JP5634362B2 - Electrode active material and method for producing the same - Google Patents

Electrode active material and method for producing the same Download PDF

Info

Publication number
JP5634362B2
JP5634362B2 JP2011201791A JP2011201791A JP5634362B2 JP 5634362 B2 JP5634362 B2 JP 5634362B2 JP 2011201791 A JP2011201791 A JP 2011201791A JP 2011201791 A JP2011201791 A JP 2011201791A JP 5634362 B2 JP5634362 B2 JP 5634362B2
Authority
JP
Japan
Prior art keywords
active material
electrode active
lithium
primary particles
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011201791A
Other languages
Japanese (ja)
Other versions
JP2013065397A (en
Inventor
鋤柄 宜
宜 鋤柄
渉 星川
渉 星川
裕登 前山
裕登 前山
壮吉 大久保
壮吉 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2011201791A priority Critical patent/JP5634362B2/en
Publication of JP2013065397A publication Critical patent/JP2013065397A/en
Application granted granted Critical
Publication of JP5634362B2 publication Critical patent/JP5634362B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウムイオン二次電池に係り、特に、リチウムイオン二次電池の充放電レート特性を向上させる技術に関する。   The present invention relates to a lithium ion secondary battery, and more particularly to a technique for improving charge / discharge rate characteristics of a lithium ion secondary battery.

車載用のリチウムイオン二次電池においては、それぞれ正極、負極および電解液を有する単電池(セル)が複数個直列に配置されて組電池を形成し、充放電制御のためのセルコントローラが接続され、必要な電圧が得られるようにバッテリーモジュールを形成する。   In an in-vehicle lithium ion secondary battery, a plurality of single cells (cells) each having a positive electrode, a negative electrode, and an electrolyte are arranged in series to form an assembled battery, and a cell controller for charge / discharge control is connected. Then, the battery module is formed so as to obtain a necessary voltage.

このような二次電池の単電池には、電極シートとセパレータを重ね、扁平型や円筒型に巻回した後に潰した巻回型蓄電素子、あるいは、平板状に切り出した電極とセパレータを積層した積層型蓄電素子の2種類があり、これらを、円筒型のケースに収納したものや、角型、扁平型のケースに収納したものが知られている。   In such a secondary battery cell, an electrode sheet and a separator are stacked, and a wound type electricity storage element that is crushed after being wound into a flat shape or a cylindrical shape, or an electrode and a separator cut into a flat plate shape are stacked. There are two types of stacked power storage elements, and those that are housed in a cylindrical case, and those that are housed in a rectangular or flat case are known.

単電池の構成要素のうち、正極または負極の電極シートは、薄い金属箔である集電箔の表面に、電極活物質粒子、バインダー、溶媒等を含む電極活物質のペーストが塗布および乾燥されてなる。   Among the constituent elements of the unit cell, the electrode sheet of the positive electrode or the negative electrode is applied with a paste of an electrode active material containing electrode active material particles, a binder, a solvent and the like on the surface of a current collecting foil that is a thin metal foil and dried. Become.

単電池の充放電に際しては、リチウムイオンが電解液と電極活物質粒子との間を拡散して出入りする。そのため、従来、大電流にて充放電を行うと、リチウムイオンの出入りが円滑に行われず、レート特性(高レート充放電においても容量が維持される性能)が低下する原因となっていた。このレート特性を維持しながら大電流にて充放電を行なうためには、リチウムイオンの電極活物質粒子と電解液との間の出入りを迅速かつ円滑にする必要がある。   When charging / discharging the unit cell, lithium ions diffuse between the electrolytic solution and the electrode active material particles to enter and exit. For this reason, conventionally, when charging / discharging with a large current is performed, lithium ions do not flow in and out smoothly, which causes a reduction in rate characteristics (performance of maintaining capacity even in high rate charging / discharging). In order to perform charging / discharging with a large current while maintaining this rate characteristic, it is necessary to promptly and smoothly move between the lithium ion electrode active material particles and the electrolytic solution.

しかしながら、従来、電極活物質粒子を構成する結晶は、結晶格子がランダムに配向した非晶質または多結晶質であるため、リチウムイオンの拡散のための移動経路が複雑となり、結果として、一定レベル以上の高レートの充放電は困難であった。   Conventionally, however, the crystals constituting the electrode active material particles are amorphous or polycrystalline with crystal lattices randomly oriented, which complicates the migration path for lithium ion diffusion, resulting in a certain level. The above high rate charge / discharge was difficult.

このような問題を解決するため、リチウムイオン電池において、正極の電極活物質を単結晶の二酸化マンガンとして、さらに、電解液と電極活物質との間のリチウムイオンの拡散移動経路が最短となるように、すなわち、正極集電体に対して垂直となるように、この単結晶を配向させた正極構造が知られている(例えば、特許文献1参照)。   In order to solve such a problem, in the lithium ion battery, the positive electrode active material is made of single crystal manganese dioxide, and the diffusion transfer path of lithium ions between the electrolytic solution and the electrode active material is minimized. In other words, a positive electrode structure in which this single crystal is oriented so as to be perpendicular to the positive electrode current collector is known (see, for example, Patent Document 1).

しかしながら、特許文献1に記載の技術では、集電体上に単結晶を電気化学的に成長させる必要があるため、活物質の種類が限られるという問題や、結晶成長に著しく時間が掛かり単結晶の厚さを厚く形成することが困難であるという問題や、導電材およびバインダーの配合が制限されるという問題等がある。そのため、実現可能な寸法や仕様が限定され、実用化にはコストが高い。したがって、自動車用途に要求されるような、高レート特性を維持しつつ大電流による充放電を行う電池にこの技術を適用することは困難である。   However, in the technique described in Patent Document 1, since it is necessary to electrochemically grow a single crystal on the current collector, there is a problem that the types of active materials are limited, and it takes a long time to grow the single crystal. There is a problem that it is difficult to form a thick layer, a problem that the blending of the conductive material and the binder is limited, and the like. Therefore, realizable dimensions and specifications are limited, and the cost for practical use is high. Therefore, it is difficult to apply this technique to a battery that charges and discharges with a large current while maintaining high rate characteristics as required for automobile applications.

特開2007−005281号公報JP 2007-005281 A

本発明は、以上述べた従来技術の課題を解決するためになされたもので、レート特性が向上し、大電流による充放電を可能とする電極活物質材料およびその製造方法を提供することを目的としている。   The present invention has been made in order to solve the above-described problems of the prior art, and an object thereof is to provide an electrode active material that has improved rate characteristics and can be charged / discharged by a large current, and a method for manufacturing the same. It is said.

本発明の電極活物質は、リチウムの層状化合物及びオリビン化合物のいずれかから選択される活物質の一次粒子が集合した二次粒子から構成される電極活物質材料であって、一次粒子は単結晶であり、二次粒子中の一次粒子は、各一次粒子におけるリチウムイオン拡散方向が同一になるように、かつ、少なくともリチウムイオン拡散方向へ積層されたことを特徴としている。   The electrode active material of the present invention is an electrode active material composed of secondary particles in which primary particles of an active material selected from lithium layered compounds and olivine compounds are aggregated, and the primary particles are single crystals The primary particles in the secondary particles are characterized by being laminated in the primary ion diffusion direction so that the primary particles have the same lithium ion diffusion direction.

上記構成の本発明にあっては、電極活物質を構成する二次粒子中の一次粒子が、リチウムイオン拡散方向が同一になるように配向しているので、充放電時におけるリチウムイオンの電解液と電極活物質との間の拡散移動経路が短縮される。これにより、リチウムイオンの迅速な挿入離脱が可能となり、電極表面での電気化学反応速度が向上することで、レート特性や出力密度が向上する。これにより、急速な充放電や大電流の充放電にも対応可能な電池を構成することができる。   In the present invention having the above configuration, since the primary particles in the secondary particles constituting the electrode active material are oriented so that the lithium ion diffusion directions are the same, the lithium ion electrolyte during charge and discharge The diffusion movement path between the electrode and the electrode active material is shortened. Thereby, rapid insertion and removal of lithium ions is possible, and the rate characteristics and output density are improved by improving the electrochemical reaction speed on the electrode surface. Thereby, the battery which can respond also to rapid charging / discharging and charging / discharging of a large current can be comprised.

本発明においては、一次粒子は、長尺面と、それよりも短い短尺面を有し、長尺面は、リチウムイオン拡散方向と交差しており、短尺面は、リチウムイオン拡散方向と平行であることをさらなる特徴としている。
In the present invention, the primary particles have a long surface and a shorter short surface, the long surface intersects the lithium ion diffusion direction, and the short surface is parallel to the lithium ion diffusion direction. It is a further feature .

