間差方式の超音波流量計100。【選択図】図1[PROBLEMS] To suppress the thermal expansion of a fluororesin measurement pipe line to stabilize the shape and increase the mechanical rigidity of the fluororesin measurement pipe line, and to provide a temperature sensor and the like on the fluororesin measurement pipe line To provide an ultrasonic flowmeter that maintains high-precision flow measurement over a long period of time without being attached. SOLUTION: Ultrasonic transceivers 140 and 150 are arranged on the upstream side and the downstream side of a fluorine resin measurement pipe line 110 through which a fluid F to be measured flows, and the outer peripheral surface of the fluorine resin measurement pipe line 110 is provided. Are fitted to the outer tube 160 made of carbon fiber reinforced resin in close contact with each other, and an ultrasonic beam is transmitted from one of the ultrasonic transceivers 140 and 150 into the fluid F to be measured in the measurement pipe 110 made of fluororesin. Then, the fluororesin measurement pipe 110 is received from the time difference between the time when the ultrasonic beam is received by the other of the ultrasonic transmitters / receivers 140 and 150 and the time when the ultrasonic beam propagates from the upstream side to the downstream side and the time when the ultrasonic beam propagates from the downstream side to the upstream side. A time difference type ultrasonic flowmeter 100 for obtaining a flow rate of the fluid F to be measured flowing through the fluororesin measuring pipe 110 by obtaining a velocity of the fluid F to be measured flowing therein. [Selection] Figure 1

Description

本発明は、超音波送受信器から発生する超音波ビームが被測定流体を流すフッ素系樹脂製測定管路の上流側から下流側に伝搬する時間と下流側から上流側に伝搬する時間との時間差からフッ素系樹脂製測定管路内の流体速度を求め、この流体速度にフッ素系樹脂製測定管路の断面積を乗じてフッ素系樹脂製測定管路内を流れる流量を求める時間差方式の超音波流量計に関するものであって、特に、半導体や液晶の製造工程におけるシリコンウエハの研磨・洗浄を行う装置や液晶製造装置などで用いられる様々な薬液、食品製造ラインやケミカル製造ラインにおける原料、貯蔵、混合プロセスで取り扱われる薬液などの液体を測定するための超音波流量計に関するものである。   The present invention provides a time difference between a time during which an ultrasonic beam generated from an ultrasonic transmitter / receiver propagates from the upstream side to the downstream side of a fluororesin measurement conduit through which a fluid to be measured flows and a time during which the ultrasonic beam propagates from the downstream side to the upstream side. Calculate the fluid velocity in the fluororesin measurement pipe from the flow rate and multiply the fluid velocity by the cross-sectional area of the fluororesin measurement pipeline to find the flow rate in the fluororesin measurement pipeline. It relates to flowmeters, and in particular, various chemicals used in equipment for polishing and cleaning silicon wafers in the manufacturing process of semiconductors and liquid crystals, liquid crystal production equipment, raw materials in food production lines and chemical production lines, storage, The present invention relates to an ultrasonic flowmeter for measuring a liquid such as a chemical solution handled in a mixing process.

従来、時間差方式の超音波流量計として、被測定流体が流れる測定管の外周面に軸線方向に離間して取り付けられる二つ超音波送受信器を備え、これら二つの超音波送受信器の一方から発信した超音波振動を測定管内の被測定流体を経て二つの超音波送受信器の他方で受信し、発信側と受信側の超音波送受信器を交互に切り換えて二つの超音波送受信器間の超音波伝搬時間を測定することにより被測定流体の流速を測定する超音波流量計がある(例えば、特許文献1)。   Conventionally, as a time difference type ultrasonic flowmeter, two ultrasonic transmitters / receivers that are attached to the outer peripheral surface of the measuring tube through which the fluid to be measured flows are separated in the axial direction, and transmitted from one of these two ultrasonic transmitters / receivers. The received ultrasonic vibration is received by the other of the two ultrasonic transmitters / receivers via the fluid to be measured in the measuring tube, and the ultrasonic waves between the two ultrasonic transmitters / receivers are switched alternately between the transmitting and receiving ultrasonic transmitters / receivers. There is an ultrasonic flowmeter that measures the flow velocity of a fluid to be measured by measuring the propagation time (for example, Patent Document 1).

そして、この超音波流量計では、被測定流体が流れる測定管の素材として、耐薬品性と優れた成形性により加工し易く、また、被測定流体中の音速よりも遅い音速で伝播する、すなわち、超音波振動の伝播に影響しないフッ素系樹脂が用いられている。   In this ultrasonic flowmeter, the material of the measuring tube through which the fluid to be measured flows is easy to process due to chemical resistance and excellent moldability, and also propagates at a speed of sound slower than the speed of sound in the fluid to be measured. Fluorine resin that does not affect the propagation of ultrasonic vibration is used.

特開2005−188974号公報(特に、請求項6、図1参照)Japanese Patent Laying-Open No. 2005-188974 (in particular, refer to claim 6 and FIG. 1)

しかしながら、従来の超音波流量計では、耐薬品性と成形性に優れて熱膨張率の高いフッ素系樹脂からなる測定管の直径が熱膨張で変化すると、たとえば、フッ素系樹脂からなる測定管が140℃を超えると10%以上の変形を生じ、測定管の流路断面積が変化して流速の大きさが影響を受け、さらに、上流側と下流側に超音波送受信器が配置された相互間においてフッ素系樹脂からなる測定管の長さが熱膨張で変化すると、超音波ビームの伝搬経路長も変化して超音波ビームの伝搬時間が影響を受けるため、フッ素系樹脂からなる測定管の熱膨張による直径と長さの変化が測定誤差の要因となるという問題があった。   However, in the conventional ultrasonic flowmeter, when the diameter of a measuring tube made of a fluororesin having excellent chemical resistance and moldability and a high coefficient of thermal expansion changes due to thermal expansion, for example, a measuring tube made of a fluororesin When the temperature exceeds 140 ° C., deformation of 10% or more occurs, the flow passage cross-sectional area of the measuring tube changes, the magnitude of the flow velocity is affected, and ultrasonic transducers are arranged on the upstream and downstream sides. If the length of the measurement tube made of fluorine resin changes due to thermal expansion, the propagation path length of the ultrasonic beam also changes and the propagation time of the ultrasonic beam is affected. There has been a problem that changes in diameter and length due to thermal expansion cause measurement errors.

また、従来の超音波流量計の成形性に優れたフッ素系樹脂からなる測定管は、環境温度や被測定流体温度の上昇や経年変化で機械的剛性が低下し、上流側と下流側に配置した超音波送受信器の相互空間位置の微小な変化が高精度を要求される超音波ビームの相互間において中心線、平行度などの位置ずれやゼロ点ドリフトを引き起こすため、超音波送受信器同士の送受信に支障を来して測定誤差の要因となるという問題があった。   In addition, measurement pipes made of fluororesins with excellent moldability of conventional ultrasonic flowmeters are placed on the upstream and downstream sides because their mechanical rigidity decreases due to an increase in environmental temperature, fluid temperature to be measured, and aging. Since the minute change in the mutual spatial position of the ultrasonic transmitter / receiver causes a positional shift such as center line and parallelism and zero point drift between ultrasonic beams that require high accuracy, There was a problem that it interfered with transmission and reception and caused measurement errors.

さらに、従来の超音波流量計では、熱膨張率の高いフッ素系樹脂からなる測定管の寸法形状が、温度変化や経年変化に対して不安定であり、長期に亘る流量測定において測定誤差を生じるため、測定管に温度センサー、歪センサーなどを付設することによってこの測定誤差を電気的に接続された図示しない変換器などの演算部によって補正しなければならないという装置構成上の厄介な問題があった。   Furthermore, with conventional ultrasonic flowmeters, the dimensions and shape of a measurement tube made of a fluororesin with a high coefficient of thermal expansion are unstable with respect to temperature changes and secular changes, resulting in measurement errors in long-term flow measurement. For this reason, there is a troublesome problem in the configuration of the apparatus in that a temperature sensor, a strain sensor, etc. are attached to the measurement tube, and this measurement error must be corrected by a calculation unit such as a converter (not shown) that is electrically connected. It was.

そこで、本発明は、前述した従来技術の問題を解決するものであって、すなわち、本発明の目的は、フッ素系樹脂製測定管路の熱膨張による流路断面積の変化を抑制して形状安定化を図って測定精度を向上させるとともにフッ素系樹脂製測定管路の機械的な剛性を高めてフッ素系樹脂製測定管路に温度センサーなどを付設することなく高精度の流量測定を長期に亘って維持する超音波流量計を提供することである。   Therefore, the present invention solves the above-mentioned problems of the prior art, that is, the object of the present invention is to suppress the change in the cross-sectional area of the flow path due to the thermal expansion of the fluororesin measuring pipe. Stabilize and improve measurement accuracy and increase the mechanical rigidity of fluororesin measurement pipes for long-term accurate flow measurement without attaching a temperature sensor to the fluororesin measurement pipes It is to provide an ultrasonic flow meter that is maintained over time.

本請求項1に係る発明は、被測定流体を流すフッ素系樹脂製測定管路の上流側と下流側とに超音波送受信器をそれぞれ配置し、前記超音波送受信器の一方からフッ素系樹脂製測定管路内の被測定流体中に超音波ビームを発信して前記超音波送受信器の他方により受信し、前記超音波ビームが上流側から下流側に伝搬する時間と下流側から上流側に伝搬する時間との時間差から前記フッ素系樹脂製測定管路内を流れる被測定流体の速度を求めて前記フッ素系樹脂製測定管路内を流れる被測定流体の流量を求める時間差方式の超音波流量計において、前記フッ素系樹脂製測定管路の熱膨張による流路断面積の変化を抑制するために前記フッ素系樹脂製測定管路が、前記フッ素系樹脂製測定管路の外周面と密着状態で炭素繊維強化樹脂製外套管に対して嵌合していることにより、前述した課題を解決するものである。   In the invention according to claim 1, ultrasonic transmitters / receivers are respectively arranged on the upstream side and the downstream side of a fluororesin measurement pipe for flowing a fluid to be measured, and one of the ultrasonic transmitters / receivers is made of a fluororesin. An ultrasonic beam is transmitted into the fluid to be measured in the measurement pipe and received by the other of the ultrasonic transmitter / receiver, and the ultrasonic beam propagates from the upstream side to the downstream side and propagates from the downstream side to the upstream side. A time difference type ultrasonic flowmeter that obtains the flow rate of the fluid under measurement flowing through the fluororesin measurement pipe by obtaining the velocity of the fluid under measurement flowing through the fluororesin measurement pipe from the time difference from In order to suppress changes in the cross-sectional area of the flow path due to thermal expansion of the fluororesin measurement pipe, the fluororesin measurement pipe is in close contact with the outer peripheral surface of the fluororesin measurement pipe For carbon fiber reinforced resin jackets By Te are fitted, it is to solve the aforementioned problems.