上記構成の本発明にあっては、長尺面がリチウムイオン拡散方向と交差し、短尺面がリチウムイオン拡散方向と平行である。すなわち、リチウムイオンの挿入離脱が起こる出入り口の面が長尺面となっていて相対的に広いので、よりスムーズにリチウムイオンが出入りし、電気化学反応速度が向上する。また、リチウムイオンの拡散移動が起こる方向に平行な面が短尺面となっているので、リチウムイオンの移動距離が相対的に短くなり、同様に、よりスムーズにリチウムイオンが出入りし、電気化学反応速度が向上する。   In the present invention having the above configuration, the long surface intersects the lithium ion diffusion direction, and the short surface is parallel to the lithium ion diffusion direction. That is, since the entrance / exit surface where insertion / extraction of lithium ions occurs is a long surface and is relatively wide, lithium ions enter / exit more smoothly and the electrochemical reaction rate is improved. In addition, since the plane parallel to the direction in which lithium ion diffusion and movement occurs is a short surface, the movement distance of lithium ions is relatively shortened, and similarly, lithium ions enter and exit more smoothly, resulting in an electrochemical reaction. Increases speed.

本発明の電極活物質材料の製造方法は、リチウムの層状化合物及びオリビン化合物のいずれかから選択される活物質からなる単結晶の一次粒子を生成する工程と、一次粒子を金属アルコキシドにて被覆する工程と、被覆された一次粒子を凝集させ二次粒子を生成する工程とからなることを特徴としている。   The method for producing an electrode active material according to the present invention includes a step of generating primary particles of a single crystal made of an active material selected from either a lithium layered compound or an olivine compound, and coating the primary particles with a metal alkoxide. The method comprises a step and a step of aggregating the coated primary particles to produce secondary particles.

上記構成の本発明にあっては、電極活物質の単結晶である一次粒子の表面に多数のアルコキシ基が形成され、隣接する一次粒子表面のアルコキシ基が凝集し、脱水縮合してエーテル基を形成することにより隣接する一次粒子どうしが結合されて二次粒子が形成されるが、この際、短尺面に比較して長尺面の方がより多くのアルコキシ基を有するため、隣接する一次粒子の長尺面どうしがより選択的に凝集することになる。これにより、本発明のリチウムイオンの拡散方向が揃った二次粒子を成長させることができる。   In the present invention having the above structure, a large number of alkoxy groups are formed on the surface of the primary particles that are single crystals of the electrode active material, and the alkoxy groups on the surface of the adjacent primary particles are aggregated and dehydrated and condensed to form ether groups. By forming, the adjacent primary particles are combined to form secondary particles. At this time, since the long surface has more alkoxy groups than the short surface, the adjacent primary particles The long surfaces of each other will aggregate more selectively. Thereby, the secondary particle | grains with which the diffusion direction of the lithium ion of this invention was equal can be grown.

本発明の電極活物質を用いた正極構造を模式的に示す断面図である。It is sectional drawing which shows typically the positive electrode structure using the electrode active material of this invention. 本発明の電極活物質二次粒子の拡大図である。It is an enlarged view of the electrode active material secondary particle of this invention. 本発明の第1実施形態における電極活物質一次粒子の結晶構造を示す模式図である。It is a schematic diagram which shows the crystal structure of the electrode active material primary particle in 1st Embodiment of this invention. 本発明の第2実施形態における電極活物質一次粒子の結晶構造を示す模式図である。It is a schematic diagram which shows the crystal structure of the electrode active material primary particle in 2nd Embodiment of this invention. 本発明の第1実施形態における層状化合物の結晶構造を示す模式図である。It is a schematic diagram which shows the crystal structure of the layered compound in 1st Embodiment of this invention. 本発明の第2実施形態におけるオリビン化合物の結晶構造を示す模式図である。It is a schematic diagram which shows the crystal structure of the olivine compound in 2nd Embodiment of this invention. 本発明の実施例および比較例(層状化合物)のX線回折分析結果を示すチャートである。It is a chart which shows the X-ray-diffraction analysis result of the Example of this invention, and a comparative example (layered compound). 本発明の実施例および比較例(オリビン化合物)のX線回折分析結果を示すチャートである。It is a chart which shows the X-ray-diffraction analysis result of the Example and comparative example (olivine compound) of this invention.

以下、図面を参照して本発明の実施の形態を説明する。
図1は、本発明の実施形態に係るリチウムイオン電池における正極を模式的に示した断面図である。正極Eは、例えばアルミニウム等の金属箔の集電体1上に、電極活物質二次粒子2および導電材粒子3が、バインダー4により結着されて構成されている。電極Eは、例えば、電極活物質二次粒子2、導電材3およびバインダー4を溶媒と共に混練してペースト状としたものを集電体1上に塗布する公知の方法によって製造することができる。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a cross-sectional view schematically showing a positive electrode in a lithium ion battery according to an embodiment of the present invention. The positive electrode E is configured by, for example, electrode active material secondary particles 2 and conductive material particles 3 being bound by a binder 4 on a current collector 1 made of a metal foil such as aluminum. The electrode E can be manufactured by, for example, a known method in which the electrode active material secondary particles 2, the conductive material 3, and the binder 4 are kneaded together with a solvent to form a paste on the current collector 1.

図2は、電極活物質二次粒子2の拡大図である。電極活物質二次粒子2は、多数の電極活物質一次粒子5が凝集して構成されている。本発明においては、図2に示すように、電極活物質一次粒子5は、長尺面と短尺面を有し、一次粒子5は、長尺面間で凝集して二次粒子を構成していると好ましく、また、長尺と短尺の比L/Dは、1.1以上になると好ましい。1.1未満であると長尺面と短尺面がほぼ同じとなってしまい、特に1未満であると、長尺面と短尺面が逆転してしまい好ましくない。また、一次粒子の粒径は、0.05〜100μm、特に0.1〜20μmの範囲が好ましい。   FIG. 2 is an enlarged view of the electrode active material secondary particles 2. The electrode active material secondary particles 2 are constituted by aggregation of a large number of electrode active material primary particles 5. In the present invention, as shown in FIG. 2, the electrode active material primary particles 5 have a long surface and a short surface, and the primary particles 5 are aggregated between the long surfaces to form secondary particles. The ratio L / D between the long and short lengths is preferably 1.1 or more. If it is less than 1.1, the long surface and the short surface are substantially the same, and if it is less than 1, the long surface and the short surface are reversed, which is not preferable. The primary particle size is preferably in the range of 0.05 to 100 μm, particularly 0.1 to 20 μm.

第1実施形態(層状化合物)
図3は、電極活物質一次粒子5が、リチウムの層状化合物で構成されている本発明の第1実施形態を示し、図5は、層状化合物の結晶構造を説明する図である。本発明のリチウムの層状化合物は、一般式LiMO2±y(0.8≦x≦2.5、yはxに依存して変化)を取る複合酸化物であり、ここで、Mは、Al,Mg,V,Ti,Ni,Co,Mn,Fe,Cuのうち少なくとも一つを含む遷移金属である。
First embodiment (layered compound)
FIG. 3 shows the first embodiment of the present invention in which the electrode active material primary particles 5 are composed of a layered compound of lithium, and FIG. 5 is a diagram for explaining the crystal structure of the layered compound. The layered compound of lithium according to the present invention is a complex oxide having a general formula Li x MO 2 ± y (0.8 ≦ x ≦ 2.5, y varies depending on x), where M is A transition metal containing at least one of Al, Mg, V, Ti, Ni, Co, Mn, Fe, and Cu.

図5に示すように、層状化合物の結晶は、遷移金属Mの酸化物層とリチウム層が交互に配列された構造を取る。そして、遷移金属Mの酸化物層とリチウム層の延在方向は、結晶格子の003面(00N面、N:整数、以下同じ)に一致し、110面(NN0面)に垂直に交わる。そのため、充放電に伴う電気化学反応に際しては、リチウムイオンは、003面に平行な方向に沿って拡散移動が行なわれる。   As shown in FIG. 5, the crystal of the layered compound has a structure in which oxide layers and lithium layers of transition metal M are alternately arranged. The extending direction of the oxide layer and the lithium layer of the transition metal M coincides with the 003 plane (00N plane, N: integer, hereinafter the same) of the crystal lattice, and intersects the 110 plane (NN0 plane) perpendicularly. Therefore, in the electrochemical reaction accompanying charging / discharging, lithium ions diffuse and move along a direction parallel to the 003 plane.

したがって、本発明では、図3に示すように、電極活物質一次粒子5の長尺面Lが層状化合物の110面(NN0面)に一致し、かつ短尺面Dが003面(00N面)に一致するように一次粒子を構成し、かつ、一次粒子5を、それぞれの粒子におけるリチウムイオン拡散方向が一致するように、長尺面同士を結合させて二次粒子2を構成している。   Therefore, in the present invention, as shown in FIG. 3, the long surface L of the electrode active material primary particles 5 is coincident with the 110 surface (NN0 surface) of the layered compound, and the short surface D is the 003 surface (00N surface). The primary particles are configured so as to coincide with each other, and the primary particles 5 are combined with the long surfaces so that the lithium ion diffusion directions in the respective particles coincide with each other to constitute the secondary particles 2.

このように、本発明では、長尺面Lをリチウムイオンの出入り口とすることによってリチウムイオンの電極活物質内への挿入離脱をスムーズにすると共に、二次粒子2中の各一次粒子5のリチウムイオン拡散移動経路の方向を揃えることによって電気化学反応に際してのリチウムイオンの拡散移動経路に屈曲を無くし、最短距離とすることができる。   As described above, in the present invention, the long surface L is used as the entrance / exit of lithium ions, thereby smoothly inserting and releasing lithium ions into / from the electrode active material, and the lithium of each primary particle 5 in the secondary particle 2. By aligning the direction of the ion diffusion transfer path, bending of the lithium ion diffusion transfer path during the electrochemical reaction can be eliminated and the shortest distance can be achieved.

第2実施形態(オリビン化合物)
図4は、電極活物質一次粒子5が、リチウムのオリビン化合物で構成されている本発明の第2実施形態を示し、図6は、オリビン化合物の結晶構造を説明する図である。本発明のリチウムのオリビン化合物は、一般式LiMPOを取る複合酸化物であり、ここで、Mは、Al,Mg,V,Ti,Ni,Co,Mn,Fe,Cuのうち少なくとも一つを含む遷移金属である。
Second embodiment (olivine compound)
FIG. 4 shows a second embodiment of the present invention in which the electrode active material primary particles 5 are composed of a lithium olivine compound, and FIG. 6 is a diagram for explaining the crystal structure of the olivine compound. The lithium olivine compound of the present invention is a composite oxide having the general formula LiMPO 4 , where M is at least one of Al, Mg, V, Ti, Ni, Co, Mn, Fe, and Cu. Including transition metals.

図6に示すように、オリビン化合物の結晶は、MPOの結晶構造の間にLiが層状に存在し、このLiの存在する層が200面(N00面)に一致した構造を取る。そして、リチウム層の延在方向は、結晶の020面(0N0面)に垂直に交わる。そのため、充放電に伴う電気化学反応に際しては、リチウムイオンは、200面に平行な方向に沿って拡散移動が行なわれる。 As shown in FIG. 6, the crystal of the olivine compound has a structure in which Li is present in layers between the crystal structures of MPO 4 and the layer in which this Li is present coincides with the 200 plane (N00 plane). The extending direction of the lithium layer intersects the 020 plane (0N0 plane) of the crystal perpendicularly. Therefore, in the electrochemical reaction accompanying charging / discharging, lithium ions diffuse and move along a direction parallel to the 200 plane.

したがって、本発明では、図4に示すように、電極活物質一次粒子5の長尺面Lが層状化合物の020面(0N0面)に一致し、かつ短尺面Dが200面(N00面)に一致するように一次粒子を構成し、かつ、一次粒子5を、それぞれの粒子におけるリチウムイオン拡散方向が一致するように長尺面同士を結合させて二次粒子2を構成している。   Therefore, in the present invention, as shown in FIG. 4, the long surface L of the electrode active material primary particles 5 coincides with the 020 surface (0N0 surface) of the layered compound, and the short surface D becomes the 200 surface (N00 surface). The primary particles are configured so as to match, and the primary particles 5 are combined with the long surfaces so that the lithium ion diffusion directions in the respective particles match, thereby forming the secondary particles 2.

このように、本発明では、長尺面Lをリチウムイオンの出入り口とすることによってリチウムイオンの電極活物質内への挿入離脱をスムーズにすると共に、二次粒子2中の各一次粒子5のリチウムイオン拡散移動経路の方向を揃えることによって電気化学反応に際してのリチウムイオンの拡散移動経路に屈曲を無くし、最短距離とすることができる。   As described above, in the present invention, the long surface L is used as the entrance / exit of lithium ions, thereby smoothly inserting and releasing lithium ions into / from the electrode active material, and the lithium of each primary particle 5 in the secondary particle 2. By aligning the direction of the ion diffusion transfer path, bending of the lithium ion diffusion transfer path during the electrochemical reaction can be eliminated and the shortest distance can be achieved.

本発明の一次粒子および二次粒子の製造方法1:ゾルゲル法
上述した本発明における個々の一次粒子が特定の結晶面を揃えて整列した二次粒子は、下記の方法で作製することができる。
Production method of primary particles and secondary particles of the present invention 1: sol-gel method Secondary particles in which the individual primary particles in the present invention described above are aligned with a specific crystal plane aligned can be produced by the following method.

<プロセス1:溶融塩中での結晶育成>
坩堝内に遷移金属酸化物を投入し、fluxかつLi源となるLiOとLiClをそれぞれ投入する。大気雰囲気下、電気炉等を用いて300〜1000℃で焼成し、fluxを熔融させることで遷移金属酸化物のLi化および結晶育成を行う。これにより、電極活物質一次粒子の単結晶を成長させることができる。反応後、反応系を室温まで冷却を行う。結晶育成時間は、目的の単結晶の寸法に応じて任意に設定することができる。
<Process 1: Crystal growth in molten salt>
A transition metal oxide is charged into the crucible, and Li 2 O and LiCl that are flux and Li sources are charged, respectively. The transition metal oxide is converted to Li and crystal growth is performed by firing at 300 to 1000 ° C. using an electric furnace or the like in an air atmosphere and melting flux. Thereby, the single crystal of the electrode active material primary particle can be grown. After the reaction, the reaction system is cooled to room temperature. The crystal growth time can be arbitrarily set according to the dimensions of the target single crystal.

<プロセス2:過剰のflux除去>
次に、生成した結晶を蒸留水にて水洗し、上記工程で反応せずに残った過剰のfluxを除去する。用いるfluxの種類や量、結晶育成条件、坩堝に投入する遷移金属酸化物の粒子径を変化させることで、生成する一次粒子の大きさを0.05μm〜100μmの範囲で任意に制御することができる。flux水洗回数、時間は任意である。また、水洗温度も特に規定されないが温水を用いるとfluxの溶解度が増加するので効率的に除去できる。具体的には10〜90℃の範囲の水が使用可能である。
<Process 2: Excessive flux removal>
Next, the produced crystal is washed with distilled water to remove excess flux remaining without reacting in the above step. By changing the type and amount of flux to be used, the crystal growth conditions, and the particle diameter of the transition metal oxide introduced into the crucible, the size of the primary particles to be generated can be arbitrarily controlled within the range of 0.05 μm to 100 μm. it can. The number of times of flux washing and time are arbitrary. Also, the washing temperature is not particularly specified, but if hot water is used, the solubility of flux increases, so that it can be efficiently removed. Specifically, water in the range of 10 to 90 ° C. can be used.

<プロセス3:有機コート>
任意の複合酸化物を含む金属アルコキシドを用意しゾルゲル法を施す。複合酸化物がLiAlOの場合、Li−OR、Al−ORを用いる。RO−は、エトキシ基であることが好ましい。これらダブルアルコキシド溶液をエタノールなどの溶媒にて準備する。撹拌しながらHOを滴定し、ゲル化を促進させた状態の溶液をスプレードライにて電極活物質一次粒子に噴霧塗布する。
<Process 3: Organic coating>
A metal alkoxide containing an arbitrary composite oxide is prepared and subjected to a sol-gel method. When the composite oxide is LiAlO 2 , Li—OR and Al—OR are used. RO- is preferably an ethoxy group. These double alkoxide solutions are prepared in a solvent such as ethanol. H 2 O is titrated with stirring, and the solution in a state where gelation is promoted is spray-coated on the primary particles of the electrode active material by spray drying.