本請求項2に係る発明は、請求項1に記載された超音波流量計の構成に加えて、前記フッ素系樹脂製測定管路が、被測定流体の最低使用温度以下で形成した断面形状で前記炭素繊維強化樹脂製外套管に対して密着固定されていることにより、前述した課題を解決するものである。   In addition to the configuration of the ultrasonic flowmeter according to the first aspect, the invention according to the second aspect has a cross-sectional shape in which the measurement pipe made of fluororesin is formed at a temperature lower than the minimum use temperature of the fluid to be measured. The above-described problems are solved by being tightly fixed to the carbon fiber reinforced resin outer tube.

本請求項3に係る発明は、請求項1または請求項2に記載された超音波流量計の構成に加えて、前記炭素繊維強化樹脂製外套管が、前記フッ素系樹脂製測定管路の上流側と下流側との間における超音波ビーム伝搬領域の全長に亘って設けられていることにより、前述した課題を解決するものである。   In the invention according to claim 3, in addition to the configuration of the ultrasonic flowmeter according to claim 1 or 2, the carbon fiber reinforced resin outer tube is arranged upstream of the fluororesin measurement pipe. The problem described above is solved by providing the entire length of the ultrasonic beam propagation region between the side and the downstream side.

本請求項4に係る発明は、請求項1乃至請求項3のいずれか1つに記載された超音波流量計の構成に加えて、前記フッ素系樹脂製測定管路の上流側と下流側にそれぞれ配置した超音波送受信器が、前記炭素繊維強化樹脂製外套管によって相互に連結されていることにより、前述した課題を解決するものである。   In addition to the configuration of the ultrasonic flowmeter according to any one of claims 1 to 3, the invention according to claim 4 includes an upstream side and a downstream side of the fluororesin measurement pipe line. The above-described problems are solved by connecting the ultrasonic transmitters / receivers arranged with each other by the carbon fiber reinforced resin outer tube.

本発明の超音波流量計は、被測定流体を流すフッ素系樹脂製測定管路の上流側と下流側とに超音波送受信器をそれぞれ配置し、超音波送受信器の一方からフッ素系樹脂製測定管路内の被測定流体中に超音波ビームを発信して超音波送受信器の他方により受信することにより、超音波ビームが上流側から下流側に伝搬する時間と下流側から上流側に伝搬する時間との時間差からフッ素系樹脂製測定管路内を流れる被測定流体の速度を求めてフッ素系樹脂製測定管路内を流れる被測定流体の流量を求めることができるばかりでなく、以下のような特有の効果を奏することができる。   The ultrasonic flowmeter of the present invention has an ultrasonic transmitter / receiver arranged on the upstream side and the downstream side of a fluororesin measurement pipe for flowing a fluid to be measured, and the fluororesin measurement is performed from one side of the ultrasonic transmitter / receiver. By transmitting an ultrasonic beam into the fluid to be measured in the pipe and receiving it by the other of the ultrasonic transmitter / receiver, the ultrasonic beam propagates from the upstream side to the downstream side and propagates from the downstream side to the upstream side. The flow rate of the fluid to be measured flowing in the fluororesin measurement pipe line can be obtained from the time difference from the time to obtain the flow rate of the fluid to be measured flowing in the fluororesin measurement pipe line. It is possible to achieve a unique effect.

すなわち、本請求項1に係る発明の超音波流量計によれば、フッ素系樹脂製測定管路が、前記フッ素系樹脂製測定管路の外周面と密着状態で炭素繊維強化樹脂製外套管に対して嵌合されていることにより、流量測定時に測定環境の温度変化や被測定流体の温度変化による影響を受けたり、流路形状の経年変化の影響を受けても、フッ素系樹脂製測定管路の熱膨張率よりも極めて小さく機械的剛性の極めて高い炭素繊維強化樹脂製外套管がフッ素系樹脂製測定管路の熱膨張による流路断面積の変化を抑制するため、フッ素系樹脂製測定管路の形状安定化を図って測定精度を向上させることができるばかりでなく、フッ素系樹脂製測定管路の機械的な剛性を高め、フッ素系樹脂製測定管路に温度センサーなどを付設することなく高精度の流量測定を長期に亘って維持することができる。
しかも、炭素繊維強化樹脂製外套管が、超音波振動を伝搬しないため、超音波ビームがフッ素系樹脂製測定管路内を確実に伝播してより一段と測定精度を向上させ、また、フッ素系樹脂製測定管路に対する静電気の帯電を減少させるため、帯電による測定回路への影響、回路素子の破壊、可燃性ガスへの発火等の対策が容易に達成することができる。
That is, according to the ultrasonic flowmeter of the first aspect of the present invention, the fluororesin measurement pipe line is in close contact with the outer peripheral surface of the fluororesin measurement pipe line to the carbon fiber reinforced resin mantle pipe. Fluorine-based resin measuring tube, even if it is affected by temperature changes in the measurement environment and the temperature of the fluid being measured during flow measurement, or due to changes in the flow path shape over time. Measurements made of fluororesin because the carbon fiber reinforced resin sheath tube, which is extremely smaller than the thermal expansion coefficient of the channel and has high mechanical rigidity, suppresses changes in the cross-sectional area of the channel due to thermal expansion of the fluororesin measurement pipe Not only can the measurement accuracy be improved by stabilizing the shape of the pipe, but the mechanical rigidity of the fluororesin measurement pipe is increased, and a temperature sensor is attached to the fluororesin measurement pipe. Highly accurate flow measurement without any It can be maintained for a long period of time.
Moreover, since the outer tube made of carbon fiber reinforced resin does not propagate ultrasonic vibration, the ultrasonic beam reliably propagates in the measurement pipe made of fluororesin, further improving the measurement accuracy. In order to reduce the static charge on the manufactured measurement pipe, measures such as the influence on the measurement circuit due to the charge, the destruction of the circuit element, and the ignition of the flammable gas can be easily achieved.

本請求項2に係る発明の超音波流量計によれば、請求項1に係る発明が奏する効果に加えて、フッ素系樹脂製測定管路が、被測定流体の最低使用温度以下で形成した断面形状で炭素繊維強化樹脂製外套管に対して密着固定されていることにより、流量計測時における被測定流体の温度が最低使用温度より高温に変化してフッ素系樹脂製測定管路が熱膨張しようとしても、フッ素系樹脂製測定管路よりも高い引張強度の炭素繊維強化樹脂製外套管がフッ素系樹脂製測定管路の熱膨張を確実に抑制して、フッ素系樹脂製測定管路内の流路断面積を一定に保つため、この安定して保たれた所定のフッ素系樹脂製測定管路内の流路断面積に基づいてフッ素系樹脂製測定管路内を流れる被測定流体の速度から被測定流体の流量がより正確に求められ、被測定流体の最低使用温度よりも高い温度で形成したフッ素系樹脂製測定管路が炭素繊維強化樹脂製外套管の内側で縮小して被測定流体の流量が正確に求められないような事態を回避することができる。   According to the ultrasonic flowmeter of the invention according to claim 2, in addition to the effect of the invention according to claim 1, the cross section formed by the fluororesin measurement pipe line below the minimum operating temperature of the fluid to be measured With the shape and tightly fixed to the carbon fiber reinforced resin sheath tube, the temperature of the fluid to be measured at the time of flow rate measurement will change to a temperature higher than the minimum operating temperature, and the fluororesin measurement pipeline will expand thermally However, the carbon fiber reinforced resin outer tube having a higher tensile strength than the fluororesin measurement pipe line reliably suppresses the thermal expansion of the fluororesin measurement pipe line. In order to keep the flow path cross-sectional area constant, the velocity of the fluid to be measured flowing in the fluororesin measurement pipe line based on the flow path cross-sectional area in the predetermined fluororesin measurement pipe line kept stable. The flow rate of the fluid to be measured can be calculated more accurately from A situation where the fluororesin measurement pipe line formed at a temperature higher than the minimum operating temperature of the constant fluid shrinks inside the carbon fiber reinforced resin jacket pipe and the flow rate of the fluid to be measured cannot be accurately obtained is avoided. can do.

本請求項3に係る発明の超音波流量計によれば、請求項1または請求項2に係る発明が奏する効果に加えて、炭素繊維強化樹脂製外套管が、フッ素系樹脂製測定管路の上流側と下流側との間における超音波ビーム伝搬領域の全長に亘って設けられていることにより、流量測定時にフッ素系樹脂製測定管路が測定環境の温度変化や被測定流体の温度変化の影響を受けても、フッ素系樹脂製測定管路の管路長さが伸縮することなく所定の超音波ビーム伝搬経路長を確保するため、この安定した所定の超音波ビーム伝搬経路長に基づく超音波ビームの上流側から下流側に伝搬する時間と下流側から上流側に伝搬する時間との時間差からフッ素系樹脂製測定管路内を流れる被測定流体の速度が求められ、この被測定流体の速度からフッ素系樹脂製測定管路内を流れる被測定流体の流量をより正確に求めることができる。   According to the ultrasonic flowmeter of the invention of claim 3, in addition to the effect of the invention of claim 1 or claim 2, the carbon fiber reinforced resin sheath tube is a fluororesin measurement pipe line. By providing the entire length of the ultrasonic beam propagation region between the upstream side and the downstream side, the fluororesin measurement pipe line can be used to prevent temperature changes in the measurement environment and fluid temperature during measurement. Even if it is affected, in order to ensure a predetermined ultrasonic beam propagation path length without expanding or contracting the pipe length of the fluororesin measurement pipe line, it is necessary to use an ultrasonic wave based on this stable predetermined ultrasonic beam propagation path length. The velocity of the fluid to be measured flowing in the fluororesin measuring pipe is determined from the time difference between the time of propagation from the upstream side to the downstream side of the acoustic beam and the time of propagation from the downstream side to the upstream side. Fluororesin measurement from speed Can be determined the flow rate of the fluid to be measured flowing through the road more accurately.