<プロセス4:二次粒子の形成>
噴霧塗布された一次粒子をエタノール溶媒中にて撹拌しながら更にHOを滴定していくと一次粒子の凝集体が形成される。これは活物質表面に結合している有機物同士がアルコキシド中の金属を介して活物質を長尺を含む面同士で結合していくことで配向した凝集が行なわれているのである。所望のサイズに凝集して成長したところで撹拌を止め、溶媒を静水圧プレスの容器に入れてプレスをかける。LiAlOの場合、1トン/cmの圧力を30秒保持する。これにより凝集体のアルコキシド金属を含む有機分が凝集体表面に押し出されながら更に凝集していく。最後にこれらの凝集体を焼結することで所望の二次粒子を得る。LiAlOの場合、500度にて30分保持する。
<Process 4: Formation of secondary particles>
When the H 2 O is further titrated while the sprayed primary particles are stirred in an ethanol solvent, aggregates of primary particles are formed. This is because the organic substances bonded to the surface of the active material are aligned and aggregated by bonding the active material between the surfaces including the long length through the metal in the alkoxide. When the agglomerates to a desired size and grow, stirring is stopped, and the solvent is put into a container of an isostatic press and pressed. In the case of LiAlO 2 , a pressure of 1 ton / cm 2 is maintained for 30 seconds. Thereby, the organic component containing the alkoxide metal of the aggregate is further aggregated while being pushed out to the aggregate surface. Finally, these aggregates are sintered to obtain desired secondary particles. In the case of LiAlO 2 , hold at 500 degrees for 30 minutes.

本発明の一次粒子および二次粒子の製造方法2:沈殿法
<プロセス1:遷移金属炭酸塩の沈殿>
遷移金属硝酸塩を蒸留水に溶解させる。その水溶液に炭酸ナトリウム水溶液と水酸化アンモニウム水溶液を滴下する。溶液が塩基性を帯びると遷移金属が炭酸塩として沈殿し、その沈殿物は微細な一次粒子から構成された球状の二次粒子となっている。遷移金属塩の種類は特に限定されず、硫酸塩や酢酸塩を用いても良いが、後の水洗・焼成工程で容易に除去できる硝酸塩が望ましい。
Production method 2 of primary particles and secondary particles of the present invention: precipitation method <process 1: precipitation of transition metal carbonate>
The transition metal nitrate is dissolved in distilled water. An aqueous sodium carbonate solution and an aqueous ammonium hydroxide solution are added dropwise to the aqueous solution. When the solution is basic, the transition metal precipitates as carbonates, and the precipitates are spherical secondary particles composed of fine primary particles. The type of the transition metal salt is not particularly limited, and sulfates and acetates may be used, but nitrates that can be easily removed in the subsequent water washing / firing process are desirable.

<プロセス2:水洗>
生成した遷移金属炭酸塩の沈殿物を蒸留水にて水洗する。この工程で不純物として存在するNaイオンや硝酸イオンを除去する。水洗回数、時間は任意である。また、水洗温度も特に規定されないが温水を用いると効率的に不純物を除去できる。
<Process 2: Washing with water>
The produced transition metal carbonate precipitate is washed with distilled water. In this step, Na ions and nitrate ions present as impurities are removed. The number of washings and the time are arbitrary. Further, although the washing temperature is not particularly specified, impurities can be efficiently removed by using warm water.

<プロセス3:沈殿物のLi化と一次粒子の結晶面整列化>
遷移金属炭酸塩の沈殿物を坩堝に投入し、fluxかつLi源となるLiOとLiClをそれぞれ投入する。大気雰囲気下、電気炉等を用いて焼成し、fluxを熔融させることで炭酸塩のLi化と一次粒子結晶の整列化を行う。室温まで冷却する。
<Process 3: Liification of precipitate and crystal plane alignment of primary particles>
A transition metal carbonate precipitate is put into a crucible, and Li 2 O and LiCl as flux and Li sources are put in, respectively. Firing is performed in an air atmosphere using an electric furnace or the like, and flux is melted to form carbonate Li and align primary particle crystals. Cool to room temperature.

焼成時に炭酸塩は脱炭酸するとともに、Liと反応し、Li含有遷移金属酸化物へと変化する。また多結晶体からなる個々の一次粒子は溶融塩中で一次粒子が単結晶化し、冷却過程で特定の結晶面が揃った二次粒子となる。用いるfluxの種類や量、結晶育成条件を変化させることで、揃う結晶面を制御できる。また、一次粒子の結晶面を揃える為に必要な冷却過程の時間は特に限定されないが、最高到達温度から室温までなるべく時間をかけて冷却することが望ましい。   During firing, the carbonate is decarboxylated, reacts with Li, and changes to a Li-containing transition metal oxide. In addition, each primary particle made of a polycrystal is converted into secondary particles in which a specific crystal plane is aligned during the cooling process. The aligned crystal planes can be controlled by changing the type and amount of flux used and the crystal growth conditions. In addition, the time of the cooling process necessary for aligning the crystal planes of the primary particles is not particularly limited, but it is desirable to cool as long as possible from the highest temperature to room temperature.

以下、本発明の各構成要素について詳細に説明する。
正極シート
リチウムイオン二次電池を構成する正極シートは、アルミニウムからなる正極集電体の両面に正極材料が結着した構造を有する。本発明の正極材料としては、本発明の電極活物質二次粒子を用い、導電フィラーとして、アセチレンブラック、ケッチエンブラック、VGCF等が挙げられる。正極および負極の導電フィラーは、同一でも、異なっていても良い。
Hereinafter, each component of the present invention will be described in detail.
The positive electrode sheet constituting the positive electrode sheet lithium ion secondary battery has a structure in which a positive electrode material is bound on both surfaces of a positive electrode current collector made of aluminum. As the positive electrode material of the present invention, the electrode active material secondary particles of the present invention are used, and examples of the conductive filler include acetylene black, ketjen black, and VGCF. The conductive fillers of the positive electrode and the negative electrode may be the same or different.

正極シートの結着材としては、電池内で化学的に安定なものであれば、熱可塑性樹脂、熱硬化性樹脂のいずれも使用できる。例えば、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴムなどが挙げられ、これらを単独または複数混合して用いることができる。これらの中でも特に少量で結着力を発揮できるPVDFとPTFEが好ましい。   As the binder for the positive electrode sheet, any thermoplastic resin or thermosetting resin can be used as long as it is chemically stable in the battery. Examples thereof include polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene butadiene rubber, and the like, and these can be used alone or in combination. Among these, PVDF and PTFE that can exhibit a binding force in a small amount are particularly preferable.

負極シート
蓄電素子を構成する負極シートは、銅などからなる負極集電体の両面に負極材料が結着した構造を有する。本実施例の負極材料としては、リチウムイオンを吸蔵放出する炭素材料やSn、Si、Pb、Coを含む合金や酸化物を用いることができる。炭素材料としては、天然黒鉛、人造黒鉛、活性炭、600〜1200℃で焼成した低温炭素体(例えば、易黒鉛性炭素前駆体として、ピッチ、メソフェーズピッチ、または難黒鉛化性炭素前駆体として、フェノール樹脂、キシレン樹脂、PPS、セルロース等)を不活性雰囲気中で熱処理して合成した炭素などが挙げられる。中心部の素子と外周部の素子の電極活物質は、同一でも、異なっても良い。例えば、中心部の素子は、温度が高くなるので劣化が起こりやすいので、劣化タフネスが高く、膨張の小さい、ハードカーボンを中心部の負極に用い、外側の電極はソフトカーボン、黒鉛材料を用いることもできる。
The negative electrode sheet constituting the negative electrode sheet storage element has a structure in which a negative electrode material is bound on both surfaces of a negative electrode current collector made of copper or the like. As the negative electrode material of this embodiment, a carbon material that occludes and releases lithium ions, and an alloy or oxide containing Sn, Si, Pb, and Co can be used. Examples of the carbon material include natural graphite, artificial graphite, activated carbon, a low-temperature carbon body calcined at 600 to 1200 ° C. (for example, pitch, mesophase pitch as an easily graphitizable carbon precursor, or phenol as a non-graphitizable carbon precursor). Resin, xylene resin, PPS, cellulose, etc.) synthesized by heat treatment in an inert atmosphere. The electrode active materials of the central element and the peripheral element may be the same or different. For example, the element in the central part is likely to deteriorate because the temperature is high, so that hard carbon with high deterioration toughness and small expansion is used for the negative electrode in the central part, and soft carbon and graphite materials are used for the outer electrode. You can also.