本請求項4に係る発明の超音波流量計によれば、請求項1乃至請求項3のいずれか1つに係る発明が奏する効果に加えて、フッ素系樹脂製測定管路の上流側と下流側にそれぞれ配置した超音波送受信器が、炭素繊維強化樹脂製外套管により相互に連結されていることにより、流量測定時にフッ素系樹脂製測定管路が測定環境の温度変化や被測定流体の温度変化の影響を受けたり、流路形状の経年変化の影響を受けても、相互間で対向離間して位置決めされた超音波送受信器の取り付け形態が変化すること無く確実に保持され、超音波送受信器の相互間において生じがちな中心線、平行度などの位置ずれやゼロ点ドリフトが抑制されるため、温度変化や経年変化の影響による超音波伝搬ビームの伝播経路や経路長の変動を阻止して長期に亘って安定した高精度の流量測定を維持することができる。   According to the ultrasonic flowmeter of the invention according to claim 4, in addition to the effect exerted by the invention according to any one of claims 1 to 3, the upstream side and the downstream side of the fluororesin measurement pipe line The ultrasonic transmitter / receiver placed on each side is connected to each other by a carbon fiber reinforced resin sheath tube, so that the fluororesin measurement pipe line changes the temperature of the measurement environment and the temperature of the fluid to be measured during flow rate measurement. Even if it is affected by changes or the influence of aging of the flow path shape, it is securely held without changing the mounting form of the ultrasonic transceivers that are positioned facing and spaced apart from each other. The center line, parallelism, and other misalignments and zero point drift that tend to occur between instruments are suppressed, preventing fluctuations in the propagation path and path length of the ultrasonic propagation beam due to the effects of temperature changes and aging. Over the long term It is possible to maintain the flow measurement of a constant and accurate.

本発明の第1実施例である超音波流量計の概略を示す正面断面図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a front sectional view showing an outline of an ultrasonic flowmeter according to a first embodiment of the present invention. 図1の符合Aで示す超音波流量計の流入側の要部拡大図。The principal part enlarged view of the inflow side of the ultrasonic flowmeter shown by the code | symbol A of FIG. 図1におけるIII−III断面図。III-III sectional drawing in FIG. 本発明の第2実施例である超音波流量計の概略を示す正面断面図。Front sectional drawing which shows the outline of the ultrasonic flowmeter which is 2nd Example of this invention. 図3におけるV−V断面図。VV sectional drawing in FIG.

本発明は、被測定流体を流すフッ素系樹脂製測定管路の上流側と下流側とに超音波送受信器をそれぞれ配置し、超音波送受信器の一方からフッ素系樹脂製測定管路内の被測定流体中に超音波ビームを発信して超音波送受信器の他方により受信し、超音波ビームが上流側から下流側に伝搬する時間と下流側から上流側に伝搬する時間との時間差からフッ素系樹脂製測定管路内を流れる被測定流体の速度を求めてフッ素系樹脂製測定管路内を流れる被測定流体の流量を求める時間差方式の超音波流量計において、フッ素系樹脂製測定管路の熱膨張による流路断面積の変化を抑制するためにフッ素系樹脂製測定管路が、このフッ素系樹脂製測定管路の外周面と密着状態で炭素繊維強化樹脂製外套管に対して嵌合され、フッ素系樹脂製測定管路の熱膨張による流路断面積の変化を抑制して形状安定化を図って測定精度を向上させるとともにフッ素系樹脂製測定管路の機械的な剛性を高めてフッ素系樹脂製測定管路に温度センサーなどを付設することなく高精度の流量測定を長期に亘って維持するものであれば、その具体的な形態は、如何なるものであっても良い。   In the present invention, ultrasonic transmitters / receivers are respectively arranged on the upstream side and the downstream side of a fluororesin measurement pipeline through which a fluid to be measured flows. Fluorine based on the time difference between the time that the ultrasonic beam propagates from the upstream side to the downstream side and the time that the ultrasonic beam propagates from the downstream side to the upstream side. In a time difference type ultrasonic flowmeter that calculates the flow rate of the fluid under measurement flowing through the resin measurement pipe and determining the flow rate of the fluid under measurement flowing through the fluorine resin measurement pipe, In order to suppress changes in the cross-sectional area of the flow path due to thermal expansion, the fluororesin measurement pipe line is fitted to the carbon fiber reinforced resin mantle pipe in close contact with the outer peripheral surface of the fluororesin measurement pipe line. The thermal expansion of the fluororesin measurement pipe line Suppresses changes in the cross-sectional area of the flow path, stabilizes the shape and improves measurement accuracy, and increases the mechanical rigidity of the fluororesin measurement pipe line and adds a temperature sensor to the fluororesin measurement pipe line. As long as high-precision flow rate measurement is maintained over a long period of time without being attached, any specific form may be used.

すなわち、本発明の超音波流量計で計測する被測定流体としては、たとえば、半導体や液晶の製造工程におけるシリコンウエハの研磨・洗浄を行う装置や液晶製造装置で用いられる様々な薬液、食品製造ラインやケミカル製造ラインにおける原料、貯蔵、混合プロセスで取り扱われる薬液などの液体である。   That is, the fluid to be measured that is measured by the ultrasonic flowmeter of the present invention includes, for example, various chemicals and food production lines used in apparatuses for polishing and cleaning silicon wafers in liquid crystal manufacturing processes and liquid crystal manufacturing apparatuses. And liquids such as chemicals used in raw materials, storage and mixing processes in chemical production lines.

そして、本発明の超音波流量計で用いるフッ素系樹脂製測定管路の具体的な材質については、耐薬品性、耐熱性、耐候性、透明性、電気的特性に優れたフッ素系樹脂であれば良いが、特に、PFA(テトラフルオロエチレン・パーフルオロアルキル・ビニルエーテル共重合体)を用いた場合には、測定管路の成形性に優れるばかりでなく、PFA内の音速が被測定流体の音速よりも遅くなるため、超音波ビームが測定管路に伝わってノイズ源となることを回避することができるので、より好ましい。   The specific material of the fluororesin measuring line used in the ultrasonic flowmeter of the present invention may be a fluororesin excellent in chemical resistance, heat resistance, weather resistance, transparency, and electrical characteristics. In particular, when PFA (tetrafluoroethylene / perfluoroalkyl / vinyl ether copolymer) is used, not only is the molding property of the measurement pipe line excellent, but the sound speed in the PFA is the sound speed of the fluid to be measured. Therefore, it is more preferable because the ultrasonic beam can be prevented from being transmitted to the measurement pipe and becoming a noise source.

また、本発明の超音波流量計で用いるフッ素系樹脂製測定管路の具体的な形態については、たとえば、被測定流体を流通させるフッ素系樹脂製測定管路のみからなるストレート状の測定管路形態を備えたものや、被測定流体を流通させるフッ素系樹脂製測定管路とこのフッ素系樹脂製測定管路の一方端に所定の流入角度で連通する流入管と前記フッ素系樹脂製測定管路の他方端に所定の流出角度で連通する流出管とを備えたコの字状の測定管路形態を備えたものなどがある。   The specific form of the fluororesin measurement pipe used in the ultrasonic flowmeter of the present invention is, for example, a straight measurement pipe consisting of only a fluororesin measurement pipe through which the fluid to be measured flows. A fluororesin measuring pipe that circulates the fluid to be measured, an inflow pipe that communicates with one end of the fluororesin measuring pipe at a predetermined inflow angle, and the fluororesin measuring pipe Some have a U-shaped measurement pipe configuration including an outflow pipe communicating with a predetermined outflow angle at the other end of the path.

また、本発明の超音波流量計で用いる炭素繊維強化樹脂製外套管の具体的な材質については、母材のエポキシ樹脂と強化材の炭素繊維との複合材として、所謂、カーボン繊維と呼ばれる高強度、耐久性、耐熱性に優れた炭素繊維強化樹脂であれば良いが、特に、炭素繊維強化樹脂を用いた場合、この炭素繊維強化樹脂製外套管の熱膨張率がフッ素系樹脂製測定管路の熱膨張率よりも極めて小さくその機械的剛性が極めて高いため、炭素繊維強化樹脂製外套管がフッ素系樹脂製測定管路の熱膨張による流路断面積の変化を抑制するとともにフッ素系樹脂製測定管路の機械的な剛性を高め、しかも、炭素繊維強化樹脂は、この炭素繊維強化樹脂に含まれる多数の細い炭素繊維で超音波が乱反射を繰り返して減衰し、500KHz以上の超音波を伝搬しないため、炭素繊維強化樹脂製外套管が超音波振動を直接伝搬せず、さらに、フッ素系樹脂製測定管路に対する静電気の帯電を減少させることができるので、より好ましい。   The specific material of the outer tube made of carbon fiber reinforced resin used in the ultrasonic flowmeter of the present invention is a so-called carbon fiber as a composite material of an epoxy resin as a base material and carbon fiber as a reinforcing material. Any carbon fiber reinforced resin with excellent strength, durability, and heat resistance may be used. Particularly, when a carbon fiber reinforced resin is used, the coefficient of thermal expansion of the carbon fiber reinforced resin outer tube is a fluororesin measuring tube. Since the coefficient of thermal expansion is extremely smaller than the thermal expansion coefficient of the channel, the outer sheath tube made of carbon fiber reinforced resin suppresses changes in the channel cross-sectional area due to the thermal expansion of the fluororesin measurement pipe, and the fluororesin The mechanical rigidity of the measurement pipe line made is increased, and the carbon fiber reinforced resin attenuates the ultrasonic wave repeatedly by irregular reflection by a large number of thin carbon fibers contained in the carbon fiber reinforced resin. Biography Since no carbon fiber reinforced plastic cannula does not propagate ultrasonic vibration directly, further, it is possible to reduce the electrostatic charge to fluorine-based resin measuring tube, and more preferred.

さらに、本発明の超音波流量計における超音波送受信器の具体的な形態については、たとえば、被測定流体を流通させるフッ素系樹脂製測定管路の周囲に厚み方向をフッ素系樹脂製測定管路の長さ方向と平行になるようにフランジ状に配置した超音波振動子と、これらの超音波振動子とフッ素系樹脂製測定管路との間に超音波ビームを略直交方向に屈曲するとともに集束する凹曲反射部を備えてフッ素系樹脂製測定管路を取り囲むように配置したビーム伝達体とで構成される超音波送受信器、あるいは、被測定流体を流通させるフッ素系樹脂製測定管路の中心軸に沿って超音波ビームの送受信を交互に行う超音波振動子と前記フッ素系樹脂製測定管路の中心軸に対して直交配置されてフッ素系樹脂製測定管路の一方端および他方端にそれぞれ形成された管路端封止領域に対面する音響インピーダンス整合層と前記超音波振動子に対面する振動吸収層とで積層される超音波送受信器であっても良い。   Furthermore, regarding a specific form of the ultrasonic transmitter / receiver in the ultrasonic flowmeter of the present invention, for example, the measurement direction made of a fluororesin is measured in the thickness direction around the measurement pipe made of fluororesin for circulating the fluid to be measured. The ultrasonic transducers are arranged in a flange shape so as to be parallel to the length direction of the laser beam, and the ultrasonic beam is bent in a substantially orthogonal direction between these ultrasonic transducers and the fluororesin measurement conduit. Ultrasonic transmitter / receiver composed of a beam transmission body provided with a converging concave reflection part and arranged so as to surround the fluororesin measurement pipe, or a fluororesin measurement pipe for circulating the fluid to be measured An ultrasonic transducer that alternately transmits and receives an ultrasonic beam along the central axis of the fluororesin, and one end and the other of the fluororesin measurement pipe that are arranged orthogonal to the central axis of the fluororesin measurement pipe Each at the end Wherein the acoustic impedance matching layer facing the pipe end sealing region made may be an ultrasonic transceiver which is laminated between the vibration absorbing layer facing the ultrasonic transducer.

以下に、本発明の第1実施例である超音波流量計100について、図1乃至図3に基づいて説明する。
まず、本実施例の超音波流量計100は、図1に示すように、被測定流体Fを流すPFA(テトラフルオロエチレン・パーフルオロアルキル・ビニルエーテル共重合体)からなるフッ素系樹脂製測定管路110とこのフッ素系樹脂製測定管路110の上流側に90度前後の流入角度で連通するフッ素系樹脂製流入管120と前記フッ素系樹脂製測定管路110の下流側に90度前後の流出角度で連通するフッ素系樹脂製流出管130とが全体形態としてコの字状に連結され、計量作業エリアにおいてフッ素系樹脂製測定管路110に対するフッ素系樹脂製流入管120とフッ素系樹脂製流出管130との取付スペースを最少化して、他の周辺機器との設置干渉を回避して優れた操作性を発揮するように構成されている。
なお、上述したフッ素系樹脂製測定管路110、フッ素系樹脂製流入管120、フッ素系樹脂製流出管130については、被測定流体Fの円滑な流動性、製造上の成形加工などを考慮して直円管が採用されている。また、フッ素系樹脂製流入管120、フッ素系樹脂製流出管130は、フッ素系樹脂製測定管路110と同様に、PFA(テトラフルオロエチレン・パーフルオロアルキル・ビニルエーテル共重合体)からなっている。
Below, the ultrasonic flowmeter 100 which is 1st Example of this invention is demonstrated based on FIG. 1 thru | or FIG.
First, as shown in FIG. 1, the ultrasonic flowmeter 100 of the present embodiment is a measurement pipe made of fluororesin made of PFA (tetrafluoroethylene / perfluoroalkyl / vinyl ether copolymer) for flowing the fluid F to be measured. 110 and a fluororesin inflow pipe 120 communicating with the upstream side of the fluororesin measurement pipe 110 at an inflow angle of about 90 degrees and an outflow of about 90 degrees downstream of the fluororesin measurement pipe 110. A fluororesin outflow pipe 130 that communicates at an angle is connected in a U-shape as a whole, and a fluororesin inflow pipe 120 and a fluororesin outflow with respect to the fluororesin measurement conduit 110 in the weighing work area. The installation space with the tube 130 is minimized, and installation interference with other peripheral devices is avoided, and excellent operability is exhibited.
The above-described fluororesin measurement pipe 110, fluororesin inflow pipe 120, and fluororesin outflow pipe 130 are considered in consideration of the smooth fluidity of the fluid F to be measured, the molding process in manufacturing, and the like. Straight pipes are used. Similarly to the fluororesin measuring pipe 110, the fluororesin inflow pipe 120 and the fluororesin outflow pipe 130 are made of PFA (tetrafluoroethylene / perfluoroalkyl / vinyl ether copolymer). .

そして、本実施例の超音波流量計100は、フッ素系樹脂製測定管路110の上流側と下流側に超音波送受信器140、150がそれぞれ配置され、これらの超音波送受信器140、150の一方からフッ素系樹脂製測定管路110内の被測定流体F中に超音波ビームを発信して超音波送受信器140、150の他方により受信するように構成され、さらに、超音波送受信器140、150と電気的に接続された図示しない変換器などの演算部によって、超音波ビームが上流側から下流側に伝搬する時間と下流側から上流側に伝搬する時間との時間差からフッ素系樹脂製測定管路110内を流れる被測定流体Fの速度を求め、この被測定流体Fの速度に基づいてフッ素系樹脂製測定管路110内を流れる被測定流体Fの流量を求めるように構成されている。   In the ultrasonic flowmeter 100 of the present embodiment, ultrasonic transmitters / receivers 140 and 150 are arranged on the upstream side and the downstream side of the fluororesin measurement pipe line 110, respectively. An ultrasonic beam is transmitted from one side into the fluid F to be measured in the measurement pipe 110 made of fluororesin, and is received by the other of the ultrasonic transceivers 140 and 150. Furthermore, the ultrasonic transceiver 140, Measured by fluororesin from the time difference between the time that the ultrasonic beam propagates from the upstream side to the downstream side and the time that the ultrasonic beam propagates from the downstream side to the upstream side by a calculation unit such as a converter (not shown) electrically connected to 150 The velocity of the fluid F to be measured flowing in the conduit 110 is obtained, and the flow rate of the fluid F to be measured flowing in the fluororesin measuring conduit 110 is obtained based on the velocity of the fluid F to be measured. It is.

また、本実施例の超音波流量計100で用いた超音波送受信器140、150については、流入側の超音波送受信器140の構成および流出側の超音波送受信器150の構成は同様であるので、流入側の超音波送受信器140の具体的な構成について説明することとし、流出側の超音波送受信器150の具体的な構成については、140番台の各符号に付した部材と同様に説明となるため、その具体的な説明を省略する。   In addition, regarding the ultrasonic transmitters / receivers 140 and 150 used in the ultrasonic flowmeter 100 of the present embodiment, the configuration of the ultrasonic transmitter / receiver 140 on the inflow side and the configuration of the ultrasonic transmitter / receiver 150 on the outflow side are the same. The specific configuration of the inflow-side ultrasonic transmitter / receiver 140 will be described, and the specific configuration of the outflow-side ultrasonic transmitter / receiver 150 will be described in the same manner as the members denoted by reference numerals in the 140 series. Therefore, the specific description is omitted.

図1および図2に示すように、流入側の超音波送受信器140は、フッ素系樹脂製測定管路110の上流側を延長した管路部分に封入した、セラミックからなる円板状の超音波振動子141と、ガラスエポキシ樹脂製の音響インピーダンス整合層142と、シリコンゴム製の振動吸収層143と、グリセリン層144と、フッ素系樹脂製の円筒状保持部材146と、基板147と、ゴム製のOリング148と、これらを封止する蓋部材149とで構成されている。   As shown in FIGS. 1 and 2, the ultrasonic transmitter / receiver 140 on the inflow side is a disk-shaped ultrasonic wave made of ceramic and enclosed in a pipe portion extending from the upstream side of the measurement pipe 110 made of fluororesin. The vibrator 141, the acoustic impedance matching layer 142 made of glass epoxy resin, the vibration absorbing layer 143 made of silicon rubber, the glycerin layer 144, the cylindrical holding member 146 made of fluororesin, the substrate 147, and rubber O-ring 148 and a lid member 149 for sealing them.

円板状の超音波振動子141は、フッ素系樹脂製測定管路110の中心軸Cに対して直交配置され、送信側の超音波振動子として基板147から導線Lを介して送られた電気信号(電圧)によって反り共振周波数で振動して超音波ビームを送信する。他方、受信側の超音波振動子として送信側の超音波振動子から送られた超音波ビームを受信して振動し、電気信号(電圧)を導線Lを介して基板147へ送るように構成されている。   The disk-shaped ultrasonic transducer 141 is disposed orthogonally to the central axis C of the fluororesin measurement pipe line 110, and is transmitted as an ultrasonic transducer on the transmission side from the substrate 147 via the lead L. An ultrasonic beam is transmitted by vibrating at a resonance frequency by a signal (voltage). On the other hand, the receiving-side ultrasonic transducer is configured to receive and vibrate an ultrasonic beam sent from the transmitting-side ultrasonic transducer and send an electric signal (voltage) to the substrate 147 via the lead L. ing.

音響インピーダンス整合層142は、フッ素系樹脂製測定管路110の一方端111に形成された管路端封止領域111aに対面し、管路端封止領域111aと超音波振動子141との間に配設されている。
音響インピーダンス整合層142の音響インピーダンスは、管路端封止領域111aの音響インピーダンスと超音波振動子141の音響インピーダンスとの間に設定されている。
The acoustic impedance matching layer 142 faces the pipe end sealing region 111a formed at one end 111 of the fluororesin measurement pipe 110, and is between the pipe end sealing region 111a and the ultrasonic transducer 141. It is arranged.
The acoustic impedance of the acoustic impedance matching layer 142 is set between the acoustic impedance of the duct end sealing region 111a and the acoustic impedance of the ultrasonic transducer 141.

要するに、超音波振動子141から発信された超音波ビームが管路端封止領域111aによく透過するように、音響インピーダンス整合層142は、円板状超音波振動子141の密度と管路端封止領域111aの密度との中間の密度となるようにガラスに小さい気泡を混入させて密度調整した薄い層で、超音波振動子141と管路端封止領域111aとの間の音響インピーダンスの急変を緩和している。   In short, the acoustic impedance matching layer 142 has the density of the disc-shaped ultrasonic transducer 141 and the end of the pipe so that the ultrasonic beam transmitted from the ultrasonic vibrator 141 is well transmitted to the pipe end sealing region 111a. A thin layer in which small bubbles are mixed in the glass so that the density is intermediate between the density of the sealing region 111a and the density of the acoustic impedance between the ultrasonic transducer 141 and the pipe end sealing region 111a is adjusted. Sudden changes are mitigated.