負極シートの結着材としては、前述の正極で用いた結着材と同様のものが使用でき、その中でも特にスチレンブタジエンゴム、ポリフッ化ビニリデンなどが好ましい。   As the binder for the negative electrode sheet, the same binders as those used for the positive electrode described above can be used, and among them, styrene butadiene rubber, polyvinylidene fluoride, and the like are particularly preferable.

セパレータシート
蓄電素子を構成するセパレータシートは、ポリオレフィン系微多孔質セパレータ、例えば、ポリエチレン、ポリプロピレンや不織布セパレータ、例えば、ポリエステル繊維、アラミド繊維を用いることができる。
As the separator sheet constituting the separator sheet power storage element, a polyolefin microporous separator such as polyethylene, polypropylene or a nonwoven fabric separator such as polyester fiber or aramid fiber can be used.

電解液
溶媒としては、例えばエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、γ−ブチロラクトン(γ−BL)、スルホラン、アセトニトリル、1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ジメチルエーテル、テトラヒドロフラン(THF)、2−メチルテトラヒドロフラン等を挙げることができる。溶媒は、単独で使用しても、2種以上混合して使用しても良い。電解質としては、例えば過塩素酸リチウム(LiClO)、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ素リチウム(LiBF)、六フッ化砒素リチウム(LiAsF)、トリフルオロメタンスルホン酸リチウム(LiCFSO)、ビストリフルオロメチルスルホニルイミドリチウム[LiN(CFSO]等のリチウム塩を挙げることができる。電解質は、単独で使用しても、2種以上混合して使用しても良い。電解質の溶媒に対する溶解量は、通常は0.2mol/L〜2mol/L程度である。種々のイオン性液体を混合してもよい。加えて、電解液の保持する、ゲル電解質としてもよくその保持材料としては、ポリエチレンオキサイド、ポリプロピレンオキサイド、ビニリデンフロライド(VdF)やヘキサフルオロプロピレン(HFP)またはその誘導体、または共重合体を用いることができる。
Examples of the electrolyte solvent include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), γ-butyrolactone (γ- BL), sulfolane, acetonitrile, 1,2-dimethoxyethane, 1,3-dimethoxypropane, dimethyl ether, tetrahydrofuran (THF), 2-methyltetrahydrofuran and the like. A solvent may be used independently or may be used in mixture of 2 or more types. Examples of the electrolyte include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium boron tetrafluoride (LiBF 4 ), lithium hexafluoroarsenide (LiAsF 6 ), and lithium trifluoromethanesulfonate. Examples include lithium salts such as (LiCF 3 SO 3 ) and bistrifluoromethylsulfonylimide lithium [LiN (CF 3 SO 3 ) 2 ]. The electrolyte may be used alone or in combination of two or more. The amount of electrolyte dissolved in the solvent is usually about 0.2 mol / L to 2 mol / L. Various ionic liquids may be mixed. In addition, it may be a gel electrolyte retained by the electrolytic solution, and the retaining material may be polyethylene oxide, polypropylene oxide, vinylidene fluoride (VdF), hexafluoropropylene (HFP) or a derivative thereof, or a copolymer. Can do.

電極端子
正極端子および負極端子の電極端子には、銅、ニッケル、アルミニウム、ステンレスといった金属またはこれらを含む合金やこれら金属を母材にしてニッケルメッキを施したものが使用可能である。集電箔と端子部分の接合面積を稼ぐためには、板状であることが好ましい。
As the electrode terminal of the electrode terminal positive electrode terminal and the negative electrode terminal, a metal such as copper, nickel, aluminum, stainless steel, an alloy containing these, or a metal plated with these metals as a base material can be used. In order to increase the bonding area between the current collector foil and the terminal portion, a plate shape is preferable.

リード板
正極及び負極リード板には、銅、ニッケル、アルミニウム、ステンレスといった金属またはこれらを含む合金やこれら金属を母材にしてニッケルメッキを施したものが使用可能である。
As the lead plate positive electrode and negative electrode lead plate, metals such as copper, nickel, aluminum, and stainless steel, alloys containing these metals, and those plated with nickel based on these metals can be used.

電池ケース
底面部の形状を加工するには、アルミ、ステンレス合金、樹脂を用いることができるが、インパクト成型、トランスファープレス加工によって作製したアルミニウム合金が好ましい。ケースは、蓄電素子と密着する構造が好ましく、これによりケースと蓄電素子との間の空間が少なくなり、電解液を注液した際の、液面が上昇するので蓄電素子吸収が改善され含浸時間を短くできる効果がある。
To process the shape of the battery case bottom surface, aluminum, stainless alloy, or resin can be used, but an aluminum alloy produced by impact molding or transfer press processing is preferable. The case preferably has a structure that is in close contact with the power storage element. This reduces the space between the case and the power storage element, and the liquid level rises when the electrolyte is injected. There is an effect that can be shortened.

以下、本発明の具体的な作製例について説明する。下記の方法で、本発明の実施例および比較例の電極活物質二次粒子を作製した。
[実施例1](製法1:ゾルゲル法)
坩堝内にCo酸化物(Co)を1.0g投入し、fluxかつLi源となるLiOとLiClをそれぞれ4.0g投入した。大気雰囲気下、電気炉を用いて800℃で24時間焼成し、fluxを熔融させることでCo酸化物のLi化と結晶育成を行い、D50=15μmとなるまで成長させた。反応後、72時間かけて室温まで冷却した。生成したLiCoOの結晶を蒸留水にて水洗し、上記工程で反応せずに残ったfluxを除去した。
Hereinafter, specific production examples of the present invention will be described. The electrode active material secondary particles of Examples and Comparative Examples of the present invention were produced by the following method.
[Example 1] (Production method 1: Sol-gel method)
In the crucible, 1.0 g of Co oxide (Co 3 O 4 ) was charged, and 4.0 g of Li 2 O and LiCl as flux and Li sources were charged. In an air atmosphere, it was baked at 800 ° C. for 24 hours using an electric furnace, and the flux was melted to convert the Co oxide to Li and grow the crystal until D50 = 15 μm. After the reaction, it was cooled to room temperature over 72 hours. The produced LiCoO 2 crystals were washed with distilled water to remove the remaining flux without reacting in the above step.

エタノール溶媒にて、LiアルコキシドおよびAlアルコキシドのダブルアルコキシド溶液を準備した。撹拌しながらHOを150ppm前後滴定し、ゲル化を促進させた状態の溶液をスプレードライにて上記LiCoOの一次粒子に噴霧塗布した。 A double alkoxide solution of Li alkoxide and Al alkoxide was prepared in an ethanol solvent. While stirring, H 2 O was titrated around 150 ppm, and the solution in a state where gelation was promoted was spray-coated on the primary particles of LiCoO 2 by spray drying.

噴霧塗布された一次粒子をエタノール溶媒中にて撹拌しながら更にHOを滴定して、結晶方位が一方向に配向した一次粒子の凝集体(二次粒子)を得た。所望のサイズに形成したところで撹拌を止め、溶媒を静水圧プレスの容器に入れてプレスを掛け、更に凝集させ、最後にこれらの凝集体を焼結することで表1に示す実施例1の二次粒子を得た。 While stirring the spray-coated primary particles in an ethanol solvent, H 2 O was further titrated to obtain aggregates (secondary particles) of primary particles having crystal orientations aligned in one direction. When the desired size was formed, the stirring was stopped, the solvent was placed in a container of an isostatic press, pressed, further agglomerated, and finally, these agglomerates were sintered. Next particles were obtained.

[実施例2](製法1:ゾルゲル法)
Co酸化物(Co)の代わりに、1:1:1のモル比のNi/Co/Mn混合酸化物を用い、LiアルコキシドおよびAlアルコキシドのダブルアルコキシド溶液を用い、一次粒子の寸法をD50=10μmとした以外は同様にして、表1に示す実施例2の二次粒子を得た。
[Example 2] (Production method 1: Sol-gel method)
Instead of Co oxide (Co 3 O 4 ), a 1: 1: 1 molar ratio Ni / Co / Mn mixed oxide was used, and a double alkoxide solution of Li alkoxide and Al alkoxide was used. The secondary particles of Example 2 shown in Table 1 were obtained in the same manner except that D50 = 10 μm.

[実施例3](製法2:沈殿法)
遷移金属硝酸塩(1:1:1のモル比のNi/Co/Mn硝酸塩混合物)を0.2Mとなるように蒸留水に溶解させた。この水溶液に、NaCO水溶液0.2MおよびNHOH水溶液0.2Mを滴下し、上記遷移金属の炭酸塩を沈殿させ、微細な一次粒子から構成された球状の二次粒子を得た。生成した炭酸塩の沈殿物を蒸留水にて水洗し、不純物として存在するNaイオンや硝酸イオンを除去した。
[Example 3] (Production method 2: Precipitation method)
Transition metal nitrate (a 1: 1: 1 molar ratio Ni / Co / Mn nitrate mixture) was dissolved in distilled water to 0.2M. To this aqueous solution, 0.2M Na 2 CO 3 aqueous solution and 0.2M NH 4 OH aqueous solution were added dropwise to precipitate the transition metal carbonate to obtain spherical secondary particles composed of fine primary particles. . The produced carbonate precipitate was washed with distilled water to remove Na ions and nitrate ions present as impurities.

Ni/Co/Mn炭酸塩の沈殿物1.0gを坩堝に投入し、 fluxかつLi源となるLiOとLiClをそれぞれ4.0g投入した。大気雰囲気下、電気炉を用いて800℃で24時間焼成し、fluxを熔融させることで炭酸塩のLi化と一次粒子結晶の整列化を行った。72時間かけて室温まで冷却した。 1.0 g of Ni / Co / Mn carbonate precipitate was put into a crucible, and 4.0 g of Li 2 O and LiCl as flux and Li sources were added. Firing was performed in an air atmosphere at 800 ° C. for 24 hours using an electric furnace, and the flux was melted to convert the carbonate into Li and align the primary particle crystals. Cooled to room temperature over 72 hours.

[実施例4〜8](製法2:沈殿法)
遷移金属硝酸塩の混合物のモル比および一次粒子の寸法を、表1に記載の各比および寸法に変更した以外は同様にして、表1に示す実施例4〜8の二次粒子を得た。
[Examples 4 to 8] (Production method 2: Precipitation method)
Secondary particles of Examples 4 to 8 shown in Table 1 were obtained in the same manner except that the molar ratio of the transition metal nitrate mixture and the primary particle dimensions were changed to the ratios and dimensions shown in Table 1.

[実施例9](製法1:ゾルゲル法)
Fe(NO・9HO、NaHPO・12HOをそれぞれ蒸留水に溶解して0.1mol/Lの溶液とし、これらの水溶液を混合した。得られた沈殿をろ過・水洗後に乾燥させて600℃で3時間空気中において焼成し、FePOを得た。るつぼ内に1.0gのFePOとfluxかつLi源となるLiOとLiClをそれぞれ4.0g投入した。また、FePOの還元剤として0.1gのスクロースを加え、アルゴンと水素の混合ガス中で800℃で24時間焼成し、fluxを溶融させることでFePOのLi化とD50=3μmとなるまで結晶育成を行った。反応後、72時間かけて室温まで冷却した。生成したLiFePOの結晶を蒸留水にて水洗し、上記工程で反応せずに残ったfluxやスクロースを除去した。
[Example 9] (Production method 1: Sol-gel method)
Fe (NO 2) 3 · 9H 2 O, a solution of 0.1 mol / L was dissolved Na 2 HPO 4 · 12H 2 O to each of distilled water, and mixing these aqueous solutions. The obtained precipitate was filtered and washed with water, dried, and calcined in air at 600 ° C. for 3 hours to obtain FePO 4 . In a crucible, 1.0 g of FePO 4 and flux, and Li 2 O as a Li source and 4.0 g of LiCl were charged, respectively. Further, 0.1 g of sucrose is added as a reducing agent for FePO 4 , calcined in a mixed gas of argon and hydrogen at 800 ° C. for 24 hours, and flux is melted until LiPO of FePO 4 and D50 = 3 μm are obtained. Crystal growth was performed. After the reaction, it was cooled to room temperature over 72 hours. The produced LiFePO 4 crystals were washed with distilled water to remove the remaining flux and sucrose without reacting in the above step.

エタノール溶媒にて、金属アルコキシド(LiアルコキシドおよびAlアルコキシド)のダブルアルコキシド溶液を準備した。撹拌しながらHOを150ppm前後滴定し、ゲル化を促進させた状態の溶液をスプレードライにて上記LiFePOの一次粒子に噴霧塗布した。 A double alkoxide solution of metal alkoxide (Li alkoxide and Al alkoxide) was prepared in an ethanol solvent. While stirring, H 2 O was titrated around 150 ppm, and the solution in a state where gelation was promoted was spray-coated on the primary particles of LiFePO 4 by spray drying.

噴霧塗布された一次粒子をエタノール溶媒中にて撹拌しながら更にHOを滴定して、結晶方位が一方向に配向した一次粒子の凝集体(二次粒子)を得た。所望のサイズに形成したところで撹拌を止め、溶媒を静水圧プレスの容器に入れてプレスを掛け、更に凝集させ、最後にこれらの凝集体を焼結することで表1に示す実施例9の二次粒子を得た。 While stirring the spray-coated primary particles in an ethanol solvent, H 2 O was further titrated to obtain aggregates (secondary particles) of primary particles having crystal orientations aligned in one direction. When the desired size was formed, the stirring was stopped, the solvent was put into a container of an isostatic press, pressed, further agglomerated, and finally these agglomerates were sintered. Next particles were obtained.

[比較例1](三元系)
反応容器に水酸化ナトリウムを添加してpHを約12に調整した2質量%のアンモニア水を用意した。Ni,Co,Mnのmol比が1/6:1/6:2/3となるよう調整した遷移金属硝酸塩を含む混合水溶液を反応容器内のアルカリ性溶液に滴下した。このとき反応溶液がpH約12に保たれるように25質量%のアンモニア水と水酸化ナトリウム水溶液も同時に滴下させた。反応溶液の温度は約50℃に保ち、反応雰囲気が不活性雰囲気となるよう窒素ガスをパージした。得られた生成物を濾過、水洗することでNi:Co:Mn=1/6:1/6:2/3のmol比で構成される水酸化物を得た。この水酸化物1molと水酸化リチウム一水和物1.4molを混合した。その混合物をアルミナるつぼに入れ、800℃で24時間焼成することでLi1.4(Ni1/6Co1/6Mn2/3)Oを合成した。
[Comparative Example 1] (Ternary system)
Sodium hydroxide was added to the reaction vessel to prepare 2% by mass of ammonia water adjusted to a pH of about 12. A mixed aqueous solution containing a transition metal nitrate adjusted so that the molar ratio of Ni, Co, and Mn was 1/6: 1/6: 2/3 was dropped into the alkaline solution in the reaction vessel. At this time, 25% by mass of aqueous ammonia and aqueous sodium hydroxide solution were also added dropwise so that the reaction solution was maintained at a pH of about 12. The temperature of the reaction solution was maintained at about 50 ° C., and nitrogen gas was purged so that the reaction atmosphere became an inert atmosphere. The obtained product was filtered and washed with water to obtain a hydroxide having a molar ratio of Ni: Co: Mn = 1/6: 1/6: 2/3. 1 mol of this hydroxide and 1.4 mol of lithium hydroxide monohydrate were mixed. The mixture was put in an alumina crucible and baked at 800 ° C. for 24 hours to synthesize Li 1.4 (Ni 1/6 Co 1/6 Mn 2/3 ) O 2 .

[比較例2](鉄オリビン)
酢酸鉄(Fe(CHCOO))、リン酸水素二アンモニウム((NHHPO)、炭酸リチウム(LiCO)をリン酸鉄リチウム(LiFePO)の化学両論比となるよう秤量した。秤量した原料にアセトンとジルコニアボールを加え、遊星型ボールミルを用いて混合した。混合物を乾燥し、アルゴンと水素の300℃で2時間予備焼成を行い、続いて800℃で24時間本焼成を行いリン酸鉄リチウム(LiFePO)を合成した。
[Comparative Example 2] (Iron olivine)
Iron acetate (Fe (CH 3 COO) 2 ), diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ), and lithium carbonate (Li 2 CO 3 ) have a stoichiometric ratio of lithium iron phosphate (LiFePO 4 ). Weighed as follows. Acetone and zirconia balls were added to the weighed raw materials and mixed using a planetary ball mill. The mixture was dried, pre-calcined with argon and hydrogen at 300 ° C. for 2 hours, and subsequently calcined at 800 ° C. for 24 hours to synthesize lithium iron phosphate (LiFePO 4 ).