振動吸収層143は、超音波振動子141における音響インピーダンス整合層142側と反対側に配設されている。振動吸収層143は、粘弾性を有し、振動を早期に止めるために設けられている。また、振動吸収層143は、超音波振動子141を覆って空気や水分による超音波振動子141の劣化を防止する役割もある。
グリセリン層144は、管路端封止領域111aと音響インピーダンス整合層142との間に塗られたグリセリンによって形成されている。
円筒状の保持部材146は、内部に基板147を保持し、先端が円板状の超音波振動子141の周縁部141aと当接している。
The vibration absorbing layer 143 is disposed on the side opposite to the acoustic impedance matching layer 142 side in the ultrasonic transducer 141. The vibration absorbing layer 143 has viscoelasticity and is provided to stop vibration early. The vibration absorbing layer 143 also has a role of covering the ultrasonic vibrator 141 and preventing the ultrasonic vibrator 141 from being deteriorated by air or moisture.
The glycerin layer 144 is formed of glycerin applied between the pipe end sealing region 111 a and the acoustic impedance matching layer 142.
The cylindrical holding member 146 holds the substrate 147 therein, and the tip is in contact with the peripheral portion 141a of the disk-shaped ultrasonic transducer 141.

Oリング148は、円筒状の保持部材146と内蓋部材149との間に配設されている。Oリング148は、円板状の超音波振動子141に対する押圧力を所定の大きさに保つための緩衝材である。   The O-ring 148 is disposed between the cylindrical holding member 146 and the inner lid member 149. The O-ring 148 is a cushioning material for keeping the pressing force against the disk-shaped ultrasonic transducer 141 at a predetermined magnitude.

つぎに、本実施例の超音波流量計100が最も特徴とするフッ素系樹脂製測定管路110は、図3に示すように、フッ素系樹脂製測定管路110の外周面と密着状態でCFRPからなる炭素繊維強化樹脂製外套管160に対して嵌合され、さらに、この炭素繊維強化樹脂製外套管160の両端部には、炭素繊維強化樹脂製外蓋部材170がそれぞれ被嵌されている。
そして、このフッ素系樹脂製測定管路110に対して炭素繊維強化樹脂製外套管160を嵌合させる際には、炭素繊維強化樹脂製外套管160が、2分割したC状断面を有する管部品から構成され、フッ素系樹脂製測定管路110から突出するフッ素系樹脂製流入管120およびフッ素系樹脂製流出管130をフッ素系樹脂製測定管路110の長手方向に沿ってフッ素系樹脂製測定管路110とともに挟持するように2分割した管部品を接着剤で接合被嵌している。
これにより、流量測定時に測定環境の温度変化や被測定流体Fの温度変化による影響を受けたり、流路形状の経年変化の影響を受けても、フッ素系樹脂製測定管路110の熱膨張率よりも極めて小さく機械的剛性の極めて高い炭素繊維強化樹脂製外套管160が、フッ素系樹脂製測定管路110の熱膨張による流路断面積の変化を抑制している。
しかも、炭素繊維強化樹脂製外套管160が、超音波振動を伝搬せず、超音波ビームがフッ素系樹脂製測定管路110内を確実に伝播してより一段と測定精度を向上させる。
Next, as shown in FIG. 3, the fluororesin measurement pipe line 110, which is the most characteristic of the ultrasonic flowmeter 100 of the present embodiment, is in contact with the outer peripheral surface of the fluororesin measurement pipe line 110 in a CFRP state. And a carbon fiber reinforced resin outer cover member 170 is fitted on both ends of the carbon fiber reinforced resin outer tube 160. .
When the outer tube 160 made of carbon fiber reinforced resin is fitted into the measurement pipe 110 made of fluororesin, the outer tube 160 made of carbon fiber reinforced resin has a C-shaped cross section divided into two parts. The fluororesin inflow pipe 120 and the fluororesin outflow pipe 130 projecting from the fluororesin measurement pipe 110 are measured along the longitudinal direction of the fluororesin measurement pipe 110. The pipe parts divided into two parts so as to be sandwiched together with the pipe line 110 are joined and fitted with an adhesive.
As a result, the thermal expansion coefficient of the fluororesin measuring pipe 110 can be affected by the temperature change of the measurement environment and the temperature change of the fluid F to be measured at the time of the flow rate measurement, or the influence of the flow path shape over time. The outer tube 160 made of carbon fiber reinforced resin having a very small size and extremely high mechanical rigidity suppresses a change in the cross-sectional area of the flow channel due to the thermal expansion of the fluororesin measuring tube 110.
Moreover, the outer sheath tube 160 made of carbon fiber reinforced resin does not propagate ultrasonic vibration, and the ultrasonic beam reliably propagates in the measurement pipe 110 made of fluororesin, thereby further improving measurement accuracy.

そして、フッ素系樹脂製測定管路110は、被測定流体Fの最低使用温度以下で形成した断面形状で炭素繊維強化樹脂製外套管160に対して密着固定されている。
これにより、流量計測時における被測定流体Fの温度が最低使用温度より高温に変化してフッ素系樹脂製測定管路110が熱膨張しようとしても、フッ素系樹脂製測定管路110よりも高い引張強度の炭素繊維強化樹脂製外套管160が、フッ素系樹脂製測定管路110の熱膨張を確実に抑制して、フッ素系樹脂製測定管路110内の流路断面積を一定に保っている。
The fluororesin measurement pipe line 110 is closely fixed to the carbon fiber reinforced resin mantle pipe 160 in a cross-sectional shape formed at a temperature lower than the minimum use temperature of the fluid F to be measured.
Thereby, even if the temperature of the fluid F to be measured at the time of flow rate change to a temperature higher than the minimum operating temperature and the fluororesin measurement pipeline 110 is about to thermally expand, the tensile force higher than that of the fluororesin measurement pipeline 110 is higher. A strong carbon fiber reinforced resin outer tube 160 reliably suppresses the thermal expansion of the fluororesin measurement pipe 110 and keeps the flow path cross-sectional area in the fluororesin measurement pipe 110 constant. .

炭素繊維強化樹脂製外套管160が、フッ素系樹脂製測定管路110の上流側と下流側との間、すなわち、流入側の超音波送受信器140と流出側の超音波送受信器150との間における超音波ビーム伝搬領域の全長に亘って設けられている。
これにより、流量測定時にフッ素系樹脂製測定管路110は、測定環境の温度変化や被測定流体Fの温度変化の影響を受けても、フッ素系樹脂製測定管路110の管路長さが伸縮することなく所定の超音波ビーム伝搬経路長を確保している。
The outer tube 160 made of carbon fiber reinforced resin is between the upstream side and the downstream side of the fluororesin measurement pipe line 110, that is, between the inflow side ultrasonic transceiver 140 and the outflow side ultrasonic transceiver 150. Are provided over the entire length of the ultrasonic beam propagation region.
As a result, the fluororesin measurement pipe line 110 is not affected by the temperature change of the measurement environment or the temperature change of the fluid F to be measured during flow rate measurement. A predetermined ultrasonic beam propagation path length is secured without expansion and contraction.

加えて、フッ素系樹脂製測定管路110の上流側と下流側にそれぞれ配置した超音波送受信器140、150が、炭素繊維強化樹脂製外套管160より相互に連結されている。
これにより、流量測定時にフッ素系樹脂製測定管路110は、測定環境の温度変化や被測定流体Fの温度変化の影響を受けたり、流路形状の経年変化の影響を受けても、相互間で対向離間して位置決めされた超音波送受信器140、150の取り付け形態が変化すること無く確実に保持され、超音波送受信器140、150の相互間において生じがちな中心線、平行度などの位置ずれが抑制される。
In addition, ultrasonic transmitters / receivers 140 and 150 disposed on the upstream side and the downstream side of the fluororesin measurement pipe line 110 are connected to each other by a carbon fiber reinforced resin outer pipe 160.
As a result, the fluororesin measurement pipe line 110 is not affected by the temperature change of the measurement environment, the temperature change of the fluid F to be measured, or the flow path shape over time. Positions such as center lines and parallelism that are likely to be generated between the ultrasonic transmitters / receivers 140, 150, which are securely held without change in the mounting form of the ultrasonic transmitters / receivers 140, 150 that are positioned opposite to each other. Deviation is suppressed.

このようにして得られた本実施例の超音波流量計100は、フッ素系樹脂製測定管路110が、このフッ素系樹脂製測定管路110の外周面と密着状態で炭素繊維強化樹脂製外套管160に対して嵌合されているため、フッ素系樹脂製測定管路110の形状安定化を図って測定精度を向上させるばかりでなく、フッ素系樹脂製測定管路110の機械的な剛性を高め、従来のようにフッ素系樹脂製測定管路110に温度センサーなどを付設することなく高精度の流量測定を長期に亘って維持し、また、フッ素系樹脂製測定管路110が、被測定流体Fの最低使用温度以下で形成した断面形状で炭素繊維強化樹脂製外套管160に対して密着固定されているため、この安定して保たれた所定のフッ素系樹脂製測定管路110内の流路断面積に基づいてフッ素系樹脂製測定管路110内を流れる被測定流体Fの速度から被測定流体の流量がより正確に求められ、被測定流体Fの最低使用温度よりも高い温度で形成したフッ素系樹脂製測定管路110が炭素繊維強化樹脂製外套管160の内側で縮小して被測定流体Fの流量が正確に求められないような事態を回避することができる。   The ultrasonic flowmeter 100 of the present example obtained in this manner has a carbon fiber reinforced resin mantle with the fluororesin measuring pipe 110 in close contact with the outer peripheral surface of the fluororesin measuring pipe 110. Since it is fitted to the tube 160, not only the shape of the fluororesin measurement pipe line 110 is stabilized to improve the measurement accuracy, but also the mechanical rigidity of the fluororesin measurement pipe line 110 is increased. Maintaining high-accuracy flow measurement over a long period of time without attaching a temperature sensor or the like to the fluororesin measurement pipe line 110 as in the past, and the fluororesin measurement pipe line 110 is measured Since the cross-sectional shape formed below the minimum operating temperature of the fluid F is tightly fixed to the outer tube 160 made of carbon fiber reinforced resin, the inside of the predetermined measurement tube 110 made of fluororesin that is stably maintained is provided. Based on channel cross-sectional area The flow rate of the measured fluid F flowing through the fluororesin measuring pipe 110 is more accurately obtained, and the flow rate of the measured fluid F is made of a fluorine resin formed at a temperature higher than the minimum operating temperature of the measured fluid F. It is possible to avoid a situation in which the measurement pipe 110 is contracted inside the carbon fiber reinforced resin outer tube 160 and the flow rate of the fluid F to be measured cannot be accurately obtained.