X線回折分析
上記で作製した各実施例および比較例の電極活物質二次粒子について、X線回折分析を行った。その結果を、層状化合物については図7に、オリビン化合物については図8に示す。図7に示すように、層状化合物の実施例については、003のピークよりも110のピークが相対的に比較例よりも強まっており110配向していることが確認された。また、図8に示すように、オリビン化合物の実施例については、200ピークよりも020ピークが相対的に比較例よりも強まっており020配向が確認された。
X-Ray Diffraction Analysis X-ray diffraction analysis was performed on the electrode active material secondary particles of each Example and Comparative Example prepared above. The results are shown in FIG. 7 for the layered compound and in FIG. 8 for the olivine compound. As shown in FIG. 7, in the example of the layered compound, it was confirmed that the 110 peak was relatively stronger than the 003 peak and was 110-oriented. Further, as shown in FIG. 8, in the example of the olivine compound, the 020 peak was relatively stronger than the 200 peak, and the 020 orientation was confirmed.

レート特性試験
各実施例および各比較例の電極活物質二次粒子を用いて、電池セルを作製した。負極の集電箔として厚さ14μmのCu箔を用い、正極の集電箔として厚さ20μmのAl箔を用いた。負極活物質は、粒径22μmの人造黒鉛粒子を用いた。PVDFバインダーを用いて電極を作製し、電極体プレス後の活物質層の厚みはそれぞれ100μmとした。負極の電極密度は1.5g/cm、正極の電極密度は3.8g/cmであった。正極側は塗工部110mm、未塗工部8mmとし、負極側は塗工部114mm、未塗工部8mmとし、セパレータは膜厚25μmのものを用いて正負極の間に挟んだ。
Rate characteristic test A battery cell was fabricated using the electrode active material secondary particles of each Example and each Comparative Example. A 14 μm thick Cu foil was used as the negative electrode current collector foil, and an 20 μm thick Al foil was used as the positive electrode current collector foil. As the negative electrode active material, artificial graphite particles having a particle size of 22 μm were used. An electrode was prepared using a PVDF binder, and the thickness of the active material layer after pressing the electrode body was 100 μm. Electrode density of the negative electrode 1.5 g / cm 3, the electrode density of the positive electrode was 3.8 g / cm 3. The positive electrode side was 110 mm coated and 8 mm uncoated, the negative electrode was 114 mm coated and 8 mm uncoated, and the separator was sandwiched between positive and negative electrodes with a thickness of 25 μm.

セパレータ間に正、負極を挿入して、巻き芯で巻回した。終了後、巻き芯を抜き、素子厚み12mmの扁平型の蓄電素子を得た。集電箔として、正極、負極にそれぞれAlおよびCuの未塗工部を左右に出した。   Positive and negative electrodes were inserted between the separators and wound with a core. After completion, the winding core was removed to obtain a flat type storage element having an element thickness of 12 mm. As the current collector foil, uncoated portions of Al and Cu were left and right on the positive electrode and the negative electrode, respectively.

蓄電素子を80℃で24hr真空乾燥した後、グローブボックス内の含浸用の容器の中に、蓄電素子を投入し容器の内部を減圧、その後電解液1.0MのLiPF/(EC+DMC+EMC)を注入して、含浸を行った。 After the storage element was vacuum-dried at 80 ° C. for 24 hours, the storage element was put into a container for impregnation in the glove box, the inside of the container was depressurized, and then LiPF 6 / (EC + DMC + EMC) of 1.0 M electrolyte was injected. Then, impregnation was performed.

3003のアルミニウム合金を用いて、インパクト成型により、ケース板厚0.5mm、ケース外形寸法L130×W25×H80mmの電池ケースを作製した。上記で作製した蓄電素子は、電池ケース内に挿入した。この電池ケース内に挿入し、上部を電池蓋にて封止し、蓋とケースをYAG溶接で封口後、充放電装置で、4.2Vまで0.2Cの電流でCCCV充電を8時間行った。その後、減圧して脱泡して、注液口にゴム栓をしてセルを完成させた。SOC50%まで放電を行い、初期性能測定を行った。   A battery case having a case plate thickness of 0.5 mm and a case outer dimension of L130 × W25 × H80 mm was produced by impact molding using an aluminum alloy of 3003. The electricity storage device produced above was inserted into the battery case. The battery case was inserted, the upper part was sealed with a battery lid, the lid and case were sealed by YAG welding, and then CCCV charge was performed for 8 hours at a current of 0.2 C up to 4.2 V with a charge / discharge device. . Thereafter, degassing was performed under reduced pressure, and a rubber stopper was plugged into the injection port to complete the cell. Discharge was performed to SOC 50%, and initial performance measurement was performed.

各電池について、高レート(5C)での放電および低レート(0.1C)での放電を行い、各放電から電池の容量を計算し、比率を求め、高レート容量維持率とした。結果を表1に示す。   About each battery, discharge at high rate (5C) and discharge at low rate (0.1C) were performed, the capacity of the battery was calculated from each discharge, the ratio was obtained, and the high rate capacity maintenance rate was obtained. The results are shown in Table 1.

Figure 0005634362
Figure 0005634362

実施例は一次粒子がLiイオンの挿入離脱がスムーズな結晶面を揃えて二次粒子を形成しているため、急速充放電特性が高い。また、二次粒子を形成している一次粒子の一つ一つが微細なので固体内のLiイオン拡散パスが短く急速充放電に有利である。さらに、個々の一次粒子は単結晶で形成されているので格子欠陥などが存在せず、Liの固体内拡散を阻害するものが極めて少ないので、比較例よりも急速充放電特性が優れる(レート特性試験)。   In the example, since the primary particles form secondary particles by aligning crystal planes in which insertion and release of Li ions are smooth, rapid charge / discharge characteristics are high. In addition, since each of the primary particles forming the secondary particles is fine, the Li ion diffusion path in the solid is short, which is advantageous for rapid charge / discharge. In addition, since each primary particle is formed of a single crystal, there are no lattice defects, and there is very little that inhibits the diffusion of Li into the solid, so the rapid charge / discharge characteristics are superior to the comparative examples (rate characteristics) test).

比較例のように固体内のLiイオン拡散パスを短くするために低温焼成して微粒子粉末を得ると、結晶性が低下する。そのような活物質を用いて充放電を繰り返すと徐々に非晶質化が進行し、充放電サイクル特性が悪化する。また、結晶性を上げるために高温で焼成させるだけでは粒子間で焼結が進行し、結晶性は高まるが大粒子化するので急速充放電特性が損なわれる。   When the fine particle powder is obtained by firing at a low temperature in order to shorten the Li ion diffusion path in the solid as in the comparative example, the crystallinity is lowered. When charging / discharging is repeated using such an active material, amorphization gradually proceeds, and the charge / discharge cycle characteristics deteriorate. Further, if firing is simply performed at a high temperature in order to increase the crystallinity, sintering proceeds between the particles, and the crystallinity is increased, but the particles are enlarged but the rapid charge / discharge characteristics are impaired.

本発明によれば、大電流での充放電が可能となり、かつ、レート特性が向上するから、車載用リチウムイオン二次電池に適用して極めて有望である。   According to the present invention, charging / discharging with a large current is possible and rate characteristics are improved. Therefore, the present invention is extremely promising when applied to an in-vehicle lithium ion secondary battery.

E…正極、
1…正極集電体、
2…電極活物質二次粒子、
3…導電材、
4…バインダー、
5…電極活物質一次粒子。

E ... Positive electrode,
1 ... positive electrode current collector,
2 ... electrode active material secondary particles,
3 ... Conductive material,
4 ... Binder
5: Primary particles of electrode active material.

Claims (8)

リチウムの層状化合物及びオリビン化合物のいずれかから選択される活物質の一次粒子が集合した二次粒子から構成される電極活物質材料であって、
前記一次粒子は単結晶であり、長尺面と、それよりも短い短尺面を有し、
前記長尺面は、前記リチウムイオン拡散方向と交差しており、前記短尺面は、前記リチウムイオン拡散方向と平行であり、
前記二次粒子中の前記一次粒子は、各一次粒子におけるリチウムイオン拡散方向が同一になるように、かつ、少なくともリチウムイオン拡散方向へ積層されたことを特徴とする電極活物質材料。
An electrode active material composed of secondary particles in which primary particles of an active material selected from lithium layered compounds and olivine compounds are assembled,
The primary particles is a single crystal having a long face, short short side than it,
The long surface intersects the lithium ion diffusion direction, and the short surface is parallel to the lithium ion diffusion direction,
The electrode active material, wherein the primary particles in the secondary particles are laminated so that the lithium ion diffusion direction in each primary particle is the same and at least in the lithium ion diffusion direction.
前記リチウムの層状化合物の一次粒子においては、結晶格子のNN0面が前記長尺面、00N面が前記短尺面であり、かつ、リチウムイオンは、00N面と平行の方向に拡散することを特徴とする請求項1に記載の電極活物質材料。In the primary particle of the lithium layered compound, the NN0 face of the crystal lattice is the long face, the 00N face is the short face, and lithium ions diffuse in a direction parallel to the 00N face. The electrode active material according to claim 1. 前記リチウムのオリビン化合物の一次粒子においては、結晶格子の0N0面が前記長尺面、N00面が前記短尺面であり、かつ、リチウムイオンは、N00面と平行の方向に拡散することを特徴とする請求項1に記載の電極活物質材料。In the primary particles of the lithium olivine compound, the 0N0 plane of the crystal lattice is the long plane, the N00 plane is the short plane, and lithium ions diffuse in a direction parallel to the N00 plane. The electrode active material according to claim 1. 前記長尺面の長さLと前記短尺面の長さDの比L/Dは、1.1以上であることを特徴とする請求項1〜3のいずれかに記載の電極活物質材料。4. The electrode active material according to claim 1, wherein a ratio L / D of a length L of the long surface to a length D of the short surface is 1.1 or more. 積層された前記一次粒子は、エーテル基によって互いに結合されたことを特徴とする請求項1〜4のいずれかに記載の電極活物質材料。The electrode active material according to claim 1, wherein the laminated primary particles are bonded to each other by an ether group. リチウムの層状化合物及びオリビン化合物のいずれかから選択される活物質からなる単結晶の一次粒子を生成する工程と、
前記一次粒子を、金属アルコキシドにて被覆する工程と、
被覆された前記一次粒子を凝集させ二次粒子を生成する工程とからなることを特徴とする電極活物質材料の製造方法。
Producing primary particles of single crystals composed of an active material selected from any one of a layered compound of lithium and an olivine compound;
Coating the primary particles with a metal alkoxide;
And a step of agglomerating the coated primary particles to produce secondary particles.
前記金属アルコキシドの金属は、前記層状またはオリビン化合物の構成金属と同一であることを特徴とする請求項6に記載の電極活物質材料の製造方法。 The method for producing an electrode active material according to claim 6 , wherein a metal of the metal alkoxide is the same as a constituent metal of the layered or olivine compound. 請求項1〜5のいずれかに記載の電極活物質材料を用いたリチウムイオン二次電池。
The lithium ion secondary battery using the electrode active material material in any one of Claims 1-5 .
JP2011201791A 2011-09-15 2011-09-15 Electrode active material and method for producing the same Active JP5634362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011201791A JP5634362B2 (en) 2011-09-15 2011-09-15 Electrode active material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011201791A JP5634362B2 (en) 2011-09-15 2011-09-15 Electrode active material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013065397A JP2013065397A (en) 2013-04-11
JP5634362B2 true JP5634362B2 (en) 2014-12-03

Family

ID=48188746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011201791A Active JP5634362B2 (en) 2011-09-15 2011-09-15 Electrode active material and method for producing the same

Country Status (1)

Country Link
JP (1) JP5634362B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10756329B2 (en) 2017-10-30 2020-08-25 Seiko Epson Corporation Electrode for secondary battery, secondary battery, and electronic apparatus

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101550741B1 (en) 2013-12-31 2015-09-09 주식회사 에코프로 Manufacturing method of positive active material for lithium rechargeable batteries and positive active material made by the same
KR101992668B1 (en) * 2015-03-05 2019-06-26 가부시끼가이샤 구레하 Method for producing mixed negative electrode material for non-aqueous electrolyte secondary battery and mixed negative electrode material for non-aqueous electrolyte secondary battery obtained by the method
JP6662001B2 (en) * 2015-11-27 2020-03-11 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and method for producing coating liquid
US20230081939A1 (en) * 2020-01-29 2023-03-16 Lg Chem, Ltd. Positive Electrode Active Material Precursor for Secondary Battery, Positive Electrode Active Material, and Lithium Secondary Battery Including the Positive Electrode Active Material

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2961021B2 (en) * 1992-08-05 1999-10-12 三菱重工業株式会社 Method for producing beta alumina electrolyte
JP3047693B2 (en) * 1993-07-22 2000-05-29 松下電器産業株式会社 Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof
JP3362564B2 (en) * 1995-07-04 2003-01-07 松下電器産業株式会社 Non-aqueous electrolyte secondary battery, and its positive electrode active material and method for producing positive electrode plate
JP3582161B2 (en) * 1995-08-11 2004-10-27 ソニー株式会社 Positive electrode active material and non-aqueous electrolyte secondary battery using the same
KR100326455B1 (en) * 1999-03-30 2002-02-28 김순택 Positive active material for lithium secondary battery and method of preparing the same
JP5194709B2 (en) * 2007-10-19 2013-05-08 住友電気工業株式会社 All-solid battery and method for manufacturing the same
EP2357691A4 (en) * 2008-11-04 2013-01-23 Nat University Iwate Univ Inc Nonstoichiometric titanium compound, carbon composite of the same, method for producing the compound, negative electrode active material for lithium ion secondary battery containing the compound, and lithium ion secondary battery using the negative electrode active material
JP2011065887A (en) * 2009-09-17 2011-03-31 Idemitsu Kosan Co Ltd Positive electrode material, method for manufacturing the same, and lithium ion battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10756329B2 (en) 2017-10-30 2020-08-25 Seiko Epson Corporation Electrode for secondary battery, secondary battery, and electronic apparatus

Also Published As

Publication number Publication date
JP2013065397A (en) 2013-04-11

Similar Documents

Publication Publication Date Title
JP6236197B2 (en) Positive electrode for lithium battery and lithium battery
US8609283B2 (en) Positive electrode active material, positive electrode, nonaqueous electrolyte cell, and method of preparing positive electrode active material
US9601761B2 (en) Composite cathode active material, method of preparing the composite cathode active material, and cathode and lithium battery each including the composite cathode active material
KR102534607B1 (en) Positive electrode active material for lithium secondary battery, method for preparing the same, and lithium secondary battery including the same
KR101505351B1 (en) Positive electrode active material for lithium ion secondary batteries
KR102302038B1 (en) Positive electrode active material for lithium secondary battery, preparing method of the same, positive electrode and lithium secondary battery including the same
KR102306545B1 (en) Positive electrode material for lithium secondary battery, preparing method of the same, positive electrode and lithium secondary battery including the same
KR102332342B1 (en) Positive electrode active material for lithium secondary battery, preparing method of the same, positive electrode and lithium secondary battery including the same
KR102402389B1 (en) Composite positive active material, positive electrode including the same, and lithium battery including the positive electrode
JP7535329B2 (en) Positive electrode active material for lithium secondary battery, method for producing same and lithium secondary battery including same
KR102207920B1 (en) Composite cathode active material, preparation method thereof, and cathode and lithium battery containing the material
WO2012077781A1 (en) Nonaqueous-electrolytic-solution secondary battery, and positive electrode and negative electrode used therefor
JP5634362B2 (en) Electrode active material and method for producing the same
JP2022523183A (en) A lithium secondary battery containing a positive electrode active material, a method for producing the same, and a positive electrode containing the positive electrode.
JP2010232063A (en) Positive-electrode active material for nonaqueous electrolyte secondary battery
JP7225415B2 (en) METHOD FOR MANUFACTURING POSITIVE ACTIVE MATERIAL FOR SECONDARY BATTERY
KR102273779B1 (en) Composite cathode active material preparation method, composite cathode active material, cathode and lithium battery containing the material
KR101232839B1 (en) Positive active material precursor for rechargeable lithium battery, method of preparing positive active material for rechargeable lithium battery using the same, and rechargeable lithium battery including the prepared positive active material for rechargeable lithium battery
KR102195723B1 (en) Composite precursor of cathode active material, cathode active material, cathode and lithium battery containing material and preparation method of composite precursor
JP7357994B2 (en) Method for producing positive electrode active material for secondary batteries
JP7270941B2 (en) Method for manufacturing positive electrode active material for lithium secondary battery, and positive electrode active material manufactured by said manufacturing method
JP7230227B2 (en) Positive electrode active material, manufacturing method thereof, and lithium secondary battery including positive electrode containing the same
KR20130117686A (en) Anode active material having high capacity and lithium secondary battery comprising the same
KR101572082B1 (en) Lithium Transition Metal Oxide With High Capacity and Lithium Secondary Battery Having the Same
JP7515954B2 (en) Method for producing positive electrode active material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141014

R150 Certificate of patent or registration of utility model

Ref document number: 5634362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250