また、炭素繊維強化樹脂製外套管160が、フッ素系樹脂製測定管路110の上流側と下流側との間における超音波ビーム伝搬領域の全長に亘って設けられているため、この安定した所定の超音波ビーム伝搬経路長に基づく超音波ビームの上流側から下流側に伝搬する時間と下流側から上流側に伝搬する時間との時間差からフッ素系樹脂製測定管路110内を流れる被測定流体Fの速度が求められ、この被測定流体Fの速度からフッ素系樹脂製測定管路110内を流れる被測定流体Fの流量をより正確に求めることができる。   Further, since the carbon fiber reinforced resin outer tube 160 is provided over the entire length of the ultrasonic beam propagation region between the upstream side and the downstream side of the measurement tube 110 made of fluororesin, this stable predetermined Fluid to be measured flowing in the fluororesin measurement pipe 110 from the time difference between the time of propagation of the ultrasonic beam from the upstream side to the downstream side and the time of propagation from the downstream side to the upstream side based on the ultrasonic beam propagation path length The velocity of F is obtained, and from this velocity of the fluid F to be measured, the flow rate of the fluid F to be measured flowing in the fluororesin measuring pipe 110 can be obtained more accurately.

さらに、フッ素系樹脂製測定管路110の上流側と下流側にそれぞれ配置した超音波送受信器140,150が、炭素繊維強化樹脂製外套管160によって相互に連結されているため、温度変化や経年変化の影響による超音波伝搬ビーム伝播経路や超音波ビーム伝搬経路長の変動を阻止して長期に亘って安定した高精度の流量測定を維持し、また、フッ素系樹脂製測定管路110に対する静電気の帯電を減少させるため、帯電による測定回路への影響、回路素子の破壊、可燃性ガスへの発火等の対策が容易に達成するなど、その効果は甚大である。   Furthermore, since the ultrasonic transmitters / receivers 140 and 150 arranged respectively on the upstream side and the downstream side of the measurement pipe 110 made of fluororesin are connected to each other by the outer tube 160 made of carbon fiber reinforced resin, the temperature change and aging The fluctuation of the ultrasonic propagation beam propagation path and the ultrasonic beam propagation path length due to the influence of the change is prevented to maintain a stable and highly accurate flow rate measurement over a long period of time, and static electricity to the fluororesin measurement pipe line 110 is maintained. In order to reduce the charging, the effects such as the influence on the measurement circuit due to the charging, the destruction of the circuit element, the ignition to the combustible gas, etc. can be easily achieved.

以下に、本発明の第2実施例である超音波流量計200について、図4乃至図5に基づいて説明する。
まず、本実施例の超音波流量計200は、図4に示すように、被測定流体Fを流すPFA(テトラフルオロエチレン・パーフルオロアルキル・ビニルエーテル共重合体)からなるフッ素系樹脂製測定管路210のみからなるストレート状の測定管路形態を備え、計量エリアにおいて如何なる設置形態であっても上流側と下流側のいずれか一方が上方に向けて配置され、フッ素系樹脂製測定管路210内に滞留しがちな被測定流体Fの気泡が必然的に脱気し、フッ素系樹脂製測定管路210内に生じがちな気泡障害を回避して超音波ビームを感度良く送受信するようになっている。
Below, the ultrasonic flowmeter 200 which is 2nd Example of this invention is demonstrated based on FIG. 4 thru | or FIG.
First, as shown in FIG. 4, the ultrasonic flowmeter 200 of this example is a fluororesin measurement pipe made of PFA (tetrafluoroethylene / perfluoroalkyl / vinyl ether copolymer) for flowing the fluid F to be measured. 210 having a straight measurement pipe form composed only of 210, and any one of the installation forms in the measurement area is arranged with either the upstream side or the downstream side facing upward, and inside the measurement pipe 210 made of fluororesin. The bubbles of the fluid to be measured F, which tend to stay in the air, inevitably deaerate, avoiding the bubble obstacle that tends to occur in the measurement pipe 210 made of fluororesin, and transmitting and receiving the ultrasonic beam with high sensitivity. Yes.

そして、本実施例の超音波流量計200は、フッ素系樹脂製測定管路210の上流側と下流側に超音波送受信器240、250がそれぞれ配置され、これらの超音波送受信器240、250の一方からフッ素系樹脂製測定管路210内の被測定流体F中に超音波ビームを発信して超音波送受信器240、250の他方により受信するように構成され、さらに、超音波送受信器240、250と電気的に接続された図示しない変換器などの演算部によって、超音波ビームが上流側から下流側に伝搬する時間と下流側から上流側に伝搬する時間との時間差からフッ素系樹脂製測定管路210内を流れる被測定流体Fの速度を求め、この被測定流体Fの速度に基づいてフッ素系樹脂製測定管路210内を流れる被測定流体Fの流量を求めるように構成されている。   In the ultrasonic flowmeter 200 of this embodiment, ultrasonic transmitters / receivers 240 and 250 are arranged on the upstream side and the downstream side of the fluororesin measurement pipe 210, respectively. An ultrasonic beam is transmitted from one side into the fluid F to be measured in the measurement pipe 210 made of fluororesin, and is received by the other of the ultrasonic transceivers 240 and 250. Furthermore, the ultrasonic transceiver 240, Fluorine-based resin measurement from the time difference between the time that the ultrasonic beam propagates from the upstream side to the downstream side and the time that the ultrasonic beam propagates from the downstream side to the upstream side by an arithmetic unit such as a converter (not shown) that is electrically connected to 250 The velocity of the fluid F to be measured flowing in the pipe 210 is determined, and the flow rate of the fluid F to be measured flowing in the fluororesin measuring pipeline 210 is determined based on the velocity of the fluid F to be measured. It is.

また、本実施例の超音波流量計200で用いた超音波送受信器240、250については、流入側の超音波送受信器240の構成および流出側の超音波送受信器250の構成は同様であるので、流入側の超音波送受信器240の構成について説明することとし、流出側の超音波送受信器250の構成の詳しい説明は省略する。   In addition, regarding the ultrasonic transmitters / receivers 240 and 250 used in the ultrasonic flowmeter 200 of the present embodiment, the configuration of the ultrasonic transmitter / receiver 240 on the inflow side and the configuration of the ultrasonic transmitter / receiver 250 on the outflow side are the same. The configuration of the ultrasonic transmitter / receiver 240 on the inflow side will be described, and a detailed description of the configuration of the ultrasonic transmitter / receiver 250 on the outflow side will be omitted.

図4に示すように、流入側の超音波送受信器240は、被測定流体Fを流すフッ素系樹脂製測定管路210の周囲に厚み方向をフッ素系樹脂製測定管路210の長さ方向と平行になるようにフランジ状に配置したピエゾ素子とも呼ばれるセラミック製の超音波振動子241と、これらの超音波振動子241とフッ素系樹脂製測定管路210との間に超音波ビームを略直交方向に屈曲するとともに集束する凹曲反射部242aを備えてフッ素系樹脂製測定管路210を取り囲むように配置したビーム伝達体242と、超音波振動子241の背面に設けたシリコンゴム製の振動吸収層243とで構成されている。
なお、前述した凹曲反射部242aは、平面である多数の反射部を組合せて、全体として多面体による凹局面にすることもできる。
As shown in FIG. 4, the ultrasonic transmitter / receiver 240 on the inflow side has a thickness direction around the fluororesin measurement pipeline 210 through which the fluid F to be measured flows, and a length direction of the fluororesin measurement pipeline 210. Ceramic ultrasonic transducers 241, which are also called piezo elements arranged in a flange shape so as to be parallel, and an ultrasonic beam between these ultrasonic transducers 241 and the fluororesin measurement pipe 210 are substantially orthogonal. A beam transmission body 242 provided with a concave reflection portion 242a that bends and converges in a direction so as to surround the measurement pipe 210 made of fluororesin, and a vibration made of silicon rubber provided on the back surface of the ultrasonic transducer 241 And an absorption layer 243.
In addition, the concave reflection part 242a mentioned above can also be made into the concave aspect by a polyhedron as a whole by combining many reflective parts which are planes.

フランジ状の超音波振動子241は、フッ素系樹脂製測定管路210の中心軸Cに対して直交配置され、送信側の超音波振動子として電気信号(電圧)により反り共振周波数で振動して超音波ビームを送信する。他方、受信側の超音波振動子として送信側の超音波振動子から送られた超音波ビームを受信して振動し、電気信号(電圧)を図示しない導線Lを介して流量を求める演算部へ送るように構成されている。
すなわち、超音波振動子241で発信した超音波ビームは、ビーム伝達体242を介してフッ素系樹脂製測定管路210の一円周上に集束させてフッ素系樹脂製測定管路210内に出射し、また、到達した超音波ビームは、フッ素系樹脂製測定管路210の一円周上から入射し、ビーム伝達体242を介して超音波振動子241で受信されるようになっている。
The flange-shaped ultrasonic transducer 241 is arranged orthogonally to the central axis C of the fluororesin measurement pipe line 210 and vibrates at a warp resonance frequency by an electric signal (voltage) as an ultrasonic transducer on the transmission side. Send an ultrasonic beam. On the other hand, as an ultrasonic transducer on the reception side, an ultrasonic beam sent from the ultrasonic transducer on the transmission side is received and vibrated, and an electric signal (voltage) is calculated to a calculation unit that obtains a flow rate through a lead L (not shown). Configured to send.
That is, the ultrasonic beam transmitted by the ultrasonic transducer 241 is focused on one circumference of the fluororesin measurement pipe 210 via the beam transmission body 242, and is emitted into the fluororesin measurement pipe 210. Further, the reached ultrasonic beam enters from one circumference of the fluororesin measuring pipe 210 and is received by the ultrasonic transducer 241 via the beam transmission body 242.

つぎに、本実施例の超音波流量計200が最も特徴とするフッ素系樹脂製測定管路210は、図4乃至図5に示すように、フッ素系樹脂製測定管路210の外周面と密着状態で炭素繊維強化樹脂製外套管260に対して嵌合されている。
これにより、流量測定時に測定環境の温度変化や被測定流体Fの温度変化による影響を受けたり、流路形状の経年変化の影響を受けても、フッ素系樹脂製測定管路210の熱膨張率よりも極めて小さく機械的剛性の極めて高い炭素繊維強化樹脂製外套管260が、フッ素系樹脂製測定管路210の熱膨張による流路断面積の変化を抑制している。
しかも、炭素繊維強化樹脂製外套管260が超音波振動を伝播せず、超音波ビームがフッ素系樹脂製測定管路210内を確実に伝播してより一段と測定精度を向上させる。
Next, as shown in FIGS. 4 to 5, the fluororesin measurement pipe line 210, which is the most characteristic of the ultrasonic flowmeter 200 of the present embodiment, is in close contact with the outer peripheral surface of the fluororesin measurement pipe line 210. The carbon fiber reinforced resin outer tube 260 is fitted in the state.
As a result, the thermal expansion coefficient of the measurement pipe 210 made of fluororesin is affected by the temperature change of the measurement environment and the temperature change of the fluid F to be measured at the time of the flow rate measurement, or the influence of the flow path shape over time. The outer tube 260 made of carbon fiber reinforced resin having a very small size and extremely high mechanical rigidity suppresses the change in the cross-sectional area of the flow channel due to the thermal expansion of the fluororesin measuring tube 210.
In addition, the outer sheath 260 made of carbon fiber reinforced resin does not propagate ultrasonic vibration, and the ultrasonic beam reliably propagates in the measurement pipe 210 made of fluororesin, thereby further improving the measurement accuracy.

そして、フッ素系樹脂製測定管路210は、被測定流体Fの最低使用温度以下で形成した断面形状で炭素繊維強化樹脂製外套管260に対して密着固定されている。
すなわち、フッ素系樹脂製測定管路210と炭素繊維強化樹脂製外套管260との密着固定方法としては、フッ素系樹脂製測定管路210を被測定流体Fの最低使用温度以下に冷却した状態で接着剤を塗布した後に炭素繊維強化樹脂製外套管260の管内に挿通することにより密着固定しても良い。
これにより、流量計測時における被測定流体Fの温度が最低使用温度より高温に変化してフッ素系樹脂製測定管路210が熱膨張しようとしても、フッ素系樹脂製測定管路210よりも高い引張強度の炭素繊維強化樹脂製外套管260が、フッ素系樹脂製測定管路210の熱膨張を確実に抑制して、フッ素系樹脂製測定管路210内の流路断面積を一定に保っている。
The fluororesin measurement pipe line 210 is closely fixed to the carbon fiber reinforced resin mantle pipe 260 with a cross-sectional shape formed at a temperature lower than the minimum use temperature of the fluid F to be measured.
That is, as a method of tightly fixing the fluororesin measurement pipe 210 and the carbon fiber reinforced resin outer tube 260, the fluororesin measurement pipe 210 is cooled to a temperature lower than the minimum use temperature of the fluid F to be measured. After applying the adhesive, it may be tightly fixed by inserting it into the tube of the carbon fiber reinforced resin outer tube 260.
As a result, even if the temperature of the fluid F to be measured at the time of flow rate measurement is changed to a temperature higher than the minimum operating temperature and the fluororesin measurement pipeline 210 is about to thermally expand, the tensile force higher than that of the fluororesin measurement pipeline 210 is higher. The high strength carbon fiber reinforced resin outer tube 260 reliably suppresses the thermal expansion of the fluororesin measurement pipe 210 and keeps the flow passage cross-sectional area in the fluororesin measurement pipe 210 constant. .

また、炭素繊維強化樹脂製外套管260が、フッ素系樹脂製測定管路210の上流側と下流側との間、すなわち、流入側の超音波送受信器240と流出側の超音波送受信器250との間における超音波ビーム伝搬領域の全長に亘って設けられている。
これにより、流量測定時にフッ素系樹脂製測定管路210は、測定環境の温度変化や被測定流体Fの温度変化の影響を受けても、フッ素系樹脂製測定管路210の管路長さが伸縮することなく所定の超音波ビーム伝搬経路長を確保している。
Further, the outer tube 260 made of carbon fiber reinforced resin is disposed between the upstream side and the downstream side of the measurement pipe line 210 made of fluororesin, that is, the ultrasonic transmitter / receiver 240 on the inflow side and the ultrasonic transmitter / receiver 250 on the outflow side. Are provided over the entire length of the ultrasonic beam propagation region.
As a result, the fluororesin measurement pipe line 210 is not affected by the temperature change of the measurement environment or the temperature change of the fluid F to be measured during flow rate measurement. A predetermined ultrasonic beam propagation path length is secured without expansion and contraction.

加えて、フッ素系樹脂製測定管路210の上流側と下流側にそれぞれ配置した超音波送受信器240、250のそれぞれ対向する対向面同士は、フッ素系樹脂製測定管路210に密着固定した炭素繊維強化樹脂製外套管160で相互に連結されている。そして、超音波送受信器240、250の両外側面には、炭素繊維強化樹脂製外蓋部材270を介して炭素繊維強化樹脂製円筒管280が、超音波送受信器240、250および炭素繊維強化樹脂製外套管260を内包状態で包囲して超音波送受信器240、250の外周部同士を連結している。
したがって、炭素繊維強化樹脂製外套管260と炭素繊維強化樹脂製円筒管270とを設けたことにより、流量測定時にフッ素系樹脂製測定管路210は、測定環境の温度変化や被測定流体Fの温度変化の影響を受けたり、流路形状の経年変化の影響を受けても、相互間で対向離間して位置決めされた超音波送受信器240、250の取り付け形態が変化すること無く確実に保持され、超音波送受信器240、250の相互間において生じがちな中心線、平行度などの位置ずれやゼロ点ドリフトが抑制される。
In addition, the opposed surfaces of the ultrasonic transmitters / receivers 240 and 250 arranged on the upstream side and the downstream side of the fluororesin measurement pipe line 210 are closely fixed to the fluororesin measurement pipe line 210. They are connected to each other by a fiber reinforced resin outer tube 160. A cylindrical tube 280 made of carbon fiber reinforced resin is provided on both outer side surfaces of the ultrasonic transmitters / receivers 240 and 250 via an outer cover member 270 made of carbon fiber reinforced resin, and the ultrasonic transmitter / receivers 240 and 250 and the carbon fiber reinforced resin. The outer tube 260 is surrounded in an encapsulated state, and the outer peripheral portions of the ultrasonic transceivers 240 and 250 are connected to each other.
Accordingly, the provision of the carbon fiber reinforced resin outer tube 260 and the carbon fiber reinforced resin cylindrical tube 270 allows the fluororesin measurement pipe line 210 to measure the temperature change of the measurement environment and the fluid F to be measured during flow rate measurement. Even if it is influenced by temperature changes or the influence of aging of the flow path shape, it is securely held without changing the mounting form of the ultrasonic transceivers 240 and 250 that are positioned opposite to each other. In addition, misalignment such as a center line and parallelism, which tend to occur between the ultrasonic transceivers 240 and 250, and zero point drift are suppressed.

このようにして得られた本実施例の超音波流量計200は、フッ素系樹脂製測定管路210が、このフッ素系樹脂製測定管路210の外周面と密着状態で炭素繊維強化樹脂製外套管260に対して嵌合されているため、フッ素系樹脂製測定管路210の形状安定化を図って測定精度を向上させるばかりでなく、フッ素系樹脂製測定管路210の機械的な剛性を高め、従来のようにフッ素系樹脂製測定管路210に温度センサーなどを付設することなく高精度の流量測定を長期に亘って維持し、また、フッ素系樹脂製測定管路210が、被測定流体Fの最低使用温度以下で形成した断面形状で炭素繊維強化樹脂製外套管260に対して密着固定されているため、この安定して保たれた所定のフッ素系樹脂製測定管路210内の流路断面積に基づいてフッ素系樹脂製測定管路210内を流れる被測定流体Fの速度から被測定流体Fの流量がより正確に求められ、被測定流体Fの最低使用温度よりも高い温度で形成したフッ素系樹脂製測定管路210が炭素繊維強化樹脂製外套管260の内側で縮小して被測定流体Fの流量が正確に求められないような事態を回避することができる。   The ultrasonic flowmeter 200 of the present example obtained in this manner has a carbon fiber reinforced resin sheath with the fluororesin measurement pipe 210 in close contact with the outer peripheral surface of the fluororesin measurement pipe 210. Since it is fitted to the tube 260, not only the shape of the fluororesin measurement pipe line 210 is stabilized to improve the measurement accuracy, but also the mechanical rigidity of the fluororesin measurement pipe line 210 is increased. Maintaining high-precision flow measurement over a long period of time without attaching a temperature sensor or the like to the fluororesin measurement pipe line 210 as in the past, and the fluororesin measurement pipe line 210 is measured Since the cross-sectional shape formed below the minimum operating temperature of the fluid F is tightly fixed to the outer tube 260 made of carbon fiber reinforced resin, the inside of the predetermined measurement tube 210 made of fluororesin that is stably maintained is provided. Based on channel cross-sectional area The flow rate of the fluid F to be measured flowing through the measurement pipe 210 made of fluorine resin is more accurately obtained, and the fluorine resin formed at a temperature higher than the minimum operating temperature of the fluid F to be measured. It is possible to avoid a situation in which the manufactured measuring pipe 210 is contracted inside the carbon fiber reinforced resin outer tube 260 and the flow rate of the fluid F to be measured cannot be accurately obtained.

また、炭素繊維強化樹脂製外套管260が、フッ素系樹脂製測定管路210の上流側と下流側との間における超音波ビーム伝搬領域の全長に亘って設けられているため、この安定した所定の超音波ビーム伝搬経路長に基づく超音波ビームの上流側から下流側に伝搬する時間と下流側から上流側に伝搬する時間との時間差からフッ素系樹脂製測定管路210内を流れる被測定流体Fの速度が求められ、この被測定流体Fの速度からフッ素系樹脂製測定管路210内を流れる被測定流体Fの流量をより正確に求めることができる。   In addition, since the outer tube 260 made of carbon fiber reinforced resin is provided over the entire length of the ultrasonic beam propagation region between the upstream side and the downstream side of the measurement pipe 210 made of fluororesin, this stable predetermined Fluid to be measured flowing in the fluororesin measuring pipe 210 from the time difference between the time of propagation from the upstream side to the downstream side of the ultrasonic beam and the time of propagation from the downstream side to the upstream side based on the ultrasonic beam propagation path length The velocity of F is obtained, and the flow rate of the fluid F to be measured flowing through the fluororesin measurement pipe 210 can be obtained more accurately from the velocity of the fluid F to be measured.

さらに、フッ素系樹脂製測定管路210の上流側と下流側にそれぞれ配置した超音波送受信器240,250が、炭素繊維強化樹脂製外套管260と炭素繊維強化樹脂製円筒管270とによって相互に連結されているため、温度変化や経年変化の影響による超音波伝搬ビーム伝播経路や超音波ビーム伝搬経路長の変動を阻止して長期に亘って安定した高精度の流量測定を維持することができるなど、その効果は甚大である。   Furthermore, ultrasonic transmitters / receivers 240 and 250 arranged on the upstream side and the downstream side of the fluororesin measurement pipe line 210 are mutually connected by a carbon fiber reinforced resin outer tube 260 and a carbon fiber reinforced resin cylindrical pipe 270. Because it is connected, fluctuations in the ultrasonic propagation beam propagation path and ultrasonic beam propagation path length due to the influence of temperature change and secular change can be prevented, and stable and accurate flow measurement can be maintained over a long period of time. The effect is enormous.

100 ・・・ 超音波流量計
110 ・・・ フッ素系樹脂製測定管路
111 ・・・ 一方端
111a・・・ 管路端封止領域
112 ・・・ 他方端
120 ・・・ 流入管
130 ・・・ 流出管
140 ・・・ 流入側の超音波送受信器
141 ・・・ 超音波振動子
142 ・・・ 音響インピーダンス整合層
143 ・・・ 振動吸収層
144 ・・・ グリセリン層
146 ・・・ 保持部材
147 ・・・ 基板
148 ・・・ Oリング
149 ・・・ 内蓋部材
150 ・・・ 流出側の超音波送受信器
160 ・・・ 炭素繊維強化樹脂製外套管
170 ・・・ 炭素繊維強化樹脂製外蓋部材
200 ・・・ 超音波流量計
210 ・・・ フッ素系樹脂製測定管路
240 ・・・ 流入側の超音波送受信器
241 ・・・ 超音波振動子
242 ・・・ ビーム伝達体
242a・・・ 凹曲反射部
243 ・・・ 振動吸収層
250 ・・・ 流出側の超音波送受信器
260 ・・・ 炭素繊維強化樹脂製外套管
270 ・・・ 炭素繊維強化樹脂製外蓋部材
280 ・・・ 炭素繊維強化樹脂製円筒管
F ・・・ 被測定流体
C ・・・ 中心軸
L ・・・ 導線
DESCRIPTION OF SYMBOLS 100 ... Ultrasonic flowmeter 110 ... Fluorine-type resin measurement pipe line 111 ... One end 111a ... Pipe end sealing area 112 ... The other end 120 ... Inflow pipe 130 ... · Outflow tube 140 ··· Inflow side ultrasonic transmitter / receiver 141 ··· Ultrasonic transducer 142 ··· Acoustic impedance matching layer 143 ··· Vibration absorbing layer 144 ··· Glycerin layer 146 ··· Holding member 147 ... Substrate 148 ... O-ring 149 ... Inner lid member 150 ... Outflow side ultrasonic transmitter / receiver 160 ... Carbon fiber reinforced resin outer tube 170 ... Carbon fiber reinforced resin outer cover Member 200 ... Ultrasonic flow meter 210 ... Fluorine-based resin measuring pipe 240 ... Inflow side ultrasonic transmitter / receiver 241 ... Ultrasonic vibrator 242 ... Beam transmitter 242a ... Concave reflection portion 243... Vibration absorbing layer 250... Outflow side ultrasonic transmitter / receiver 260... Carbon fiber reinforced resin outer tube 270... Carbon fiber reinforced resin outer cover member 280. Fiber reinforced plastic cylindrical tube F ... Fluid to be measured C ... Center axis L ... Conductor

Claims (4)

被測定流体を流すフッ素系樹脂製測定管路の上流側と下流側とに超音波送受信器をそれぞれ配置し、前記超音波送受信器の一方からフッ素系樹脂製測定管路内の被測定流体中に超音波ビームを発信して前記超音波送受信器の他方により受信し、前記超音波ビームが上流側から下流側に伝搬する時間と下流側から上流側に伝搬する時間との時間差から前記フッ素系樹脂製測定管路内を流れる被測定流体の速度を求めて前記フッ素系樹脂製測定管路内を流れる被測定流体の流量を求める時間差方式の超音波流量計において、
前記フッ素系樹脂製測定管路の熱膨張による流路断面積の変化を抑制するために前記フッ素系樹脂製測定管路が、前記フッ素系樹脂製測定管路の外周面と密着状態で炭素繊維強化樹脂製外套管に対して嵌合していることを特徴とする超音波流量計。
An ultrasonic transmitter / receiver is disposed on the upstream side and the downstream side of the fluororesin measurement pipe through which the fluid to be measured flows, and the measurement fluid in the fluororesin measurement pipe from one of the ultrasonic transceivers The fluorine system is transmitted from the other side of the ultrasonic transmitter / receiver and received from the other side of the ultrasonic transmitter / receiver, and from the time difference between the time that the ultrasonic beam propagates from the upstream side to the downstream side and the time that the ultrasonic beam propagates from the downstream side to the upstream side. In the time difference type ultrasonic flowmeter for obtaining the flow rate of the fluid to be measured flowing in the fluororesin measurement pipeline by obtaining the velocity of the fluid to be measured flowing in the resin measurement pipeline,
In order to suppress a change in the cross-sectional area of the flow path due to thermal expansion of the fluororesin measurement pipe, the fluororesin measurement pipe is in close contact with the outer peripheral surface of the fluororesin measurement pipe. An ultrasonic flowmeter that is fitted to a reinforced resin outer tube.
前記フッ素系樹脂製測定管路が、被測定流体の最低使用温度以下で形成した断面形状で前記炭素繊維強化樹脂製外套管に対して密着固定されていることを特徴とする請求項1に記載の超音波流量計。   The said fluororesin measuring pipe line is closely fixed with respect to the said carbon fiber reinforced resin mantle pipe in the cross-sectional shape formed below the minimum use temperature of the fluid to be measured. Ultrasonic flow meter. 前記炭素繊維強化樹脂製外套管が、前記フッ素系樹脂製測定管路の上流側と下流側との間における超音波ビーム伝搬領域の全長に亘って設けられていることを特徴とする請求項1または請求項2に記載の超音波流量計。   2. The carbon fiber reinforced resin sheath tube is provided over the entire length of the ultrasonic beam propagation region between the upstream side and the downstream side of the fluororesin measurement pipe line. Or the ultrasonic flowmeter of Claim 2. 前記フッ素系樹脂製測定管路の上流側と下流側にそれぞれ配置した超音波送受信器が、前記炭素繊維強化樹脂製外套管によって相互に連結されていることを特徴とする請求項1乃至請求項3のいずれか1つに記載の超音波流量計。   The ultrasonic transmitter / receiver respectively disposed on the upstream side and the downstream side of the fluororesin measurement pipe line is connected to each other by the carbon fiber reinforced resin sheath pipe. 4. The ultrasonic flowmeter according to any one of 3.
JP2014129414A 2014-06-24 2014-06-24 Ultrasonic flow meter Active JP5634636B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014129414A JP5634636B1 (en) 2014-06-24 2014-06-24 Ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014129414A JP5634636B1 (en) 2014-06-24 2014-06-24 Ultrasonic flow meter

Publications (2)

Publication Number Publication Date
JP5634636B1 true JP5634636B1 (en) 2014-12-03
JP2016008880A JP2016008880A (en) 2016-01-18

Family

ID=52139043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014129414A Active JP5634636B1 (en) 2014-06-24 2014-06-24 Ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JP5634636B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113280873A (en) * 2021-06-17 2021-08-20 北京北方华创微电子装备有限公司 Semiconductor cleaning equipment and solution flow monitoring device thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3760982B1 (en) * 2019-07-02 2023-04-19 Itron Global SARL Water meter comprising a transducer enclosure with variable moisture proofing
US11287299B2 (en) 2019-07-02 2022-03-29 Itron Global Sarl Multi-material transducer enclosure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59178319A (en) * 1983-03-29 1984-10-09 Yamatake Honeywell Co Ltd Manufacture of measuring pipe for electromagnetic flow meter
JP2009047536A (en) * 2007-08-20 2009-03-05 Toyo Gas Meter Kk Flow measuring device
JP2009162606A (en) * 2008-01-07 2009-07-23 Keyence Corp Flowmeter
JP2012078299A (en) * 2010-10-06 2012-04-19 Honda Electronic Co Ltd Ultrasonic flowmeter
JP5337917B1 (en) * 2013-01-18 2013-11-06 東京計装株式会社 Ultrasonic flow meter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59178319A (en) * 1983-03-29 1984-10-09 Yamatake Honeywell Co Ltd Manufacture of measuring pipe for electromagnetic flow meter
JP2009047536A (en) * 2007-08-20 2009-03-05 Toyo Gas Meter Kk Flow measuring device
JP2009162606A (en) * 2008-01-07 2009-07-23 Keyence Corp Flowmeter
JP2012078299A (en) * 2010-10-06 2012-04-19 Honda Electronic Co Ltd Ultrasonic flowmeter
JP5337917B1 (en) * 2013-01-18 2013-11-06 東京計装株式会社 Ultrasonic flow meter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113280873A (en) * 2021-06-17 2021-08-20 北京北方华创微电子装备有限公司 Semiconductor cleaning equipment and solution flow monitoring device thereof

Also Published As

Publication number Publication date
JP2016008880A (en) 2016-01-18

Similar Documents

Publication Publication Date Title
JP5548834B1 (en) Ultrasonic flow meter
KR102050331B1 (en) Method of producing ultrasonic flowmeter, ultrasonic flowmeter produced by the method and fluid controller having the ultrasonic flowmeter
JP2002365106A (en) Instrument for measuring flow rate, clamp-on type ultrasonic flowmeter
JP5634636B1 (en) Ultrasonic flow meter
KR20170013342A (en) Ultrasonic device and method for measuring fluid flow using the ultrasonic device
JP6726274B2 (en) Ultrasonic flow meter
JP5580950B1 (en) Ultrasonic flow meter
US20170038234A1 (en) Ultrasonic flow meter
CN110506198B (en) Ultrasonic flow rate measuring device
JP6037845B2 (en) Fluid control device
Ayob et al. Design consideration for front-end system in ultrasonic tomography
JP4444588B2 (en) Ultrasonic flow meter
KR101763871B1 (en) 3D flowmeter using bimorph and flow-measuring method using the flowmeter
JP7203302B2 (en) ultrasonic flow meter
TW202219468A (en) Ultrasonic flow measurement device
JP6149250B2 (en) Ultrasonic flow meter
US10974215B2 (en) Fluid mixing device
JP2009236850A (en) Ultrasonic flowmeter
JP7246275B2 (en) Spiral ultrasonic flowmeter
US20220205822A1 (en) Improved Ultrasonic Flow Meter
JP7233795B1 (en) flow meter sensor
JP6532504B2 (en) Ultrasonic flow meter
JP2007178244A (en) Ultrasonic flowmeter and wedge therefor
JP2016138810A (en) Ultrasonic transducer and ultrasonic flowmeter using the same
JP2012242090A (en) Ultrasonic flowmeter

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141014

R150 Certificate of patent or registration of utility model

Ref document number: 5634636

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250